Journal of •he Institute of Polytechnics, Osaka City University, Vol. 3, No $1-2$, Series A

On topological groups.

By Shin-ichi MATSUSHITA

(received September 15, 1952)

O. **Introdnction.** In this paper, we shall deal with arbitrary topological groups by means of their *Marko if -extensions:* the definition of an *Marko ifextension* is given in Section 1.

Generally speaking, though the representation theory in matric-algebras plays an important rôle in studying topological groups, $\frac{1}{1}$ it becames occationally meaning-less for some type of groups, which have no usual (non-trivial) representations; as well known, minimally almost periodic groups are those. However, the Markoff-extension seems to be useful for any topological groups.

Section 2 is devoted to an exposition of the relation between the representation of a topological group and those of its Markoff-extension. In Section 3, we shall concern the duality theorem of any topological groups, which we would rather call the *co-duality theorem*. Our theorem coincides with the famous one of Tannaka and Krein²⁾ in maximally almost periodic cases at all, but even if a group is minimally almost periodic, ours may remain still useful.

This duality theorem is, on the other band, considered as the representation theorem in B-algebra, and the process from Theorem 4 to Theorem 5 gives one proof for the Tannaka-Krein's duality theorem.

The space of almost periodic functions is considerd as a commutative B^* algebra. This investigation is done in Section 4.

Finally, in Section 5, we shall try the theorem of K. Iwasawa³⁾ concerning the group-rings as an interesting application of Markoff-extensions.

1. Preliminary theorem. We begin with the noted theorem of A. Markoff and S. Kakutani on free topological groups.4) That is stated as follows: For any completely regular topological space **r.** there exists a free topological group F with the following properties;

¹⁾ Recently, Banach representation theory has been developed as in 13), 19), 20), etc. But in them, groups are restricted in locally compact case.

²⁾ T. Tannaka 24), and M. Krein 10).

³⁾ K. Iwasawa 5) and 6).

⁴⁾ A. Markoff 11) and S. Kakutani 8).

 α) $\Gamma \subset [F]$,

 β) **r** generates *F* algebraically,

 r) any continuous mapping φ of Γ into any topological group $\mathcal G$ is extended up to the continuous homomorphism \varnothing of F into $\mathcal G$ such that

 $\phi(x)=\varphi(x)$ on Γ .

where $\lceil F \rceil$ is the set of all elements of *F* with the same topology as *F*.

Now we always assume that G is a topological group, then G is a uniform space with that topology, due to A. Weil,⁵⁾ and is completely regular; so is the topological space $[G]$, where the brackets are used in the above sense.

We shall next consider a continuous mapping ϕ of $\lceil G \rceil$ into G such that

 $\phi(x)_{x \in G} = x_{x \in G}$ (identity mapping),

that is,

$$
\phi([G]) = G.
$$

Then according to the Markoff and Kakutani's theorem mentioned above, we can obtain a free topological group F such that;

 (1.2) [G] generates F algebraically,

 $(1.3) \phi(F) \subset G$,

and

 (1.4) $\lceil G \rceil \subset \lceil F \rceil$. Combining (1.1) with (1.3) , we have

$$
G=\phi([G])\mathbb{C}\phi(F)\mathbb{C}G,
$$

that is,

(1.5) $\phi(F) = G$.

Since F is a free topological group, F is maximally almost periodic (max, a. p.); this fact is due to T. Nakayama.^{6} Then we conclude:

Theorem 1.7) *For any topological group G, there exists at least one maxa. p. topological group* G. *which has the following Properties:*

- a) There exists a continuous homomorphism ϕ of G_0 onto G .
- β) [G] $\subset G_0$ and [G] is the group-generator of G_0 .
- γ) ϕ *is invariant on* [G], *i.e.*

$$
\phi(x)=x,\ \ x\in\llbracket G\rrbracket\,.
$$

For a given topological group *G*, we can consider the family of all such G_0 and denote it by $\prod_{\mathcal{G}}$. Then it is certain that $\prod_{\mathcal{G}}$ is not empty. For G_1 , G_2 of

⁵⁾ A. Weil 26).

⁶⁾ T. Nakayama 14).

⁷⁾ P. Samuel has proved that any topological group is the image of a free topological group; in P. Samuel 17).

 \prod_{α} , if G_1 is topologically homomorphic to G_2 , one writes $G_2 \geq G_1$. Thus \prod_{α} forms a partly orderd set by this binary operation \geq , whose greatest extreme is the free topological group.

Each element of \prod_{σ} is called an *Markoff -extension* of *G*, and if $G_0 = G'_0$ for every G_0 with $G_0 \geq G'_0$, G_0 is called *irreducible*, while the rest *reducible*. A max. a, p. topological group is obviously the irreducible Markoff-extension of itself.

Theorem 2. The homomorphism ϕ , which is continuous, of an Markoffextension G_0 of G onto G is further a open mapping.

Proof. Let H_0 be the kernel of homomorphism ϕ . The natural mapping ϕ_{H_0} from G_0 to G_0/H_0 being topological, *i.e.* continuous and open, an open set $U_0 \subset G_0$ is mapped to an open set $U_{H_0} \subset G_0/H_0$ by ϕ_{H_0} and $V_0 = \phi_{H_0}^{-1}(U_{H_0})$ is also open in G_0 .

Putting $V_0 \cap G$ = V_a , we shall prove that V_a is open in $[G] \subset G_0$. For an arbitrary $x \in V_\theta$, there exists an open neighborhood $U(x)$ in G and also in [G]; while x being an element of V_0 , there must be an open set $V(x)$ in V_0 .

Since $W(x) = V(x)^\frown U(x)$ is not empty, $W(x)$ must be an open set contained in V_a . Thus, V_a is open and hence

$$
\phi(U_0) = \phi(V_0) = \phi(V_\mathit{G})
$$

must be open in G.

Corollary. Go/ Ho *is topologically isomorphic to* G. *in the symbols;*

$$
(1.6) \tG0/H0 \simeq G.
$$

2. Representations and *-Representations. Let G_0 be an (irreducible or reducible) Markoff-extension of G and H_0 the kernel of the homomorphism ϕ , $\phi(G_0) = G$, *i.e.*

$$
\phi(H_0)=e,
$$

where e is the unit of G. We call such H_0 the Markoff-kernel of G_0 . Let $H_{(x)}$ be the restclass containg x, while H_x the restclass which corresponds to x, with respect to the factor-group G_0/H_0 . Then we have immediately that $H_{(x)}$ $=H_x.$

We shall distinguish the group-operation of G_0 from that of G , writing the former by $x_0 \cdot y_0$ in G_0 and the latter by xy in G. while we denote the inverse of $x_0 \in G_0$ by x_0^{-1} and that of $x \in G$ in usual way, *i.e.* by x^{-1} . Then we have

(2.1) *H,·Hv* = *H,-v* = *H,v* = *H<,v).*

We next denote the set of such elements, *differences in a sense*, that

(2.2)
$$
\hat{\sigma}(x_1, x_2, \dots, x_n) = x_n^{-1} \cdot x_{n-1}^{-1} \cdot x_1^{-1} \cdot x_1 x_2 \dots x_n
$$

for $x_k \in G:$ $n,$ k =1, $2,$ \dots , by $\stackrel{\frown}{H}_0$, calling it the essential Markoff-kernel of G_0 . Obviously, $\hat{H}_0 \subset H_0$. Furthermore we hold;

lemma 1. \hat{H}_0 is the generator of H_0 .

Proof. [G] being the group-generator of G_0 , each $x_0 \in H_0$ is represented as

(2.3) $x_0 = x_1 \cdot x_2 \dots x_n; x_k \in G$,

and

(2.4) $x_1 x_2 ... x_n = e$.

Then we see that

$$
(2.5) \t x_0 = (x_1 x_2 ... x_n) \cdot (x_n^{i-1} \cdot x_{n-1}^{i-1} ... x_1^{i-1} x_1 x_1 x_2 ... x_n)^{i-1}
$$

$$
= e \cdot \delta^{n-1}(x_1, x_2, \ldots, x_n)
$$

and $\delta(x_1, x_2, \ldots, x_n) \in \mathring{H}_0$; that is, for each $x_0 \in \mathring{H}_0$,
we have

$$
(2.5) \t\t\t\t x_0=e\cdot \hat{x}^{-1}\quad \hat{x}_0\in \hat{H}_0.
$$

 $\hat{H_0}$ being a subset of H_0 , we have also

(2,6)
$$
\hat{x}_0 = e \cdot \hat{x}_0' - 1 \quad \hat{x}_0' \in \hat{H}_0; \quad i.e. \quad e = \hat{x}_0 \cdot \hat{x}_0',
$$

and we see consequently $x_0 = \hat{x}_0 \cdot \hat{x}_0' \cdot \hat{x}_0^{-1}$. This proves the Lemma.

Let $D(x_0)$, $x_0 \in G_0$, be a continuous (irreducible) unitary -equivalent represen- α *cation of G₀, <i>i.e.* a continuous normal representation in the sense of J, von Neumann.⁸⁾ Such $D(x_0)$ does not necessarily become a representation of G . Then, we shall investigate the necessary and sufficient condition for $D(x_0)$, in order that it might be a continuous normal representation of G. If $D(x_0)$ is an algebraic representation of G , the continuity of it on G is easily proved. Hence, it is sufficient to restrict our treatments to purely algebraic ones.

Theorem 3. *For a normal (irreducible) representation of* Go. *an Markoffextension of* G, *the /ollowing three conditions are mutually equivalent;*

- i) $D(x_0) = E$ for all $x_0 \in H_0$,
- ii) $D(x_0) = E$ for all $x_0 \in \hat{H}_0$,
- iii) $D(x)$ is a normal (irreducible) representation of G ,

where E is unit matrix with same dimension as $D(x_0)$.

Proof of ii) \rightleftharpoons iii.). iii) \rightarrow ii) is clear. We show that, if $D(x_0)$, $x_0 \in G_0$, has the property ii), $D(x)$, $x \in G$, forms a representation of G, We have easily

$$
D(\delta((x, y)) = D(y^{-1} \cdot x^{\cdot - 1} \cdot xy)
$$

= $D(y^{-1})D(x^{\cdot - 1})D(xy) = D(y)^{-1}D(x)^{-1}D(xy) = E$,
(2.7)
$$
D(xy) = D(x)D(y)
$$

for every *x*, $y \in G$, and consequently iii) is satisfied, providing $D(e) = E$,

Proof of i) \rightleftarrows ii). **i**)-ii) is clear. If ii) is fulfilled for $D(x_0)$, from Lemma 1, we have for every $x_0 \in H_0$

$$
x_0=\overbrace{x_1\cdot x_2\ldots x_n}^{\wedge}\ ,\overbrace{x_k}\in H_0\ .
$$

Then we have,

8) J. von Neunann 15).

$$
D(\hat{x}_0) = D(\hat{x}_1)D(\hat{x}_2) ... D(\hat{x}_n)
$$

= $E \cdot E ... E = E$.

Thus ii) \rightarrow i) is proved. This completes the proof of the theorem.

We now come to the desirable condition, under which the (irreducible) normal representation of G_0 becomes that of G_1 , but we shall pursue the study of representations of G further.

If *G* has a continuous normal (irreducible) representation $D(x)$, $x \in G$, putting

$$
(2.8) \t\t D_0(x_0) = D(x) \tfor all $x_0 \in H_x$,
$$

it is easy to see that such $D_0(x_0)$, $x_0 \in G_0$, is a continuous normal (irreducible) representstion of D_0 , and the condition (2.8) is characterised by only condition such that,

$$
(2.9) \t\t D_0(x_0) = E \t for all $x_0 \in \hat{H}_0$.
$$

These facts enable us to establish

Corollary. A *necessary and sufficient condition /or a topological group* G *to have a continuous normal (irreducible) representation is that one of its Markoff -extension* Go *has a continuous normal (irreducible) representation* $D_0(x_0)$, *such that*

 $D(x_0) = E$ on $\hat{H_0}$ (or equivalenty on H_0)

where H_0 is the essential Markoff-kernel of G_0 .

Sorne topological groups have not any non-trivial representations, even when they are locally bicompact or further Lie-groups; minimally a. p. groups are tho se.

Now we shall define a new operation of matrices. Let G_0 be an Markoffextension of G and $D(x_0)$ a continuous normal (irreducible) representation of G_0 . Markoff-kernel H_0 and H_x (=x· H_0) are defined as above. Then we define (2.10) $D(x_0) * D(y_0) = D(x_0) D(y_0) A(x, y),$

where $x_0 \in H_x$, $y_0 \in H_y$ and

(2.11) $\Delta(x_1, x_2, \ldots, x_n) = D(\delta(x_1, x_2, \ldots, x_n)).$

For any $x, y \in G$, we have immediately

$$
D(x)*D(y) = D(x)D(y)d(x, y)
$$

=
$$
D(x)D(y)D(y^{-1} \cdot x^{-1} \cdot xy)
$$

=
$$
D(x \cdot y \cdot y^{-1} \cdot x^{-1} \cdot xy) = D(xy).
$$

Thus $D(x)$ becomes a kind of representation of G with respect to the operation*, and, it is certain, this representation is continuous. We call it a \ast -representation of *G* based on *Go* .

Theorem 4. *A *-representation* $D(x)$ *of G based on* G_0 *coincides with the usual one. if and only if*

i)
$$
\Delta(x, y) = E \text{ for all } x, y \in G,
$$

or equivalently

ii) $D(x_0) = E$ on the essential or not) Marko ff-kerner of G_0 .

All these facts together with the approximation theorem of Weierstrass-Neumann bring us the considerations about a. p. functions on G.

Again, let G_0 be an markoff-extension of G, and $A(G_0)$ the space of all continuous complex-valued a. p. functions on G_0 , which becomes a B*-algebra as we see in the following.

If there exists such $f \in A(G_0)$, *i.e.* a. p. function in G_0 , that all for x_0 , $x'_0 \in H_x$ and $x \in G$.

(2.12)
$$
f(x_0) = f(x'_0),
$$

the collection of all such *f* is denoted by $\hat{A(G_0)}$. It may consist of only constant functions for some G_0 , and if $f \in \hat{A}(G_0)$, the translation of *f* by *G*, $fa(x_0) =$ $f(a \cdot x_0)$ for $a \in G$, must be contained in $\mathcal{A}(G_0)$, too.

Now, we put, for
$$
f \in \hat{A}(G_0)
$$
,
(2,13) $\tilde{f}(x) = f(x_0)_{x_0 \in H_x}$.

Then we have:

Corollary. For any $f \in \hat{A}(G_0)$, \tilde{f} is a. p . on G. Conversely, if f is a. p . on G. $f_0(x_0)$, $x_0 \in G_0$, which is defined by (2.13) ;

$$
f_0(x_0)=\tilde{f}(x) \text{ on each } H_x,
$$

is a. p. *on* Go .

We complehend, consequently, that if $G_1 \geq G_2$ in \mathcal{H}_G , there are no more a. p. functions on G_2 than on G_1 . Especially, a. p. functions on G are contained in those on G_0 , $G_0 \in \mathbb{Z}_q$, in the above sense.

The totality of \tilde{f} , $f \in A(G_0)$, coincides with $A(G)$, *i.e.*

$$
(2.14) \qquad \hat{A}(G_0) \simeq A(G),
$$

and if G is min. a. p., $\hat{A}(G_0)$ consists of only constant functions on G_0 . With regard to the mean of an a. p. function, we may suppose and easily prove that (2.15) $M_x[\tilde{f}(x)]_G = Mx_0[f(x_0)]_{G_0},$

for every $f \in \mathring{A}(G_0)$.

3. **Duality theorem and B-algebra.**⁹⁾ Let G be a topological group and G_0 an Markoff-extension of *G* respectively. $M(G_0)$ is complex B-space of all bounded functions on G_0 with uniform norm $|| f || = \sup |f(x_0)|$; $f \in M(G_0)$, $x_0 \in G_0$, while $D(G_0)$ a normed subspace of $M(G_0)$ which is the set of all finite linear aggregates of the elements of all irreducible mutua1ly non-equivalent continuons normal representations $D^{\omega}(x_0) = (D^{\omega}_{ij}(x_0))$, *i.e.* the set of all Fourier polynomials of $D_{ij}^{\omega}(x_0)$, where $\{D^{\omega}\}\$ is a complete (mutually non-equivalent) representation system of finite degrees of G_0 .

⁹⁾ About B-algebras, see E. Hille 4), W. Ambrose 1), I. Kaplansky 9), etc.

Now we see immediately that $M(G_0)$ itself is regarded as a B-algebra, while $D(G_0)$ a normed subring. It is obvious that both $M(G_0)$ and $D(G_0)$ have the same algebraic unit **1** with $\|\mathbf{1}\| = 1$.

Further, S is the total operator ring on $\overline{D}(G_0)$ with the norm $||S|| =$ $\sup_{\|f\| \leq 1} \|S \cdot f\|$, that is, the set of all bounded linear operators on $D(G_0)$, then \mathfrak{S} itself is also a B-algebra, where $\overline{D}(G_0)$ means the completion of $\overline{D}(G_0)$ by uniform norm in $M(G_0)$; $\overline{D}(G_0)$ coincides with the set of all continuous a. p. functions on G_0 , $A(G_0)$. Next, we consider the set of all regular elements *S* of \mathfrak{S} , which have in addition

(3.1)
\n(i)
$$
S(f \cdot g) = S(f) \cdot S(g)
$$
,
\nii) $S(\bar{f}) = \overline{S(f)}$, (bar means the conjugation)

and denote that by \mathfrak{S} . \mathfrak{S} is obviously a subset of S, but not a subalgebra. However, *@5* forms a group contained in S. In fact we have

$$
(3.2) \quad S_1 \cdot S_2^{-1}(f \cdot g) = S_1 \cdot S_2^{-1}(S_2 \cdot S_2^{-1}(f) \cdot S_2 \cdot S_2^{-1}(g)) = S_1 \cdot S_2^{-1} \cdot S_2(S_2^{-1}(f) \cdot S_2^{-1}(g))
$$
\n
$$
= S_1(S_2^{-1}(f) \cdot S_2^{-1}(g)) = S_1 S_2^{-1}(f) \cdot S_1 S_2^{-1}(g),
$$
\n
$$
(3.3) \quad S_1 \cdot S_2^{-1}(\bar{f}) = S_1 \cdot S_2^{-1}(\bar{S_2 S_2^{-1}(f)}) = S_1 \cdot S_2^{-1} \cdot S_2(\bar{S_2^{-1}(f)}) = S_1(\bar{S_2^{-1}(f)})
$$
\n
$$
= \bar{S_1} \cdot \bar{S_2^{-1}(f)}
$$

Lemma 2. For each $S \in \mathfrak{S}$, $\|S\| = 1$.

Proof. From (3.1), i), we have for unit function $\mathbf{1} \in A(G_0)$

$$
(3.4) \t S(1) = 1,
$$

and $1 = |I| = |S(I)| \leq |S|$. On the other band, for every $f \in A(G_0)$ with $\|f\| \leq 1$, we have

$$
\begin{aligned} \|S(f)\| &= \|S(f)\cdot S(f)\| = \|S(f)S(\bar{f})\| \\ &= \|S(f\cdot \bar{f})\| \le \|S\| \, .\end{aligned}
$$

and hence $||S||^2 \le ||S||$, that is $||S|| \le 1$. This completes the proof of Lemma. \Im is not void, since every S_{a_0} or $_{a_0}S$ is contained in \Im , where S_a or $_{a_0}S$ is a translation operator such that

(3.5)
$$
S_{a_0}(f) = f(x_0 \cdot a_0) \text{ resp. }_{a_0}S(f) = f(a_0^{-1} \cdot x_0)
$$

for a_0 , $x_0 \in G_0$. Denoting the totality of such S_{a_0} or $a_0 S$ by \mathfrak{S}_{a_0} or $a_0 \mathfrak{S}$, we see that $\mathfrak{S}_{\mathcal{C}_0}$ or \mathfrak{S}_0 is a group which is algebraically isomorphic to G_0 . The isomorphism is directly ontained from the maximal almost-periodicity of G_0 . Though *@5* bas norm-topology, we introduce another topology, *i.e.* a weak topology in \mathfrak{S} such that a neighborhood $U_{s_0}(f_2, \ldots, f_n; \varepsilon)$ is defined as

(3.6)
$$
U_{s_0}(f_1, f_2, \ldots f_n; \varepsilon) = \{S \mid \|S(f_j) - S_0(f_j)\| \leq \varepsilon\},\,
$$

for $j=1, 2, ..., n$.

From Lemma 2, we have

(3.7) Il sc f) Il :::: 1 •

for every $S \in \mathfrak{S}$ and *f* with $||f|| \leq 1$. If $S + S'$, there exists *f₀* with $||f_0|| \leq 1$ such that $S(f_0)$ \neq $S'(f_0)$. Then, due to *A*. Tychonoff,¹⁰ \Im turns out to a bicompact group with the weak topology, and \mathfrak{S}_{60} is algebraically isomorphic and continuous image of G_0 . According to the normal subgroup (the Markoff-kernel) H_0 of G_0 , there exists a normal subgroup \mathfrak{D}_{G_0} of \mathfrak{S}_{G_0} such that $\mathfrak{S}_{G_0}/\mathfrak{D}_{G_0}$ is the algebraically isomorphic and continuous image of G_0/H_0 ; *i.e.*

(3.8)
$$
G \cong G_0/H_0 \gtrsim \mathfrak{S}_{\mathcal{C}_0}/\mathfrak{D}_{\mathcal{C}_0}.
$$

(a). isomorph.) (a1. isomorph.)
homeomorph. continuous.

Denoting the commutor of $_{60}$ in S by \mathfrak{S}_0 , we conclude:

Theorem 5. *(Generalized Duality and Representation Theorem) W ith the definition above, we hold; for any topological group G.*

i) \mathfrak{S}_0 *is a bicompact group in a B-algebra (operaor-algebra)*,

ii) *there exists an algebraically isomorphic and continuous mapping* ϕ of *G* onto \mathfrak{S}_α such that $\mathfrak{H}^*\mathfrak{S}_\alpha$ is a dense sub-group of \mathfrak{S}_α for a suitable normal $sub-group \; \delta \; of \; \delta * \mathfrak{S}_G \; (i.e. = \mathfrak{S}_{G_0}).$

iii) *if G is max. a. p.,* ϕ *is a continuous isomorphism of G onto a dense sub-group* \mathfrak{S}_6 *of* \mathfrak{S}_0 *, and if G is bicompact, G is continuously isomorphic to* \mathfrak{S}_0 *itself.* ·

Here, $\mathcal{X} \times \mathcal{B}$ means a group-extension \mathcal{B} of \mathcal{B} by \mathcal{Y} , such that $\mathcal{B}/\mathcal{Y}=\mathcal{B}$.

To completes the proof of this tbeorem, it remains for us to prove the denseness of $\mathfrak{H}\ast\mathfrak{S}_q$ in \mathfrak{S}_0 . iii) is a direct result of it. However, we shall remark it soon after.

For each $S \in \mathfrak{S}_0$, we put

(3.9) $\widetilde{S}(f)=(S\cdot f)(e)$; for $f\in A(G_0)$, e=unit of G_0 ,

and get the set $\tilde{\mathfrak{S}}_0$ of such linear functionals \tilde{S} .

Lemma 3. $\tilde{\mathfrak{S}}_0$ *is algebraically isomorphic to* \mathfrak{S}_0 .

If $S_1 \neq S_2$ in \mathfrak{S}_0 , there exist $f \in A(G_0)$ and $x_0 \in G_0$ such that

 $(S_1 \cdot f)(x_0) = (S_2 \cdot f)(x_0),$

and putting $S_{x_0} \cdot f = g$,

$$
\widetilde{S}_i(g) = (S_i \cdot g)(e) = (S_i \cdot S_{x_0}f)(e)
$$

= $S_i \cdot f(x_0 \cdot e) = S_i \cdot f(x_0)$, for $i = 1, 2$.

It implies that $\tilde{S}_1(g)$ -1: $\tilde{S}_2(g)$ from (3.8), thus $\tilde{\mathfrak{S}}_0$ and \mathfrak{S}_0 are one-to-one corresponding.

Now we define the product in $\tilde{\mathfrak{S}}_0$ by

¹⁰⁾ An excellent proof has been obtained by C. Chevalley and O. Frink, Bull. A. S. S. 47 (1941).

On Topological Groups 35

(3.10) On Topological Gr₀

$$
\tilde{S}_1 \cdot \tilde{S}_2 = \overbrace{S_1 \cdot S_2},
$$

and get the algebraic isomorphism between $\tilde{\mathfrak{S}}_0$ and \mathfrak{S}_0 , *i.e.* $\tilde{\mathfrak{S}}_0$ is a group which is isomorphic to \mathfrak{S}_0 .

Particularly, (3.9) is realized for $D(x_0)$ as the form such that

(3.11)
$$
\tilde{S}_1 \cdot \tilde{S}_2(D_{ij}) = \sum_k \tilde{S}_1(D_{ik}) \tilde{S}_2(D_{kj}),
$$

where $D(x_0) = (D_{ij}(x_0))$.

We next introduce a weak topology in \mathfrak{S}_0 by such the way that; a neighborhood $\tilde{U}_{\tilde{S}_0}$ ($f_1, f_2, ..., f_n$; ε) is defined as

(3.12)
$$
\tilde{U}_{\tilde{S}_0} = \{S \Big| |\tilde{S}(f_j) - \tilde{S}_0(f_j)| < \varepsilon \},\
$$

for j = 1, 2, ..., *n*. Then the correspondence of \mathfrak{S}_0 onto $\tilde{\mathfrak{S}}_0$ is continuous and $\tilde{\mathfrak{S}}_0$ is bicompact. Of course, the inverse correspondence of $\tilde{\mathfrak{S}}_0$ onto \mathfrak{S}_0 is also continuous *i.e.* \mathfrak{S}_0 and $\tilde{\mathfrak{S}}_0$ are isomorphic.

Then we can modify the Theorem 5 as follows:

Theorem. 6. *Usual Duality Theorem) For any topological G. there exists an algebraically isomorphic and continuous maPPing* ~ *of G onto ®G, for which* $\tilde{\mathfrak{D}}_{G}*\tilde{\mathfrak{S}}_{G}$ is a dense subgroup of a bicompact group $\tilde{\mathfrak{S}}_{0}$ for suitable $\tilde{\mathfrak{D}}_{G}$. If G is *max. a. p.,* $\tilde{\phi}(G) = \tilde{\mathfrak{S}}_G$ *and if G is bicompact,* $\tilde{\phi}(G) = \tilde{\mathfrak{S}}_0$.

Proof of the denseness of $\tilde{\mathfrak{S}}_{G_0}=\tilde{\mathfrak{D}}_G*\tilde{\mathfrak{S}}_G$ in $\tilde{\mathfrak{S}}_0$: As G_0 is *max. a. p.*, from Theorem 7 Iater, we have

(3.13) $A(G_0) \cong C(\tilde{\mathfrak{S}}_0)$ (in norm-preserving fashion).

If $\tilde{\mathfrak{S}}_{\sigma_0}$ is not dense in $\tilde{\mathfrak{S}}_0$, there exists a point φ_0 in $\tilde{\mathfrak{S}}_0 - \overline{\mathfrak{S}}_{\sigma_0}$ ($\overline{\mathfrak{S}}_{\sigma_0}$ being the closure of $\tilde{\mathfrak{S}}_{G_0}$). By Urysohn's theorem, there exists a function $f \in \mathcal{C}(\tilde{\mathfrak{S}}_0)$ such that

(3.14)
$$
f(\varphi) = \begin{cases} 1, \text{ if } \varphi = \varphi_0, \\ 0, \text{ if } \varphi \text{ is in } \overline{\mathfrak{S}}_{\mathcal{C}_0}. \end{cases}
$$

But this is contradictory with (3.13). Thus, the denseness is proved, and moreover that in Theorem 5 is also complectely verified.

Remark 1: This duality theorem is of the Tannaka-Krein's type and if G max. a. p., it is exactly the Tannaka-Krein's one.¹¹⁾

But in general cases, the homomorphism are just in the opposite directions one another; in Tanaka-Krein's theorem the direction of homomorphie mapping is of G to G^0 (=a certain group of functionals on $A(G)$), while that of ours is of $G^0(= \tilde{\mathfrak{S}}_{G_0})$ to G .

¹¹⁾ T. Tannaka 25) and M. Krein 10), loc. cit. An excellent and plain proof is shown by K. Yosida 27). Also see I. E. Segal 20).

For this reason, Tannaka-Krein's theorem concerns with the very case that G bas a representation, but even when *G* is minimally a. p., our theorem bas still a meaning.

Remark 2: The bicompact group \mathfrak{S}_0 is directly characterized by the set of all linear multiplicative bounded functionals on $A(G_0)$, which is denoted by \Re . Using a neighbourhood $U^0_{\varphi_a}(f_1^0, f_2^0, \ldots, f_n^0; \varepsilon)$ for $\varphi_j^0 \in \mathbb{R}$, $f_2^0 \in A(G_0)$ with $||f_j^0|| \leq 1$, j $= 1, 2, ..., n$, such that

(3.15)
$$
U^0\varphi_0 = {\varphi \in \Re \left| |\varphi(f_j^0) - \varphi_0(f_j^0)| \right|} \leq \varepsilon \},
$$

 \Re turns to be a weakly bicompact Handdroff space. We can easily verify that such neighbourhood system ${U_{\varphi_0}}$ is equivalent to that of ${U_{\varphi_0}}$, which is definedby

(3.16)
$$
U_{\varphi_0}(f_1, f_2, \dots, f_n; \varepsilon)
$$

$$
= \{ \varphi \in \mathbb{R} \left| |\varphi(f_j) - \varphi_0(f_j)| \right| \leq \varepsilon \},
$$

where $f_j \in A(G_0)$ for $j = 1, 2, ..., n$, whose norm is not necessarily ≤ 1 . This implies that $f(\varphi)=\varphi(f)$, $f\in A(G_0)$, $\varphi\in\mathbb{R}$, is (uniformly) continuous on \mathbb{R} .

From Lemma 4 stated later, we have $A(G_0) \equiv C(\hat{X})$ where $C(\hat{X})$ is the B-algebra of all continuous functions on \Re . This fact together with Theorem 7 Iater implies

$$
C(\tilde{\mathfrak{S}}_0) \simeq C(\tilde{\mathfrak{K}}_0)
$$

in an algebraic and norm preserving fashion. From (3.15), it follows that \Re is homeomorphic to $\tilde{\mathfrak{S}}_0$.

The linear multiplicative bounded functionals are studied by V_{ϵ} Smulian, I. Gelfand, E. Hille, etc.¹²⁾ Our further investigations of them will appear in another paper.

Remark 3. For a locally compact group, its irreducible representation theorem is given by Gelfand-Raikov, I. E. Segal, G. Mautner, and H. Yosizawa,¹³⁾ But our representation (Theorem 5) is complete only if the group is max a. p. The gap between these two representations has been filled up in any case.

4. **B*-algebra of a. p. funetions.** The space of ail continuons a. p. functions on G, $A(G)$, is not only a B-algebra, but also a commutative B^{*}-algebra with the norm conditiond;

(4.1)
$$
\|f \cdot f^*\| = \|f\| \cdot \|f^*\|,
$$

(4.2) $||f|| = ||f^*||$

that is, a B^{*}-algebra in the sense of C. E. Rickart and I. Kaplansky.¹⁴⁾ As \sim operation, we have only to put $f^* = \overline{f}$ (conjugate)

¹²⁾ V. Smulian 23), and E. Rille, Proc. Nat. Acad. Sei., 30 (1944) and 4).

¹³⁾ I. Gejfand and D. Raikov, Math Sbornik, 13 (1944).

I. E. Segal 20), G. Mautner 12), and H. Yoshizawa 28).

¹⁴⁾ C. E. Rickart 16) and I. Kaplansky 9).

Suppose that G_0 is max. a. p. and $\tilde{\mathfrak{S}}_{G_0}$, $\tilde{\mathfrak{S}}_0$ have the same meaning as in the preceding. Then, for $S \in \mathfrak{S}_0$, the function

(4.3)
$$
f(\tilde{s}) = \tilde{s}(f), \quad f \in A(G_0)
$$

is a (uniformly) continuous function on $\tilde{\mathfrak{S}}_0$. Thus, $A(G_0)$ is a subring of $C(\mathfrak{S}_0)$, the B^{*}-algebra of all continuous complex-valued functions on $\tilde{\mathfrak{S}}_0$.

Lemma 4. *(Stone-Rickart) If for every Pair of points* S. *S'in a bicomPact space* \Im , *there exists an element f of the subring* \mathfrak{A}_0 *of* $C(\Im)$ *such that* $f(s)$ $\exists f(s')$, *then* $\mathfrak{A}_6 \equiv C(\mathfrak{S})$.

Originally, G. Silov¹⁵⁾ proved this Lemma under the condition that \mathfrak{S} is bicompact and metric and later M. H. Stone¹⁶⁾ proved for real $C(\mathfrak{S})$.

Theorem 7. *For max. a. p.* G_0 *, we have*

$$
(4.4) \t\t A(G_0) \simeq \mathbf{C}(\tilde{\mathfrak{S}}_0).
$$

Denoting the set of all maximal ideals of $A(G_0)$ by \mathfrak{M}_{G_0} , Gelfand-Neumark¹⁸⁾ proved that

$$
(4.5) \tC(\mathfrak{M}_{G_0}) \simeq A(G_0),
$$

Then, we have

Corollary. *we hold for max. a. p.* G_0 .

(4.6)

Again, let G_0 be an Markoff-extension of G . As in the preceding mentioned, we hold (17) (3) (48) (5) (6) (6) (6) (6) (6) (6) (6)

(4.7)
$$
A(G) \simeq \stackrel{\wedge}{A}(G_0) \subset A(G_0) = \mathbf{C}(\tilde{\mathfrak{S}}_0).
$$

Now, according to Silov and Rickart, we decompose \mathfrak{S}_0 to the direct sets (the continuous decomposition in the sense of P. Alexandroff)

$$
(4.8) \t\t \tilde{\mathfrak{S}}_0 = \sum \oplus L(s),
$$

where

(4.9)
$$
L(s) = \{s' \mid f \in A(G_0) \text{ implies } f(s) = f(s')\}.
$$

Denoting the unit of $\tilde{\mathfrak{S}}_0$ by s_e , we see immediately that $L(s_e) = L_0$ is a closed normal subgroup of $\tilde{\mathfrak{S}}_0$ such that

$$
(4.10) \t\t 2 \simeq \tilde{\mathfrak{S}}_0/L_0
$$

where $\Omega = \{L(s)\}\$, and moreover $L_0 \subset \overline{\mathfrak{D}}_G$ (the closure of \mathfrak{D}_G in \mathfrak{S}_0). Owing to Rickart, we have

c 4.11) Il C(~) ~ A(Go)

¹⁵⁾ G. Silov 22).

¹⁶⁾ M. H. Stone 24).

¹⁷⁾ Gelfiand and Silov, Rec. Math., N.S. 9 (1941) and C. Rickart 16), loc. cit.

¹⁸⁾ I. Gelfand-M. Neumark 3).

and bence

(4.12)
$$
\mathbf{C}(\tilde{\mathfrak{S}}_0/L_0) = \mathbf{C}(\mathfrak{L}) \simeq A(G_0) \simeq A(G).
$$

Consequently, we come to the extended formula of Theorem 7 as follows;

Theorem g_ *For any topological group G, there exists a bicomPact topological group ®o such that*

$$
A(G)\simeq \mathcal{C}(\mathfrak{G}_G)
$$

in the norm preserving fashion: With the same definitions of \mathfrak{S}_0 *and* L_0 *as in the preceding,* \mathcal{B}_q *is written in the form;* $\mathcal{B}_q = \mathcal{B}_0 / L_0$.

This theorem together with the preceding theorem bas the same meaning as the representation theorem of a commutative B^* -algebra in the sense of I. E. Segal¹⁹⁾, I. Kaplansky²⁰, and R. V. Kadison²¹), which is written in the form; $A(G) \cong C(X)$ for a suitable bicompact Hausdorff space X.

Next we consider a Lebesgue integral on \mathcal{B}_{σ} with respect to the Haar's measure *m* on it;

(4.13)
$$
\mu(f) = \int f^0(a) dm(a),
$$

for every $f \in A(G)$ with the corresponding f^0 in $C(\mathcal{C}_\varphi)$ and $\int dm(a) = 1$. G itself being considered as the group of measure-preserving automorphisms $_0$ ^{\in} $[\mathfrak{G}_{\mathfrak{G}}]$, for each $a_0 \in G$, we have

(4.14)
$$
\mu(S_{a_0} \cdot f) = \int f^0(a_0 a) dm(a)
$$

$$
= \int f_0(a) dm(a_0^{-1}a) = \int f^0(a) dm(a) = \mu(f),
$$

that is, $\mu(S_{a_0}f) = \mu(f)$. It is clear that, for $f^-(x) = f(x^{-1})$, we hold $\mu(f^-)$ $=\mu(f)$. These implies that $\mu(f)$ satiffies the all properties of a mean value in $A(G)$, and from the uniqueness of mean values²²⁾, we get

Corellary. The mean value $\mu(f)$ of an element $(a, p.$ function) of $A(G)$ *is represented in the form;*

$$
\mu(f)=\int_{\mathfrak{G}_G}f(a)\,dm(a).
$$

Theorem 8, with the Corollary, has been otherwise prouved in I.E. Segal 19).

5. **Application to locally compact** cases. **Group-algebras.** In this section, we shall restrict ourselves in the case that G is locally bicompact. We begin by defining the group-algebra $L(G)$ of G in the sense of I. E. Segal²³ with respect to the right-invariant Harr's measure on G ; the multiplication and the norm are respectively defined as follows:

¹⁹⁾ I. E. Segal 20), about C*-algebras.

²⁰⁾ I. Kaplansky 9), loc. cit.

²¹⁾ R. v. Kadison 7).

 22) J. von Neumann 15), S. Bochner and J. von Neumann 2), and further W Maak 12).

²³⁾ I. E. Segal 18), 19).

$$
f \times g = \int_{G} f(xy^{-1}) g(y) dy \text{ and } ||f|| = \int_{G} |f(x)| dx.
$$

Let G_0 be an Markoff extension of G, and $D(x_0)$ a complex irreducible continuous normal representation of G_0 . Then $\mathcal{A}(x_1, x_2, ..., x_n); x_1, x_2, ..., x_n) \in G$, is a continuous function on $G\times G\cdots \times G$ (*n* times); cf. (2.11). Now we define that

(5.1)
\n
$$
D(f_1) \times D(f_2) \times \cdots \times D(f_n)
$$
\n
$$
= \underbrace{\iint_{\substack{\alpha \vee \alpha \vee \cdots \vee \alpha \\ \alpha}} f_1(x_1) \cdot f_2(x_2) \dots f_n(x_n) \cdot D(x_1) \times D(x_2) \times \cdots \times D(x_n)}_{\alpha} dx_1 dx_2 \dots dx_n,
$$
\n
$$
= \underbrace{\iint_{\substack{\alpha \vee \alpha \vee \cdots \vee \alpha \\ \alpha \vee \alpha \vee \cdots \vee \alpha}} f_1 D(x_1) \cdot f_2 D(x_2) \dots f_n D(x) \Delta(x_1, x_2, \dots, x_n)}_{\alpha x_1 dx \dots dx_n},
$$

where $f_k \in L(G)$, $f_k \cdot D(x_k) = f_k(x_k) \cdot D(x_k)$.

Since $\Delta(x)=1$ for $x \in G$, we see immediately that, when $n=1$,

(5.2)
$$
D(f) = \int_{G} f(x)D(x) dx.
$$

and for complex numbers α , β ,

$$
(5.3) \tD(\alpha f + \beta g) = \alpha D(f) + \beta D(g)
$$

(5.4)
$$
||D(f)|| \leq M^{p} \cdot ||f||,
$$

where $||D||$ means the usuat norm of matrices, i.e. $||D|| = (\sum_{i,j} |D_{ij}|^2)^{1/2}$, and M^D depends upon D only. (5.4) comes from the fact that each $|D_{ij}|$ is bounded.

We generate a normed ring $\mathbf{R}_p(L(G))$, or briefly $\mathbf{R}_p(L)$, from $D(f)$, $f \in L(G)$, by the usual addition of matrices and the multiplication (5.3).

Then we assert :

Theorem 9. $\mathbf{R}_p(L)$ is continuously homomorphic to $\mathbf{L}(G)$.

To prove the theorem, we have only to show thar $D(f) \times D(g) = D(f \times g)$. In fact, we hold ;

$$
D(f) \times D(g) = \int_{\substack{\alpha \times \alpha \\ \beta \times \alpha}} f(x) \cdot g(x) D(x) D(y) d(x, y) dxdy
$$

\n
$$
= \int_{\substack{\alpha \times \alpha \\ \beta \times \alpha}} f(x y^{-1}) g(y) D(x y^{-1}) D(y) d(x y^{-1}, y) dxdy
$$

\n
$$
= \int_{\substack{\alpha \times \alpha \\ \beta}} f(x y^{-1}) g(y) D(x y^{-1} \cdot y) D(y^{-1} \cdot (xy^{-1})^{-1} x) dxdy
$$

\n
$$
= \int_{\substack{\alpha \\ \beta}} D(x) \int_{\substack{\alpha \\ \beta}} f(x y^{-1}) g(y) dy dx
$$

\n
$$
= \int_{\substack{\alpha \\ \beta}} f(x y) D(x) dx = D(f \times g).
$$

Let $\psi(x_1, x_2)$ be a complex continuous function on $G \times G$, then we have **Lemma** 5. *If we hold*

(5.5)
$$
\int_{\alpha \times \alpha} f_1(x_1) f_2(x_2) \psi(x_1, x_2) dx_1 dx_2 = 0
$$

for arbitrary $f_k \in (G)$, $k=1$, 2, it must be $\psi(x_1, x_2)$ *for any* $x_k \in G$.

Remark. This lemma is easily extended to the case that $\psi(x_1, x_2, \ldots, x_n)$ is continuous on $G \times G \times ... G$, and

(5.6)
$$
\iint\limits_{G\times G\times...\times G} \cdots \int\limits_{G} f_1(x_1) f_2(x_2) \cdots f_n(x_n) \psi(x_1, x_2, ..., x_n)
$$

 $\cdot dx_1 dx_2 ... dx_n = 0$

Proof of Lemma. ψ being real at first, the set P_{ψ} of such points in $G \times G$ that ψ <o is open. For any points $p(x_1, x_2) \in P_{\psi}$, we can select a neighborhood of x_k , $U_k = U(x_k)$, in G, such that the open rectangle $U_1 \times U_2 \subset P_{\psi}$.

For each U_k , we can find a neighbourhood $V_k=V(x_k)\subset U_k$, whose closure \overline{V}_k is bicompact, then $\overline{V}_1 \times \overline{V}_2 \subset \overline{P}_k$.

Now we define a characteristic function f_0 of (the compact carrier) \overline{V}_k , as f_k in (5.7) , such that

(5.7)
$$
f_k^0 = \begin{cases} 1 & \text{on } \overline{V}_k \\ 0 & \text{on } G - \overline{V}_k \end{cases}
$$

then it is necessarily that each f_0 belongs to $L(G)$ and

$$
\int_{\alpha \times G} f_1^0(x_1) f_2^0(x_2) \psi(x_1, x_2) dx_1 dx_2
$$
\n
$$
= \int_{\Gamma_1 \times \Gamma_2} \psi(x_1, x_2) dx_1, dx_2 > 0
$$

This is contradictory with (5.7); that is, P_{ψ} is necessarily of measure 0 on *G* \times *G*. With respect to N_{ψ} which is the set of such points that ψ \leq 0, we go analogously as above, adopting a negative characteristic function as f_k^0 , and at last hold that N_{ψ} is also ot measure 0. Thus $\psi=0$ identically: If ψ is complex, decomposing it to $\psi_1 + i\psi_2$ $\dot{\psi}_1$ and ψ_2 are real), we can leasily obtain the Lemma.

Now, we put

(5,8) $\Phi_D(x_1, x_2) = D(x_1) \times D(x_2) - D(x_1)D(x_2)$, for $x_1, x_2 \in G$, and $\Phi_D = (\psi_{ij}^D)$. If $D(f_1) \times D(f_2) = D(f_1)D(f_2)$ for any $f_k \in L(G)$, $k = 1$, 2, we have

$$
\iint\limits_{G\times G} f_1(x_1)f_2(x_2)\phi_D(x_1,x_2) dx_1dx_2=0,
$$

and, from Lemma 5, we assert that $\varphi_D=0$ (0-matrix with same degree as *D*), *i.e.*

$$
D(x_1)D(x_2)\Delta(x_1,x_2)=D(x_1)D(x_2),
$$

namely

(5.9) J(xr. *xz)* = *E.*

Owing to Section 2, (5.9) shows that such $D(x)$ is nothing but the representation of *G.*

Then we get easily the equality $D(f_1) \times D(f_2) \times \cdots \times D(f_n) = D(f_1)D(f_2) \cdots D(f_n)$ for arbitrary $f_k \in (G)$ and n ; $k=1, 2, ..., n$.

Theorem of Iwasawa.24) *The continuous normal representations of G and the continuous representations of* L(G) *are one-to-one corresponding by the relation*

$$
D(f) = \int_{G} f(x)D(x)dx.^{25}
$$

Ali these circumstances convince us of sorne analogy between the *-operation in the representation of G and the \times -operation in that of $L(G)$ and corresponding to the corollary in Section 2, we hold

Theorem 10. $A \times \text{representation of } \mathbf{R}_p(\mathbf{L}(G))$ *coincides with the usual one. that is, the representation by the matric-algebra, if and only if* $D(x)$ *is a continuous normal representation of G. Every finite rep. of* L(G) *is a special* x *-re p. as ubove.*

Remark: A shorter proof of the Iwasawa's theorem will soon appear elsewhere.

References

- 1) W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer Math. Soc., 57 (1945).
- 2) S. Bochner and J. von Neumann, Almost periodic functions in groups, II, Trans. Amer. Math. Soc., 37 (1935).
- 3) Gelfand and M. Neumark, On the imbedding of normed rings etc. Rec. Math. (1941).
- 4) E. Hille, Functional analysis and semi-groups, Amer. Math. Soc. Colloquim Publications, 31, New York (1948).
- 5) K. Iwasawa, note in Zenkoku Shijo Sugaku Danwakai, written in Japanese, 246, Ser. 1, Osaka (1942).
- 6) K. Iwasawa, On group rings of topological groups, proc. Imp. Acad., 20 (1944).
- 7) R. V. Kadison, A representation theory for commutative topological algebra, (1950)
- 8) S. Kakutani, Free topological groups and infinite direct product spaces, Proc. Imp. Acad., 20 (1944).
- 9) I. Kaplansky, Normed algebras, Duke Math. J., vol 16 (1949).
- 10) M. Krein, On positive functionals on almost periodic functions, C. R. URSS, 30 (1941).
- 11) A. Markoff, On free topological group, C. R. URSS, 31 (1941).
- 12) W. Maak, Fastperiodishe Functionen, (1951)
- 13) F. I. Mautner. Unitary representations of iocally compact groups, Ann, of Math. 51 (1950).
- 14) T. Nakayama, Note on free topological groups, Proc. Jmp. Acad., 19 (1943).
- 15) J. von Neumann, Almost periodic functions in groups, I Trans. Amer. Math. Soc., 36 (1934).

²⁴⁾ K. Iwasawa 5) and 6)

²⁵⁾ Thees results may be extended to $\mathbf{L}^{(1, P)}(G)$ without difficulty, for $p \geq 2$.

42 Shin-lchi MATSUSHITA

- 16) **C. E. Rickart,** Banach algebra with an adjoint operation, Ann. of Math., 47 (1946).
- 17) **P. Samuel,** Universal mappings and free topological groups, Bull A. M. S. 54 (1948).
- 18) **I. E. Segal,** The group ring of locally compact groups, I, Proc. Nat. Acad, Sci., U. S. A. (1940).
- 19) **1. E. Segal,** The group-algebra of a locaJly compact group, Trans. Amer. Math. Soc., 61 (1947)
- 20) **1. E. Segal,** Irreducible representations of operator algebras, Bull. Amer. Math. Soc., 53 (1947).
- 21) **1. E. Segal,** Two-sided ideals in operator algebras, Ann. of Math., vol. 50 (1949).
- 22) **G. Silov,** Ideals and subrings of the rings of coctinuous functions, C. R. URSS, 27 (1939).
- 23) **V. Smulian,** On multiplicative linear functionals in certain special normed rings, C. R. URSS, 26 (1940).
- 24) **M. H. Stone,** Application of the theory of Booleanr ings to general topology, Trans. Amer. Math. Soc., vol 41 (1937).
- 25) **T. Tannaka,** Über den Dualitatssatz der nichtkommutativen topologischen Gruppen, Tôhoku Math. Jrl., 45 (1938).
- 26) **A. Weil,** Sur les espaces à structure uniform sur la topologie générale, Actualités scientifiques et Ind., **Paris** (1938).
- 27) **K. Yosbida,** On the duality theorem of non-commutative compact groups, Proc. Imp. Acad. 19 (1943).
- 28) **H. Yosizawa,** Unitary representations of locally compact groups, Osaka Math. Journ., 1 (1949).