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Summary 

The Hamiltonian operator of a system consisting of a 

nucleon and a scalar meson field, bas no domain in the space 

wbose vector is a superposition of states consisting of a finite 

number of mesons and a nucleon, in which the states of eacb 
meson and the nucleon being arbitrary. 

~ 1. Introduction. As pbysicists understand, the field equations in quantum 

dynamics bave no solution wben the interaction terms are taken into account. 

But the rigorous proof of the non-existence of the solution seems not to bave 

been given so tar. 

In the present paper. first we determine the space in wbicb the Hamiltonian 

of a system is defined, and tben prove that the Hamiltonian operator bas no 

domain in its subspace wbose state vectorisa superposition of states consisting 

of a fini te number of particles, in which the state of eacb particle being arbitrary. 

For the sake of the simplicity of the treatment, we take, as an example, a 

system consisting of a nucleon and a scalar meson field. 

In the course of the treatment, we assume tbat the wave fonctions of the 

nucleon and the scalar meson field are periodical with respect to a unit cube 

in the coordinate space. This assomption is not satisfactory in the scope of 

the relativity. The relativistically complete treatment will be made in 

anotber place. 

~ 2. Determination of the space. First we state the results obtained by 

v. NeumannD, in a form suitable for our purpose. 

Let I be a set of indices a, whose number is enumerably infinite. ~ ... r1. El 

is a sequence of Hilbert spaces. 

Definition 1. z.,, a E I and a are arbitrary complex numbers. Tben the product 

II aErZ., is convergent and its value is a when the following condition is satisfied. 

Let (] be an arbitrary positive number, tben, corresponding to this (], a finite 

set lo=lo((])Cl of a's can be determined in sucb a way tbat the difference 

* This paper was teported at Osaka Meeting of the Math. Soc, of J apan on Oc;tober 25, 1949. 
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iz, 1zx2 ••. z,.n-ai is always made smaller than iJ for any finite set of u. ]=® 

(rll, u.2, ... , u.n) which satisfies the conditions loC]Cl. 

According to this definition, an infinite product may have 0 as its covergent 

value. 

Definition 2. When ll aEI 1!9 .. 1/, 9a E ô"', u. El is convergent, the sequence of 

vectors 9"', a El is called C-sequence. 

Definition 3. When ~a Er 1119,1/-11 is covergent, the sequence 9a, u. El is called 

Ca-sequence. 

A Co-sequence is a C-sequence. But the converse does not always hold good. 

Definition 4. When 9,,1/J"'Eô"',aEI are both Co-sequences and ~ .. EriC9,.,1/J,.) 

-11 <Cl.), the two sequences { 9"'} and {1/J"'} are called equivalent. 

v. Neumann bas proved that the equivalency defined here is reflexive, sym­

metric and transitive. Thus the whole of the Co-sequences is classified by the 

equivalency. The whole of these classes is called r. 
In tbe next place, we define a direct product space of ô"', u. El. Let (/) be 

a functional of 9"' E ô,., r1. El and its value is a complex number. (/) is defined 

only when 9"', u. El is a C-sequence and its value is denoted as (/) ( 9a ; a El). 

Instead of the notation m( 9a; a El), the notation m( 9xo 1 9a; a El, r;.+ao) is also 

used when a special vector 9,.0 is taken into consideration. 

Definition 5. m(9a; r;. E I) is a functional of C-sequences 9a E Ôa, a El, and 

satisfies the following conditions. 

( I) m(z9,.0 1 9a ; r;. El, a:-Fr;.o)=z m( 9xo l9a ; r;. El, rrf=u.o) 

(II) (/)(9x0 +1/Jx0 \9a; u.El, r;.=FrJ.o)=m(9xol9a; u.El, a'*u.o) 

+m(I/Jx0 19a; u.El, r;.=Fao), 

where z is a complex number and z is conjugate to z. The set of (f)'s satisfy­

ing these conditions is denoted as JI •œEis.>,.. 

Definition 6. A product ll œEI z"' is called quasi-convergent when the product 

JI "'El 1 Za 1 is convergent. And 

(I) when ll o>EIZa is convergent, its limit is the value of the quasi-convergent 

prodUCt il œEI Za, 

(II) wten JI "ErZa is not convergent, 0 is adopted as the limit of the quasi­

convergent product JI aEI z"' • 

It can be proved that when 9"', 1/J"' Es.> .. , a El are C-sequences, the product 

JI œu(9"', 1/J"') is quasi-convergent. 

Dfinition 7. 9a0 E Ô a, a El is a fixed C-sequence, and 9a E ô,., a El is an 

arbitrary C-sequence. Then, m(9"' ; r;. E l)=JI aEr(9,.0 , 9a) is quasi-convergent 

and an element of ll • .. EI.s::> ... Let this m be denoted as m=JI@ .. er9,.0 • 

Definition 8. In m=~~=1 ll&;;œEI9~,,.P=0,1,2, ...• and 9~.~E·'J,.,aEI are 

C-sequences for every 11 which vary from 1 to p. The set of m's is denoted 
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as Il'®œErf{;),.. 

Of course, Il'®aEif{),. is a subset of Ile,.uf{)11 • The inner product of 

(/)=~~= 1 Il®,.Er(j'Z v and q·=~~=lll®œErr/JZ"' is given by ((]), q·)=~~=l "5.:.~= 1 IlcxEr 
' ' 

(~p~ v, rJ;~ "'). The norm of (]) is defined by (m, (]))! and is denoted as Il(]) 11. The 
' ' 

distance between (])and Il:' is defined as 11m-w11. 

Definition 9. Let (/) be a functional for which exists a sequence (/)1, (])2, ... 

E Il' ®,.uf{)œ satisfying the following condition13 : 

( I) (])(<p,.; rJ. E I)=lim (])r(<p,.; a E I) for ali C-sequences <p,. E f{;).,, rJ. El, 
r~oo 

(II) lim llmr-(])sii=O, 
r,B-+o:J 

The set of such (/)'s is denoted as II®aEif{),.. 

When Iim (]),.=(/) and Iim q·,.=q·, the inner product ((]),Il:') of (/) and Il:' is 
n~~ n~oo 

defined as lim ((/),., 1l'n). By using the inner product, the topology is introduced 
n->-oo 

in II®œu·'f>,., and the following Theorem is obtained. 

Theorem 1. The space II®aErf{;),. is Iinear, metric and topologically complete. 

Definition 10. CE r is an equivalent class. <p,., rJ. El is an arbitrary Co­
sequence contained in C. A closed Iinear set determined by the who le of the 

products such as II ®,.u <p,., is ca lied the incomplete direct product space and 

denoted as II 0 ®,.uf{),.. Of course, this is a subspace of II ®,.uf{),.. 

When C and C' are different equivalent classes, Il 0 ®,.Erf{),. and Il 0 '0aErf{)., 

are mutually orthogonal. The space determined by the whole of the incomplete 

direct product spaces Il 0 ®.,uf{),.' cE r is II®.,Erf{),.. 

Lemma 1. Let C be an equivalent class. Then we can choose a Co-sequence 

<p.,0 , rJ. E I in C such as Il <p,.0 11=1, a El. And the closed linear set determined 

by the who le of the products II ®a El <p,. whose factors <p., are respectively equal 

to <p.,0 for ali but a finite number of the indices a, is the space Il 0 ®aEif{).,, cE r. 
Lemma 2. Let C be an equivalent class, and <p.,0 , a El be a Co-sequence in C 

such that Il <p.,0 11=1. A sequence <p,.,fJCa:l, {1(o.)=O, 1, 2, ... is a c.n.o.s. (complete 

normalized orthogonal set) of f{),., and <p,., o= <p.,0• When a fini te number of 

{1(a), rJ. E I are different from zero, we say that the set of {1(a) belongs to the 

class F, and denote it as {1(a) E F, or simply as {1 E F. When the set {1(r;.), rJ. El 

varies on the who le of F, the who le of II flEF®aEI <p.,, flCa:l is a c.n.o.s. of 

JlC&JaEif{),. • 

Theorem 2. When we use the notations in Lemma 2, there is one-to·one 

correspondence between elements (/) in II 0 ®aEif{),. and coefficients a[{1(r;.); a E I] 

in the following way: 

( I) a[{1(a) ; a E I]'s are complex numbers and defined for only the functions 
{1(r;.) E F, 

(II) ~flC«lEF!a[{1(a); aEI][ 2 is convergent, 
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(III) a[~(a); a El]=( @,II flEF&Jaer({!a,fl(a))=@(({!,.,flCa); a E I), 

(IV) when ([) and IJ>" correspond to a[~(a); a E I] and b[~(r~); a El], 

respectively, 

(@, W)=.Ei!CalEFa[~(a); a El] b[~(a); a El]. 

Theorem 3. The space II 0 ®aErf:>a is linear, metric and topologically complete. 

The introduction of v. Neumann's results bas finished. We shall apply 

these results to our problem. 

As already bas been known2l, a scalar meson field is described by a scalar 

function U(x, y, z, t) and its conjugate function U(x, y, z, t). 

In the presence of a nucleon, the Hamiltonian of the total system is given by 

H=Ho+H', (2) 

where 
Ho=HM+Hu. (2) 

HM is the Hamiltonian of the nucleon: 

HM= ap+ps( ~(1+Ts)MN+ ~ (1-Ts)MP). ( 3 ) 

Hu is the Hamiltonian of the meson field : 

(4) 

H' is the interaction term: 

H' = -ig ~~;;k {cak*-bk) exp ( -ikr)Q-~-(ak-bk*) exp (ikr)Q}ps. ( 5) 

In the present paper, we use the natural unit, i.e., the light velocity c and 

Planck constant ft are both equal to 1. The neutron mass MN and the proton 

mass MP are both assumed to be equal to one and the same value M. (a, Ps) 

3re Dirac's spin matrices. We use Ps instead of the usual notation~. (n, '1"2, Ts) 

are the isotopie spin matrices. We use the usual matrix representations 

'!"S = ( 1 0 ) 
0 -1 . 

(6) 

Ek in (4) is equal to ,/k2+m2, where k and mis the momentum and the 

mass of a meson, respectively. The k in the formulas (4) and (5) stands for 

the momentum k. The operator N+(k)=ak*ak is an infinite matrix having the 

eigenvalues 0, l, 2, ... , and is an opera tor representing the number of mesons 

whose charge, momentum and energy are +e, k and Ek, respectively. The 

operator N-(k)=bk*bk represel_?.ts the number of mesons whose charge, momen­

tum and energy are -e, -k and Ek, respectively. We shall cali N+(k)-meson 

a meson belonging to the operator N+(k), and N-(k)-meson a meson belonging 

to the operator N-(k). In the above formulas 
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P = -i grad. Q = ~ (-r1 +in), Q* = -~ C-r1-in). 

The components of k are either zero or integers multiplied by 2rr. The 

operators a.;i< and ak are the creation and the annihilation operators of N +(k)­

meson, respectively. bk* and bk are those of N-(k)-meson. 

A state in which [j+(k) N+(k)-mesons are there, is represented by a vector 

whose (jj+(k)+1)-th component is l, the other components being all zero, where 

f3+(k)=O, 1. 2, .... We shall denote this vector as ~p(f3+(k)). Whole of ~p(j3+(k)), 

{3"'"(k)=O, 1, 2, ... determines a Hilbert space, fij+(k). In the same way, we 

define ~p({3-(k)), {3-(k)=O, 1, 2, ... for each value of k. Whole ot ~p(/3-(k)), {3-(k) 

=0, 1, 2, ... determines a Hilbert space. S:r(k). 

It can easily be proved that the operators N+(k) and N-(k) are self·adjoint 

in the respective spaces iij+(k) and S:r(k). 

Let the set of the momenta k's be K. The sequence ~p(f3+(k)=O), kE.K is 

a Ca-sequence. Let this sequence correspond to the Ca-sequence <p.,0 , a E I in 

Lemma 2, and let ~p(f3+(k)), k E K, {3+(k)=O, 1, 2, ... correspond to <p.,,fJc.,l• r;. E I. 

The fact that only a finite number of W(k), k E K are non·zero, is expressed 

by a symbol f3+ E F. Then, it is concluded that the whole of the vectors 

( 7) 

is a c.n.o.s. of the incompltte direct product space 

(8) 

where C is the equivalent class to which the Co-sequence ~p(jj+(k)=O), k E .K 

belongs. In like manner, we define 

( 9) 

and the whole of <pfJ-(U)'s is a c.n.o.s. of the incomplete direct product space 

(10) 

where C is the equivalent class to which the Co-sequence ~p({3-(k)=O), k E K 

belongs. From (7) and (9), we define a vector 

!pfJ(U) = !pfJ+(U)(i!)<pfJ-(U)=Il '(>+ E F@kEK <p(j3+(k))@Il r.- E F@kEK rp(/3-(k)), (11) 

which is simply written as 

(12) 

The whole of <pfJ(U)'s is the c.n.o.s. of the incomplete direct product space 

(13) 

The vector <pfJ(U) represents a state of a system consisting of f3+(k), k E K, 
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N+(k)-mesons and e-(k), k E K, N-(k)-mesons. The condition (3± E F means 

tbat the total number of mesons contained in the system, is finite. This 

condition is necessary in order tbat the total energy of the meson field is finite. 

It is easy to verify that <pf3(U) is an eigenfunction of Hu and that the 

corresponding eigenvalue is L, ((3+(k)) +{3-(k)Ek, whicb is fini te by the con­

dition (3± E F. 

In the next place, we sball consider the space of vectors wbicb represent 

the states of the nucleon. 

Wben we put as 

cp= cpCNl+cp'Pl, cpCNl = (uexpo(z'pr)), 

ÎÏ = ap+p3M, 

the eigenvalue problem 

HMcp=Ecp 

is reduced to tbat of the equation 

Hu=Eu, 

cpCP) = ( 0 ) , 
u exp (ipr) 

whicb bas four solutions orthogonal with one another : 

ÎÏ uW = E(p )uCll , ea unl = um ; ÎÏ uC2) = E(p )uC2) , ea ul2) = _ uC2l , 

ÎÏ uC3l = - E(p )uC3) , ea uC3) = uC3) ; if uC4l = _ E(p )ul4) , ea uC4) = _ uC4l . 

Here, e is a unit vector in the direction of p, and E(P)2=p2+M2. 

(14) 

(15) 

As the wave function cp is periodic witb respect to a unit cube, the number 

of p's is enumerably infinite, and the four vectors ucn, i=1, 2, 3, 4 are deter­

mined for eacb p, Tbus we obtain enumerably infinite number of cpCNl's and 

cpCPl's. And wben we put as 

cp~~= ( u~m) ex~ (ipnr)), 

m = l, 2, 3, 4 ; n = 1, 2, 3, 4, ... , 

we obtain the ortbogonality relations 

( ,f,(N) ,f,(P) ) _ 0 
"t'm,n' "Yml ,n' - ' 

The orthonormal set {cpCNl, cpCPl} tbus obtained is denoted simply as {~p(M)}. 

The c.n.o.s. {~p(M)} determines a Hilbert space, A)(M). 

Using cpCNl, cpCP) and <pf3(U) in (12), we obtain two vectors 

ifJV) = cpCN)(j9<pf3(U), ifJ~P) = cpCP)(j9<pf3(U). 
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When we need not to distinguish between <J;CN) and <J;CP), instead of these 

notations, we use the notation 

if>~= cp(M) 0 cp~(U). 

The orthonormal set {if>fl} determines an incomplete direct product space 

~ = ~(M) 0 ~(U) 

~ 3. Singularity of the Hamiltonian operator. 

Theorern 1. The vectors if>~N) ond if>~P) do not belong to the domain of the inter­

action term Ht. 

Proof. For brevity, we put as 

J;;~< {carc,*-bk) exp (- ikr)Q*- (ak-b~c*) exp (ikr)Q}fJ3 = H 1c. (16) 

Th en 

Hep~N) = J;;~c {o3~j3+(k)+1 if>~N)[Q*<J;CN); ··· +l(k) ···; ···············]exp( -iEkt) 

-p3~[j-(k) if>~m[ Q*<J;CN); ·········; ··· -1(k) ... J exp (iEkt)} exp( -t'kr), 

where (17) 

</J~Nl[ Q*<J;CN); ... +1(k) ... ; ...... ] 

= Q*<J;CN)0cp(j3+(k)+1)0 JI 0cp(p+(kt))0 JI 0cp((3-(kt)), (18) 
kt*k let 

</J~N) [ Q*<J;CN); ...... ; ... -1(k) ···] 

= Q*<J;CN)0cp((3-(k) -1)0 JI 0cp((j+(kt) )0 JI 0cp({j-(kt)) (19) 
kt klo\ck 

when 

The two vectors (18) and (19) are mutually orthogonal, and H k'/J~N) and H ktif>~N) 

are mutually orthogonal when kdr=kt. So that we obtain 

11Htif>~Nlll2 = g2("5.:.T<exHk</>~N), ~kEKHkr/JV)) = 2rrg~kEKik((3+(k)+(3-(k)+1) = oo. 

i.e., IIHtif>~N)II = oo. In like manner, we obtain IIHtif>~P)II = oo. 

Theorem 2. Let if> be a vector belongi ng to the domain of Ho,. and be expanded 
as 

(20) 

Here cjl? and 4~) are numerical coefficients, and <Pif/ is the j-th vector of the 

set obtained by arranging the members of the set {</>~NJ} in a suitable manner. 

<~>W is de:/ined in a similar manner. Then ~J lc)N> ECN)({jJ)l2 and ~J le?) ECP)({jJ)I 2 

are both convergent, where 
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(21) 

in which +E(p) or -E(p) is the eigenvalue corresponding to the nucleon state 

vector if;rN) which is the factor of if!~~\ and fi+(k) and fj-(k) in the summation 

on the right hand si de are the particle numbers in the state ifJ~~l. ECP!(fiJ) is 

de:/ined in a similar manner. 

Proo/. In the following, we use the notation Ej.Nl such as 

so that Iim EjNl(fi1) = ECNl(fiJ). 
I->""' 

In the same way, EV\fiJ) is defined as 

Iim E}N\fiJ) = ECPl(fiJ) . 
I->«> 

Th en co> [[HoifJI[ 2 = 2:::}'5, fJEFi(HoifJ, ifJfJ)i 2 

= I::llim ([HM+ 2::: (N+(k)+N-(k))Ek]ifJ, ifJfJ)[ 2 
I->«> lki<:'I 

So that 

(22) 

In the same way, we obtain 

(23) 

Theorem 3. Let a vector if! ex pa nd in a seri es 

Il the number of mesons in each of the states ifJ~~l's and if!~jl's is sma!ler than 

a Jixed constant, if! does not belong to the domain of the interaction term H'. 

Proof, If if! belongs to the domain of H', [[H'ifill must be finite. But, as being 

shown below, this assumption Ieads to a contradiction. We assume that if! 
belongs to the domain of H 1, then 
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C24) 

We assume that the meson number of the vector ~~f_l is not smaller than 

those of the other ~1/Jl i=Fl, i.e., ~CWCk)+{3-Ck)) of ifl~f_l is the Ieast upper 

bound of tho se of ali ifl~~l, j = 1, 2, 3, ...... . 

H~cfJ~~l = ~~ {vf3+Ck)+lP3if>~l[Q*c/>~f_l; ··· +lCk) ···;······]exp C -iE~ct) 

- 1/ {3-(k) P3~~~ 1 [Q*cp~~l; ······; ··· --lCk) ···] exp (iE~ct)} exp C -ikr), 

(25) 

where cp~~l is the nucleon state vector contained in ~~f_l. When the order 

number of k is sufficiently large, both f3+Ck) and {3-Ck) vanish, and we obtain 

H "~~1 = ~';;/3P~l [Q*cp~~l; ··· +lCk) ···;······]exp C -iE~ct-ik.r). (26) 

Let the domain of k for which the expression (25) is reduced to the form of 

(26), be denoted by K. The k's which belong to K but not to K, is of finite 

number. 

A vector ~~Pl which satisfies the relation 

CH A,CN) A,(P)) = l2rc Co uCN) u(P)) exp c--iE t) 
""~1 ·'~"~ 1/ E~c ,3 ~1 , ~ " C27) 

is of the form 

(28) 

where cJ·Vl is a nucleon state vector whose mometum is p- r, p being the 

momentum of ct>~f_!. Let the assembly of such if>~P!'s be denoted as F. Then, 

from (24), 

oo>g2 ~p~PlEpjlim 'Ë cjNl ~ (H~cp~~)·~~P')j 2 
" I->"" J~l !k!<"I 

And, on the one band, 

00 = IIH'~~) 112 = ~:z~vlE F \(H'if>~f.). ~~P))2+ ~:z~vl E F ICH'if>V:..). ~~Pl)J2. 

The number of 1>&Pl E F which satisfy the condition 
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is finite, so that we obtain 

Accordingly, if we can prove that 

~.><CP) E F- !Hm :Ë c)N) ~ ( H ~r,rj/N) , rf>f!CP)) 12 <co , 
r' I->00 }=2 lk <:I fi} 

(30) 

it will be concluded that the right band side of (29) is divergent. This is 

contradictory to the inequality (29). 

For arbitrary k' and i3J, j>2, 

H"'rf>~IJ) = ~'t, {,/f3+(k')+1 parf>~IJl[Q*4·~IJl; ... +1(k') ... ; ...... ]exp( -iE1c't) 

-,/ {3-(k') Psr/>~IJ) [Q*rf'~IJ); ...... ; ... -1(k'} .. ] exp (iE~r,t)} exp (- ikr). 

So that, wben and only when r/>~ 1 satis:fies the relation 
(31) 

rf>~) [Q*rf'~IJ); ··· + 1(k') ... ; ...... ]exp ( -ik'r)=rf>~Pl=ri>~f 1 [I/'~P 1 ; ... + 1(k) ... ; ...... ] 

or (32) 

rf>~) [Q*I/'~~ 1 ; ...... ; ... -1(k') ... ] exp ( -ik'r)=rf>~P)=rf>~f) [1/'~P); ... + 1(k) ... ; ...... ], 

the condition 
(H"'rf>~l, rf>~P)),PO, rf>~P)EF 

holds valid. (32) is equivalent to the condition : 

1/'~~1 =1/'~P)exp(ik'r), ((3+(k') of rf>~~))=((3+(k') of rf>~))-1, 

((3+(k) of rf>~))= ((3+(k) of rf>~.zr 1 )+1 = 1, 

((3±(k") of rf>~)) = ((3±(k") of rf>~f 1 ), k" + k, k'. 

(33) is equivalent to the condition 

rf'~) = rf'({) exp (iltr), ({3-(k') of rf>&~l) = ({3-(k') of rf>~l) + 1, 

((3+(k) of r!>&IJ)) = ((3+(k) of ri>&f)) + 1 = 1, 

((3±(k") of rf>&~))= ((3±(k") of rf>&f)), k" + k, k'. 

(33) 

(34) 

(35) 

(36) 

From the assumption that ~ ((3+(k)+{3-(k)) of r~>&.zr) is not smaller than those 

of the other rf>~l. no rf>~~) satisfies the condition (36). The number of r!>&IJ)'s 
which satisfy the condition (35) is bounded for ail rf>({) E F. 

Wben the nucleon momenta of rf>~P) E F and rf>~P) E F are different from each 

other, one and the same vector r!>&f can not satisfy simultaneously the two 

conditions 

(H"'r/>~~), rf>&P)),PO, (Hk''r/>&~l, rf>;f 1),PO. 

for arbitrary k' and k". 

(37) 
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When the nucleon momenta of if;~P) and if;~P) are equal, the condition (37) 

can hold valid simultaneously. But the number of if;~P)•s for each k, is at most 

four. By using these results and the condition f; \c)N)I 2<oo, we can conclude 
J~l 

that the inequality (30) holds valid. Q.E.D. 

~ 4. Cnclusion. The interaction opera tor H' bas no domain in a space 

whose state vector is a superposition of states consisting of a finite number 

of mesons and a nucleon, the states of each meson and the nucleon being 

arbitrary. So that, the total Hamiltonian H bas no domain in this space. But 

we cannat prove whether H' bas a domain in the whole incomplete direct 

product space .P or not. The space .P contains a sequence of vectors whose 

meson numbers increase infinitely. In this case, the number of if;~~)•s which 

satisfy the condition (36) in the preceding paragraph, may be infinite. 

The present writer is much indebted to Dr. H. Nakano for his valuable 

advice in completing this paper. 
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