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H. Cartan gave an axiomatic theory of the Steenrod squares, and proved the 

product formulas for these operations, in [1]. There he used the theory of 

'carapace' due to J. Leray. We shaH now try to establish similar theorems in 

terms of the combinatorial theory in finite complexes. This is accomplished as 

a translation of a lemma in Steenrod [4], and is stated in Theorem 1. Further­

more we give product formulas for the Pontrjagin and Postnikov squares in 

Theorem III. In Theorem Il, we remark that the Shimada-Uehara operation c!/1 [6] 

is a composition of two weH-known operations. 

§ 1. A system of cup-i products 

We shaH deal with finite simple complexes K [2]. That is to say, K is a 

finite abstract complex such that 

( i ) the closure Cl a of each ceH a of K is acyclic, 

(ii) a cochain 7° which takes + 1 on each 0-cell is an integral cocycle, 

(iii) there exists no ceH with negative dimension. 

7° is caHed usuaHy the fundamental cocycle of K. Let L be a subcomplex of 

K, then we denote by CP(K, L) the p..-cochain group of K mod L with integer 

coefficients. 

Let {'j'} (i=O, ±1, ±2, ······)be a sequence of bilinear maps y: CP(K) 

xCq(K) ----4 CP+Q-1(K) (p, q: arbitrary integers) such that 

( 1 ) if u E CP(K, LI), v E Cq(K, Lz), then u y v E CP+H(K, L1 U Lz), where 

(2) 

(3) 

(4) 

L 1 , L2 are arbitrary subcomplexes of K, 

7°'()U=U for any uEC0(K), 

if i < 0, u y v = 0 for arbitrary u and v, 
coboundary formula: iJ(u y v) :_:_c ( -1)2'tQ-tu '-""v 1 ( · 1)v~q 1M v -.J u 

' i-1 i-1 

+iJuyv+(-1)Puyilv, where uEC1'(K), vECq(K) and iJ is the co-
boundary operator. 

We refer to such a sequence {v} as a system of cup-i products. 
' 

When any system of cup-i products is given, we can define in the usual way 

(for instance, see [3], [7], [8]) Steenrod squares Sq1 , Pontrjagin squares ~. 

Postnikov squares ~ and eup products 'J with respect to the natural coefficient 
groups: 
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Sqi: H 11(K, L; [z) ~ fl2P-i(K, L; 12)' 

\13 H 1'(K, L; lzt) ~ H 211(K. L; l4t), 

~ H 11(K, L; Ize)----* H 211 +1(K L; l4e), 

'-.../ H 11(K, L1; ls)XHq(K, L2; le)--* flP+q(K, L1 U L2; lacs.o), 

where lm is the integer mod m, and d(s, t) denotes the greatest common divisor 

of s and t. Explicitely, these are given by maps {u}----* {u yu}, {u}----* 

{u yu+ u y ou}, {u} ~ {u 'o' ou} and {u} x {v}----* {u 'o' v} respectively, where 

{u} denotes the cohomology class of a cocycle u. 

~ 2. Equivalent conditions 

In this section, we shall prove 

Lemma 1. The conditions (1) and (2) are equivalent with (5) and (6): 

( 5) (iP y :rq is a cochain in St a11 n St -rq, where (iP is an integral p-eochain 

dejined by a11(a 11 ) = +1 and a11(a 111 ) = 0 (a 111 =t' a11 ), and St a11 denotes the star of 

a11 in K. 

(6) 

Prao/. i) (1), (2)----* (5), (6). 

Since a11 E C 11(K, K -St a11 ) and r:q E C 11(K, K -St -rq ), it follows from (1) that 

a11 '-.../ rq E CP+q-i(K, K -St a11 u K -St -rq) = CP+Q-i(K, K -St a11 n St -rq). Thus 
i 

(iP y rq is a cochain in St a11 n St -rq' and so we have (5). Especially, a0 '-.../ :ro is 
' u 

a 0-cochain in a0 n r-0 ' so that a0 '(( :ro = 0 if a0 cl" r-0 • On the other band, we 

have ïo '-.../(jO = ;;:o from (2). Thus we see from the bilinearity of '-.../ that the 
0 u 

condition (6): a0 'o' a0 = 0:0 holds. 

ii) (5), (6)--+(1), (2). 

Let u=2.jaJ(lJ(d}EK-Ll) and v=2.jb~-r~;(-rZEK-L2) be elements of 
~ k 

CP(K, L1) and Cq(K, L2) respectively. Then it follows from (5) that u y v is a 

cochain in U (St a) n St -rZ). Thus u y v (aP+Q-l) = 0 if aP+Q-; E L1 or E L2. 
j,k t 

Because, if we assume that u y v (a 11 +'l-i) =-~ 0, there exist j and k such that 

o11 +q-; ESt a) and ESt -r~. Therefore it follows that ifj and aZ belong to Cl a11 +q-i. 

If a11 +Q-i E L1, th en Cl aP+Q-i C L1, and so a) be longs to L1. This is a contradiction. 

In case a11+q-i E L2, we have a contradiction in the similar way. Thus we have 

u '--:;v ê CP+Q-i(K, L1 U L2 ). This is (1). a0 'o' :ro = 0 (a0 =+~ r-0 ) is a consequence 

of (5), and so ïo 'o' 0:0 = o0 is obvious from (6). Thus we obtain (2) from the 

bilinearity of 'o' . Q. E. D. 

~ 3. Uniqueness and existence theorems 

Corresponding to Theorem 2 in [1], we have 
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Theorem 1. There exists in K, at least, a system of cup-i products. If 

{-"'}, {'--"'Jl are two such systems, and if Sq.1 , ~'~''---"and Sq/, \13', ll.\', '---"'are 
' t 

the operations induced by y and y' respective/y, then we have 

Sqi = Sq/, ~ = ~1 , \p = \Ï\', '--" = '---"'. 
Proof. Let us define a homomorphism Di: C"(K xK) _,. cr-t(K) (i = 0, ±1, 

±2, ······) by 

Then it is obvious from the bilinearity of y that 

(7) 

for any u E CP(K) and v E Cq(K). 

Moreover, we have, by straightforward calculations, from ( 4) that 

(8) IJi(J(uxv)+( -1)i+l (JIJi(uxv) 

= ( --1)M DH(v xu) +( -1)iD1- 1(u xv). 

Let g~: Cr(K x K) _,. Cr(K x K) be a chain transformation defined by 

and let g~: cr(KxK)--·C'(KxK) be its dual. Then it is obvious that 

and that we can take as a carrier of g~ a map g: K xK _,. K xK defined by 

g(tJjXo~c) = o~cXOj· If we use g~, (8) is written as follows: 

(9) IJiiJ(uxv)+( -1)i+l IJDi(uxv) 

= [)t-1 g~(u xv)+( -1)iiJi-l(u xv). 

Let Dt: Cr(K) -• Cr+tCK x K) be the dual of IJi. Then D, is explicitely 

given by 

(10) D 1cr = ::8 (D1(aj x aD· cr) o) x 11'/., 
j,k 

where p+q = r+i, and · denotes the Kronecker index between a cochain and 

a chain. 

We shall now prove three properties (12), (13), (14) of Dt. 

Firstly, as the dual relation of (9), we obtain easily 

(11) 

where crE Cr(K). 

If we use the notations 

wD1 = BDt +( -1)i+1Dto, 

at= g~+c --1)ie~ 
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(e~: identical chain transformation) with Steenrod [4], then (11) becomes 

(12) 

Next, we shall prove 

(13) InDoc0 = Inc0 , c0 E Co(K), 

where Inc0 denotes the Kronecker index of a 0-chain. 

Let c0 = L; a1a~, then it follows from (7) and (10) that 
j 

Since 

a~ v a2 = aL if j = k , 

= 0 , otherwise, 

we have 

Cah.~ a2)·c0 = a1 , if j = k, 

= 0, otherwise. 

Tbus it holds that 

and so 

which is (13). 

Let C: K-•KxK be a carrier defined by C('r)=Ch·xClr. Then we have 

(14) C is an acyclic carrier such that gC( r) = C(r) for any rE K, and D; is 

carried by C. 

Since Cl r is acy clic, Cl r x Cl r is also acyclic. Th us C is acyclic. gC( r) = 

C( r) is obvions. From (10) we have 

D;( rr) = 2J (Di(dJj x a~)- rr)crj x aZ. 
j,lc 

Since Di((lj x aü = ( -1)i<"+qH-}tet-D o:J y oZ is a cochain in Sta:J n Stak from (5), 

Di( 11) x aD· rr =F 0 implies th at rr E St a) and E St a~ • Tb us both a) and a~ belong 

to Cl rr, and so D;( rr) is a chain in Cl rr x Cl rr. Therefore we can take C as 

a carrier of D;, and (14) is proved. 

If we carry out the above arguments as to y', we find th at the dual D/ of 

a homomorphism D'i defined by 

(15) 

bas the properties (12), (13), (14). 

Thus both D; and D;' satisfy the all conditions of Lemma 5. 5 in [4, p. 56], 

and so it follows from this lemma that 

(16) there exists a sequence of homomorphisms E;:C,.(K)--Cr+;(KxK) 
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(i = 0, 1, 2, ···) such that 

i) Eo = 0 

iii) E 1 is carried by C. 

If we denote by E 1 the dual of E 1 , (ii) is written in terms of cohomology as 

follows: 

Thus, if u is an element of the p-cocycle group ZP(K, L; / 2 ), it follows from 

(7), (15) and (17) that 

(18) uy'u~uyu=.oE1 + 1(uxu) mod 2. 

Since E 1+1-r is a chain in Cl-rxCh from (iii) of (16), E 1+1-r is a chain in LxL if 

-rEL. Since uxuEC2P(KxK,KxLULxK), it follows that 

E 1+l(uxu)(-r) = (uxu)(Ei+ 1-r) = 0 

if -rEL. Tlms EH1(uxu)EC2P-t-1(K,L). Therefore we have from (18) 

Sq/ {u} = Sqt{u}. 

l\s for the Pontrjagin square, it holds for u E ZP(K, L; l 2 t) that 

(u y'u+u y' ou)~(u '[( u +u y ou) 

=. o(El(uxu)+E2(uxou)) mod 4t. 

Since El(uxu)+E2(uxou)EC2P-1(K,L), we have 

\ll' {u} = \ll{u} . 

Similarly, we have \13' = ~, '--' = '--''· Thus the second part of Theorem 1 

is proved. 

Steenrod showed in [4] that there exists in K, at least, a sequence {D.d 

satisfying the condition (12), (13), (14). Precisely, K in [4] is a geometrical 

cell complex. However, as is shown easily, the arguments in there still hold in 

a finite simple complex. If we now define u y v by (7), we can easily prove that 

{y} is a system of cup-i products. Thus the first part of Theorem is proved, 

and this completes the proof. 

§ 4. On the Shimada-Uehara operation 

Shimada-Uehara defined in [6] the homomorphism 1-1 : HP(K, L; I2t) ~· 

H 2P-ï(K, L; I) for odd p ~ i _ This was originally defined by the map of u E zv 

(K, L; l2t) to Q.;u =-- u y u+u Mou+( ~1)P~ou 't(z (Ju E Z 2P-l(K, L; I). However, 

we can prove that this operation is nothing but a composition of two well-known 

operations, as is shown in the following. 
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Let 

be the Steenrod square corresponding to the natural coefficients homomorphism 

I2t -• /2 , and let 

be the coboundary operator associated with the exact coefficient sequence 

~ 17 

O---*I-I-12-o, 

where ~(n) = 2n and 7J is the natural factorization I /~I. Then we have 

Theorem II 

Prao/. It follows from the definition of .d that .dSqi+l {u} is a cohomology 

class containing a cocycle v such that 2v = à( u î:+l u ). Since 

we have 

o(u î:+l u) = ( -l)i+l2uyu+ou ~1 u+C -l)i+lu î:+l ou, 

o(ou i/2 u) = ( --l)i+1ou .;y1 u -u î:+l ou+( -l)P+lou 1:+2 ou, 

o(U YU)= ( -l)i+l2(U VU +U Y OU+( -l)P-2
1 ou Y OU) 

t-+1 ~ i+l t+2 

+( -l)i+liJ(ou i+2 u). 

Thus 1o(u '-' u) = ( -l)i+1q-u+( -l)i+lo(lou '-' u) and so we bave 2 i+l ' 2 i-ll ' 

Therefore 

~ 5. Product formulas 

Let 

{v} = ( -l)i+l{qiu}. 

.JSqi+I{u} = 1du} . 

be the natural homomorphism corresponding to the natural factorization I ___.. I 1 t. 

Then we have 

Theorem III (product formulas). Defining in the natural manner, namely 

by the tensor products, the group pairings between coefficient groups in the 

cross or eup products, we have the following formulas: 

(19) 

(Cartan).* 
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ii) Let p and q are even. If xEHP(K1 ,L1 ; l2s) and yEHq(K2,L2; /2t), 

we have 
- --

(20) ~(xxy) = ~xx~y+~xx,u.JSqzy+,u.dSq2xx~y. 

(21) \l3(xxy) = ~xx~y+\ilxx~y. 

B) Let us assume that K 1 = K2 = K in i), ii), iii). Then (19), (20), (21) 

hold with the eup product \J in place of the cross product x , and with 

K, L1 U L2 in places of K 1 xK2, K 1 xL2 U L1 xK2 respectively. 

W e shaH first prepare two lemmas, bef ore we proceed to prove the theorem. 

Let K 1 and K 2 be fini te simple complexes. Th en K 1 x K 2 is also fini te and 

simple. Let { y 1 } and {y2} be arbitrary systems of cu p-i products in K 1 and K 2 

respectively. Following H. Cartan, we shall now define a bilinear map y of 

CP(K1xK2)xCq(K1xK2) in CP+H(K1xKz) by 

(22) (u1 xu2) y (v1 xv2) 

= ( --1)P2q1 ~ (u1 '---"1 v1) x (u2 --;------2 v2) 
J 2} •-2} 

+ (-1)Pz(q!+q2)+Pz+q2 2._:(u1-----1v1)x(v2 :---2 u2). 
J 2}+1 ·t-2}-1 

where UzE cPzcKz), Vz E Cql(Kz) (l = 1, 2). 

Lemma 2. {y} is a system of cup-i products in K 1 xK2. 

Prao!. Straightforward calculations show that {y} satisfies the condition 

(4). The conditions (5), (6) and (3) can be proved easily. Thus Lemma 2 

follows from Lemma 1. 

Let K, K' be finite simple complexes, and let L, L' be their subcomplexes. 

Let {y} and {y'} be arbitrary systems of cup-i products in K and K' respec­

tively. Suppose tbat f #: CP(K, L) __. CP(K', L') be a chain transformation which 

is carried by an acyclic carrier. Let us denote by f* the homomorphism of 

cohomology groups induced by !#. Then we bave 

Lemma 3. 

Sq;/* = f*Sq/, ~!* = f*~', ~!* :c-= f*:il'. 
This lemma can be proved in the slmilar way as in the proof of Theorem 

8.1 in [4]. Tberefore we will not prove this lemma. 

* We find an elegant proof of this formula in [5]. 
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Proof of Theorem III. (A) It follows from Theorem 1 and Lemma 2 that 

we may calculate by the rule (22) each square in K 1 xKz. Thus (19) is obvious. 

We shall prove (20). Let u E Zr>(K1 , L1 ; 12s), v E Zq(Kz, Lz; lzt), and let 

p, q are even. Then it follows from (22) and Theorem II that 

~ {u xv} = {(u xv) y (u xv)+(u xv) y o(u xv)} 

= {(uyu)x(vyv)+(uyou)x(vyv) 

+Cu y ou) x(v y v)+(u yu) x(v y ov) 

-- ( u y u) x ( ov '(( v)} 

= {(uyu+uyou)xCvvv+vyov) 

-Cu y ou) x(v y ov)+(u V ou) x(v y v) 

-(uyu)x(ovyv)} 

= ~{u} x~{v} +{(u y ou)x(v y v+v y ov+~àv y ov) 

+(u y u+u y ou+}ou y ou)x(v y ov)} 

'-- ~{u} x~{v} +\l3{u} x,a.dSqz{v} +,~-t.dSqz{u} x~{v}, 

Tberefore we obtain (20). 

The proof of (21) is similar. Thus (A) is proved. 

(B) If we note that D0(uxv) = uyv from (7), and tbat D 0 is the dual of 

a chain transformation Do with an acyclic carrier C, (B) is obvious from (A) 

and Lemma 3. This completes the proof. 
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