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Abstract
We show some results on the unknotting number and the band-unknotting num-

ber. Taniyama characterized knots whose unknotting numberis half the crossing
number minus one. We show that if the unknotting number of a knot is half the
crossing number minus two, then the knot is the figure-eight knot, a positive 3-braid
knot, a negative 3-braid knot or the connected sum of a (2,r )-torus knot and a (2,s)-
torus knot for some odd integersr,s¤�1. In particular, we show that it is a 3-braid
knot. Taniyama and Yasuhara showed that the band-unknotting number of a knot
is less than or equal to half the crossing number of the knot under our notation.
We show that the equality holds if and only if the knot is the trivial knot or the
figure-eight knot.

1. Introduction

Throughout this paper, we assume that all links and link diagrams are oriented
unless otherwise stated. Acrossing changeis a local move on a diagram of a link as
in Fig. 1 (a). Theunlinking numberof a link diagram D, denoted byu(D), is the
minimal number of crossing changes ofD which convertD into a diagram of a trivial
link. The unlinking numberof a link L is the minimal number ofu(D), where D is a
diagram ofL and it is taken over all diagrams ofL. If D is a knot diagram, we call
u(D) the unknotting numberof D and if K is a knot, we callu(K ) the unknotting
numberof K .

In general, it is very difficult to determine the unknotting number. However, the
following estimations are well known. Letc(D) and c(K ) be the crossing number of
a diagramD and a knotK , respectively. Then

u(D) �
c(D) � 1

2
,(1.1)

u(K ) �
c(K ) � 1

2
,(1.2)

where D is a non-trivial diagram (i.e. a diagram with at least one crossing) andK is
a non-trivial knot. It is also known that the equalities holdfor diagrams illustrated in
Fig. 2 and (2,r )-torus knots, respectively. Taniyama proved the converse.
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Fig. 1. A crossing change and a band-move.

Fig. 2.

Theorem 1.1 ([24]). (1) If D is a diagram of a knot with u(D) D (c(D)� 1)=2,
then D is one of the diagrams illustrated inFig. 2.
(2) If K is a knot with u(K ) D (c(K ) � 1)=2, then K is a(2, r )-torus knot for some
odd integer r¤ �1.

Recall that the braid index of a knot is equal to two if and onlyif the knot is a (2,r )-
torus knot for some odd integerr ¤ �1. The second author and Kanadome [5] (see
also [24]) characterized a link diagramD with u(D) D (c(D) � 1)=2 and asked the
following.

PROBLEM. Characterize the knot diagramsD with u(D) D (c(D) � 2)=2.

In this paper, we solve the above problem.

Theorem 2.12. Let D be a reduced knot diagram. Then

u(D) D
c(D) � 2

2

if and only if D is the figure-eight knot diagram as inFig. 3 (a), the positive3-braid
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Fig. 3.

knot diagrams as inFig. 3 (b), the negative3-braid knot diagrams as inFig. 3 (c) or
the connected sum of a(2, r )-torus knot diagram and a(2, s)-torus knot diagram for
some odd integers r, s¤ �1.

Note that the braid index of a knot with a positive 3-braid diagram may be two.
Let b(K ) be the braid index of a knotK . Then the following is a corollary of The-
orem 2.12.

Corollary 2.14. Let K be a knot. Then we obtain the following.
(1) If u(K ) D (c(K ) � 2)=2, then b(K ) D 3. Precisely, K is the figure-eight knot, a
positive 3-braid knot, a negative3-braid knot or the connected sum of a(2, r )-torus
knot and a(2, s)-torus knot for some odd integers r, s¤ �1.
(2) If b(K ) � 4, then u(K ) � (c(K ) � 3)=2.
(3) If K is prime, then u(K ) D (c(K )� 2)=2 if and only if K is the figure-eight knot,
a positive3-braid knot or a negative3-braid knot.

As the authors know, the following is open.

QUESTION 1. Let K be the connected sum of a (2,r )-torus knot and a (2,s)-torus
knot for some odd integersr, s¤ �1. Is it true that

u(K ) D
c(K ) � 2

2
?

Note that an affirmative answer to Question 1 solves the following question since

u(T2,r # T2,s) D
c(T2,r # T2,s) � 2

2
D

c(T2,r ) � 1

2
C

c(T2,s) � 1

2
D u(T2,r )C u(T2,s),

where we denote byT2,t a (2,t)-torus knot for some odd integert and used the addi-
tivity of the crossing number of alternating knots under theconnected sum operation
(see [12], [15] and [26]).
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QUESTION 2. Let r and s be some odd integers withr, s¤ �1. Is it true that

u(T2,r # T2,s) D u(T2,r )C u(T2,s)?

Conversely, an affirmative answer to Question 2 implies that

u(T2,r # T2,s) D u(T2,r )C u(T2,s) D
c(T2,r ) � 1

2
C

c(T2,s) � 1

2
D

c(T2,r # T2,s) � 2

2
.

Therefore Questions 1 and 2 are equivalent. If bothr ands are positive or negative, we
see that the equality holds. In general, the above question seem to be very difficult to
answer since the connected sum of a (2,r )-torus knot and a (2,�r )-torus knot for some
odd integersr ¤ �1 is ribbon (therefore slice). For example, the unknotting number
of the (2, 3)-torus knot and the (2,�3) torus knot is equal to two (since unknotting
number one knots are prime [21]), however the authors do not know whether or not the
unknotting number of the (2, 5)-torus knot and the (2,�5)-torus knot is equal to four.

A band-move(or H (2)-move) is a local move on a diagram of a link as in Fig. 1 (b).
Here we note that a band-move on a link diagram may not preserve the number of com-
ponents of the diagram. We introduce a numerical invariant,theband-unknotting number
of a knot K , denoted byub(K ), to be the minimal number of band-moves to deform a
diagram ofK into that of the unknot by Reidemeister moves and band-moves.

The band-unknotting number of a knot behaves rather differently from the unknot-
ting number of a knot. Scharlemann proved that unknotting number one knots are
prime [21]. On the other hand, band-unknotting number one knots may not be prime.
Indeed, Scharlemann also showed that the connected sum of the trefoil knot and the
figure eight knot has band-unknotting number one. More examples are given by Hoste,
Nakanishi and Taniyama in [9] and Kanenobu and Miyazawa in [10].

Of course, some restrictions are known. Lickorish [13] gavea restriction on the link-
ing form on the first homology group of the double cover of the 3-sphereS3 branched
along a knot with band-unknotting number one. As a corollary, he showed that 41 has
band-unknotting number two, whereas the unknotting numberof 41 is one. Kanenobu
and Miyazawa [10] also gave a restriction on theq-polynomial of a knot with band-
unknotting number one. Another restriction was given by Bao[1]. One of the natural
questions on the band-unknotting number is which knots haveband-unknotting number
one. We answer this question for the class of twist knots.

Theorem 3.3. Let K be a twist knot. If ub(K ) D 1, then KD 31, 52, 61 or 72

up to mirror images.

The idea of the proof of Theorem 3.3 is same as that of Kanenobuand Murakami
[11], where they determined two-bridge knots with unknotting number one. The key
tool to prove this theorem is results from the Heegaard Floerhomology theory which
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strongly restricts possible integral surgeries of a knot inS3 which produce lens spaces,
whereas Kanenobu and Murakami [11] used the cyclic surgery theorem.

We can understand the band-unknotting number of a knot in terms of surfaces in
the 3-space and a 4-dimensional space. Two knotsK1 and K2 are g-bordant if there
is a compact connected (possibly non-orientable) surfaceF in S3 with the first Betti
number�1(F) D gC 1 whose boundary has two components,K1 and K2. Let

QgC(K ) D min{g j K is g-bordant to the unknot}.

Let Qc(K ) be the minimal number of elementary critical points of locally flat surface
F embedded inS3

� [0, 1] such thatF \ S3
� {0} D K and F \ S3

� {1} D the un-
knot. Taniyama and Yasuhara [25] gave a fundamental property of the band-unknotting
number of a knot, that is,

ub(K ) D QgC(K ) D Qc(K )

for any knot K . The band-unknotting number of a knot is closely related to the cross-
cap numberof a knot. The crosscap number of the trivial knot is defined tobe zero
and the crosscap number of a non-trivial knot is defined to be the minimal number of
�1(F), where F is a compact connected non-orientable surface with�F D K and it is
taken over all compact, connected and non-orientable surfaces boundingK . We denote
the crosscap number of a knotK by Qg(K ). For a knotK , Taniyama and Yasuhara [25]
also showed

ub(K ) (D QgC(K )) � Qg(K ) �
c(K )

2
.

This estimation is best possible since the equality holds for the trivial knot and the
figure-eight knot. In this paper, we prove the converse, which is an analog of The-
orem 1.1 for the band-unknotting number of a knot.

Theorem 5.1. Let K be a knot. Then

ub(K ) �
c(K )

2
.

The equality holds if and only if K is the trivial knot or the figure-eight knot.

The following lemma gives a relation between the band-unknotting number and the
unknotting number of a knot, which is the key in the proof of Theorem 5.1. Note that
it is immediately obtained from the result in [10]. For completeness, we give a proof.

Lemma 5.2. Let K be a knot. Then

ub(K ) � u(K )C 1.
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Here we give the outline of the proof of Theorem 5.1. By combining Theorem 1.1,
Corollary 2.14 and Lemma 5.2, it is easy to prove that Theorem5.1 holds for knots
K with b(K ) ¤ 3. It is essential to prove that Theorem 5.1 holds for the knots K
with b(K ) D 3. When K is the figure-eight knot, the equality holds. Otherwise, we
can proveub(K ) < c(K )=2 by using a property of a 3-braid knot diagram ofK (see
Lemma 4.2).

2. The knots whose unknotting number is half the crossing number minus two

In this section, we prove Theorem 2.12 which is one of the mainresults in this paper.
The second author [4] introduced the notion of a pseudo diagram and the trivial-

izing number of a projection. We recall these definitions to prove Theorem 2.12. First,
recall that a diagram consists of the underlying curves and over/under information of
crossings of the underlying curves. Apseudo diagram Qis a diagramD in which
we forget over/under information of some (possibly, all) crossings. Here, we allow the
possibility that a pseudo diagram is indeed a diagram. Then we say thatD is obtained
from Q and a crossing without over/under information is called apre-crossing. In par-
ticular, we define that aprojection P is a diagramD in which all crossings do not
have over/under information. Then we say thatP is the projection of D.

A pseudo diagramQ is trivial if every diagram obtained fromQ represents a trivial
link. For example, the pseudo diagram (a) in Fig. 4 is trivialand both pseudo diagrams
(b) and (c) in Fig. 4 are not trivial. LetQ and Q0 be pseudo diagrams of a diagram,
respectively. Then we say thata pseudo diagram Q0 is obtained from a pseudo diagram
Q if each crossing ofQ has the same over/under information withQ0. The trivializing
numberof a projectionP, denoted bytr(P), is the minimal number of the crossings of
Q, whereQ varies over all trivial pseudo diagrams obtained fromP.

A relation between the unlinking number and trivializing number is given in the follow-
ing proposition. It follows from the definition of the trivializing number and the fact that the
mirror diagram of a trivial link is also trivial. For a pseudodiagramQ, the mirror pseudo
diagram, denoted byNQ, is the pseudo diagram with opposite over/under information at all
crossings inQ.

Proposition 2.1 ([7]). Let P be a projection and D a diagram obtained from P.
Then u(D) � tr(P)=2.

Proof. Let Q be a trivial pseudo diagram obtained fromP which realizestr(P).
Let p1, : : : , ptr(P) be the pre-crossings ofP which have given over/under information
in Q. By applyingn (� tr(P)) crossing changes, we deformD into the diagramD0 so
that over/under information ofp1, : : : , ptr(P) in Q and that ofp1, : : : , ptr(P) in D0 agree.
Then D0 represents a trivial link. LetNQ be the mirror pseudo diagram ofQ. Then NQ
is also trivial. By applyingtr(P)� n crossing changes, we deformD into the diagram
D00 such that over/under information ofp1, : : : , ptr(P) in NQ and that ofp1, : : : , ptr(P)



THE UNKNOTTING NUMBER AND BAND-UNKNOTTING NUMBER 529

Fig. 4. Pseudo diagrams.

in D00 agree. ThenD00 also represents a trivial link. Therefore

u(D) � min{n, tr(D) � n} �
tr(P)

2
.

Let P be a knot projection. A simple closed curvel in the 2-sphereS2 is a de-
composing circleof P if the intersection ofP and l is the set of just two transversal
double points. Then the following proposition holds.

Proposition 2.2 ([4]). Let P be a knot projection and l a decomposing circle of
P. Let {q1, q2} D P \ l. Let B1 and B2 be the disks such that B1 [ B2 D S2 and
B1\B2D l. Let � be one of the two arcs on l joining q1 and q2. Let P1D (P\B1)[�,
P2 D (P \ B2) [ � be the knot projections. Then tr(P) D tr(P1)C tr(P2).

Here, a knot projectionP is prime if, for any decomposing circle, one ofP1 and
P2 has no pre-crossings. Also, a knot diagramD is prime if the projection of D is
prime. We give some definitions. A pre-crossingp of a projectionP is said to benu-
gatory if the number of connected components ofP � p is greater than that ofP. A
crossingc of a diagramD obtained from a projectionP is also said to benugatory
if the pre-crossing corresponding toc is nugatory inP. A projection P (resp. a dia-
gram D) is said to bereducedif P (resp. D) has no nugatory pre-crossings (resp. no
nugatory crossings). We have the following from each of results of [3], [18] and [23].

Proposition 2.3. Let P be a reduced knot projection. Then tr(P)D 0 if and only
if P is the projection without pre-crossings.

We associate a chord diagram to a knot pseudo diagram as follows. Let Q be a
pseudo diagram withn pre-crossings. Achord diagramof Q is a circle withn chords
marked on it by dashed line segment where the preimage of eachpre-crossing is con-
nected by a chord. Then we denote it byC DQ. For example, letQ be the pseudo
diagram (a) in Fig. 5. Then a chord diagram (b) in Fig. 5 isC DQ. Many results in [4]
are restated in terms of the chord diagram associated to a pseudo diagram as follows.

Let Q be a knot pseudo diagram. IfC DQ contains a sub-chord diagram as (c)
in Fig. 5, we can construct a diagram obtained fromQ such that the arf invariant
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Fig. 5.

Fig. 6.

of the knot represented by the diagram is non-trivial (cf. [4]). Therefore we obtain
the following.

Proposition 2.4 ([4]). Let Q be a knot pseudo diagram. If C DQ contains a sub-
chord diagram as(c) in Fig. 5, then Q is not trivial.

Theorem 2.5 ([4]). Let P be a knot projection. Then, tr(P) D min{n j there is a
chord diagram obtained from C DP by deleting n chords does not contain a sub-chord
diagram as(c) in Fig. 5} and tr(P) is even.

Theorem 2.6 ([4]). Let P be a knot projection with at least one pre-crossing.
Then it holds that tr(P) � p(P)� 1, where p(P) is the number of the pre-crossings of
P. The equality holds if and only if P is one of the projectionsas illustrated inFig. 6
where m is some positive odd integer.

Note that we recover Theorem 1.1 using Proposition 2.1 and Theorem 2.6 (cf. [6]).
Smoothing a pre-crossing is the deformation as (a) in Fig. 7.Smoothing a crossing is
the deformation as (b) or (c) in Fig. 7. We prove the following.

Lemma 2.7. Let P be a reduced knot projection. Then, tr(P) D p(P)� 2 if and
only if P is one of the projections of positive or negative3-braid knot diagrams as
illustrated in Fig. 3 and the projections of the connected sum of a(2, r )-torus knot
diagram and a(2, s)-torus knot diagram for some odd integers r, s¤ �1.
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Fig. 7.

Proof. First, we show the ‘if’ part. IfP is one of the projections of the connected
sum of a (2,r )-torus knot diagram and a (2,s)-torus knot diagram, it follows from The-
orem 2.6 and Proposition 2.2 thattr(P) D p(P) � 2. Suppose thatP is one of the pro-
jections of positive 3-braid diagrams. By Theorem 2.6,tr(P) � p(P) � 2. Assume that
tr(P) < p(P)�2. Let Q be a trivial pseudo diagram which realizes the trivializingnum-
ber of P. Let p1, p2,:::, pn be the pre-crossings ofQ. Thenn� 3 sincetr(P)< p(P)�2.
Let P0 be the projection obtained fromP by smoothingp1, p2, : : : , pn. Then P0 is a
projection of (nC1)-component link diagram from Proposition 2.4. This contradicts that
P is one of the projections of positive 3-braid knot diagrams.

Next, we show the ‘only if’ part. IfP is not prime,P is the projection of the con-
nected sum of a (2,r )-torus knot diagram and a (2,s)-torus knot diagram for some odd
integersr, s¤ �1 from Proposition 2.3, Theorem 2.6 and Proposition 2.2.

Suppose thatP is prime. We show that one of the components ofPp is a projection
of a (2,t)-torus knot diagram for some odd integert and the other component ofPp has
no self pre-crossings for any pre-crossingp where Pp is the projection obtained from
P by smoothingp. Namely, for any chordd there exists a chord which does not cross
d in C DP. Let P1 and P2 be the knot projections ofPp. If each of P1 and P2 has
no pre-crossings, this implies thatp(P) is odd. This contradicts thattr(P) is even by
Theorem 2.5. If each ofP1 and P2 has a pre-crossing, this implies thattr(P)< p(P)�2.
Without loss of generality, we may assume thatP1 has a pre-crossing. IfP1 is not one
of the projections of (2,t)-torus knot diagrams,tr(P1) < p(P1)�1 by Theorem 2.6. This
implies thattr(P) < p(P) � 2 and it contradicts our assumption. Therefore, one of the
components ofPp is the projection of a (2,t)-torus knot diagram for some odd integer
t and the other component ofPp has no self pre-crossings for any pre-crossingp.

We can suppose thatP1 is the projection of a (2,t)-torus knot diagram. Letp0 be a
self pre-crossing ofP1 and P0

1 and P00

1 the knot projections obtained fromP1 by smooth-
ing p0. Note that each ofP0

1 and P00

1 does not have pre-crossings. Leta1, a2, : : : , an

(resp.b1, b2, : : : , bm) be the pre-crossings ofP0

1 (resp.P00

1 ) and P2 which appear onP2

from p in this order along the orientation. Here,a1, a2, : : : , an appear onP0

1 from a cer-
tain point in this order along the orientation and alsob1, b2, : : : , bm appear onP00

1 from
a certain point in this order along the orientation. If this is not the case, there exists
a part of a chord diagram as illustrated in Fig. 8. This contradicts tr(P) D p(P) � 2
by Theorem 2.5. Therefore,P is one of the projections of positive or negative 3-braid
knot diagrams.
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Fig. 8.

Lemma 2.8. Let P be a non-prime projection with tr(P) D p(P) � 2 and D a
diagram obtained from P. Suppose that D is not the connected sum of a (2, r )-torus
knot diagram and a(2, s)-torus knot diagram for any odd integers r, s¤ �1. Then,

u(D) <
c(D) � 2

2
.

Proof. By Lemma 2.7,P is one of the projections of the connected sum of a
(2, r )-torus knot diagram and a (2,s)-torus knot diagram for some odd integersr, s¤
�1. Immediately, we see that

u(D) <
c(D) � 2

2
.

Lemma 2.9. Let P be a prime projection with tr(P) D p(P) � 2 and D a dia-
gram obtained from P which is neither positive nor negative and does not represent
the figure-eight knot. Then,

u(D) <
c(D) � 2

2
.

Proof. We show that there exists a crossingc in D such that the mutual crossings
of Dc contain both a positive crossing and a negative crossing where amutualcrossing
lies on between two component andDc is the diagram obtained fromD by smooth-
ing c. There exists a chord corresponding to a positive crossingc

C

which crosses a
chord corresponding to the negative crossing inC DP as (c) in Fig. 5 sinceP is prime
where a chord corresponding to a crossing means that the pre-crossing of the crossing
represents the chord inC DP. We concentrate onc

C

. If the chord corresponding toc
C

crosses a chord corresponding to a positive crossing, we setcD c
C

. If the chord cor-
responding toc

C

crosses two chords corresponding to negative crossings which cross
each other, we setc to be the crossing corresponding to one of the two chords. As-
sume that the chord corresponding toc

C

crosses more than two chords corresponding
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Fig. 9.

to the negative crossings. Two of the chords cross each othersince tr(P) D p(P) � 2.
Suppose that the chord corresponding toc

C

crosses just two chords corresponding to
the negative crossings, sayc0

�

and c00
�

, in C DP as illustrated in Fig. 9 (a). If the chord
corresponding toc0

�

(resp.c00
�

) crosses a chord corresponding to the negative crossing,
we setcD c0

�

(resp.cD c00
�

). Assume that the chord corresponding toc0
�

or c00
�

crosses
more than two chords corresponding to the positive crossings. Similarly, we see that
two of the chords cross each other sincetr(P)D p(P)�2. We setc to be the crossing
corresponding to one of the two chords. Assume that each of the chord corresponding
to c0

�

and the chord corresponding toc00
�

crosses just two chords corresponding to the
positive crossings. Letc0

C

(resp.c00
C

) be the crossing corresponding to the chord which
does not representc

C

and crosses the chord corresponding toc0
�

(resp.c00
�

). If c0
C

D c00
C

as illustrated in Fig. 9 (b), it implies thatD represents the figure-eight knot diagram.
Assume that this is not the case. Sincetr(P) D p(P)� 2, c0

C

and c00
C

cross each other
as illustrated in Fig. 9 (c). We setcD c0

C

.
We considerDc and note that one component ofDc, say D0

c, is obtained from a
(2, r )-torus knot diagram by some crossing changes wherer is some odd integer and
another, sayD00

c , does not have a crossing. IfD0

c is not a (2,r )-torus knot diagram then
we see that

u(D) <
c(D) � 2

2
.

Suppose thatD0

c is a (2,r )-torus knot diagram. There exist at least two arcs onD0

c

which have the end points as a positive mutual crossing and a negative mutual crossing.
From a property ofD0

c, there exists a simple arc ofD0

c, say l1, in such arcs. See
Fig. 10. Letc1 (resp.c2) be the negative (resp. positive) mutual crossing as end points
of l1. We can suppose thatl1 has exactly two mutual crossingsc1 and c2 (possibly,
has other crossings which are not mutual). Letl2 be the arc such thatl1 [ l2 D D0

c.
Note that all crossings ofDc exceptc1 and c2 lie on l2. By abuse of notation, the part
of D corresponding tol1 (resp. l2) is also denoted byl1 (resp. l2). We consider the
following two ways to change the crossings onl2 at D.
(i) The crossings onl2 are over than the other, and for the self-crossings onl2 we
change crossings by descending fromc1 to c2 on l2, that is, we change crossings so
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Fig. 10.

that every crossing may be first traced as an over-crossing.
(ii) The crossings onl2 are under than the other, and for the self-crossings onl2 we
change crossings by descending fromc2 to c1.

Here, each crossing exceptc, c1 and c2 is changed exactly once in (i) or (ii).
Therefore, the number of crossing changes in (i) or (ii) is less than (c(D) � 2)=2. We
show that each diagram obtained in (i) and (ii) represents the trivial knot.

Let l 01 be the arc onD00

c such that the end points ofl 01 are c1 and c2 and c exists
on l 01 at D. Let l 02 be the arc such thatl 01 [ l 02 D D00

c . By abuse of notation, the part
of D corresponding tol 01 (resp. l 02) is also denoted byl 01 (resp. l 02). Since l1 does not
contain the mutual crossings exceptc1 and c2, D0

c is over thanD00

c or D00

c is over than
D0

c at bothc1 and c2.
Suppose thatD00

c is over thanD0

c at both c1 and c2 and (ii). Assume thatc sits
betweenl1 and l 01. See Fig. 11 (a). We can removec1 and c2 and see that there exists
a disk whose boundary contains bothl 01 and l 02. Therefore, we see thatD represents the
trivial knot. Assume thatc sits betweenl2 and l 01. Similarly, we can removec1 and c2

and see that there exists a disk whose boundary contains bothl 01 and l 02. Therefore, we
see thatD represents the trivial knot. Similarly, we can show thatD represents the
trivial knot in other cases.

We recall the theorem and the proposition to estimate the unknotting number.
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Fig. 11.

Theorem 2.10([16, 20]). Let D be a positive diagram or a negative diagram
and K the knot represented by D. Then2g4(K ) D 2g(K ) D c(D) � O(D) C 1 holds
where O(D) is the number of the Seifert circles and g4(K ) is the 4-ball genus of K .

We note thats(K )D c(D)�O(D)C1 for a positive knotK and a positive diagram
D of K wheres(K ) denotes the Rasmussen invariant. The following is well-known.

Proposition 2.11. Let K be a knot. Then u(K ) � g4(K ).

Now we prove the following.

Theorem 2.12. Let D be a reduced knot diagram. Then

u(D) D
c(D) � 2

2

if and only if D is the figure-eight knot diagram as inFig. 3 (a), the positive3-braid
knot diagrams as inFig. 3 (b), the negative3-braid knot diagrams as inFig. 3 (c) or
the connected sum of a(2, r )-torus knot diagram and a(2, s)-torus knot diagram for
some odd integers r, s¤ �1.

Proof. First, we show the ‘if’ part. IfD is one of the figure-eight knot diagram
and the connected sum of a (2,r )-torus knot diagram and a (2,s)-torus knot diagram,
it is obvious. Suppose thatD is one of the positive 3-braid knot diagrams and the
negative 3-braid knot diagrams. LetP be the projection ofD. By Lemma 2.7,tr(P)D
p(P)�2 and sou(D) � (c(D)�2)=2 by Proposition 2.1. LetK be the knot represented
by D. Then u(D) � u(K ) � (c(D) � O(D) C 1)=2 D (c(D) � 2)=2 by Theorem 2.10
and Proposition 2.11. Therefore,u(D) D (c(D) � 2)=2.
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Next, we show the ‘only if’ part. It is obvious thatc(D) is even. Hence, it is suf-
ficient to consider the diagrams obtained from the projections P with tr(P)D p(P)�2
by Proposition 2.1 and Theorem 2.6. Then we see from Lemmas 2.8 and 2.9.

There exists a knotK which does not have a minimal crossing diagramD of K
with u(D)D u(K ). Let K be the pretzel knot of type (5,1,4). Bleiler [2] and Nakanishi
[17] independently discovered thatK does not have a minimal crossing diagramD of
K with u(D) D u(K ). Here we note that 2D u(K ) D (c(K )�6)=2. The second author
and Kanadome [5] asked the following.

PROBLEM. Find the numbernmin which is defined to be the minimal number ofn
such that there exists a prime knotK with u(K )D (c(K )�n)=2 which has no minimal
diagrams D of K withu(D) D u(K ).

Nakanishi and Bleiler’s example implies thatnmin � 6. The second author and
Kanadome [5] partially solve this problem as follows.

Lemma 2.13 ([5]). Let K be a knot with u(K ) � (c(K )�2)=2 and D a minimal
crossing diagram of K . Then u(K ) D u(D).

Therefore, we have 3� nmin � 6. By Theorem 2.12 and Lemma 2.13, we obtain
the following.

Corollary 2.14. Let K be a knot. Then we obtain the following.
(1) If u(K ) D (c(K ) � 2)=2, then b(K ) D 3. Precisely, K is the figure-eight knot, a
positive 3-braid knot, a negative3-braid knot or the connected sum of a(2, p)-torus
knot and(2, q)-torus knot for some odd integers p, q ¤ �1.
(2) If b(K ) � 4, then u(K ) � (c(K ) � 3)=2.
(3) If K is prime, then u(K ) D (c(K )� 2)=2 if and only if K is the figure-eight knot,
a positive3-braid knot or a negative3-braid knot.

Proof. (1) Let D be a minimal crossing diagram ofK . By Lemma 2.13,

u(D) D u(K ) D
c(K ) � 2

2
D

c(D) � 2

2
.

By Theorem 2.12,D represents one of the figure-eight knot, the positive 3-braid knots,
the negative 3-braid knots or the connected sum of a (2,r )-torus knot and (2,s)-torus
knot. Therefore the braid index ofK is three.

(2) If u(K ) � (c(K ) � 2)=2, then b(K ) D 1, b(K ) D 2 or b(K ) D 3 by The-
orem 1.1 and Corollary 2.14 (1).

(3) First we show the ‘only if’ part. By Corollary 2.14 (1),K is the figure-eight
knot, a positive 3-braid knot, a negative 3-braid knot.
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Next, we show the ‘if’ part. IfK is the figure-eight knot, thenu(K ) D (c(K ) �
2)=2. Suppose thatK is one of the positive 3-braid knots and the negative 3-braid
knots. Then we obtainu(K )D (c(K )�2)=2 by Theorem 2.10 and Proposition 2.11.

REMARK 2.15. Let K be a prime knot up to 10 crossings withu(K ) D (c(K )�
2)=2. ThenK is 41, 819, 10124, 10139 or 10152. Note that 41 is the figure-eight knot and
819 is the torus knot of type (3, 4).

We study the unknotting number of a minimal crossing diagramof a knot. First,
we observe the diagramsD with u(D) D (c(D) � 2)=2. Then we have make an im-
provement to Lemma 2.13.

Corollary 2.16. Let D be a prime knot diagram with u(D) � (c(D) � 2)=2 and
K the knot represented by D. Then u(K ) D u(D) holds.

Proof. If u(D) D (c(D) � 1)=2, it follows from Theorem 1.1. IfD is the figure-
eight knot diagram,u(K ) D u(D) holds. Otherwise, by Theorem 2.12,D is one of the
positive 3-braid knot diagrams and the negative 3-braid knot diagrams. Then we have
(c(D)�2)=2D u(D) � u(K ) � (c(D)�2)=2 by Theorem 2.10 and Proposition 2.11.

Here, there is a possibility that a prime knot diagram withu(D) � (c(D) � 2)=2
represents a (2,r )-torus knot for some odd integerr .

Corollary 2.17. Let D be a prime knot diagram with u(D) � (c(D) � 2)=2 and
K be the knot represented by D. Then the following holds.
(1) c(D) � 1� c(K ) � c(D).
(2) u(K ) D (c(K ) � 1)=2 or u(K ) D (c(K ) � 2)=2.

Proof. (1) Suppose thatc(K ) � c(D) � 2. From the inequality (1.2) and Corol-
lary 2.16, u(D) D u(K ) � (c(K ) � 1)=2 � (c(D) � 3)=2. This contradicts thatu(D) �
(c(D) � 2)=2.

(2) There are two cases wherec(K ) D c(D) and c(K ) D c(D) � 1 by (1). Sup-
pose thatc(K ) D c(D). By Corollary 2.16, we haveu(K ) D u(D). Therefore one of
the equalities above holds. Suppose thatc(K ) D c(D) � 1. By the inequality (1.2),
Corollary 2.16 and the assumption,

c(K ) � 1

2
� u(K ) D u(D) �

c(D) � 2

2
D

c(K ) � 1

2
.

Therefore,u(K ) D (c(K ) � 1)=2.

Corollary 2.18. Let K be a knot and D a minimal crossing diagram of K .
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(1) If u(K ) D (c(K ) � 3)=2, then u(K ) D u(D).
(2) If K is prime and u(K ) D (c(K ) � 4)=2, then u(K ) D u(D).

Proof. (1) We have the following chain of inequalities.

(2.1)
c(D) � 3

2
D

c(K ) � 3

2
D u(K ) � u(D) �

c(D) � 1

2
.

Sincec(K ) is odd, u(D) D (c(D) � 1)=2 or u(D) D (c(D) � 3)=2. If u(D) D (c(D) �
1)=2, then D is one of the diagrams illustrated in Fig. 2 by Theorem 1.1. Then K is
trivial or u(K ) D (c(K ) � 1)=2 (for example, by using the signature of a knot). This
contradicts our assumption. Thereforeu(D) D (c(D)� 3)=2. We conclude thatu(D) D
u(K ) by the inequality (2.1).

(2) We have the following chain of inequalities.

(2.2)
c(D) � 4

2
D

c(K ) � 4

2
D u(K ) � u(D) �

c(D) � 1

2
.

Since c(K ) is even, u(D) D (c(D) � 2)=2 or u(D) D (c(D) � 4)=2. If u(D) D
(c(D)�2)=2, then, by Theorem 2.12,D is one of the figure-eight knot diagram as (a),
the positive 3-braid knot diagrams as (b) illustrated in Fig. 3, the mirror diagrams of
them and the connected sum of a (2,r )-torus knot diagram and a (2,s)-torus knot dia-
gram for some odd integersr, s¤ �1.

By Corollary 2.17 (2),u(K ) D (c(K )� 1)=2 or u(K ) D (c(K )� 2)=2. This contra-
dicts our assumption. Thereforeu(D) D (c(D)� 4)=2. We conclude thatu(D) D u(K )
by the inequality (2.2).

Corollary 2.19. The inequality5� nmin � 6 holds.

Proof. As mentioned before, we have 3� nmin � 6. Corollary 2.18 implies that
nmin ¤ 3 andnmin ¤ 4. Therefore we obtain 5� nmin � 6.

3. The band-unknotting number of a twist knot

In this section, we determine a twist knot whose band-unknotting number is one
(Corollary 3.4).

We recall some notations. LetK be a knot inS3 and n an integer. We denote by
�(K , n) the manifold obtained fromS3 by a Dehn-surgery alongK with slope n, by
6(K ) the double cover ofS3 branched alongK and by L(r, s) a lens space of type
(r, s) for some coprime integersr and s. Montesinos showed the following.

Lemma 3.1 ([14]). Let K be a knot. If ub(K ) D 1, then there exist a knot K0

and an integer n such that6(K ) ' �(K 0, n), where' means that6(K ) and �(K 0, n)
are homeomorphic.



THE UNKNOTTING NUMBER AND BAND-UNKNOTTING NUMBER 539

Fig. 12.

We consider all knots in this section up to mirror images. A twist knot is a knot
as in Fig. 12. Note that a twist knot is a two bridge link of type(r, 2) in the sense
of Schubert for some positive integerr and denoted itS(r, 2). In general, it is an
interesting and difficult question that which lens spaces are produced by an integral
surgery along a knot inS3. Rasmussen [19] and Tange [22] showed the following.

Lemma 3.2 ([19], [22]). Let r be a positive integer. If there exist a knot K and
an integer n such that L(r, 2)' �(K , n), then r is 3, 7, 9 or 11.

Theorem 3.3. Let K be a twist knot. If ub(K ) D 1, then KD 31, 52, 61 or 72

up to mirror images.

Proof. Let r be a positive integer such thatK D S(r, 2). Then it is well known
that6(K )' L(r, 2). Sinceub(K )D 1, by Lemma 3.1, there exist a knotK 0 and an in-
tegern such that6(K )' �(K 0,n). ThereforeL(r,2)' �(K 0,n). By Lemma 3.2,r must
be 3,7,9 or 11. HenceK is S(3,2)D 31, S(7,2)D 52, S(9,2)D 61 or S(11,2)D 72.

Corollary 3.4. Let K be a non-trivial twist knot. Then ub(K ) D 1 if and only if
K D 31, 52, 61 or 72 (up to mirror images). Other twist knots are knots with ub(K ) D 2.

Proof. It is easy to show thatub(K ) � 2. If ub(K ) D 1, by Theorem 3.3,K D
31, 52, 61 or 72 (up to mirror images). Indeed, these knots have the band-unknotting
number one [10].

4. A property of the projection of a 3-braid knot diagram

In this section, we show Lemma 4.2 on the projection of a 3-braid knot diagram.
Let P D P1[P2[� � �[Pn be a link projection. We denote byp(Pi ) the number of

self pre-crossings ofPi and by p(Pi , Pj ) the number of mutual pre-crossings between
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Fig. 13.

Pi and Pj . Therefore the following equality holds.

p(P) D
n
X

iD1

p(Pi )C
X

i< j

p(Pi , Pj ).

Let P be a knot projection andp a pre-crossing ofP. We say thatp satisfies the
condition C1 if one of the components ofPp has exactly one self pre-crossing and the
other component ofPp has no self pre-crossings every pre-crossing of the projections
illustrated in Fig. 13 satisfies the conditionC1. The converse is also true.

Lemma 4.1. Let P be a knot projection. If every pre-crossing of P satisfies the
condition C1, then it is one of projections illustrated inFig. 13.

Proof. Let p be a pre-crossing ofP. Then we can suppose thatP is a projection
as shown in Fig. 14, if necessary, by reversing the orientation of the projection. Here
we let P1 be the component ofPp which has no self pre-crossings andP2 the compo-
nent of Pp which has a self pre-crossingq. We also denote byq the pre-crossing ofP
which is corresponding toq of Pp. The proof of this lemma is divided into two cases.

CASE 1. P is a projection as shown in Fig. 14 (a).
By smoothing atq (of Pp), we obtain a 3-component projection and denote it by

P1 [ P21 [ P22 as in Fig. 15 (a). SinceP2 has a self pre-crossingq and the pre-
crossingp of P satisfies the conditionC1, we obtain p(P21, P22) D 0. Similarly, since
pre-crossingq of P satisfies the conditionC1, we obtain p(P1, P21) D 0. From the
configuration ofP1 [ P21[ P22, the equalityp(P1, P22) D 0 holds. ThereforeP must
be as in Fig. 13 (a).

CASE 2. P is a projection as shown in Fig. 14 (b).
By smoothing atq (of Pp), we obtain a 3-component projection and denote it by

P1[ P21[ P22 as in Fig. 15 (b). As in the Case 1, we obtain thatp(P21, P22) D 0 and
p(P1, P21) D 0. In this case,p(P1, P22) may not be zero. By isotopy,P is deformed
into a projection as shown in Fig. 16 (a), whereT is the projection of a tangle diagram
which consists of two arcs without self crossings. Recall that p(P) is a positive even
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Fig. 14.

Fig. 15.

number by hypothesis. Ifp(P) D 2, P the projection as shown in Fig. 16 (b). If
p(P) D 4, P is the projection as shown in Fig. 16 (c). To complete the proof, we
show the following claim.

Claim. If p(P) � 6, there exists a pre-crossing which does not satisfy the condi-
tion C1.

Since P1 has no self crossing, arcs ofP1 in T meet P22 at two pointsr1 and r2 as
illustrated in Fig. 17 (a). Sincep(P) � 6, at least one component ofP2 n {r1, r2} in
T contains a pre-crossing. There are two cases to consider as illustrated in Fig. 17 (b)
and (c). For case (b),r2 does not satisfy the conditionC1 and for case (c),r1 and r2

do not satisfy the conditionC1.

The following lemma on the projection of a 3-braid knot diagram is used to prove
Theorem 5.1.

Lemma 4.2. Let P be the projection of a3-braid knot diagram. Then we obtain
the following.
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Fig. 16.

Fig. 17.

(1) Let p be a pre-crossing of P. Then one of the components of Pp is the projection
of a (2, r )-torus knot diagram for some odd integer r and the other component of Pp

has no self pre-crossings.
(2) If P is not the projection as inFig. 13 (c), then there exists a pre-crossing p
such that one of the components of Pp is the projection of a(2, r )-torus knot dia-
gram for some odd integer r withjr j � 3 and the other component of Pp has no self
pre-crossings.

Proof. It is easy to see that the statement (1) holds. We only prove the statement
(2). If, for any pre-crossingp, one of the components ofPp is a projection with one
pre-crossing and the other component ofPp has no self pre-crossings, then theP is
one of those in Fig. 13 by Lemma 4.1. It contradicts our assumption.

5. An upper bound for the band-unknotting number of a knot

In this section, we prove the following theorem which is one of the main results
in this paper.

Theorem 5.1. Let K be a knot. Then

(5.1) ub(K ) �
c(K )

2
.

The equality holds if and only if K is the trivial knot or the figure-eight knot.
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Fig. 18. A move of type 1 and a move of type 2.

Fig. 19. A move of type 1 is achieved by a band-move and a
Reidemeister move.

Fig. 20. A move of type 2 is achieved by a band-move and
Reidemeister moves.

We define two local moves. Amove of type1 is a local move on a link diagram
D as shown in Fig. 18 (a). This move is achieved by a band-move and a Reidemeister
move (see Fig. 19). Amove of type2 is a local move on a link diagram as shown
in Fig. 18 (b). This move is achieved by a band-move and Reidemeister moves (see
Fig. 20). These moves are used in the proof of Theorem 5.1. Nowwe prove the
following lemma. Note that it is a corollary of Theorem 3.1 in[10] and we give a
direct and simple proof.

Lemma 5.2. Let K be a knot. Then

ub(K ) � u(K )C 1.

Proof. We first observe the following claim.

Claim. A single crossing change in a link diagram is achieved by two band-
moves and two crossing changes in a knot diagram are achievedby two band-moves.



544 T. ABE, R. HANAKI AND R. HIGA

Fig. 21.

Fig. 22.

A single crossing change in a link diagram is achieved by a move of type 1 near the
crossing and a move of type 2. Two crossing changes in a knot diagram are achieved by
two moves of type 1, see Fig. 21.

Let D be a diagram ofK with u(K ) D u(D). If u(D) is even, thenub(K ) �
u(D) D u(K ) since even number crossing changes are achieved by even number band-
moves by the claim. Ifu(D) is odd, setu(D) D 2n C 1 (n � 0). Since 2n crossing
changes are achieved by 2n band-moves and a single crossing change is achieved by
two band-moves by the claim, we haveub(K ) � 2nC 2D u(D)C 1D u(K )C 1.

Recall thatu(K ) � (c(K )� 1)=2 for any non-trivial knotK and the equality holds
if and only if K is a (2,r )-torus knot for some odd integerr ¤ 1. We study the band-
unknotting number of these knots.

EXAMPLE 5.3. Let K be a (2,r )-torus knot for some odd integerr ¤ 1. Then
ub(K ) D 1 (< c(K )=2). Fig. 22 illustrates the caser D 5.
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Fig. 23.

Fig. 24.

Next, we study the band-unknotting number of knotsK with u(K )D (c(K )�2)=2.

EXAMPLE 5.4. Let K be the figure-eight knot. Thenu(K ) D (c(K ) � 2)=2 and
Lickorish [13] showed thatub(K ) D 2 (D c(K )=2).

EXAMPLE 5.5. Let K be 819. Thenu(K )D (c(K )�2)=2. We show thatub(K ) �
3 (< c(K )=2). Let D be the minimal crossing diagram ofK andc the crossing ofD as
shown in Fig. 23. One of the components ofDc is the trefoil knot diagramD1 and the
other is the trivial knot diagramD2 (i.e. the diagram without crossings). We change
the over/under information ofD so that D2 is over thanD1 at the mutual crossings
betweenD1 and D2 (see Figs. 23 and 24). In this process, we need 2 (D c(D1, D2)=2)
crossing changes. By the claim in Lemma 5.2, we obtainD1 from D by two band-
moves (see Fig. 24). Thereforeub(K ) � 3 (< c(K )=2).
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Fig. 25.

Fig. 26.

EXAMPLE 5.6. Let K be 10124. Then u(K ) D (c(K ) � 2)=2. Let D be the min-
imal crossing diagram ofK and c1 and c2 the crossings ofD as shown in Fig. 25.

Now we considerDc1 and show thatub(K ) � 4 (< c(K )=2). One of the compo-
nents ofDc1 is the trefoil knot diagramD1 and the other is the trivial knot diagramD2.
We change the over/under information ofD so that D2 is over thanD1 at the mutual
crossings betweenD1 and D2 (see Fig. 26). In this process, we need 3 (D c(D1,D2)=2)
crossing changes and we obtain the diagramD0 as in Fig. 26 fromD by two moves
of type 1 and a move of type 2. By a move of type 1 near the crossing of D0 as in
Fig. 26, we obtain a diagram of the trivial knot. Thereforeub(K ) � 4 (< c(K )=2).

We also considerDc2 and show thatub(K ) � 3 (< c(K )=2). One of components
of Dc2 is the (2, 5)-torus knot diagramD1 and the other is the trivial knot diagramD2.
We change the over/under information ofD so that D2 is over thanD1 at the mutual
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Fig. 27.

crossings betweenD1 and D2 (see Fig. 27). In this process, we need 2 (D c(D1,D2)=2)
crossing changes. By the claim in Lemma 5.2, we obtainD1 from D by two band-
moves (see Fig. 27). Thereforeub(K ) � 3 (< c(K )=2).

Let D D D1 [ D2 [ � � � [ Dn be an n-component link diagram. We denote by
c(Di ) the number of the self crossings ofDi and byc(Di , D j ) the number of mutual
crossings which lie on betweenDi and D j . Therefore the following equality holds.

c(D) D
n
X

iD1

c(Di )C
X

i< j

c(Di , D j ).

Now we prove Theorem 5.1.

Proof of Theorem 5.1. First, we prove the inequality (5.1). The inequality holds
for the trivial knot and a (2,r )-torus knot for some odd integerr ¤�1 (see Example 5.3).
Therefore we may assume thatK is not a (2,r )-torus knot for any odd integerr . Then,
by Theorem 1.1, the inequalityu(K ) � (c(K ) � 2)=2 holds. By Lemma 5.2, we obtain

ub(K ) � u(K )C 1�
c(K )

2
.

Next, we prove that the equality holds if and only ifK is the trivial knot or the figure-
eight knot. The ‘if’ part is trivial (see Example 5.4). Therefore we may assume thatK
is neither the trivial knot nor the figure-eight knot. Ifu(K )¤ (c(K )�2)=2, we see that
the equality does not hold by the first half of the proof of thistheorem. We assume
that u(K ) D (c(K ) � 2)=2. Now we proveub(K ) < c(K )=2.

If K is the connected sum of a (2,r )-torus knot and a (2,s)-torus knot for some
odd integersr,s¤�1, then it is easy to see thatub(K ) � 2< c(K )=2. We assume that
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K is not the connected sum of a (2,r )-torus knot and a (2,s)-torus knot for any odd
integersr, s ¤ �1. Let D be a minimal crossing diagram ofK . Then u(D) D u(K )
by Lemma 2.13. ThereforeD is a positive or a negative 3-braid knot diagram by The-
orem 2.12. By Lemma 4.2, there exists a crossingc such that one of the components of
Dc, denoted byD1, is a (2,t)-torus knot diagram for some odd integert with jt j � 3
and the other component ofDc is the trivial knot diagramD2. Now the following
equality holds.

c(D) � 1D t C c(D1, D2).

We change the over/under information ofD so that D2 is over (or under) thanD1

at the mutual crossings betweenD1 and D2. In this process, we needc(D1, D2)=2
crossing changes. There are three cases to consider:

CASE 1. jt j � 5.
Fig. 27 may help us understanding this process. Recall thatc(D1, D2)=2 crossing

changes are achieved by, at most, (c(D1, D2)=2C 1)-band-moves. Therefore we obtain
D1 from D by, at most, (c(D1, D2)=2C 1)-band-moves. HereD1 represents the (2,t)-
torus knot, whose band-unknotting number is one. Thereforewe obtain

ub(K ) �

�

c(D1, D2)

2
C 1

�

C 1D
c(D)C 3� t

2
�

c(D) � 2

2
<

c(K )

2
.

CASE 2. jt j D 3 andc(D1, D2)=2 is even.
Fig. 24 may help us understanding this process. Recall thatc(D1, D2)=2 crossing

changes are achieved byc(D1, D2)=2 band-moves. Therefore we obtainD1 from D by
c(D1, D2)=2 band-moves. Note thatc(D1, D2) D c(D) � 4. Therefore we obtain

ub(K ) �
c(D1, D2)

2
C 1D

c(D)

2
� 1<

c(K )

2
.

CASE 3. jt j D 3 andc(D1, D2)=2 is odd.
Fig. 26 may help us understanding this process. We can deformD into the con-

nected sum ofD1 and the Hopf link diagram byc(D1, D2)=2 band-moves (see the
diagramD0 in Fig. 26), which is deform into a diagram of the trivial knotby a single
band-move. Therefore we obtain

ub(K ) �
c(D1, D2)

2
C 1D

c(D)

2
� 1<

c(K )

2
.
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