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Abstract

We show some results on the unknotting number and the bakabttimg num-
ber. Taniyama characterized knots whose unknotting nunéralf the crossing
number minus one. We show that if the unknotting number of at k& half the
crossing number minus two, then the knot is the figure-eigiut.ka positive 3-braid
knot, a negative 3-braid knot or the connected sum of a){&rus knot and a (&)-
torus knot for some odd integerss # +1. In particular, we show that it is a 3-braid
knot. Taniyama and Yasuhara showed that the band-unkgottimber of a knot
is less than or equal to half the crossing number of the knoleumur notation.
We show that the equality holds if and only if the knot is thiwiat knot or the
figure-eight knot.

1. Introduction

Throughout this paper, we assume that all links and link rdiaxg are oriented
unless otherwise stated. ¢rossing changes a local move on a diagram of a link as
in Fig. 1 (a). Theunlinking numberof a link diagramD, denoted byu(D), is the
minimal number of crossing changes bf which convertD into a diagram of a trivial
link. The unlinking numberof a link L is the minimal number ofi(D), whereD is a
diagram ofL and it is taken over all diagrams a&f. If D is a knot diagram, we call
u(D) the unknotting numbef D and if K is a knot, we callu(K) the unknotting
numberof K.

In general, it is very difficult to determine the unknottingmber. However, the
following estimations are well known. Let(D) and ¢(K) be the crossing number of
a diagramD and a knotK, respectively. Then

(1.2) u(D) < C(D)T_l
0o P E

where D is a non-trivial diagram (i.e. a diagram with at least onessiag) andK is
a non-trivial knot. It is also known that the equalities hdtat diagrams illustrated in
Fig. 2 and (2r)-torus knots, respectively. Taniyama proved the converse
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Fig. 1. A crossing change and a band-move.

Theorem 1.1([24]). (1) If D is a diagram of a knot with (D) = (¢(D) —1)/2,

then D is one of the diagrams illustrated kig. 2

(2) If K is a knot with (K) = (c(K) —1)/2, then K is a(2, r)-torus knot for some

Fig. 2.
odd integer r# +1.

()

A
<

P &
)

(A

Recall that the braid index of a knot is equal to two if and oaifilthe knot is a (2r)-
torus knot for some odd integer# +1. The second author and Kanadome [5] (see
also [24]) characterized a link diagra@ with u(D) = (c(D) — 1)/2 and asked the
following.

PrOBLEM. Characterize the knot diagrani® with u(D) = (¢(D) — 2)/2.
In this paper, we solve the above problem.

Theorem 2.12. Let D be a reduced knot diagram. Then

c(D) -2

u(D) = >

if and only if D is the figure-eight knot diagram as ig. 3 (a),the positive3-braid
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Fig. 3.

knot diagrams as irFig. 3 (b), the negative3-braid knot diagrams as irFig. 3 (c) or
the connected sum of @, r)-torus knot diagram and 42, s)-torus knot diagram for
some odd integers, 5 # +1.

Note that the braid index of a knot with a positive 3-braidgdéan may be two.
Let b(K) be the braid index of a knoK. Then the following is a corollary of The-
orem 2.12.

Corollary 2.14. Let K be a knot. Then we obtain the following.
(1) If u(K) = (c(K) — 2)/2, then HK) = 3. Precisely K is the figure-eight knota
positive 3-braid knot a negative3-braid knot or the connected sum of(3, r)-torus
knot and a(2, s)-torus knot for some odd integerss # +1.
(2) If b(K) > 4, then UK) < (c(K) —3)/2.
(3) If K is primg then UK) = (c(K) —2)/2 if and only if K is the figure-eight knpt
a positive3-braid knot or a negative8-braid knot.

As the authors know, the following is open.

QUESTION 1. LetK be the connected sum of a (2torus knot and a (3)-torus
knot for some odd integens s # +1. Is it true that

c(K)—2
uK)=—~—-2
(K) 5
Note that an affirmative answer to Question 1 solves the afig question since

C(Toy #To5) — 2 _ c(Toy) -1 n C(Tzs) — 1
2 2 2

U(TZ,r #TZ,S) = = U(T2,r) + U(TZ,S).
where we denote byl,; a (2,t)-torus knot for some odd integérand used the addi-
tivity of the crossing number of alternating knots under ttnected sum operation
(see [12], [15] and [26]).
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QUESTION 2. Letr ands be some odd integers with s # £1. Is it true that
U(Tzr #T2s) = U(T2r) + U(T2s)?

Conversely, an affirmative answer to Question 2 implies that

C(T2,r) -1 + C(TZ,S) -1 — C(TZ,r #T2,S) -2

U(Toy #Tos) = U(Tor) + U(Tos) = 5 > >

Therefore Questions 1 and 2 are equivalent. If oinds are positive or negative, we
see that the equality holds. In general, the above queséemdo be very difficult to
answer since the connected sum of a J2prus knot and a (2;r)-torus knot for some
odd integersr # +1 is ribbon (therefore slice). For example, the unknottingnber
of the (2, 3)-torus knot and the (23) torus knot is equal to two (since unknotting
number one knots are prime [21]), however the authors do mowvkwhether or not the
unknotting number of the (2, 5)-torus knot and the {B)-torus knot is equal to four.

A band-moveor H(2)-movg is a local move on a diagram of a link as in Fig. 1 (b).
Here we note that a band-move on a link diagram may not pregseesnumber of com-
ponents of the diagram. We introduce a numerical invarifetband-unknotting number
of a knotK, denoted byuy(K), to be the minimal number of band-moves to deform a
diagram ofK into that of the unknot by Reidemeister moves and band-moves

The band-unknotting number of a knot behaves rather diffgrérom the unknot-
ting number of a knot. Scharlemann proved that unknottinghlmer one knots are
prime [21]. On the other hand, band-unknotting number ongtkmay not be prime.
Indeed, Scharlemann also showed that the connected sune dfetfoil knot and the
figure eight knot has band-unknotting number one. More exasnaie given by Hoste,
Nakanishi and Taniyama in [9] and Kanenobu and Miyazawa if. [10

Of course, some restrictions are known. Lickorish [13] gavestriction on the link-
ing form on the first homology group of the double cover of thspBereS® branched
along a knot with band-unknotting number one. As a corollas/ showed that4has
band-unknotting number two, whereas the unknotting nunabet; is one. Kanenobu
and Miyazawa [10] also gave a restriction on tipgolynomial of a knot with band-
unknotting number one. Another restriction was given by RHo One of the natural
questions on the band-unknotting number is which knots havel-unknotting number
one. We answer this question for the class of twist knots.

Theorem 3.3. Let K be a twist knot. If g(K) = 1, then K= 3;, 5,, 6; or 7,
up to mirror images.

The idea of the proof of Theorem 3.3 is same as that of KaneaobuMurakami
[11], where they determined two-bridge knots with unkmagftinumber one. The key
tool to prove this theorem is results from the Heegaard Fhaenology theory which
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strongly restricts possible integral surgeries of a knoSinwhich produce lens spaces,
whereas Kanenobu and Murakami [11] used the cyclic surgesgrém.

We can understand the band-unknotting number of a knot mstesf surfaces in
the 3-space and a 4-dimensional space. Two kiqgtsand K, are g-bordantif there
is a compact connected (possibly non-orientable) surfade S° with the first Betti
numberp;(F) = g + 1 whose boundary has two componertg, and K,. Let

dc(K) = min{g | K is g-bordant to the unknpt

Let ¢(K) be the minimal number of elementary critical points of lgcdlat surface
F embedded inS® x [0, 1] such thatF N S® x {0} = K and F N S* x {1} = the un-
knot. Taniyama and Yasuhara [25] gave a fundamental prppérthe band-unknotting
number of a knot, that is,

up(K) = Ge(K) = &(K)

for any knotK. The band-unknotting number of a knot is closely relatedh®cross-
cap numberof a knot. The crosscap number of the trivial knot is definedéeozero
and the crosscap number of a non-trivial knot is defined tohieentinimal number of
B1(F), whereF is a compact connected non-orientable surface wkh= K and it is
taken over all compact, connected and non-orientable cesfaounding<. We denote
the crosscap number of a knkt by §(K). For a knotK, Taniyama and Yasuhara [25]
also showed

Up(K) (= Ge(K)) < G(K) < @

This estimation is best possible since the equality holdsttie trivial knot and the
figure-eight knot. In this paper, we prove the converse, Wwh& an analog of The-
orem 1.1 for the band-unknotting number of a knot.

Theorem 5.1. Let K be a knot. Then

Up(K) < @

The equality holds if and only if K is the trivial knot or the fig-eight knot.

The following lemma gives a relation between the band-uttkmgp number and the
unknotting number of a knot, which is the key in the proof ofebrem 5.1. Note that
it is immediately obtained from the result in [10]. For comtgness, we give a proof.

Lemma 5.2. Let K be a knot. Then

Up(K) < u(K) + 1.
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Here we give the outline of the proof of Theorem 5.1. By cormgriTheorem 1.1,
Corollary 2.14 and Lemma 5.2, it is easy to prove that TheoBeimholds for knots
K with b(K) # 3. It is essential to prove that Theorem 5.1 holds for the ko6t
with b(K) = 3. WhenK is the figure-eight knot, the equality holds. Otherwise, we
can proveuy(K) < ¢(K)/2 by using a property of a 3-braid knot diagram Kf (see
Lemma 4.2).

2. The knots whose unknotting number is half the crossing nufer minus two

In this section, we prove Theorem 2.12 which is one of the masnilts in this paper.

The second author [4] introduced the notion of a pseudo dmgand the trivial-
izing number of a projection. We recall these definitions tovp Theorem 2.12. First,
recall that a diagram consists of the underlying curves aret/ender information of
crossings of the underlying curves. pseudo diagram Qs a diagramD in which
we forget over/under information of some (possibly, allpsgings. Here, we allow the
possibility that a pseudo diagram is indeed a diagram. Thersay thatD is obtained
from Q and a crossing without over/under information is callegre-crossing In par-
ticular, we define that grojection P is a diagramD in which all crossings do not
have over/under information. Then we say tliats the projection of D

A pseudo diagran@ is trivial if every diagram obtained fror® represents a trivial
link. For example, the pseudo diagram (a) in Fig. 4 is trigad both pseudo diagrams
(b) and (c) in Fig. 4 are not trivial. Le® and Q' be pseudo diagrams of a diagram,
respectively. Then we say thatpseudo diagram Qs obtained from a pseudo diagram
Q if each crossing ofQ has the same over/under information wifi. The trivializing
numberof a projectionP, denoted bytr(P), is the minimal number of the crossings of
Q, where Q varies over all trivial pseudo diagrams obtained frém

A relation between the unlinking number and trivializingmher is given in the follow-
ing proposition. It follows from the definition of the triiaing number and the fact that the
mirror diagram of a trivial link is also trivial. For a pseud@agramQ@, the mirror pseudo
diagram, denoted b, is the pseudo diagram with opposite over/under infornmadioall
crossings im.

Proposition 2.1 ([7]). Let P be a projection and D a diagram obtained from P.
Then YD) < tr(P)/2.

Proof. LetQ be a trivial pseudo diagram obtained frofhwhich realizestr(P).
Let py, ..., puw(p) be the pre-crossings d? which have given over/under information
in Q. By applyingn (< tr(P)) crossing changes, we deforb into the diagramD’ so
that over/under information ops, ..., pypy in Q and that ofpy, ..., pyp) in D’ agree.
Then D’ represents a trivial link. Le® be the mirror pseudo diagram @. Then Q
is also trivial. By applyingtr(P) — n crossing changes, we deforB into the diagram
D” such that over/under information g, ..., py(p) in Q and that ofpy, . .., Prr(P)
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Fig. 4. Pseudo diagrams.

in D” agree. ThenD” also represents a trivial link. Therefore

u(D) < min{n, tr(D) — n} < @ []

Let P be a knot projection. A simple closed curlén the 2-spheres? is a de-
composing circleof P if the intersection ofP and| is the set of just two transversal
double points. Then the following proposition holds.

Proposition 2.2 ([4]). Let P be a knot projection and | a decomposing circle of
P. Let{g;, 2} = PNl Let B, and B be the disks such that;B) B, = S and
B;NB, =1. Let o be one of the two arcs on | joiningg@nd ¢. Let B = (PNB;)U«,
P, = (P N By) U« be the knot projections. Then(R) = tr(Py) + tr(Py).

Here, a knot projectiorP is prime if, for any decomposing circle, one d¥; and
P, has no pre-crossings. Also, a knot diagrdnis prime if the projection of D is
prime. We give some definitions. A pre-crossipgof a projectionP is said to benu-
gatory if the number of connected components Bf p is greater than that oP. A
crossingc of a diagramD obtained from a projectiorP is also said to benugatory
if the pre-crossing corresponding tois nugatory inP. A projection P (resp. a dia-
gram D) is said to bereducedif P (resp.D) has no nugatory pre-crossings (resp. no
nugatory crossings). We have the following from each of ltesof [3], [18] and [23].

Proposition 2.3. Let P be a reduced knot projection. TheR) = 0 if and only
if P is the projection without pre-crossings.

We associate a chord diagram to a knot pseudo diagram asvé$ollbet Q be a
pseudo diagram witlm pre-crossings. Achord diagramof Q is a circle withn chords
marked on it by dashed line segment where the preimage of ma&ebrossing is con-
nected by a chord. Then we denote it BDg. For example, letQ be the pseudo
diagram (a) in Fig. 5. Then a chord diagram (b) in Fig. £iBg. Many results in [4]
are restated in terms of the chord diagram associated tow@stiagram as follows.

Let Q be a knot pseudo diagram. @ Dg contains a sub-chord diagram as (c)
in Fig. 5, we can construct a diagram obtained fr@nsuch that the arf invariant
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Fig. 5.
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m pre-crossings
Fig. 6.

of the knot represented by the diagram is non-trivial (cfl).[4Therefore we obtain
the following.

Proposition 2.4 ([4]). Let Q be a knot pseudo diagram. If GDcontains a sub-
chord diagram ag(c) in Fig. 5, then Q is not trivial.

Theorem 2.5([4]). Let P be a knot projection. Their(P) = min{n | there is a
chord diagram obtained from C®Pby deleting n chords does not contain a sub-chord
diagram as(c) in Fig. 5} and tr(P) is even.

Theorem 2.6 ([4]). Let P be a knot projection with at least one pre-crossing.
Then it holds that #P) < p(P)— 1, where gP) is the number of the pre-crossings of
P. The equality holds if and only if P is one of the projectiassillustrated inFig. 6
where m is some positive odd integer.

Note that we recover Theorem 1.1 using Proposition 2.1 arebm 2.6 (cf. [6]).
Smoothing a pre-crossing is the deformation as (a) in FigSmoothing a crossing is
the deformation as (b) or (c) in Fig. 7. We prove the following

Lemma 2.7. Let P be a reduced knot projection. Then(P) = p(P)—2 if and
only if P is one of the projections of positive or negati®«bdraid knot diagrams as
illustrated in Fig. 3 and the projections of the connected sum of2ar)-torus knot
diagram and a(2, s)-torus knot diagram for some odd integerssr#£ +1.
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Proof. First, we show the ‘if’ part. IP is one of the projections of the connected
sum of a (2r)-torus knot diagram and a (8)-torus knot diagram, it follows from The-
orem 2.6 and Proposition 2.2 th@({P) = p(P) — 2. Suppose thaP is one of the pro-
jections of positive 3-braid diagrams. By Theorem 2r§P) < p(P) — 2. Assume that
tr(P) < p(P)—2. Let Q be a trivial pseudo diagram which realizes the trivializmgn-
ber of P. Let py, p2,..., Pn be the pre-crossings @. Thenn > 3 sincetr(P) < p(P)-2.
Let P’ be the projection obtained fro® by smoothingps, p2, ..., pn. ThenP’ is a
projection of @14 1)-component link diagram from Proposition 2.4. This cadicts that
P is one of the projections of positive 3-braid knot diagrams.

Next, we show the ‘only if’ part. IfP is not prime,P is the projection of the con-
nected sum of a (2,)-torus knot diagram and a (8)-torus knot diagram for some odd
integersr, s # +1 from Proposition 2.3, Theorem 2.6 and Proposition 2.2.

Suppose thaP is prime. We show that one of the componentsPgfis a projection
of a (2,t)-torus knot diagram for some odd integeand the other component &, has
no self pre-crossings for any pre-crossipgwhere P, is the projection obtained from
P by smoothingp. Namely, for any chordl there exists a chord which does not cross
d in CDp. Let P, and P, be the knot projections oP,. If each of P, and P, has
no pre-crossings, this implies tha(P) is odd. This contradicts that(P) is even by
Theorem 2.5. If each o, and P, has a pre-crossing, this implies thetP) < p(P)—-2.
Without loss of generality, we may assume tlRathas a pre-crossing. IP; is not one
of the projections of (2)-torus knot diagramgy(P;) < p(P1)—1 by Theorem 2.6. This
implies thattr(P) < p(P) — 2 and it contradicts our assumption. Therefore, one of the
components ofP, is the projection of a (2)-torus knot diagram for some odd integer
t and the other component &, has no self pre-crossings for any pre-crossng

We can suppose thd; is the projection of a (&)-torus knot diagram. Lep’ be a
self pre-crossing oP; and P, and P’ the knot projections obtained frof, by smooth-
ing p’. Note that each oP] and P;’ does not have pre-crossings. L&t ap, ..., an
(resp.by, by, ..., bm) be the pre-crossings d?; (resp.P;’) and P, which appear orP,
from p in this order along the orientation. Heia, a, ..., a, appear onP; from a cer-
tain point in this order along the orientation and altgoby, . .., by, appear onP;’ from
a certain point in this order along the orientation. If thésnot the case, there exists
a part of a chord diagram as illustrated in Fig. 8. This cdfitta tr(P) = p(P) — 2
by Theorem 2.5. ThereforeR is one of the projections of positive or negative 3-braid
knot diagrams. []
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Lemma 2.8. Let P be a non-prime projection with(f?) = p(P) —2 and D a
diagram obtained from P. Suppose that D is not the conneated af a (2, r)-torus
knot diagram and &2, s)-torus knot diagram for any odd integerss# +1. Then

c(D) -2

u(D) < 2

Proof. By Lemma 2.7,P is one of the projections of the connected sum of a
(2,r)-torus knot diagram and a (8)-torus knot diagram for some odd integers #
+1. Immediately, we see that

c(D)—-2

u(D) < 5

O

Lemma 2.9. Let P be a prime projection with ¢{P) = p(P) —2 and D a dia-
gram obtained from P which is neither positive nor negativel aloes not represent
the figure-eight knot. Then

c(D)—2

u(D) < 5

Proof. We show that there exists a crossingp D such that the mutual crossings
of D contain both a positive crossing and a negative crossingevaeutual crossing
lies on between two component am. is the diagram obtained fror® by smooth-
ing ¢. There exists a chord corresponding to a positive crossingvhich crosses a
chord corresponding to the negative crossin@Cibp as (c) in Fig. 5 sinceP is prime
where a chord corresponding to a crossing means that thergssing of the crossing
represents the chord i@ Dp. We concentrate oo, . If the chord corresponding to,
crosses a chord corresponding to a positive crossing, we set, . If the chord cor-
responding toc, crosses two chords corresponding to negative crossingshwdibss
each other, we sat to be the crossing corresponding to one of the two chords. As-
sume that the chord correspondingdp crosses more than two chords corresponding
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Fig. 9.

to the negative crossings. Two of the chords cross each stheetr(P) = p(P) — 2.
Suppose that the chord correspondingcto crosses just two chords corresponding to
the negative crossings, say andc”, in CDp as illustrated in Fig. 9 (a). If the chord
corresponding ta’ (resp.c”) crosses a chord corresponding to the negative crossing,
we setc = ¢/ (resp.c =c”). Assume that the chord correspondingctoor ¢” crosses
more than two chords corresponding to the positive crossir@milarly, we see that
two of the chords cross each other sinc@) = p(P) —2. We setc to be the crossing
corresponding to one of the two chords. Assume that eacheothiord corresponding
to ¢, and the chord corresponding ¢ crosses just two chords corresponding to the
positive crossings. Let, (resp.c}) be the crossing corresponding to the chord which
does not represemt, and crosses the chord corresponding’to(resp.c”). If ¢/, = ¢/,
as illustrated in Fig. 9 (b), it implies thdD represents the figure-eight knot diagram.
Assume that this is not the case. Siric€P) = p(P) -2, ¢/, andc/, cross each other
as illustrated in Fig. 9 (c). We set=c/,.

We considerD.; and note that one component B, say D, is obtained from a
(2, r)-torus knot diagram by some crossing changes whei® some odd integer and
another, sayD/, does not have a crossing. If, is not a (2r)-torus knot diagram then
we see that
c(D) -2

u(D) < >

Suppose thaDy is a (2,r)-torus knot diagram. There exist at least two arcs @n
which have the end points as a positive mutual crossing arebative mutual crossing.
From a property ofD(, there exists a simple arc d;, say |, in such arcs. See
Fig. 10. Letc; (resp.c;) be the negative (resp. positive) mutual crossing as endtgoi
of I;. We can suppose thaf has exactly two mutual crossings and c, (possibly,
has other crossings which are not mutual). Lebe the arc such thdg Ul, = D[.
Note that all crossings ob. exceptc; andc; lie onl,. By abuse of notation, the part
of D corresponding td; (resp.l) is also denoted by; (resp.l,). We consider the
following two ways to change the crossings bnat D.

(i) The crossings on, are over than the other, and for the self-crossingdowe
change crossings by descending framto c, on I, that is, we change crossings so
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(1)

Sooda

Fig. 10.

that every crossing may be first traced as an over-crossing.
(i) The crossings or, are under than the other, and for the self-crossings,one
change crossings by descending fropto c;.

Here, each crossing except ¢; and ¢, is changed exactly once in (i) or (ii).
Therefore, the number of crossing changes in (i) or (ii) ssléhan ¢(D) — 2)/2. We
show that each diagram obtained in (i) and (i) represergstiiial knot.

Let I; be the arc onD{ such that the end points ¢f arec; andc, and c exists
onl; at D. Letl; be the arc such thdf Ul, = D{. By abuse of notation, the part
of D corresponding td; (resp.l;) is also denoted by, (resp.l’). Sincel; does not
contain the mutual crossings exceptand c;, D is over thanD; or D{ is over than
D; at bothc; and c,.

Suppose thaD( is over thanD; at bothc; andc; and (ii). Assume that sits
betweenl; andl;. See Fig. 11 (a). We can remoee and c; and see that there exists
a disk whose boundary contains bdthandl;. Therefore, we see thdd represents the
trivial knot. Assume that sits betweerl, andl;. Similarly, we can remove; and c;
and see that there exists a disk whose boundary contains‘patit|,. Therefore, we
see thatD represents the trivial knot. Similarly, we can show tiatrepresents the
trivial knot in other cases. O

We recall the theorem and the proposition to estimate thenattikg number.
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Fig. 11.

Theorem 2.10([16, 20]). Let D be a positive diagram or a negative diagram
and K the knot represented by D. Th2gs(K) = 29(K) = ¢(D) — O(D) + 1 holds
where QD) is the number of the Seifert circles and(l§) is the 4-ball genus of K.

We note thas(K) = ¢(D)—0O(D)+1 for a positive knotK and a positive diagram
D of K wheres(K) denotes the Rasmussen invariant. The following is wetivkm

Proposition 2.11. Let K be a knot. Then (K) > g4(K).

Now we prove the following.

Theorem 2.12. Let D be a reduced knot diagram. Then

c(D)—2

u(D) = 5

if and only if D is the figure-eight knot diagram as kig. 3 (a),the positive3-braid
knot diagrams as irFig. 3 (b), the negative3-braid knot diagrams as irFig. 3 (c) or
the connected sum of @, r)-torus knot diagram and &2, s)-torus knot diagram for

some odd integers, 5 # +1.

Proof. First, we show the ‘if’ part. D is one of the figure-eight knot diagram
and the connected sum of a (2;torus knot diagram and a (8)-torus knot diagram,
it is obvious. Suppose thdD is one of the positive 3-braid knot diagrams and the
negative 3-braid knot diagrams. LBt be the projection oD. By Lemma 2.7 tr(P) =
p(P)—2 and sou(D) < (c(D)—2)/2 by Proposition 2.1. LeK be the knot represented
by D. Thenu(D) = u(K) = (c¢(D) — O(D) + 1)/2 = (¢(D) — 2)/2 by Theorem 2.10
and Proposition 2.11. Therefora(D) = (c(D) — 2)/2.
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Next, we show the ‘only if’ part. It is obvious thaiD) is even. Hence, it is suf-
ficient to consider the diagrams obtained from the projesti® with tr(P) = p(P)—2
by Proposition 2.1 and Theorem 2.6. Then we see from Lemn@&gard 2.9. L]

There exists a knoK which does not have a minimal crossing diagr&mof K
with u(D) = u(K). Let K be the pretzel knot of type (5,1,4). Bleiler [2] and Nakanish
[17] independently discovered th&t does not have a minimal crossing diagr&mof
K with u(D) = u(K). Here we note that 2 u(K) = (c¢(K)—6)/2. The second author
and Kanadome [5] asked the following.

ProBLEM. Find the numben,,, which is defined to be the minimal number rof
such that there exists a prime kniét with u(K) = (c(K)—n)/2 which has no minimal
diagrams D of K withu(D) = u(K).

Nakanishi and Bleiler's example implies that,, < 6. The second author and
Kanadome [5] partially solve this problem as follows.

Lemma 2.13([5]). Let K be a knot with (K) > (¢(K)—2)/2 and D a minimal
crossing diagram of K. Then(K) = u(D).

Therefore, we have 3 nnin < 6. By Theorem 2.12 and Lemma 2.13, we obtain
the following.

Corollary 2.14. Let K be a knot. Then we obtain the following.
(1) If u(K) = (c(K)—2)/2, then HK) = 3. Precisely K is the figure-eight knota
positive 3-braid knot a negative3-braid knot or the connected sum of(3, p)-torus
knot and(2, g)-torus knot for some odd integers ¢ # +1.
(2) If b(K) = 4, then UK) < (c(K) —3)/2.
(3) If K is primeg then UK) = (c(K) —2)/2 if and only if K is the figure-eight knpt
a positive3-braid knot or a negative3-braid knot.

Proof. (1) LetD be a minimal crossing diagram &. By Lemma 2.13,

c(K)—2 ¢(D)-2

u(D) = u(K) = 5 5

By Theorem 2.12D represents one of the figure-eight knot, the positive 3ebkaiots,
the negative 3-braid knots or the connected sum of a){®rus knot and (2s)-torus
knot. Therefore the braid index df is three.

(2) If u(K) = (c(K) —2)/2, thenb(K) = 1, b(K) = 2 or b(K) = 3 by The-
orem 1.1 and Corollary 2.14 (1).

(3) First we show the ‘only if’ part. By Corollary 2.14 (1K is the figure-eight
knot, a positive 3-braid knot, a negative 3-braid knot.
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Next, we show the ‘if’ part. IfK is the figure-eight knot, then(K) = (c(K) —
2)/2. Suppose thaK is one of the positive 3-braid knots and the negative 3-braid
knots. Then we obtain(K) = (c(K)—2)/2 by Theorem 2.10 and Proposition 2.11.]

REMARK 2.15. LetK be a prime knot up to 10 crossings witliK) = (c(K) —
2)/2. ThenK is 44, 819, 10124, 10139 OF 10i5,. Note that 4 is the figure-eight knot and
819 is the torus knot of type (3, 4).

We study the unknotting number of a minimal crossing diag@ha knot. First,
we observe the diagramB with u(D) = (¢(D) — 2)/2. Then we have make an im-
provement to Lemma 2.13.

Corollary 2.16. Let D be a prime knot diagram with(D) > (c(D) — 2)/2 and
K the knot represented by D. Theifkl) = u(D) holds.

Proof. If u(D) = (c¢(D) — 1)/2, it follows from Theorem 1.1. ID is the figure-
eight knot diagramu(K) = u(D) holds. Otherwise, by Theorem 2.1B, is one of the
positive 3-braid knot diagrams and the negative 3-braidt kliagrams. Then we have
(c(D)—2)/2 =u(D) > u(K) = (c(D)—2)/2 by Theorem 2.10 and Proposition 2.11.]

Here, there is a possibility that a prime knot diagram wi(lD) > (c(D) — 2)/2
represents a (2)-torus knot for some odd integer

Corollary 2.17. Let D be a prime knot diagram with(D) > (¢(D) — 2)/2 and
K be the knot represented by D. Then the following holds.
(1) ¢(D) —1 =< c(K) < c(D).
(2) u(K) = (c(K)—1)/2 or u(K) = (c(K) —2)/2.

Proof. (1) Suppose thai(K) < c¢(D) — 2. From the inequality (1.2) and Corol-
lary 2.16,u(D) = u(K) < (c(K) — 1)/2 < (¢(D) — 3)/2. This contradicts thati(D) >
(c(D) — 2)/2.

(2) There are two cases wheeéK) = c(D) and c(K) = ¢(D) — 1 by (1). Sup-
pose thatc(K) = c(D). By Corollary 2.16, we havei(K) = u(D). Therefore one of
the equalities above holds. Suppose tb@f) = c¢(D) — 1. By the inequality (1.2),
Corollary 2.16 and the assumption,

c(K)—1

> u(K) = u(D) >

c¢(D)—2 c(K)-1
2 2

Therefore,u(K) = (c(K) — 1)/2. []

Corollary 2.18. Let K be a knot and D a minimal crossing diagram of K.



538 T. ABE, R. HANAKI AND R. HIGA

(1) If u(K) = (c(K)—=13)/2, then UK) = u(D).
(2) If K is prime and K) = (c(K) —4)/2, then UK) = u(D).

Proof. (1) We have the following chain of inequalities.

c¢(D)—3 c(K)-3
2 2

c¢(D)—-1

2.1) 5

=u(K) =u(D) =
Sincec(K) is odd, u(D) = (¢(D) — 1)/2 or u(D) = (¢(D) — 3)/2. If u(D) = (c(D) —
1)/2, thenD is one of the diagrams illustrated in Fig. 2 by Theorem 1.1lermK is
trivial or u(K) = (c(K) — 1)/2 (for example, by using the signature of a knot). This
contradicts our assumption. Therefar€D) = (c(D) — 3)/2. We conclude thati(D) =
u(K) by the inequality (2.1).

(2) We have the following chain of inequalities.

c(D)—4 c(K)—4
2 2

c¢(D) -1

2.2) 5

=u(K) <u(D) <

Since ¢(K) is even,u(D) = (c(D) — 2)/2 or u(D) = (c(D) — 4)/2. If u(D) =
(c(D)—2)/2, then, by Theorem 2.1 is one of the figure-eight knot diagram as (a),
the positive 3-braid knot diagrams as (b) illustrated in.RBgthe mirror diagrams of
them and the connected sum of ar(Rtorus knot diagram and a (8)-torus knot dia-
gram for some odd integerss # +1.

By Corollary 2.17 (2),u(K) = (c(K) — 1)/2 or u(K) = (c(K) —2)/2. This contra-
dicts our assumption. TherefotgD) = (c(D) — 4)/2. We conclude thati(D) = u(K)
by the inequality (2.2). O

Corollary 2.19. The inequality5 < npmin < 6 holds.

Proof. As mentioned before, we have<3nmi, < 6. Corollary 2.18 implies that
Nmin 7 3 and nmin # 4. Therefore we obtain 5 npi, < 6. L]

3. The band-unknotting number of a twist knot

In this section, we determine a twist knot whose band-urtkigptnumber is one
(Corollary 3.4).

We recall some notations. Lé¢ be a knot inS® andn an integer. We denote by
A(K, n) the manifold obtained frons® by a Dehn-surgery along with slopen, by
¥ (K) the double cover os® branched along< and by L(r, s) a lens space of type
(r, s) for some coprime integens ands. Montesinos showed the following.

Lemma 3.1 ([14]). Let K be a knot. If y(K) = 1, then there exist a knot K
and an integer n such that(K) ~ A(K’, n), where ~ means that2(K) and A(K’, n)
are homeomorphic.
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Fig. 12.

We consider all knots in this section up to mirror images. Astvknot is a knot
as in Fig. 12. Note that a twist knot is a two bridge link of ty@e?2) in the sense
of Schubert for some positive integerand denoted itS(r, 2). In general, it is an
interesting and difficult question that which lens spaces gioduced by an integral
surgery along a knot ir8®. Rasmussen [19] and Tange [22] showed the following.

Lemma 3.2 ([19], [22]). Let r be a positive integer. If there exist a knot K and
an integer n such that (t, 2) >~ A(K, n), then r is3,7,9o0r 11

Theorem 3.3. Let K be a twist knot. If (K) = 1, then K= 34, 5, 6; or 7,
up to mirror images.

Proof. Letr be a positive integer such th#t = S(r, 2). Then it is well known
that X(K) ~ L(r,2). Sinceup(K) =1, by Lemma 3.1, there exist a kni&t' and an in-
tegern such thatx(K) >~ A(K’,n). ThereforeL(r,2) ~ A(K’,n). By Lemma 3.2y must
be 3,7,9 or 11. HencK is $(3,2)= 3;, 97,2)=5;, §(9,2)= 6, or §(11,2)=7,. []

Corollary 3.4. Let K be a non-trivial twist knot. Then,(K) = 1 if and only if
K = 34, 5, 61 or 72 (up to mirror imagey Other twist knots are knots with,(K) = 2.

Proof. It is easy to show thaiy(K) < 2. If up(K) = 1, by Theorem 3.3K =
31, 5, 61 or 7, (up to mirror images). Indeed, these knots have the bandattikg
number one [10]. [

4. A property of the projection of a 3-braid knot diagram

In this section, we show Lemma 4.2 on the projection of a 3dbkaot diagram.
Let P = PLUP,U---UP, be a link projection. We denote by(P,) the number of
self pre-crossings oP and by p(P;, P;) the number of mutual pre-crossings between
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0@ OO0 (&

(a) (b) (c)
Fig. 13.

P and P;. Therefore the following equality holds.

p(P) =D p(P)+ > p(R, Py).
i=1

i<j

Let P be a knot projection ang a pre-crossing oP. We say thatp satisfies the
condition C; if one of the components dP, has exactly one self pre-crossing and the
other component oP, has no self pre-crossings every pre-crossing of the piojest
illustrated in Fig. 13 satisfies the conditi&y. The converse is also true.

Lemma 4.1. Let P be a knot projection. If every pre-crossing of P satisfiee
condition G, then it is one of projections illustrated iRig. 13

Proof. Letp be a pre-crossing oP. Then we can suppose thRtis a projection
as shown in Fig. 14, if necessary, by reversing the oriematif the projection. Here
we let P. be the component oP, which has no self pre-crossings afd the compo-
nent of P, which has a self pre-crossirgg We also denote by the pre-crossing oP
which is corresponding tg of Pp. The proof of this lemma is divided into two cases.

Case 1. P is a projection as shown in Fig. 14 (a).

By smoothing atg (of Pp), we obtain a 3-component projection and denote it by
P; U P,y U Py as in Fig. 15 (a). Since?, has a self pre-crossing and the pre-
crossingp of P satisfies the conditiol€;, we obtain p(P,1, P>2) = 0. Similarly, since
pre-crossingg of P satisfies the conditiolC;, we obtain p(Py, P,;) = 0. From the
configuration of P; U P,; U Py, the equality p(Py, P2) = 0 holds. ThereforeP must
be as in Fig. 13 (a).

CAse 2. P is a projection as shown in Fig. 14 (b).

By smoothing atg (of Pp), we obtain a 3-component projection and denote it by
P, U P,y U Py as in Fig. 15 (b). As in the Case 1, we obtain tgP,;, P,;) = 0 and
p(P1, P21) = 0. In this case,p(P:1, P,2) may not be zero. By isotopy? is deformed
into a projection as shown in Fig. 16 (a), whélreis the projection of a tangle diagram
which consists of two arcs without self crossings. Recadlt tb(P) is a positive even
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Fig. 15.

number by hypothesis. Ip(P) = 2, P the projection as shown in Fig. 16 (b). If
p(P) = 4, P is the projection as shown in Fig. 16 (c). To complete the froe
show the following claim.

Claim. If p(P) > 6, there exists a pre-crossing which does not satisfy the eondi
tion C;.

Since P; has no self crossing, arcs & in T meet P,, at two pointsr; andr, as
illustrated in Fig. 17 (a). Sinceg(P) > 6, at least one component & \ {ry, ro} in
T contains a pre-crossing. There are two cases to considdlustsated in Fig. 17 (b)
and (c). For case (b),, does not satisfy the conditio@; and for case (c)f, andr,
do not satisfy the conditiolC;. O

The following lemma on the projection of a 3-braid knot degris used to prove
Theorem 5.1.

Lemma 4.2. Let P be the projection of &braid knot diagram. Then we obtain
the following.
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(1) Let p be a pre-crossing of P. Then one of the components,a$ Ehe projection
of a (2, r)-torus knot diagram for some odd integer r and the other camepd of R,
has no self pre-crossings.

(2) If P is not the projection as irFig. 13 (c), then there exists a pre-crossing p
such that one of the components of B the projection of a(2, r)-torus knot dia-
gram for some odd integer r witlr| > 3 and the other component of,Fhas no self
pre-crossings.

Proof. It is easy to see that the statement (1) holds. We omdyepthe statement
(2). If, for any pre-crossingp, one of the components d?, is a projection with one
pre-crossing and the other componentRy has no self pre-crossings, then tReis
one of those in Fig. 13 by Lemma 4.1. It contradicts our assiomp [l

5. An upper bound for the band-unknotting number of a knot

In this section, we prove the following theorem which is orfettee main results
in this paper.

Theorem 5.1. Let K be a knot. Then

(5.1) up(K) < &5)

The equality holds if and only if K is the trivial knot or the dig-eight knot.
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(a) (b)

Fig. 18. A move of type 1 and a move of type 2.

o /—Y
N /Qq"_/

Fig. 19. A move of type 1 is achieved by a band-move and a
Reidemeister move.

Fig. 20. A move of type 2 is achieved by a band-move and
Reidemeister moves.
We define two local moves. Anove of typel is a local move on a link diagram
D as shown in Fig. 18 (a). This move is achieved by a band-modeaaReidemeister
move (see Fig. 19). Anove of type2 is a local move on a link diagram as shown
in Fig. 18 (b). This move is achieved by a band-move and RediEtar moves (see
Fig. 20). These moves are used in the proof of Theorem 5.1. Mewprove the
following lemma. Note that it is a corollary of Theorem 3.1 [itO] and we give a

direct and simple proof.
Lemma 5.2. Let K be a knot. Then
Up(K) < u(K) + 1.
Proof. We first observe the following claim.

Claim. A single crossing change in a link diagram is achieved by twods
moves and two crossing changes in a knot diagram are achibyevo band-moves.
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Fig. 21.

Fig. 22.

A single crossing change in a link diagram is achieved by aenwitype 1 near the
crossing and a move of type 2. Two crossing changes in a kagtatin are achieved by
two moves of type 1, see Fig. 21.

Let D be a diagram ofK with u(K) = u(D). If u(D) is even, thenuy(K) <
u(D) = u(K) since even number crossing changes are achieved by evemendrand-
moves by the claim. Ifu(D) is odd, setu(D) = 2n + 1 (n > 0). Since 2 crossing
changes are achieved by band-moves and a single crossing change is achieved by
two band-moves by the claim, we haug(K) <2n+2=u(D)+1=u(K)+1. [

Recall thatu(K) < (c(K) —1)/2 for any non-trivial knotK and the equality holds
if and only if K is a (2,r)-torus knot for some odd integer# 1. We study the band-
unknotting number of these knots.

ExAMPLE 5.3. LetK be a (2r)-torus knot for some odd integer# 1. Then
up(K) = 1 (< ¢(K)/2). Fig. 22 illustrates the cage= 5.
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Fig. 23.

Fig. 24.
Next, we study the band-unknotting number of kn&tswvith u(K) = (c(K)—2)/2.

ExAMPLE 5.4. LetK be the figure-eight knot. Thean(K) = (¢(K) — 2)/2 and
Lickorish [13] showed thati,(K) = 2 (= ¢(K)/2).

ExAMPLE 5.5. LetK be 89. Thenu(K) = (c(K)—2)/2. We show that,(K) <
3 (< c(K)/2). Let D be the minimal crossing diagram &f andc the crossing oD as
shown in Fig. 23. One of the componentsf is the trefoil knot diagranD; and the
other is the trivial knot diagranD, (i.e. the diagram without crossings). We change
the over/under information oD so thatD, is over thanD; at the mutual crossings
betweenD; and D, (see Figs. 23 and 24). In this process, we neeg2(D;, D,)/2)
crossing changes. By the claim in Lemma 5.2, we obfainfrom D by two band-
moves (see Fig. 24). Thereforg(K) < 3 (< ¢(K)/2).
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ExXAMPLE 5.6. LetK be 1Qy4 Thenu(K) = (¢(K) —2)/2. Let D be the min-
imal crossing diagram oK andc; andc, the crossings oD as shown in Fig. 25.

Now we considerD¢, and show thaup(K) < 4 (< ¢(K)/2). One of the compo-
nents ofDg, is the trefoil knot diagranD; and the other is the trivial knot diagrady.
We change the over/under information Df so thatD, is over thanD; at the mutual
crossings betweeB; and D, (see Fig. 26). In this process, we need=3¢(D1,D;)/2)
crossing changes and we obtain the diag®mas in Fig. 26 fromD by two moves
of type 1 and a move of type 2. By a move of type 1 near the crgssfnD’ as in
Fig. 26, we obtain a diagram of the trivial knot. TherefargK) < 4 (< c(K)/2).

We also consideD., and show thauy(K) < 3 (< ¢(K)/2). One of components
of D, is the (2,5)-torus knot diagrar®; and the other is the trivial knot diagraiy.
We change the over/under information Bf so thatD, is over thanD; at the mutual
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crossings betweeB®; and D, (see Fig. 27). In this process, we need=2q(Dq, D2)/2)
crossing changes. By the claim in Lemma 5.2, we obfainfrom D by two band-
moves (see Fig. 27). Thereforg(K) < 3 (< ¢(K)/2).

Let D= D; UD,U---U D, be ann-component link diagram. We denote by
¢(D;) the number of the self crossings & and byc(D;, Dj) the number of mutual
crossings which lie on betweel; and D;. Therefore the following equality holds.

n

¢(D) = > c(Di) + Y c(D;, Dy).

i=1 i<j

Now we prove Theorem 5.1.

Proof of Theorem 5.1. First, we prove the inequality (5.1heTinequality holds
for the trivial knot and a (2,)-torus knot for some odd integer# +1 (see Example 5.3).
Therefore we may assume thiétis not a (2,r)-torus knot for any odd integer. Then,
by Theorem 1.1, the inequality(K) < (c¢(K) — 2)/2 holds. By Lemma 5.2, we obtain

Up(K) < u(K) +1< @

Next, we prove that the equality holds if and onlyKf is the trivial knot or the figure-
eight knot. The ‘if’ part is trivial (see Example 5.4). Théoe we may assume that
is neither the ftrivial knot nor the figure-eight knot. U{K) # (c(K)—2)/2, we see that
the equality does not hold by the first half of the proof of ttheorem. We assume
that u(K) = (c(K) — 2)/2. Now we proveuy(K) < c(K)/2.

If K is the connected sum of a (@-torus knot and a (&)-torus knot for some
odd integers,s # +1, then it is easy to see thag(K) < 2 < ¢(K)/2. We assume that
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K is not the connected sum of a (J;torus knot and a (&)-torus knot for any odd
integersr, s # +1. Let D be a minimal crossing diagram d¢€. Thenu(D) = u(K)

by Lemma 2.13. Therefor® is a positive or a negative 3-braid knot diagram by The-
orem 2.12. By Lemma 4.2, there exists a crossirgyich that one of the components of
D., denoted byDy, is a (2,t)-torus knot diagram for some odd integewith |t| > 3
and the other component dd. is the trivial knot diagramD,. Now the following
equality holds.

¢(D)—1=t+ c(D1, Dy).

We change the over/under information Bf so that D, is over (or under) tharD;
at the mutual crossings betweddy, and D,. In this process, we needD;, D,)/2
crossing changes. There are three cases to consider:

Case 1. |t| > 5.

Fig. 27 may help us understanding this process. Recalldfiaf, D,)/2 crossing
changes are achieved by, at mos{();, D2)/2 + 1)-band-moves. Therefore we obtain
D; from D by, at most, ¢(D1, D,)/2 + 1)-band-moves. Her®; represents the (2)-
torus knot, whose band-unknotting number is one. Therefg¥eobtain

c(Dy, D) c(D) +3-—t c(D) -2 c(K)
Kys|———=+1 1= < .
Up( )_( > + )+ > < 5 < >
CAse 2. |t| =3 andc(Dq, D2)/2 is even.
Fig. 24 may help us understanding this process. Recalldfiaf, D,)/2 crossing
changes are achieved loyD,, D,)/2 band-moves. Therefore we obtddy from D by
c(D3, D2)/2 band-moves. Note thaiD1, D) = ¢(D) — 4. Therefore we obtain

c(Dq, D
(D1 2)—1-1

_ D) _, _ oK)
2 2 2

Up(K) =

Case 3. |t| =3 andc(D1, Dy)/2 is odd.

Fig. 26 may help us understanding this process. We can defrimto the con-
nected sum ofD; and the Hopf link diagram by(Di, D;)/2 band-moves (see the
diagramD’ in Fig. 26), which is deform into a diagram of the trivial knioy a single
band-move. Therefore we obtain
¢(D1, Dz) . ¢(D) c(K)

+1l=—="-1<—"=. 0

<
Up(K) = = 2 2
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