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Summary

The Hamiltonian operator of a system consisting of a
nucleon and a scalar meson field, has no domain in the space
whose vector is a superposition of states consisting of a finite
number of mesons and a nucleon, in which the states of each
meson and the nucleon being arbitrary.

§1. Introduction. As physicists understand, the field equations in quantum
dynamics have no solution when the interaction terms are taken into account.
But the rigorous proof of the non-existence of the solution seems not to have
been given so tar.

In the present paper. first we determine the space in which the Hamiltonian
of a system is defined, and then prove that the Hamiltonian operator has no
domain in its subspace whose state vector is a superposition of states consisting
of a finite number of particles, in which the state of each particle being arbitrary.
For the sake of the simplicity of the treatment, we take, as an example, a
system consisting of a nucleon and a scalar meson field.

In the course of the treatment, we assume that the wave functions of the
nucleon and the scalar meson field are periodical with respect to a unit cube
in the coordinate space. This assumption is not satisfactory in the scope of
the relativity. The relativistically complete treatment will be made in
another place.

§2. Determination of the space. First we state the results obtained by
v. Neumann?, in a form suitable for our purpose.

Let I be a set of indices «, whose number is enumerably infinite. 9,,«€rl
is a sequence of Hilbert spaces.

Definition 1. 2., €I and @ are arbitrary complex numbers. Then the product
IT ,¢;2, is convergent and its value is @ when the following condition is satisfied.
Let 0 be an arbitrary positive number, then, corresponding to this 6, a finite
set To=Io(6)CI of «’s can be determined in such a way that the difference

* This paper was teported at Osaka Meeting of the Math, Soc, of Japan on October 25, 1949.
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[2312x; ... 2, —al is always made smaller than 0 for any finite set of « J=&
(a1, 2, ..., an) which satisfies the conditions JoC JCI.

According to this definition, an infinite product may have 0 as its covergent
value.

Definition 2. When I crlleall, 0o € 9., « €I is convergent, the sequence of
vectors ¢4, « €I is called C-sequence.

Definition 3. When X,erlll 0.l —1] is covergent, the sequence ¢,, €I is called
Co—-sequence.

A Co-sequence is a C-sequence. But the converse does not always hold good.
Definition 4. When ¢, ¢u € Dy, a €I are both Co—sequences and Yuerl(¢u, ¢u)
—1|<e», the two sequences {¢,} and {¢,} are called equivalent.

v. Neumann has proved that the equivalency definad here is reflexive, sym-
metric and transitive. Thus the whole of the Co—sequences is classified by the
equivalency. The whole of these classes is called T

In the next place, we define a direct product space of 9,, «€I. Let @ be
a functional of ¢,€9,, «€I and its value is a complex number. @ is defined
only when ¢,, «€I is a C-sequence and its value is denoted as @(¢, ; «€I).
Instead of the notation 0(¢,; «€I), the notation @(¢.,|¢,; « €I, a=Fao) is also
used when a special vector ¢., is taken into consideration.

Definition 5. 0(¢,;a€I) is a functional of C-sequences ¢,€ 9., «€I, and
satisfies the following conditions.

(1) 02¢xy) @ s a€l, aFa0)=2 O(@ayl 0u; « €1, uwtuo)

(D) 0C@ay+ gl 0a s 2 €1, aFa0) =0(@xy| ¢o ; 2 €I, a-Fuo)

+ 0Pyl 0o 3 €1, arFao),
where z is a complex number and Z is conjugate to z. The set of @’s satisfy-
ing these conditions is denoted as I1@,¢:9, .
Definition 6. A product II,crz, is called quasi-convergent when the product
I ,erl2,] is convergent. And
(I) when T .12, is convergent, its limit is the value of the quasi-convergent
product I ,erz,,
(II) wten IT,crz, is not convergent, 0 is adopted as the limit of the quasi-
convergent product I7 serz, .

It can be proved that when ¢,, ¢, € 9., « €I are C-sequences, the product
I ,er(oyn, ¢o) is quasi-convergent.

Dfinition 7. ¢2€9,, a€I is a fixed C-sequence, and ¢, €9D,, «€l is an
arbitrary C-sequence. Then, 0(¢, ; ¢« €I)=II ,c;(¢.,% ¢.) is quasi-convergent
and an element of Il ®,¢:9,. Let this @ be denoted as O=II Quer ¢,°.

Definition 8. In 0=%3_, H®uer¢ly, p=0, 1, 2, ..., and ¢§,€9D,, €l are
C-sequences for every v which vary from 1 to p. The set of @’s is denoted
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as II'QuerD, .

Of course, II'®,crD, is a subset of 1I®,¢c:r9,. The inner product of
0= 11 Rucr ¢,y and W=20, T Qaerdaw is given by (0, ¥)=20; i) Moex
(¢4, ¢2,u). The norm of @ is defined by (0, 0)} and is denoted as ||@]|. The
distance between @ and V¥ is defined as ||0—v||.

Definition 9. Let ® be a functional for which exists a sequence 0, 0z, ...
€II"R®uerD, satisfying the following conditions:

(1) 0(¢y; a EI)=1i+€ 0:-(¢y; w€I) for all C-sequences ¢, €9, , u€l,

(1D lim |[@-—0, =0,

The s;et of such @’s is denoted as TR,cr9D, .

When lim @.=0 and 913im ¥»=W, the inner product (@, %) of @ and V¥ is
>0

7 roo
defined as }bl_)rg (@n, ws). By using the inner product, the topology is introduced
in II®¥,er9,, and the following Theorem is obtained.

Theorem 1. The space IIR,e19, is linear, metric and topologically complete.
Definition 10. CET is an equivalent class. ¢,, «€I is an arbitrary Co-
sequence contained in C. A closed linear set determined by the whole of the
products such as IIQ,cr ¢, is called the incomplete direct product space and
denoted as I1°®,e1D,. Of course, this is a subspace of I R),erD, -

When C and C’ are different equivalent classes, 1°®,c1D, and 19Q,c1D,
are mutually orthogonal. The space determined by the whole of the incomplete
direct product spaces IT°R,crDs, CET is HQuerDy .

Lemma 1. Let C be an equivalent class. Then we can choose a C¢-sequence
20 2 €I in C such as ||¢.%]|=1, «€I. And the closed linear set determined
by the whole of the products IIQ.cr ¢, whose factors ¢, are respectively equal
to ¢,° for all but a finite number of the indices «, is the space II°Querq, C €T
Lemma 2. Let C be an equivalent class, and ¢,% « €I be a Cosequence in C
such that ||¢.0]|=1. A sequence ¢, s, B(1)=0,1, 2, ... is a c.n.o.s. (complete
normalized orthogonal set) of 9., and ¢,,0=¢,% When a finite number of
B(w), u€I are different from zero, we say that the set of 8(«) belongs to the
class F, and denote it as $(«) € F, or simply as S€ F. When the set f(«), x €l
varies on the whole of F, the whole of IIger®ucr@urbey is a c.n.o.s. of
I°RuerD,, . ‘
Theorem 2. When we use the notations in Lemma 2, there is one-to-one
correspondence between elements @ in 1°®,cr9, and coefficients a[f(x);u€l]
in the following way:
(I) a[p(a); a€ITs are complex numbers and defined for only the functions
B(w)€F,
(I1) Xawerlalf(a); a€I]|% is convergent,
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(D) a[B(w); « € I1=(0,1I pcrQuer Purpca»)=P(Puspcar; ¢ €I),
(IV) when @ and ¥ correspond to a[B(a); a€I] and b[B(«w); w€l],
respectively,

(0, 9)=pwer a[Bla); a €T B[B(w); w€T].

Theorem 3. The space I1°Q®,c1D, is linear, metric and topologically complete.
The introduction of v. Neumann’s results has finished. We shall apply
these results to our problem.
As already has been known?, a scalar meson field is described by a scalar
function U(x, , 2, ¢) and its conjugate function U(x, ¥, 2, ).
In the presence of a nucleon, the Hamiltonian of the total system is given by
H=H,+H', (2>
where
H 0= H M +H U ( 2 )
H i is the Hamiltonian of the nucleon:
HM=ap+p3(%<1+13>MN+%<1—13>MP). (3)

Hy is the Hamiltonian of the meson field:
Hy =2 (N*(B)+N~(kB)E% . (4)

H'’ is the interaction term:
H = —ig g\/z—” {(ak*~bk) exp (—ikr) Q*—(ax—bi*) exp (ik')Q}P3 . (5D
k

In the present paper, we use the natural unit, i.e., the light velocity ¢ and
Planck constant % are both equal to 1. The neutron mass My and the proton
mass Mp are both assumed to be equal to one and the same value M. (4, p3)
are Dirac’s spin matrices. We use ps instead of the usual notation B. (1,72, 73)

are the isotopic spin matrices. We use the usual matrix representations

n=io), =G o), =6 ). 6>

Ey in (4) is equal to v/ k2 +m2, where k and m is the momentum and the
mass of a meson, respectively. The % in the formulas (4) and (5) stands for
the momentum k. The operator N *(k)=ai*a: is an infinite matrix having the
eigenvalues 0,1, 2, ..., and is an operator representing the number of mesons
whose charge, momentum and energy are +e, % and Ex, respectively. The
operator N ~(k)=>bi*b; represents the number of mesons whose charge, momen-
tum and energy are —e, —k and Ex, respectively. We shall call N*(k)-meson
a meson belonging to the operator N *(k), and N ~(k)-meson a meson belonging
to the operator N-(k). In the above formulas
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p= —Zgrad Q= %(n+z’z‘2), <= —21(1'1—2'72).

The components of & are either zero or integers multiplied by 2z. The
operators a;* and ar are the creation and the annihilation operators of N .(k)-
meson, respectively. bx* and bx are those of IV~ (k)-meson.

A state in which p* (%) N*(k)-mesons are there, is represented by a vector
whose (B*(k)+1)-th component is 1, the other components being all zero, where
B*(k)=0,1,2,.... We shall denote this vector as ¢ (8*(k)). Whole of ¢(8*(%)),
B*(k)=0,1, 2, ... determines a Hilbert space, 9*(k). In the same way, we
define ¢(B~(k)), B~(k)=0,1, 2, ... for each value of 2. Whole ot ¢(B~(%)), B~(k)
=0, 1, 2, ... determines a Hilbert space. (k).

Tt can easily be proved that the operators N *(k) and N-(k) are self-adjoint
in the respective spaces 9*(k) and (k).

Let the set of the momenta k’s be K. The sequence ¢(B+*(k)=0), k€K is
a Co-sequence. Let this sequence correspond to the Co-sequence ¢,9% «€I7 in
Lemma 2, and let ¢(p*(k)), k€K, p*(k)=0,1, 2, ... correspond t0 @8 «€1.
The fact that only a finite number of B*(k), k€ K are non-zero, is expressed
by a symbol * € F. Then, it is concluded that the whole of the vectors

o+ () = Mg ¢ p®p e x9(B* () (7)
is a c.n.o.s. of the incomplete direct product space
H*U) = H°RuexD* (k) , (8)

where C is the equivalent class to which the Cg-sequence ¢(B*(k)=0), k€K
belongs. In like manner, we define

ep=(U) = I g- ¢ FQRrexe(B~(k)) (9)
and the whole of ¢p~(U)’s is a c.n.0.s. of the incomplete direct product space
H=(U) = N°QuecxDH~(k), (10

where C is the equivalent class to which the Co-sequence ¢(B~(k)=0), k€ K
belongs. From (7) and (9), we define a vector

¢o(U) = ¢ (U)Rpp-(U) =15+ ¢ FQuex 9(B8* IR - ¢ FRrex ¢(B~(R)), (11)
which is simply written as
¢s(U) = M R¢(B* UDRM (B~ (R)) . (12)
The whole of ¢s(U)’s is the c.n.o.s. of the incomplete direct product space
D) = H*(WIRH~(V) = M°RH* (ORMRH~(h) . a®

The vector ¢a(U) represents a state of a system consisting of B*(k), k€K,
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N+(k)-mesons and B-(k), k€ K, N-(k)-mesons. The condition p* ¢ F means
that the total number of mesons contained in the system, is finite. This
condition is necessary in order that the total energy of the meson field is finite.

It is easy to verify that ¢s(U) is an eigenfunction of Hy and that the
corresponding eigenvalue is > (8*(k))+B~(E)Ex, which is finite by the con-
dition BT €F.

In the next place, we shall consider the space of vectors which represent
the states of the nucleon.

When we put as

— G _ (uexp (ipr)> _ ( 0 >
@ = I L PP (D < 0 , QOB wexp (ipr) ,

H = ap+posM ,
the eigenvalue problem
Hyd=E¢ (14)
is reduced to that of the equation
Hu= Eu, (15)
which has four solutions orthogonal with one another:

Hu® = E(PuY, esu® = 4V ; Hu®» = E(PIu®, esu® = —u®,

Hu® = —E(Pu®, equ® = y® ; Hu® = —E(P)u'?, esu® = —u®,

Here, e is a unit vector in the direction of », and E(p)?=p?+Mz?.

As the wave function ¢ is periodic with respect to a unit cube, the number
of p’s is enumerably infinite, and the four vectors «‘®, 7=1, 2, 3,4 are deter-
mined for each ». Thus we obtain enumerably infinite number of ¢‘¥”’s and
¢F’s, And when we put as

s (R Grn), g = ()
, 0 , un” exp (ipar) )’

m=1234;72=1,2234, ..,
we obtain the orthogonality relations
(QaTn s Garour) = Ommt Bun 5 (G0 s 55201 ) = S’ Sunt
(Galn, 955 w) =0,
s QUE 1) = Omnt S’y (QFPTTo, OS5 1) = O/ B

The orthonormal set {¢, ¢¢¥2} thus obtained is denoted simply as {o(M)}.
The cn.o.s. {(M)} determines a Hilbert space, H(M).
Using ¢‘%, ¢ and ¢s(U) in (12), we obtain two vectors

6 = VPRep(U), 5 = ¢ QRep(U) .
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When we need not to distinguish between ¢ and ¢, instead of these
notations, we use the notation

¢ = ¢(M) R ¢p(U) .
The orthonormal set {¢s} determines an incomplete direct product space

9 =9H(M) ¥ HW)

$3. Singularity of the Hamiltonian operator.
Theorem 1. The vectors ¢ ond ¢5°° do not belong to the domain of the inter-
action term H'.
Proof. For brevity, we put as

v %;;c {ca—80 exp (— i@~ (@ -5 exp BQoa =He.  (16)
Then
Hps™ = J%{pa/m ¢;3N>[Q4<¢(N>; oo A L(R) ee sy e ]exp(—z‘Ekt)
— 00 B 657 @R o <10 | exp GEuD)} exp (—itr)
where an
¢;}N>[Q*¢,uv); o L(R) e e ]
= @ Re(B (k) + DR IT QB (k)R IT Qe(B~(K)), (18)
¢E;N)[Q;|<¢(N) PN 10 ]
= @TRe(f~(H-DR I ®¢(ﬁ+(k’))®c£k®¢(ﬁ‘(k’)) (19)
when

¢§" = ¢RI (B (B)IQI @ ¢(B~(KD) .
The two vectors (18) and (19) are mutually orthogonal, and H 35"’ and H/¢g™
are mutually orthogonal when k==k’. So that we obtain
IH /65711 = £2(Swex ™ » TrexHubs"™) = 2ng Trex g (B () +6-(R) +1) = oo .
ie., [|[H’¢§"’||=0co. In like manner, we obtain ||H/¢g|| = co.

Theorem 2. Let ¢ be a vector belonging to the domain of Ho, and be expanded
as

¢ = Ec%)(ﬁézg) +j§ P B . (20)
Here ¢y’ and cff are numerical coefficients, and ¢§’ is the j-th vector of the
set obtained by arranging the members of the set {¢§"°} in a suitable manner.

o is defined in a similar manner. Then 35| EX(B5)|2 and 25|57 EF@5)|2

are both convergent, where
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EM(By) = £E(P) +Xrex(B* (k) +B~(B)Ek, (21)

in which +E(p) or —E(p) is the eigenvalue corresponding to the nucleon state
vector '™ which is the factor of ¢y, and B*(k) and B~(k) in the summation
on the vight hand side are the particle numbers in the state ¢§§’ . EXP(By) is
defined in a similar manner.

Proof. In the following, we use the notation E{ such as
EM(B5) = £E(P) +Im§13+(k) +B=(k)),
so that }im E{™(B5) = EX(By) .
>0
In the same way, E{’(85) is defined as
lim E{™(By) = E®(Bs).
Then o> |[Hopl|2=2¢ ,er| (Hop, ¢p)|2
=2 |lim([Hx+ 2 (N*(B)+N-(E))E]¢, ¢p)!2
I> kI<I
= S tim{ S e G, [Hat T (V) +N-()E148)
I \j=1 1k|<T
S (PY (¢ 1(P) - (2
+ RSP, (Hat 3 (N* B+ N=EDE 00}
=By, perllim 2 GV (CH a3 (N () +N=()ED1#Y, 6512
= Xlim 3 VBB, 6572
190 j=1
= Bl E®(E)I2.
So that )
L ImE (B 2 oo (22)
In the same way, we obtain
2P E®(B)|2< 0. (23)
Theorem 3. Let a vector ¢ expand in a series
¢ =icabp, = 23§95 + 2 Vg5

If the number of mesons in each of the states #6}”’s and ¢f3’j’>’s is smaller than
a fixed constant, ¢ does not belong to the domain of the interaction term H' .
Proof. 1f ¢ belongs to the domain of H’, ||H’¢|| must be finite. But, as being

shown below, this assumption leads to a contradiction. We assume that 1]
belongs to the domain of H’, then
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o> || H g2 = Lper|(H'$, ¢pp)|% = g2 Leer|lim (23 Hip, do)|?

= g2 3 pcr] }i—fg(¢’lk2<1Hk¢ﬁ>lz = g2 ZﬂEF]IIi_)rg ECJ(%] ,Ikgl_HMﬁﬁ)l 2

= gzZseH}ijg =2 e, Z (Hk¢ﬁj’ $p) |2

= &°24», pepllim Ecm 2= CHubg o712 20

We assume that the meson number of the vector ¢ " is not smaller than
those of the other ¢g)> j==1, i.e, X (B*(k)+B-(k)) of ¢y is the least upper
bound of those of all ¢¢}°, j=1,2,3, ...... .

H ¢CN> ‘/277{ 3+<k)+103¢§117)[Q*¢§1r>;... F1(B) v g eeenee Jexp (—ZEx)
—v/ G (R 038y [QF Y5 o5 oo - 1(R) -] exp (z'Ekt)} exp (—ikr),

(25)
where ¢§)° is the nucleon state vector contained in ¢§>. When the order
number of %k is sufficiently large, both $*(k) and B~(k) vanish, and we obtain

Hpgy = \/%093%{)[@*%1})’ +1(k) =+ Jexp(—iExt—ikr). (26)

L°t the domain of k for which the expression (25) is reduced to the form of
26), be denoted by K. The k's which belong to K but not to K, is of finite
nurnber
A vector ¢§” which satisfies the relation

(Hk¢(N) (P) —Jgn(psuélf),u,(gpj)exp(—-iEki) 27
is of the form
57 = $EP LR 1) ey ], RER (28)

where ¢ P’ is a nucleon state vector whose mometum is p—7», p bemg the
momentum of ¢§}’. Let the assembly of such ¢§"”’s be denoted as F. Then,

from (24),
w>g2 Zyi(P)eF“lm E cgN) E (Hk¢(N) (P\)]z

= 22 g B I HED 66 Him 2 6™ 3 Hubl), 45712 (29)

And, on the one hand,
= 1H' 95|12 = Tz f | CH 960 05802+ Do ¢ | (060, 6812
The number of ¢§ L2y which satisfy the condition

(H/¢(N) (P))z*:o
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is finite, so that we obtain
Tprre FICHGE] + 97012 = oo
Accordingly, if we can prove that
~ Him 3 ¢ ) gCPIY|2
2’6(’1’)61}‘[2‘5 jgzcj ]EI(Hquﬂj ¢B )l <mv (30)
it will be concluded that the right hand side of (29) is divergent. ThLis is

contradictory to the inequality (29).
For arbitrary ¥ and Bj, j=2,

Hy o ’"JZ” {/B*(k’)+1ps¢pj’[Q*¢‘N), S (€0 RITERTIID Jexp(—iExt)
—V B 0sp§T [QF YT oo 5 - —1(K)-+] exp (z’Ekt)} exp (—ikr).
(€19

So that, when and only when ¢§]’ satisfies the relation

¢(N)[Q*¢,(N)’ BN (¢ D RITRRTRS Jexp (—ik'r)= ¢<P>—¢§Y)[¢<P’, RS [€) RIDPRITIS ]

or (32)
G LQ QY s oo e LKD) T exp (il ) =g =g [¢F"; -+ +1(R) =+ -],
the condition (33
(Hwod, o) ==0, ¢’ €F (34)
holds valid. (32) is equivalent to the condition:
O = U5 exp (k7Y (B*(K) of ¢§) = (B*(K) of §7)—1,
(B*(k) of ¢§]) = (B*(k) of ¢§7)+1=1,
(B=(E") of ¢§7°) = (B*(K") of ¢§)"), k'=Fk K . (35)
(33) is equivalent to the condition
¢E = ¢ exp (ik'r), (B~(K) of ¢§]) = (B~(K) of ¢§Y)+1,
(B*(k) of ¢§5) = (B*(k) of ¢§¥)+1=1,
(B=(K") of ¢§7) = (B*(K") of ¢§7), k'=Fk I . (36)

From the assumption that 33 (8*(k)+B~(k)) of ¢§Y> is not smaller than those
of the other ¢§7°. no ¢§> satisfies the condition (36). The number of ¢§}”’s
which satisfy the condition (35) is bounded for all ¢§ PICF,

When the nucleon momenta of ¢§*> €F and ¢f;" )¢ F are different from each
other, one and the same vector ¢‘” > can not satisfy simultaneously the two

conditions
(Hwog] s 6§7)=F0, (Hwof], ¢7)=F0. €10

for arbitrary k¥ and R".
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When the nucleon momenta of ¢§”’ and ¢ are equal, the condition (37)
can hold valid simultaneously. But the number of ¢§"’s for each k&, is at most

four. By using these results and the condition 1—21 |57 |2< 00, we can conclude
that the inequality (30) holds valid. QUE.D.

84. Cnclusion. The interaction operator A’ has no domain in a space
whose state vector is a superposition of states consisting of a finite number
of mesons and a nucleon, the states of each meson and the nucleon being
arbitrary. So that, the total Hamiltonian H has no domain in this space. But
we cannot prove whether H’/ has a domain in the whole incomplete direct
product space ® or not. The space § contains a sequence of vectors whose
meson numbers increase infinitely. In this case, the number of ¢§1}'”s which
satisfy the condition (36) in the preceding paragraph, may be infinite.

The present writer is much indebted to Dr. H. Nakano for his valuable
advice in completing this paper.

References

1) J. V. Neumann, Comp. Math. 46, 1 (1939).
2) H. Yukawa and S. Sakata, Proc. Phys. Math. Soc. Japan 19, 1048 (1937)



