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Abstract
Let P be a finite metacyclic 2-group andF a fusion system onP. We prove

thatF is nilpotent unlessP has maximal class orP is homocyclic, i.e.P is a direct
product of two isomorphic cyclic groups. As a consequence weobtain the numerical
invariants for 2-blocks with metacyclic defect groups. This paper is a part of the
author’s PhD thesis.

1. Introduction

The structure of a finite groupG is often controlled by the structure of its Sylow
p-subgroups and the way they are embedded intoG. In this paper, we give an example
of such a control in the casep D 2. More precisely, we show thatG is 2-nilpotent if
the Sylow 2-subgroups ofG are metacyclic, but neither of maximal class nor homo-
cyclic. Here, a homocyclic group means a direct product of two isomorphic cyclic
groups. Moreover, the 2-groups of maximal class are precisely the dihedral groups, the
semidihedral groups, and the quaternion groups. Of course,there are many other meta-
cyclic 2-groups (see for example [4]). In this sense, most ofthe metacyclic 2-groups
satisfy our assumption. In the easiest case where the Sylow 2-subgroups ofG are cyc-
lic, the result is a well-known theorem by Burnside. Anothercase, in which the result
is known, is due to Wong. He showed thatG is 2-nilpotent if the Sylow 2-subgroups
of G are the sometimes called modular groups (see Satz IV.3.5 in [3]). These are the
nonabelian 2-groups with cyclic subgroups of index 2, whichdo not have maximal
class. For similar results see [14].

For the proof, we use the notion of fusion systems, which provide a great gen-
eralization of the situation described above. In particular, our result applies also to
2-blocks of finite groups with metacyclic defect groups. This was already observed by
Robinson without the notion of fusion systems (see [10]). Asa consequence we state
the numerical invariants of such blocks. We note that David Craven and Adam Glesser
also found the main result of this paper independently, but they did not publish it yet.
Furthermore, Radu Stancu has studied fusion systems on metacyclic p-groups for odd
primes p (see [11]).
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2. Metacyclic 2-groups

First, we collect some elementary results about metacyclic2-groups. We will freely
use the fact that subgroups and quotients of metacyclic groups are again metacyclic.

Lemma 1. If P is a metacyclic2-group, then the automorphism groupAut(P) is
also a 2-group unless P is homocyclic or a quaternion group of order8.

Proof. See Lemma 1 in [6].

It is easy to show that the converse of Lemma 1 also holds. In the following, we
denote the cyclic group of ordern 2 N by Cn. Moreover, we setC2

n WD Cn � Cn. For
a finite groupG, we denote by8(G) the Frattini subgroup ofG. If H is a subgroup
of G, then NG(H ) is the normalizer and CG(H ) is the centralizer ofH in G.

Lemma 2. Let P be a metacyclic2-group and C2
2k � Q < P with k� 2. Then

the action ofNP(Q)=Q on Q=8(Q) by conjugation is not faithful.

Proof. By way of contradiction, we assume that NP(Q)=Q acts faithfully on
Q=8(Q). HencejNP(Q) W Qj D 2, sincejAut(Q=8(Q))j D 6. For simplicity, we may
also assumeP D NP(Q). Then P=8(Q) is a dihedral group of order 8. Lethxi E P
such thatP=hxi is cyclic. Then hxi8(Q)=8(Q) and (P=8(Q))=(hxi8(Q)=8(Q)) �
P=hxi8(Q) are also cyclic. Since a dihedral group of order 8 cannot have a cyclic quo-
tient of higher order than 2, this showsjP=hxi8(Q)j D 2. SinceQ=8(Q) is noncyclic,
x � Q. The restriction map'W Aut(hxi)! Aut(hx2

i) is an epimorphism with kernel of
order 2. The action ofQ on hxi induces a homomorphism W Q! Aut(hxi) with im-
age contained in ker('), becausex2

2 Q. Since ker(') has order 2,8(Q) is contained
in ker( ). In particularx centralizes8(Q). By Burnside’s basis theorem, there exists
an elementy 2 Q such thatQ D hy, xyx�1

i. Therefore8(Q) D hy2, xy2x�1
i D hy2

i

is cyclic. But this contradictsk � 2.

In the situation of Lemma 2 one can also show thatQ is the only subgroup of
type C2

2k for a fixed k. In particular NP(Q) D P. However, we will not need this in
the following.

3. Fusion systems

In this section, we will use the definitions and results of [5]to prove the main
result of this paper. Moreover, we say that a fusion systemF on a finite p-group P
is nilpotent if AutF (Q) is a p-group for everyQ � P (cf. Theorem 3.11 in [5]).

Theorem 1. Let P be a metacyclic2-group, which is neither of maximal class
nor homocyclic. Then every fusion systemF on P is nilpotent.
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Proof. In order to show thatP does not containF -essential subgroups, letQ� P
beF -essential. Since AutF (Q)=AutQ(Q) has a strongly 2-embedded subgroup, Aut(Q)
is not a 2-group. By the Lemma 1,Q is homocyclic or a quaternion group of order 8.
By Proposition 10.19 in [1],Q cannot be a quaternion group. Thus, we may assume
Q � C2

2k for somek 2 N. Moreover, CP(Q) D Q holds, becauseQ is alsoF -centric.
First, we consider the casek D 1. Then Q � hx 2 P W x2

D 1i D �(P), and Exer-
cise 1.85 in [1] impliesQ D �(P) E P. Since P=Q D NP(Q)=CP(Q) is isomorphic
to a subgroup of Aut(Q), P has order 8. This contradicts our hypothesis. Hence, we
havek � 2. Now consider the action of AutF (Q) D AutF (Q)= AutQ(Q) on Q=8(Q).
Lemma 2 shows that 1¤ AutP(Q) � AutF (Q) does not act faithfully. On the other
hand, it is well-known that every automorphism ofQ of odd order acts nontrivially
on Q=8(Q). Therefore the kernel of the action under consideration forms a nontrivial
normal 2-subgroup of AutF (Q), i.e. O2(AutF (Q)) ¤ 1. But this contradicts the fact
that AutF (Q) contains a strongly 2-embedded subgroup.

Now let Q be an arbitrary subgroup ofP. We have to show that AutF (Q) is a
2-group. Let' 2 AutF (Q). Then Alperin’s fusion theorem (Theorem 5.2 in [5]) shows
that ' is the restriction of an automorphism ofP. But again by Lemma 1, Aut(P) is
a 2-group, and' must be a 2-element. This proves the theorem.

The next statement is in some sense a converse of Theorem 1.

Proposition 1. Let P be a2-group of maximal class or a homocyclic2-group.
Then there exists a fusion system on P, which is not nilpotent.

Proof. It suffices to show that there exists a finite groupG with P as a Sylow
2-subgroup such thatG is not 2-nilpotent. IfP is homocyclic, then the claim follows
from Theorem 1.10 in [14]. IfP has maximal class, then Theorems 2.4, 2.5 and 2.6
in [14] imply the result.

4. 2-blocks of finite groups

Now we turn to blocks. LetG be a finite group, and letB be a 2-block ofG.
We denote the number of irreducible ordinary (modular) characters ofB by k(B) (l (B))
respectively. Further, we defineki (B) as the number of irreducible ordinary characters
of height i 2 N0. It is well known that the so called subpairs forB provide a fusion
system on a defect groupD of B. Let us assume thatD is metacyclic. If D has
maximal class, the numbersk(B), ki (B) and l (B) were obtained by Brauer and Olsson
(see [2, 7]). In the caseD � C2

2n for somen 2 N the inertial indexe(B) of B is 1
or 3. For e(B) D 1 the fusion system (and the block) has to be nilpotent. Thus,we
may assumee(B) D 3. Then Usami and Puig state (without an explicit proof) that
there exists a perfect isometry betweenB and the group algebra ofD Ì C3 (see [12,
13, 9]). The author verified this as a part of his PhD thesis. Inparticular the numbers



328 B. SAMBALE

k(B), ki (B) and l (B) can be calculated easily. In all other cases forD the block B
has to be nilpotent by Theorem 1. In this case a theorem by Puigapplies (see [8]).
We summarize all these results:

Theorem 2. Let B be a2-block of a finite group G with a metacyclic defect
group D. Then one of the following holds:
(1) B is nilpotent. Then ki (B) is the number of ordinary characters of D of degree
2i . In particular k(B) is the number of conjugacy classes of D and k0(B) D jD W D0

j.
Moreover, l (B) D 1.
(2) D is a dihedral group of order2n

� 8. Then k(B) D 2n�2
C 3, k0(B) D 4 and

k1(B) D 2n�2
� 1. According to two different fusion systems, l (B) is 2 or 3.

(3) D is a quaternion group of order8. Then k(B) D 7, k0(B) D 4 and k1(B) D
l (B) D 3.
(4) D is a quaternion group of order2n

� 16. Then k0(B) D 4 and k1(B) D 2n�2
� 1.

According to two different fusion systems, one of the following holds
(a) k(B) D 2n�2

C 4, kn�2(B) D 1 and l(B) D 2.
(b) k(B) D 2n�2

C 5, kn�2(B) D 2 and l(B) D 3.
(5) D is a semidihedral group of order2n

� 16. Then k0(B)D 4 and k1(B)D 2n�2
�1.

According to three different fusion systems, one of the following holds
(a) k(B) D 2n�2

C 3 and l(B) D 2.
(b) k(B) D 2n�2

C 4, kn�2(B) D 1 and l(B) D 2.
(c) k(B) D 2n�2

C 4, kn�2(B) D 1 and l(B) D 3.
(6) D is homocyclic. Then k(B) D k0(B) D (jDj C 8)=3 and l(B) D 3.
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