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H. Cartan gave an axiomatic theory of the Steenrod squares, and proved the
product formulas for these operations, in [1]. There he used the theory of
‘carapace’ due to J. Leray. We shall now try to establish similar theorems in
terms of the combinatorial theory in finite complexes. This is accomplished as
a translation of a lemma in Steenrod [4], and is stated in Theorem I. Further-
more we give product formulas for the Pontrjagin and Postnikov squares in
Theorem III. In Theorem II, we remark that the Shimada-Uehara operation ¢; [6]

is a composition of two well-known operations.

§1. A system of cup-i products

We shall deal with finite simple complexes K [2]. That is to say, K is a
finite abstract complex such that

(i) the closure Cls of each cell ¢ of K is acyclic,

(ii) a cochain 7° which takes +1 on each O-cell is an integral cocycle,

(iii) there exists no cell with negative dimension.

70 is called usually the fundamental cocycle of K. Let L be a subcomplex of
K, then we denote by C?(K, L) the p—cochain group of K mod L with integer
coefficients.

Let {~} (z=0, 1, £2, - ) be a sequence of bilinear maps v C(K)
xC¥(K) — C?+*~i(K) (p, q: arbitrary integers) such that

@D) if ue C"(K, L), ve C(K, L), then u v € C*+*~i(K, L, U L,), where
Ly, Ly are arbitrary subcomplexes of K,

(2) 7wu=u for any ucC(K),

3 if i<0,uv=0 for arbitrary u and v,

4 coboundary formula: o0(u~yv) = (—~1""ig v (- 1)ri7i2e Vg U
+ou v +(—1Pu dv, where uc CXK), v C(K) and ¢ is the co-
boundary operator.

We refer to such a sequence {/} as a system of cup-i products.

When any system of cup— products is given, we can define in the usual way
(for instance, see [3], [7], [8]) Steenrod squares Sq;, Pontrjagin squares P,
Postnikov squares B and cup products - with respect to the natural coefficient
groups:
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H*"(K,L; I,) — H?*-(K,L; I,),

H*(K,L; In)—> H*(K.L; I12),

HY(K, L; Ing)—> H?**Y (K L; L),

HY(K, L ; IOXHY(K, Ly; 1) —> HP*'(K, L1 U Lz ; Tycs,) s

(e P

where I, is the integer mod m, and d(s,t) denotes the greatest common divisor
of s and 7 Explicitely, these are given by maps {u} —> {u %}, {u} —>
{uyutuyoul, {uf — {uy du} and {ut x {v} —> {u v} respectively, where

{u} denotes the cohomology class of a cocycle .

§2. Equivalent conditions

In this section, we shall prove

Lemma 1. The conditions (1) and (2) are equivalent with (5) and (6):

(5) @1 is a cochain in Sto” (N Stt', where o” is an integral p-cochain
defined by a*(o?) =+1 and %°(o’?) =0 (¢’? =t=6?), and St ¢® denotes the star of
d? in K.

(6) 3O 0 =gl

Proof. i) (1), (2)—> (5), (6).

Since ¢? € C?(K, K —St ¢”) and "€ C*(K, K —St ), it follows from (1) that
o? Tt € CPmI(K, K —Ste” U K -St') = CP+~i(K, K-St ¢” N Stz?). Thus
o 7" is a cochain in Ste” N St 7%, and so we have (5). Especially, 50\0/ 70 is
a O-cochain in ¢° N 0, so that ¢ 70 =0 if ¢°=7°. On the other hand, we
have 70 d® = ¢® from (2). Thus we see from the bilinearity of w that the

condition (6): ¢° <y ¢° = ¢° holds.

i) (6), (6)—> (1), (2.

Let u= }_,‘ a;0 (65 € K—Ly) and v =>) b7, (vl € K—Ly) be elements of
C?(K,L,) and CQ(K L) respectively. Then it follows from (5) that #\v is a
cochain in U (Stay N Stel). Thus uy v (6?1 =0 if ¢?ti"i¢L; or €L,.
Because, if we assume that uvv(a”*“‘*):b:O there exist 7 and % such that
0P+t €St g% and €Stt). Therefore it follows that ¢4 and o} belong to Cl ¢?+%~%,
If ¢?+%-i¢ L, then Cl ¢?+% C L,, and so ¢} belongs to L,. This is a contradiction.
In case ¢?+"~i¢ L,, we have a contradiction in the similar way. Thus we have
u—veC**"~(K, L[, U Lp). This is ). =0 (6 ==10) is a consequence
of (5), and so 7\ a® =¢° is obvious from (6). Thus we obtain (2) from the
bilinearity of . Q.E.D.

§3. Uniqueness and existence theorems

Corresponding to Theorem 2 in [1], we have
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Theorem 1. There exists in K, at least, a system of cup-i products. If
{4, {4/} are two such systems, and if Sq;, B, B, — and Sa/, ¥, ¥, " are
the operations induced by - and /' respectively, then we have

Sqi:SQi/, m:m,y 53——‘%,’ V:vl'

Proof. Let us define a homomorphism Di: C'(K xK)—C™~(K) (=0, %1,

Di(G4xa8) = (~ 1Y@ drgi-D gr 5t (pig=1).
Then it is obvious from the bilinearity of .~ that
D) Di{uxp) = (~1Y@sDrgi-D gy
for any # € Cp(K) and v € C(K).
Moreover, we have, by straightforward calculations, from (4) that
8 DigCu xv)+( —1)i*1 §D(u xv)
= (DD oxu)+(—1)Duxv).
Let go: C{K xK)—C{K xK) be a chain transformation defined by
g=(ayxal) = (=1)"af xd},
and let g#: C"(K xK) -~ C"(K xK) be its dual. Then it is obvious that
gHuxv) =(-D™oxu, uc C*(K), veC(K),

and that we can take as a carrier of g¢ a map g: K xK — K xK defined by
glo;xXar) = axXay. If we use g#, (8) is written as follows:

9 DigCuxv)+(—1)*1 gD uxv)
= D=1t g#(uxv)+(=1)D=Wuxv).
Let D;: C{K)—Crs( KxK) be the dual of D¢, Then D; is explicitely
given by
(10> Dy = X3 (D¥(dixai)-c") afx i,
Jsk
where p+q =7 +4Z, and - denotes the Kronecker index between a cochain and
a chain.
We shall now prove three properties (12), (13), (14) of D;.
Firstly, as the dual relation of (9), we obtain easily
<11> aDic’"+( “‘1>i+1 Diacr = gﬁ:Di—]cr +( “'1>5Di_1cr ,
where ¢” € C(K).
If we use the notations
(I)Di = aDi +( '1)i+1Di0 N
a; = gu+(—~1)ex
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(ex: identical chain transformation) with Steenrod [4], then (11) becomes
a2 oD; = a;Di
Next, we shall prove
3) InDoc® = Inc®, e C(K),

where Inc® denotes the Kronecker index of a O-chain.
Let co = };_‘,ajog’, then it follows from (7) and (10) that

Dycy = %;: @ 5 aR)-c®)a}x oy
Since
Gyak=dy, ifi=k,
=0, otherwise,
we have
(df o) =a;, ifj=k,
=0, otherwise.
Thus it holds that
Dyc® = ; a(a)xa3),
and so
InDgc® = %} a; = Inc?,
which is (13).
Let C: K — K xK be a carrier defined by C(t) = CltxClz. Then we have
(14) C is an acyclic carrier such that gC(r) = C(r) for any 7€ K, and D, is
carried by C.
Since Clr is acyclic, CltxClt is also acyclic. Thus C is acyclic. gC(7) =
C(7) is obvious. From (10) we have

D) = 33 (D@ x )" x ot
Since Di(d%xa%) = (—1)“”*‘1)*“‘;““"1’ :J‘_';Y ot is a cochain in St¢’;N Steg from (5),
Di(dxa})-7"==0 implies that " €St ¢} and €Stof. Thus both ¢} and ¢} belong
to Cl7", and so Dy(t") is a chain in Clt"xClz". Therefore we can take C as
a carrier of D;, and (14) is proved.

If we carry out the above arguments as to -/, we find that the dual D;’ of
a homomorphism D’é defined by

(15) D/ x o) = (—1)@+0+gic-1) 7' G
has the properties (12), (13), (14).

Thus both D; and D, satisfy the all conditions of Lemma 5.5 in [4, p. 56],
and so it follows from this lemma that

(16) there exists a sequence of homomorphisms E;:Cr(K)— Cr;(K xK)
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(£=0,1,2,--) such that
i) E¢=0 i) wEij1 =D/-D;—a;E;
iii) E; is carried by C.
If we denote by E‘ the dual of E;, (ii) is written in terms of cohomology as
follows:
an Ei+l g+ (—1)+2 gRi+l = D/i - Di— Rig#—(—~1)E?.
Thus, if » is an element of the p-cocycle group Z?(K, L; I»), it follows from
(M), (15) and (17) that
(18) u S u—u~pyu=0E"(uxu) mod 2.

Since E;+17 is a chain in CltxClz from (iii) of (16), E;+;7 is a chain in LxL if
7€L. Since uxucC?(K xK, K xL\JLxK), it follows that

Erl(uxu)t) = (uxu)X Ei17) =0
if € L. Thus E“*Y(mxu)e C?-i=1(K, L). Therefore we have from (18)
Sq,’ {#} =Sq;{u} .
As for the Pontrjagin square, it holds for # ¢ Z?(K, L; I3;) that

(ug'u+u'ou)—(uy wtuy ou)
= 0(EWuxu)+E2(uxoun)) mod 4¢.

Since EXuxu)-+E2(uxou)¢c C?*-1(K, L), we have

Similarly, we have B =P, — =-’. Thus the second part of Theorem I
is proved.

Steenrod showed in [4] that there exists in K, at least, a sequence {D;}
satisfying the condition (12), (13), (14). Precisely, K in [4] is a geometrical
cell complex. However, as is shown easily, the arguments in there still hold in
a finite simple complex. If we now define U v by (7), we can easily prove that
{} is a system of cup-i products. Thus the first part of Theorem is proved,
and this completes the proof.

$4. On the Shimada-Uehara operation

Shimada-Uehara defined in [6] the homomorphism ¢, : H*(K,L; Iy;)—
H2*~i( K L; I) for odd p—:. This was originally defined by the map of ¢ Z?
(K, L; Int) to g = w utu 6u+(—1)”;:6u s 0u € Z2~(K, L; I). However,
we can prove that this operation is nothing but a composition of two well-known
operations, as is shown in the following.
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Let
Squ+1: HYK, L: I20)—> H*~ (K, L; I)
be the Steenrod square corresponding to the natural coefficients homomorphism
Iy — I, and let
4: H?» =YK, L; I,)—> H?*~(K,L; I)

be the coboundary operator associated with the exact coefficient sequence

& n
0O—>I—>IT—>I,—>0,
where £§(n#) = 2r and % is the natural factorization /7. Then we have

Theorem II
%‘ = 45q;+1 -

Proof. 1t follows from the definition of 4 that 4Sq;+{#} is a cohomology

class containing a cocycle » such that 20 = é(z ?5-1“) Since

0o sy ) = (=12 u+0u oy w+(—1)+u oy o,

0C0u ypu) = (~1)*20u o u—u v 00 +(—1)7+10u oy O2e,
we have
0 ) = (—1)"12(n Ut sy Ou +( -1)”»%%4 e oun)

i+1
+(=1)26C0u oy u) .

Thus —12-6(u S U) = (—1)‘i+1qiu+(~1)i+16(%6u ?’u”) , and so we have

{o} = (~1)*1{qu} .
Therefore 4Sqier{ut = Zi{u} .

§5. Product formulas

Let
p: H(K,L; I)—> H(K, L; I)

be the natural homomorphism corresponding to the natural factorization I-— I,;.
Then we have

Theorem III (product formulas). Defining in the natural manner, namely
by the temsor products, the group pairings between coefficient groups in the
cross or cup products, we have the following formulas:

A) 1) If xc H(K,,L;; I;) and y € H (K, Ly; 1), we have
(19) Sa,(xxy) = jil:’ Sa;x X Sqy ¥
Yh=i

in H2@+D-{( K1 x Ky, KixLy UL xKz; I2) (Cartan).*
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ii) Let p and q are even. If x€ H(K,, Ly; Iss) and y€ HY(K,, Ly; Iap),

we have
(20) P(xxy) = P x Py + T X 24902 ¥ + 145z X By .
in H2+O(Ky x Ky, KyxLy U L x Kz Traeay)-
iii) If x€¢ H(Ky, Ly; Ins) and y ¢ H(K,, Ly; I, we have
€¢15) Pl xy) = Pox Py +Prx Py .
in H2@v0n0 (K x Ky, Kyx Ly U L xKa; Tiacsny).

B) Let us assume that Ky = Ky, = K in 1), ii), iii). Then (19), (20), (21)
hold with the cup product — in place of the cross product x , and with
K,L, ULy in places of KixKa, K1 xLs UL x Ky respectively.

We shall first prepare two lemmas, before we proceed to prove the theorem.

Let K, and K2 be finite simple complexes. Then K, x K. is also finite and
simple. Let {\'} and {2} be arbitrary systems of cup-i products in K, and K
respectively. Following H. Cartan, we shall now define a bilinear map o of
C?( K1 xK)xCY{ K xKz) in C?**-i( K, x K3) by

(22) (o1 xu2) v (01 X02)
= (1P zj} (uy 7 v1) x(up =7 v2)

PN (g -
+<_1>p2(q1 D+h2 qz%](ul 2j+11711>><(02i_21_12 u2).

where u, ¢ CP(K,), v, CH(K,) (I1=1,2).
Lemma 2. {} is a system of cup-i producis in K, x K.

Proof. Straightforward calculations show that {/} satisfies the condition
(4). The conditions (5), (6) and (3) can be proved easily. Thus Lemma 2
follows from Lemma 1.

Let K, K’ be finite simple complexes, and let L, L’ be their subcomplexes.
Let {4} and {}} be arbitrary systems of cup—i products in K and K’ respec-
tively. Suppose that fz: C*(K,L)— C?(K'’, L") be a chain transformation which
is carried by an acyclic carrier. Let us denote by f* the homomorphism of

cohomology groups induced by fx. Then we have

Lemma 3.
Saif* = fxSa/, BrE=SAY, PfE= LR
This lemma can be proved in the similar way as in the proof of Theorem
8.1 in [4]. Therefore we will not prove this lemma.

* We find an elegant proof of this formula in [5].



58 Minoru NAKAOKA

Proof of Theorem ITI. (A) It follows from Theorem I and Lemma 2 that
we may calculate by the rule (22) each square in K1 x Kz. Thus (19) is obvious.

We shall prove (20). Let ¢ Z?(Kq, Ly; Ins), ve ZX K2, La; Iy:), and let
p,q are even. Then it follows from (22) and Theorem II that

P {ue v} = {(uxv) v (wxo)+(uxv) ¢ 0(uxv)}
= {(u ) x(wy v)+(u vy du)x(v v v)
+(up 0u) X (v )+ u) x (v 6v)
—(up u)x(0v g 0}
=y utuy du)xyotvy ov)
—(u v 0u) x (v 6v)+(u Ny 0u) x (v v)
—(u pu)x (v v}

= PBlu} xPlo} +{(w  ou)x(w v +oy Jv+—%»b‘v\3/ ov)
oy utuy 6u+—%5u\3/ 0u)x (v 0v)}
— Blae) xPlo} +Blu} x #dSaz i} +pdSaafu} xPiv},

Therefore we obtain (20).

The proof of (21) is similar. Thus (A) is proved.

(B) If we note that Du xv) = u v from (7), and that D° is the dual of
a chain transformation D, with an acyclic carrier C, (B) is obvious from (A)
and Lemma 3. This completes the proof.
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