Journal of the Institute of Polytechnics,
Osaka City University,
Vol, 3, No, 1—2,Series A

On the Singularily of the Peturbation-Term
in the Field Quantum Mechanics

By Osamu MIYATAKE
(Received September 15, 1952)

Summary

Let H be a total Hamiltonian of a system consisting of two fields. When
H is divided into two parts in two ways as H=H{+H/{= Hg—l—Hg, where
HY and H g are unperturbed terms and H/1 and Hé are perturbation terms,
then (i) two spaces H(HY) and H(HY) which are determined by the systems
of eigenvectors of H <1) and H g respectively, are mutually orthogonal, and (ii)
the zero point energy of H ‘1’ differs from that of H g by infinity. The zero
point energy of the total Hamiltonian of a system in which a fixed nucleon
and a real scalar meson field are interacting, amounts to — g2c?[AV-31/w?2
which diverges to minus infinity. The total Hamiltonian of a system electron
plus photon field has the expectation value (H%¥g, Wg)==cpg+3] (1/2—21:c2e2l§
[kVw3) hoy, where Wp is a certain vector normalized to 4, cg a finite constant
depending on B, and [, the projection on the x-axis of the poiarization vector
e) of the j-photon. The number of Wg's is enumerably infinite and they are
orthogonal with one another.

1. Introduction

In the previous paper? we have proved that the interaction term of a system
which consists of a nucleon and a complex scalar meson field has no domain in
a space, each of whose vectors is a superposition of states consisting of the
nucleon and a finite number of mesons.

In a similar way, we can prove that the interaction term of a system electron
field plus photon field has no domain in a space, each of whose vectors is a
superposition of states which consits of a finite number of electrons and photons.
The proof will be given elswhere.

Thus a vector representing a state in which an electron and a photon are
in respective given state, does not belong to the domain of the total Hamiltonian.
Here the zero point energy of the non-interacting term is not taken into account.

The total Hamiltonian operator is usually divided into two parts, the one
is the principal part H° and the other is the perturbation term H’. HO° can

be transformed into a diagonal form by a suitable unitary transformation and
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the set of its eigenvectors deterrrines ¢n inccmplete direct preduct space
H(HOHV, 2. When the total Hamiltonian is divided into two parts in two

different ways:
H = HY+ H, = H*+ H},

two spaces £(HY) and £(HY) are determined, and the energy of Hj differs
frcm that of Hy. In the present paper, it will be proved that £(H{) and $(HY)
are in general mutually orthogonal, znd the energy difference of H{ and H} is
infinite. The orthogenality of the two spaces and the infinity of the energy
difference seems to have some connections.

As mentioned above, the energy difference of H{ and Hj is infinity, sc that
even though we can cancel the singularity of H{ by intreducing a third field
having negative probabilities, thie rewly intrcduced field will be unable to cancel
the singularity of Hj. Moreover, this mixed fiel¢ theory has the following
inadequateness. The field equation

ih %;b =H¢, ($e=o=do (h= 1)

has a unique solution when H is self-adjoint and ¢y belorgs tc the domain of
H. When we take the negative probability into considerations, it is notl clear
whether the above existence theorem holds good or not. The details of this
point will be discussed elswhere.

According to the analysis given in the present paper (§3), it will become
clear that a nucleon not being accompanied by an infinite number of mesons
does not exist. )

It is difficult to obtain the exact eigenvalues of the Hamiltcn operator H of
a total system electron plus photon field. However, it can be proved that there
are infinitely many states ¥g’s which are eigenstates of a part of the total
Hamiltonian H and that the expectation value of H with respect to ¥ is equal
to cg+2(1/2—2rc2e?l?/hV w}) how, » where cg is a finite constant depending on 8
and /, the projection on the x-axis of the pd]arization vector e, of the A-photon.
The sum ) %~ hw) is the zero point energy of the free photon field and the
series 31 Jfoy?® diverges legarithmically (§4).

2. Orthogonality of Spaces $(H?) and $(HY)

The Hamilton operator of the total system electron pius electromagnetic
field, atter elimination of the Jongitudinal parts of the electric field, is

H=c¢ {(a, p—*—i-—* A4) +Bm€}+"81' S(E”HZ)‘ZV'

m

Expanding the vector potential A in Fcurier serieg, we obtain®
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H=c {(a, p—?%‘ ag, [ Ps, cos (ks, »)+Qsy sin (ks , r)]+Bmc}

g S (PR+QR) ho, (1
where as, = 2e (T/%‘:)%eu ’ ( 2>

and V is the volume within which the cyclical boundary conditions are applied,
the summation index s characterizes the direction and circular frequency ws of
the various waves with propagation vector k;, A their state of polarization; and
e, is a unit vector in the direction of polarization. The dynamical variables

P, and @;, obey the commutation laws
[Pos @s'a] = —i0ss’0xn s [Psxs Py/i’]1 =[Qsns Qs/xv1=0.

In the usual perturbation method, the non-interacting part ot H
0 1 ol 9 b
HY =¢ {(a, p)+ﬁmc} toy %\. (PA+@N) hws

is used as the umperterbzd operator. The space $(HY) is then determined by

the eigenvectors of HY{, i. e., the complete normalized orthogonal set {¢g}. where
v = (P X g Recr@sn » BesaX@sa) - (3

Here (sA) is a function of s, A and its range of values is 0,1, 2,.... The notation
B € F implies that 3(s1) is zero for all but a finite number of s, . ¢(p) is an

eigenvector of the operator

H(p)=c {(a» p)+ﬁmc} ,

and is written as ¢(p)=u(p)exp (ipr/h) and w(p) is a four-component vector.??
@sx » Besny(x) is the normalized solution of the oscillator equation
Y =2y +(23(s)+1)y = 0.
Bloch and Nordsieck® has shown another powerful method in solving the

eigenvalue problem

H =E¢.
They adopt the following H3J as the principal term of H:
H} = (c 1 =3 an[Poy 095 (ke » 7)+Quysia (ke DD +meX(1-p)t |
3 S PR+QB) huvs f 4

where p=wv/c and v stands for the constant velocity of the electron in its unper-
turbad motion. The spacz D{H)) is daterminzd by the eigenvectors of HJ, i.e.,

the complete orthonormal set {¢s}, where
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05 = 1) exp {-= (meCl= 2 o 0} @ IT @ exp i cos (ke )|
(5)
1 . .
[@:n——5 g5, 8in (s s 7)]) ¢sa s By (Qsn— oy sin (&, 7)),
2
gsn = (ﬂ’ asA)/h<ks_'<lh ks)) s
and y(#) is a normalized four-component amplitude.
Taking into account the condition 8, 8 € F, we obtain
1 2
(¢8> ¢s7) = const. exp ( — 4= m) s
and |
1 o2 = e*nc? (moen)? 1 (6)
4 37T vV R A-(wed? hoi’
e; = ks/ks )

The last series diverges to plus infinity, so that ¢g and ¢ps are multually ortho-
gonal. The two spaces $(HY) and H(HY) are thus mutally orthogonal.
The eigenvalue corresponding to ¢g is

3 1 :
B BsD) = met(L— ) + 33 (8D vy ) o |
e ' 75
S = k). |
SA
The last series on the right hand side diverges and it has a similar form to
the series (6). This similarity will be made clearer in the next section.

3. Eigenvalues of the total Hamiltonian

It is not easy to obtain the eigenvalues of th2 total Hamiltonian exactly.
But the following case in which a nucleon fixed in the space is interacting with
a real scalar meson field.#> Taking this extremely specialized case as an

example, we shall examine the relation between $(HY) and H(H ), and the zero
point energy of the total Hamiltonian.
The total Hamiltonian H is written as®

H=>Hg, 1

1 ] (kX 8
Hy = 9 (P%+w%Qi)+l/g§c‘; (Qk"‘ka Pk) ez ’ J &

where g is the coupling constant and X is the position of the nucleon. P, @
obey the commutation laws

[Py, Qvl= —ihdw s [Pi» Pv]=[Qx, Qv]=0,
In the representation in which ; is diagonal, P, is written as

. d
Pk"——Zh ko’
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The eigenvalue problem
Hu =FE %

is therefore reduced to a differential equation and can easily be solved, and the
n-th eigen-value and vector are

Ew = (n+—%— —g202/4Vhw2) hoy,

(9
Ugn = Nnexp (—iFi@Q:) Ha(7:Qu+Gy) exp {—é— (7xQu +Gk>2} ,

where

e = 7U—kﬂ Nau= ( 1T'°f‘)%, Fo=- 55 _sinkX, Gy= 55 coskX.

TUN TR T T Vphang *T V2V how “ZV 20 han

uwn' s satisfy the orthogonality relation :

|7 tenitand@u = .
When the coupling constant g is equal to zero, we obtain
o 1
ERn = (”’*‘_2_) hwk s

(10)

1
uln = Nan(Tka) exp (" 9 72:@195) .

The spaces 9(H°?) and H(H) corresponding to HO.—.Z—;—(P;H(O%Q,%) and H
respectively, are determined by the complete orthonormal sets {43} and {¢s}
respectively, where
o8 = I Qeeruis s> ¢6 = I Rpersen» pa - (11)
The inner product of ¢§ and ¢p is

(98. ¢p) = IKI(“% s B > Uk s B/ (k)

= const. ]kI(u,'; » 0 Uk 0) 12)
2,2 1
= const. exp (—’ngch 2,; W )

The series contained in (12) diverges logarithmically with w;. So that we obtain
(¢%» ¢pr)=0 for arbitrary p,3 ¢ F. The orthogonality of spaces D(H,) and
9(H) has thus been proved. The zero point energy of H is less than that of

H° by

2,2 1
o Tor (13)

Comparing (12) with (13), we can say that the divergence of the series con-
tained in (12) securing the orthogonality of the two spaces is slower than that
of the zero point energy difference (13).

Each facter u;, s Of ¢g is expanded in Fouries series of wl, p/ciy’s, f/(k)
=0,1,2,.... Inother words, each factor of ¢g is a suparposition of states whose

meson numbers are 0,1, 2, ....
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4. Zero point energy of the system electron plus photon field

It is difficult to transform the total Hamiltonian H into a diagonal form.
However, we are able to find such states ¥g’s that they are orthogonal to one
another, their number is enumerably infinite and the expectation values
(H%s, ¥g)s are minus infinity, where the zero point energy E% hw, of the
free photon field is not taken into account.

The total Hamiltonian is written as

H=H(p)+H@r)+H(p: ) (14)
where
H(p) = c(a, p)+PBmc?, (15)
H() =3 Hyo Hy =5 (PH+ol@h), (16)
H(p, 1) = 23 H(p, 1), a7
H. D) = ey P {ana a0+ aa A0} (18)
A, = J%«i e, exp (ik»), (19

—Jo o +—L_p, |
o \/ o PV pan T
= Z"): — —,i,,-:‘ ol
a l‘/zh Q?\ 1/2th P)\ i
The field variables P, , @, obay the commutation laws
[P)\’ QM]—_——Z.hBML’[P)\' PM:I:[Q)\! QF]':O' (21)
By using (19) and (20), H(p, 1) is rewritten as

(20

Hp ) =G5 { @@+ | /iPr}(we) (22)
where -
o — 2J 47‘!5?, cos (r)s  fo = 2,'«/;‘37‘3/?3 sin (kyr) -

Let the polarization vector e, be decomposed into x-, ¥-, and z-components as

ex =, mn> m)»
then
Cayn s €y) = Ly +mpoy +1madz 5

and the operator A,=H,+ H(p, 1) has the following explicit form:

ﬁ)\ = H}\5+H)wz >
where

Hyo = 5 (PR+0RQU+2W a1nte) »
H)\yz = W}(ﬂ’b\ay-}'ﬂ)\az) ’
Wi = *gﬁ (gAQA +"£:fAPA) .
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In the first place, by using a representation in which «, is diagonal, we soive

the eigenvalue problem
Hyzp = E¢. (23)
The diagonal elements of ¢, are +1, +1, —1, —1. Let the corresponding com-

ponents of the eigenvector ¢ be ¢1, ¢z, ¢3, ¢a, then ¢;=¢2 and ¢3=¢4, and ¢,
and ¢3 satisfy the equation

%— {PE‘*‘(D,\Q%'I‘ZEIAW)\} $e = E¢e» (24>

where e=*1, and e=+1 and ¢=-1 correspond to ¢; and ¢; respectively.

By using the relation P,=—:h 0/0Q,, we can easily solve the equation (24).
Let the p(1)-th eigenvalue and function of Eq. (24) be E,, s> and ¢, gad
respectively, then we obtain

2rc? 921)\

1
Exs sooy = (3(“"‘7—7— ‘m-) hoy »

e s o> = Nov'7a exp (_;“ FATAQA) Hpoo (7’>\Qa +é‘ Gx)

1
-eXp (—'7 (T}\Q)\ +_§— G)‘)z) >
A =012..,
where
2 on _eha _ ehfy — (aiom, 1y
A= h ) G}\—l/my FA_‘/}’EDT;" Nn (77-' n.)

de» Br, S satisfy the orthogonality relation

S_w e Booder 8 and @ = g’ - (25)
We represent the 5(4)-th eigenvector ¢g of Eq. (24) as
¢p = [ ¢ar pon(@n)
| dss ﬂ(x)(Qxy

¢y w0 |
L d—s por(@n) -

Then the eigenvector ¥s of the summed operator ,? H,, is written as

V=¥, '/1)\7®¢+’ ﬂ(A)(Q}\)}
Viop | = [ IZ®¢+ » B @) i @D
T_, @ ¢-» pal@n) |
., J 11)\7®¢'-’ ﬂ(A)(Qi\)J ’

and the corresponding eigenvalue is
Eg=2E\» v -
According to (25) and (23), we obtain the orthogonality of ¥p’s:
Ter Up) =24, 8, Vs )+ 2V p> ¥ o) = 40pp - (28)
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The above results are summalized as follows: The operator EA H,, has the
eigenvalue Eg defined by (27) and the corresponding eigenvector ¥s defined
by (26), the latter being normalized to 4.

In the next place, we calculate the expectation values (; H,».¥s, ¥g) and

(H(p) s, ¥p)-
When ¢, is diagonal, each of gy, «. and § has a matrix representation such as

( o ) (29

where A is a 2-2 matrix. So that the operator H,,. has a matrix form such as

(0 S — [ Sat Saz
HAW_(S/\* 0>WM S)\_<3A3 3)\4),

where the matrix S, depends on A. Then we obtain

(Huw:Yp, Up) = a¥ ., s WiA¥-,58 } (30)
+a)\§’—, B W)\W.i_; B>
where ay = Sa1tSa2t+Saztsas
and

T g Wi¥isp=Wirdsssns ¢-> ‘S‘“%Iﬂ‘b* s By s Pms Bmy) -

For a time, let us consider a special case in which g(u)=0 for all z’s. In
this case, we obtain

_A4nc® B
er00 9o 0) =exp (=G L0 @31
so that
. Arc?  e2]2
W—r0WAW+’o=(WA¢+’0:¢—,o>eXp(—‘7;7c“’%(%) ]

exp (- Anct & B 32
14 h " (02 :
Corresponding to one wave vector k., thzre are two poiarization vectors ey,

and e., », which we decompose into threz components respectively as

eur = (lu1s Mu1s> Nur) >

eus = (luas Muz s Nuz) -
The three vectors eyu;, euz, and k./k, are all of unit length and orthogonal with
one another, so that we have

(kﬂac/kll)z‘*‘ltzbl"’lf%z =1 s
where k., is the x-component of k,. Consequently

Al l;;_‘, - 177 Al 14‘ . ‘kﬁa;__‘2
2= e % ()} 3

Let ¢ be a fixed positive angle smaller than z/2, then there is a fixed positive
constant @2 such that the inequality
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Ruz \2
1—(--—'-‘»“L =a2>0
ky ) Za'>
holds valid for an arbitrary vector k. which satisfies the condition
0 < anglie between k. and the x-axis < r7—6. 34
Thus, from (33), we obtain

T S
2 -—Z« cg Z kﬁ —+C@, (35)

" O)ﬁ?i
where the prime on the right hand side implies a summation over all k.’s whose
directions satisfy the condition (34). From (35), (32), and (30), we can conclude

that
(Z)‘J Hyy:o, ¥o)=0 (86)

In the next place, we shall evaluate the expectation value (H(p)¥o, ¥o).

a) Evaluation of (upps %o, o).
(’lmpz QI‘O ’ WO) = 2¢.+ ’ opz?F+ ’ 0—2@'_ ’ 0_172, v_, 0
de? 272
= “N(hFDGy = —4- T
A A

w}

5 g g (e

When k,»=—Fk,, we have ky/,=—k\; , 0 that the above sum is equal to zero.

2 CO82 (ky7)

f

b) Evaluation of Cuypy@os ¥o)» (eepz¥a» ¥o)r and (¥, ¥o)-
As the matrix representation of «, has the form (29), we obtain
Cuypy¥o, Vo) = bq?:, oDy ¥-so0 } an
+bq/-y opy?pl.;.’ 2

where p is a constant depending on the matrix element of «y. By using the
same reasoning as that used in deducing the equation (36), it can be proved
that the right hand side of (37) vanisbhes, i. e,
Cuypy¥o, ¥o) =0.
In the same way, we obtain
(o> ¥o) =(f¥0, ¥o) =0.

We can summalize the results obtained up to this place as follows: Ixn the

state Yo, the total Hamiltonian H has the expectation value

_ _ 1 2x¢ ek
(HY,, QP'O)—ZAE,UQ——};(-Z‘—"V" hw}?)hw’“ (38)

When the zero point energy > ~:12- ho, of the free photon field is not taken into
account, the remainder of series (38) diverges logarithmically to minus infinity.

When B(1) is not identically zero, the equation (31) holds valid for all but
a finite number of y’s. So that we obtain
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(;‘nyz Vg, Up) = 0.
The expectation values of a,p, is not necessarily zero, and it can be written as
(2o ¥ps ¥p) =cp>
where cg is a finite constant depending on B.
On the other hand, the equations
(uwpy Vs> Up) = (ep: Vo> ¥o) = (B¥> ¥p) =0
hold valid as before.
In conclusion, we obtain
(HYs, ¥p) =cp+2 Exs o
for all 8’s, where ¢g is a certain constant depending on 3, and X} E,, o is given
by (38). i
Appendix
E. E. Salpeter? proved that the total Hamiltonian has an eigenvalue of
minus infinity, by using a reasoning sketched below. His elegant method can
be applied to any other field. However, his reasoning has a siight defect. We
shall point out it.
In the first place, we shall sketch Salpeter’s reasoning. H is the total
Hamiltonian of a system electron plus electromagnetic field, Ko a real parameter

and H(K,) an operator depanding on K, such that
lim H(Ko) = H -

Koo
We consider an eigenvalue problem
H(Ko)¢ = E(Ko)¢- (A D
The eigenvalue E(K,) and eigenfunction ¢ depend on the parameter Ko. By
using a method similar to the parturbation method, we obtain the first approxima-
tions of E(K,) and ¢. Let them be
E'(Ko), ¥. (A, 2)
The method to obtain them is not necessary for our purpose so that we shall
omit it. E’(Ko) satisfies the equation
lim E'(K¢) = —co. (A,3)

Ky oo
Here, Salpeter uses the variation principle:
Variation principle. ¢ is an arbitrary trial function. Then E=CH¢, $/(ds ¢)
is always not smaller than the minimwm eigenvalue Eo of H, i. e.,
Eo<E.
In our case, ¢, is used as a trial function. Then we can prove that £ =E’(Ko)-
So that, from (A, 3) and (A,4), we obtain E¢=—co. Q.E.D.
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The ahcve reasoning, however, is not complete. For, in order to prove the
variation principle (A,4), it is necessary that® the operator H has so many
eigenfunctions that an arbitrary trial function ¢; is able to be expanded in a
series of these eigenfunctions. When it is not clear whether H has this property
or not, we can not use this principle freely. The total Hamiltonizn being con-
sidered here seems not be have this expansion property. According to the
orthogonality of the two spaces £(H®) and $(H) given in §3 of the present
paper, it is not probable that the trial function ¢, can be expanded in Fourier
series of eigenfuncticns of H.

When H is Hermitian the variation principle does not hold valid in general.
as shown below.

Let P(1) be a projection operator such that

JO for 2<%,

P = 0< PG < 1.
| P(lo) for o<1,

Then the operator
i =" 1aP() = 1PG0)

is Hermitian. Let » be the whole space and be P(40)H=Mo. Then, for an
arbitrary vector ¢ €My, we obtain
Ho = 2P(Ao) ¢ = koo
and ¢ is the minimum eigenvalve of H. Cn the other hand, for an arbitrary ¢
such that ¢ € Mo and | ¢ | =1, we obtain
CH¢s ¢) = 2o(P(20) ¢» ¢) = Ao | P(ho) ¢ 12 Ao

That is, the variation principle (A, 4) does not hold valid in this case.

When H is not necessarily symmetric, it is easy to give examples for which
the variation principle can not he applied. For example, let

_ 1 (32 1 1
=5 {0 3) ¢=pz (1)
then H has a double eigenvalue 1.5 and (H¢, ¢)/(¢, ¢)=1.
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