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Abstract

We study the asymptotic stability of nonlinear waves for gachwave equations
with a convection term on the half line. In the case where thevection term satisfies
the convex and sub-characteristic conditions, it is knownhe work of Ueda [7] and
Ueda—Nakamura—Kawashima [10] that the solution tendsrtbaatationary solution.
In this paper, we prove that even for a quite wide class of thevection term, such
a linear superposition of the stationary solution and thmefagtion wave is asymptot-
ically stable. Moreover, in the case where the solution tend#he non-degenerate
stationary wave, we derive that the time convergence raplignomially (resp. ex-
ponentially) fast if the initial perturbation decays pabynially (resp. exponentially)
asx — oco. Our proofs are based on a technit&l weighted energy method.

1. Introduction

We consider the initial-boundary value problem on the hak for a damped wave
equation with a nonlinear convection term:

Uit — Uxx + U + F(U)x =0, x>0,t>0,
u(©0,t) =u_, t>0,

(1.1) lim ux, t) = u, t>0,
-0

u(x, 0) = ug(x), ut(x, 0)=uy(x), x>0,

where the functionf = f(u) is a givenC? function satisfyingf(0) = 0 andu.. are
given constants withu_ < u,. In this problem, we assume that the initial datix)
satisfiesup(0) = u_ and lim_ Up(X) = u; as the compatibility conditions. Through-
out this paper, we impose the convex and sub-charactedstiditions at the origin:

(1.2) f”(0)> 0, |[f'(0)] <1, f(u)> f(0)=0 for uelu_,DO0).
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For the viscous conservation laws on the half line, Liu—Matsta—Nishihara [3]
investigated the case where the flux is convex and the came§py Riemann prob-
lem for the hyperbolic part admits the transonic rarefacticave. More precisely, it
was shown in [3] that depending on the signs of the charatierspeeds, the large-
time behavior of the solutions is classified into three ca&ss the other hand, Ueda—
Kawashima [9] and Ueda [7, 8] suggested that the dissipativeture of (1.1) is similar
to one of viscous conservation laws. Indeed, Ueda [7] cemsitithe problem (1.1) with
u, = 0 and showed that if the flux (u) of (1.1) satisfies

(1.3) f/(u) > 0, [f'(u)] <1 for uelu_,o0]

then the solution of (1.1) tends toward the stationary smiu$, provided that the ini-
tial perturbation is suitably small. Here, the stationaojuson ¢ = ¢(x) is defined by
the solution of the stationary problem corresponding td)(1.

f(#) =¢x, x>0,
(1.4) {4,(0) =u., lm ¢(x)=0.

In the case where the flux is not necessarily convex, Liu-iNgsh [4] and Hashimoto—
Matsumura [1] studied respectively the asymptotic stabdita viscous shock wave and
superpositions of stationary solution and rarefactionevdsspecially, in order to obtain
the stability result, Hashimoto—Matsumura [1] introducedsaful weight function and
handled the weightedl? energy method.

Under the above consideration, we can expect that the astimgtability of the
nonlinear waves holds true for the problem (1.1) under the-canvex condition (1.2).
Therefore, we first treat the case < 0 < u, and the condition (1.2) withf’(0) = 0,
and derive that the solution of (1.1) tends to the superiposif the stationary solution
¢ connectingu_ and 0 and the rarefaction wawgR connecting 0 andi,. Here, the
rarefaction wavey R = ¥ R(x/t) is concretely given by

0, x <0,
(1.5) 1//RG) = (f’)‘1(§), 0<x < f'(upt,
U, x> f'(upt.

We emphasize that the sub-characteristic condition is ginda be imposed only on
u=0.

Additionally, Ueda [7] and Ueda—Nakamura—Kawashima [ldfsidered the con-
vergence rate to the stationary solution for the problem)(With u, = 0. Ueda [7]
derived the polynomially and exponentially convergende ta the non-degenerate sta-
tionary solution, and Ueda—Nakamura—Kawashima [11] akthithe polynomially con-
vergence rate to the degenerate stationary solution utgercandition (1.3). At the
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second and third results of the present paper, we focus ost#tenary solution and
show the convergence rate under the non-convex conditi@®). (1
This paper is organized as follows. The main theorems arengiu Section 2.

In Section 3, we reformulate our initial-boundary value ljeon (1.1) and state some
preliminaries. In Section 4, we prove the asymptotic siigbilesult under the non-
convex condition (1.2) by using the weighted energy methedally, we focus on the
stationary solution and obtain the polynomially and expuoiadly convergence rate of
the solutions by using the space-time weighted energy rdeithhd@ection 5.

NOTATIONS. We denote byL? = L?(R,) the usual Lebesgue space ofer with
the norm | - |2, and H! = HY(R,) the corresponding first order Sobolev space
with the norm||-||q:. Moreover, HOl = Hol(RJr) denotes the space of functoirise H?
with f(0)= 0, as a subspace ¢f?.

Fora >0, L2 = L2(R,) denotes the polynomially weightdcf space with the norm

00 1/2
1l = (/0 (1+x)“|f(x>|2dx) |

LZ ex(R+) denotes the exponentially weightéd space with the norm

o) 1/2
hgi= ([ e 1020x)

Similarly, we define the corresponding weighted Sobolevcepdd! = H(R,) and
Ho:zL,exp = Ho},exp(R+)-

For an intervall and a Banach spack¥, CX(I; X) denotes the space &ktimes
continuously differentiable functions on the intertalwith values inX. Finally, letters
C and c in this paper are defined as positive generic constants surtlesy need to
be distinguished.

while L2 g, =

2. Main theorems

In this section, we state our main results. The first theorerthé asymptotic sta-
bility of the superposition of the stationary solution ame trarefaction wave under the
condition (1.2).

Theorem 2.1. Suppose that u< 0 < u,, f'(0)=0 and (1.2) hold. Assume that
Uo—us € H! and u € L2. Let ¢(x) be the stationary solution satisfying the problem
(1.4) and ¥ R(x/t) be the rarefaction wave given {{.5). Then there exists a positive
constanteg such that if u, < ey and |Jug — ¢ — ¥ R(- )|l + |luillLz < eo, then the
initial-boundary value problen{l.1) has a unique global solution in time u satisfying

u—u, € C0, 00); HY), uy, ur € L%(0, oo; L),
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and the asymptotic behavior

. X
(2.1) Jim igﬁu(x, t) — p(x) — wR(?)‘ =0.

When we consider the case. = 0, we obtain the following corollary.

Corollary 2.2. Suppose that u= 0 and (1.2) hold true. Assume thatou- ¢ €
H® and w € L2 Let ¢(x) be the stationary solution satisfying the probl¢tn). Then
there exists a positive constapt such that if ||up — ¢||nr + ||urllLz < &1, then the
initial-boundary value problen{l.1) has a unique global solution in time u satisfying

u—¢ e Co[0, ); Hy), (u—g)x, u; € L%0, 00; L),
and the asymptotic behavior

(2.2) tIim sugu(x, t) — ¢(x)| = 0.
X x>0

The proof of Corollary 2.2 is completely same as in Theoreinahd omitted here.
The second purpose of this paper is to get the convergenes oétthe solutioru to-
ward the stationary wave. Both theorems are concerned with the non-degenerate case
f’(0) < 0. Theorem 2.3 and 2.4 give the polynomial and the exporiesiibility re-
sult, respectively.

Theorem 2.3. Suppose that uy =0, f'(0) < 0 and (1.2) hold true. Let¢(x)
be the stationary wave of the problefh.4), and ux, t) be the global solution to the
problem (1.1) which is constructed irCorollary 2.2 If up—¢ € H! and y € L2 for
a > 0, then we have

(2.3) Iu(t) — plluz < CEL(1+1t) /2
for t = 0, where C is a positive constant and, E= [[Uo — ¢| 4z + [lusllLz-

Theorem 2.4. Suppose that the same conditions asTimeorem 2.3hold true.

Then if ug—¢ € Hlgpand w e LZ,,, for « > 0, then we obtain

lut) = @l < CEgexge™

for t > 0, where g is a positive constant depending an C is a positive constant and
Ev,exp:= llUo — @Iz, + llUzll2

,exp aexp’

REMARK. Corollary 2.2 and Theorems 2.3, 2.4 become the extensibriheo
asymptotic stability result in [7].
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3. Reformulation of the problem

In this section, we make preparations for the proofs of TaéeoR.1, 2.3 and 2.4.
Let ¢(x) be the stationary solution satisfying (1.4) and #€8(x/t) be the rarefaction
wave given by (1.5). As in the previous works, we introducen®ath approximation
v (x, t) of yR(x/t) and define

(3.1) Dd(x, t) = p(X) + (X, 1)

as an approximation of our asymptotic solutig(x) + v R(x/t). Then we reformulate
our problem (1.1) by introducing the perturbatio(x, t) by

3.2) u(x, t) = d(x, t) + v(x, t).

This is the standard strategy for solving our stability peoi
To complete this procedure, we first review the fundamentapgrties of the sta-
tionary solutiong(x) which satisfies (1.4). For its proof, we refer the reader3tci| 7].

Lemma 3.1. Suppose thafl.2). Then the stationary problerfl.4) has a unique
smooth solutionp(x) satisfying u < ¢(x) < 0 and ¢x(x) > 0 for x > 0. Moreovey for
the non-degenerate cas€(@) < 0, we have

|akp(x)] < Ce®, x>0

for each nonnegative integer k. On the other hafoit the degenerate case’(0) = 0,
we obtain

|8¢()] = C(L+x)™", x>0
for each nonnegative integer k.

Next we introduce a smooth approximation of our rarefacticave v R(x/t). We
use the approximation due to Matsumura and Nishihara [5]chvis defined by

(3:3) v(x, 1) = (f) Ho(x, 1)lx=0,

wherew(x, t) is the smooth solution of the following Cauchy problem fbe tBurgers
equation:

wy + wwy = 0, XeR, t>0,
w(X, 0) = f’(uy)tanhx, x eR.

We note that our approximatiogi(x,t) in (3.3) is well-defined iff (u) is strictly convex
on [0,u.]; this is true even in the case (1.2)uf. is suitably small. Then, by a simple
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calculation, we see thaf(x, t) satisfies

(3.4) {I/ft +f(W¥)x=0, x>0,t>0,

¥(0,1) =0, t>0.

Let ¥o(X) := ¥(X, 0) = () w(X, 0))|x=0. Furthermore, the approximatiog(x, t)
satisfies the following properties which are proved in [5].

Lemma 3.2. Suppose tha(1.2) with f’(0) = 0 and f(u) is strictly convex on
[0, us]. Then we have
1) O< v¥(x,t) <uy and y¥y(x,t) > 0 for x >0 and t> 0.
2) For 1< p < oo, there exists a positive constant C such that

[¥x@lle < Cminfuy, ufP(L+ t)~+P),
[ ¥x(®llLe < Cminfuy, (L+t)7Y,
| ¥xxx(®lLe < Cminfuy, (1+ t)_l}-

3) ¥(x,t) is an approximation ofR?(x/t) in the sense that

w(x.t)—w(f)‘ ~o.

lim sup .

t—00 .0

We consider our approximatio®(x, t) defined by (3.1). By using (1.4) and (3.4),
we find that®(x, t) satisfies

(3.5) {q)“ — P+ &+ f(P)x=h, x>0,t>0,

®(0,t) =u_, t >0,
where the error ternh is
h:=(f(®) - f(®) — F(W)x + Vit — ¥xx
(3.6) =(f'(p+v)— F'@Nox + (F'(@ + ¥) — F'(¥))Vx + Yt — P¥xx
= O(|¥[lox| + @l 1¥x| + [¥ree] + [¥xxl)-

Also, we note thati_ < ®(x,t) < u; and &y(x,t) > 0 for x > 0 andt > 0. Moreover,
using the estimates in Lemmas 3.1 and 3.2, we can estimatertbetermh in (3.5)
as follows.

Lemma 3.3. For the error term h defined b{3.6), we estimate

Ih(®)||lLe < C min{u, o(t)(1+1t) Y

for 1 < p < oo, whereo(t) =log(2+t) for p=1ando(t) =1 for 1 < p < o0, and
C is a positive constant independent aof.u
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We omit the proof and refer the readers to [3, 1].
Finally we introduce the perturbatiar(x,t) by (3.2) and rewrite our original prob-
lem (1.1) as

vt —vxx + 0 F{ (@ +v)— f(DP))x+h=0, x>0,t>0,
3.7) v(0,t) =0, t >0,
v(X, 0) = vo(X), vi(X, 0) = v(X), x > 0.

where we putig(X) := Ug(X) — Po(x) with (X) := ¢ (X) + Yo(X) andvy(X) := ui(x). We
will discuss this reformulated problem in Sections 4 and primve our main theorems.

In order to derive the existence of the global solution inetichescribed in The-
orem 2.1, we need the local existence theorem. For this parpee define the solution
space for any interval C R, and M > 0 by

Xu(1) = {v € Ol HAR,)); w € CO1; LA(R ),
SUR(oO)llw: + 1e()]12) < M}.

For the solution spac&y(l), the local existence theorem of the solutiorfor (3.7)
is stated as follows.

Proposition 3.4 (local existence). For any positive constant Mhere exists a pos-
itive constant ¢ = to(M) such that if|vo| nz + [|vi]Lz = M, then the initial boundary
value problem(3.7) has a unique solutiom € Xz ([0, to]).

We prove Proposition 3.4 by using a standard iterative ntetinod omit the proof.

4. Asymptotic stability of nonlinear waves

The aim of this section is to prove Theorem 2.1. For this psepat is import-
ant to derive the following a priori estimate of solutionsfor (3.7) in the Sobolev
spaceH?.

Proposition 4.1 (a priori estimate). Suppose that the same assumptions aehie-

orem 2.1hold true. Thenthere exists a positive constasit such that ifv € X,, ([0, T])
is the solution of the probler8.7) for some T> 0, then it holds

t
@I + eI +/O (@72 + lox@F2 + [V Oxv(@)[7) dr

2 2 1/6
= Clvollfys + llvallfz + s 17°)

(4.1)

for t € [0, T], where C is a positive constant independent of T.
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Before proceeding to the proof of Proposition 4.1, we givexe@reparations for a
weight function. Sincef”(0) > 0 and| f’(0)] < 1 by (1.2), there exist positive constants
r and v such that

f’(uy=v and |f'(u) <1 for Ju|<r.

We also assume that < 0 < u, < r throughout this section. In this situation, we
choose the weight function as

4.2) w(u) = f(u) +8g(u) for uefu_,r],

where g(u) is defined byg(u) = —u?™ 4 r?™ andé and m are positive constants de-
termined later. For the weight function (4.2), we obtain fbBowing lemma.

Lemma 4.2 (Hashimoto—Matsumura [1]). Suppose that () satisfies(1.2). Let
w(u) be the weight function defined {@.2). Then for suitably small§ > 0 and suit-
ably large integer mthere exist positive constants ¢ and C such that

c<w@)<C, (f"w—fw")(u)>c

foruefu,r].

For the proof, readers are referred to [1]. Furthermore, vepgre the key lemma
for the weight function (4.2) as follows.

Lemma 4.3. Suppose that the same conditions as.@mma 4.2hold true. Then
for suitably smallé > 0, we obtain the inequality

(4.3) (f'w — fu')(u)* < w(u)®
foruefu,r].
Proof. By the definition ofw, we rewrite (4.3) as
(4.4) 8#(f'g— fg)(u)? < {(f + sg)(u)}>.
Thus, the inequality (4.4) is enough to derive the inequda#t.3). In order to get the

inequality (4.4), we divide the intervall,r] into [u-, —r] and [-r, r]. We first con-
sider the interval fr,r]. By the condition|f’(u)| < 1 and (fg)(u) > O for u € [—r,r],
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we chooses suitably small, obtaining
{(f +8g)(u))? - 8*((f'g - fg)(W)?
= 8%g(U)*(1 — f'(U)?) + F(U(L—8%g'(u)?) + 28(FQ)(U)(L + 5(f'g)(W))

= 921~ 1) + FF{1- 57 max g}

+ 28(fg)(u){1— 3 max | f’g’(u)|}
ue[—r,r]
>0 for uel[-r,r].

Next, we consider the intervalul, —r]. Taking é sufficiently small, we have

(f +689)(u) > min f(u) -3 max |g(u)| — min f(u)
uefu_,— uefu- 2 uelu,r]
for u € [u_, —r]. Therefore, using the inequality
S{(f'g— fg)(u))? = 6% max |(f'g— fg)(U)P
uefu_,—r]
and choosing suitably small such that

) Enax |(f'g— fg’)(u)|§} mln f(u)

we obtain the desired inequality (4.4) fare [u_, —r] and complete the proof. []

Using Lemmas 4.2 and 4.3, and the technical weighted enelthad given by
[1], we prove Proposition 4.1.

Proof of Proposition 4.1. We introduce a new unknown functioas
(4.5) v(X, 1) = w(P(x, 1)) (X, t),

where w is the weight function defined by (4.2). Substituting (4.6)0i the equation
of (3.7), we obtain

(4.6)  (w(P))t — (W(P)V)xx + (w(P)0) + { F(P + w(P)0) — F(P)}x +h=0.

Multiplying (4.6) by v, we get
4.7)

{30+ (@) + w(@)is} — (@) + w(@)iE+ 5 o u)(@)
t

+ O, / £/(® -+ w(®)n) — /() dy + Dy / £/(® -+ w(®)n)w'(®)y dn + Fy = —oh,
0 0



46 |. HASHIMOTO AND Y. UEDA
where we defineF as

Fo _%w(cb)xﬁz — w(®)iiy + (F(® + w(®)5) — (D))

—/Ov f(® + w(®)n) — f(D)dy.

By using the equation (3.5) and the conditidy = f(®)+ O(|v| + [¥«|), we find that
(4.8)
(Wit — wxx + w)(P) = W' (D) (Pyr — Dyx + Pr) + ' (P)(PZ — d2)
= w/(®)(h — F(D)x) + w"(®) (P — D)
= — (W (D) Dy + (f'w)(®)} Dy + w"(®)D? + w'(P)h
= —(fw" + f'w)(@)Px + O | + [Yx|)Px + O] + [¥x]?).

Moreover, by the straightforward calculation, we have

Dy / /(@ + w(®)n) — f'(®) dn + Dy / £/(® + w(®)n)w'(®)n dy
(4.9) 0 0

= E(f”w + f'w) (D) Dy 4+ O(|5]) Dy 2.

Therefore substituting (4.8) and (4.9) into the equality7J4we obtain

{%w(@)ﬁz + w(P)o; D + O(|1px|)52}
t

. 1
(4.10) +w(@)5 + (17w — fw') (@)D — w(®)Ff + F

= —ih + O(|3] + [¥| + [¥u])PxD? + O(Ih| + |¥x|?)P%.
Next, we multiply (4.6) by 2;, obtaining
(4.11) G + 2w(®) 12 + H — (2w (®) i ix)x = —20h,
whereG and H are defined by
G = w(®)iF + w(®)i% + (wx(P)T)x + (Wit — wix + we)(P)F
420, [Oﬁ F(® + w(®)n) — F/(D) dy + 20, /0,; F( + w(®)n)w' (D) dn,
H = 3wy (P)02 — we(P)52 — (Wit — Wyx + W) (D)

+ 2{ /(D + w(P)D)w(DP) — wy(P)} vy Ux

— 2y / {f'(® + w(®)n) — f'(P)}t dn — 2Py / {F'(® + w(@)n)w'(P)n} dn.
0 0
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Applying the relations (4.8) and (4.9), we rewrieas

G = w(®)? + w(®)12 + (wy(P)1%)x + ("w — fw”)(P)Dy?
+ O(|9] + [¥| + [¥x)x” + O(Ih| + |9 [?)0°.

(4.12)

On the other hand, making use of the equality
(@ + w(@)D)w(P) — wx(®) = (f'w — fw) (@) + O] + ¥ + [¥xl),
we have

H = 2(f'w — fw')(@)iiTx + O8] + [¥| + |¥x|)Tidx + O(|5]%) D Dy

(4.13)
+ Oy )(@2 + 52) + O(Wx|? + |Wx| + [ ]® + [Ysctix] + [¥xx) T2

Summing up (4.10) and (4.11), and substituting (4.12) anti3jinto the resultant
equation, we obtain

(4.14) (E4+R)i+D+Fy=Ri+ R — (@ + 20)h,

whereE, D, F, R, and R, are defined by
E= w(d))(%ﬁz + 02 4 02 + m) + (f"w — fw”)(®)Dy?,
D = w(®) (@2 + 2) 4 2(f'w — fw')(P);ix + :—2L(f”w — fuw")(P)Dyi?,
F= —%w(@)xﬁz — w(P)(Diy + 20t x)

+ (f(® + w(P)) — f(P))v — /v (D + w(P)n) — f(P)dy,
0

Ry = O(|3] + [¥] + |¥x])@x0% + O(lh| + |¥«|?)i?,
Ro = O(|9] + || + [¥x])iidx + O(Yl)(§7 + 52)
+ Ol + [Wxl® + [¥rWxx| + [Wxxxl) 92

Therefore, integrating the equation (4.14) o®er, we get the energy equality

(4.15) i/ E+R1dx+/ f)dx:/ Ri + Ry — (¥ + 25;)h dx.
dt Jo 0 0

Here, calculating the discriminants and using Lemmas 4@ 48, we have the
condition

(4.16) /de~||(5,5X,at,,/q>xﬁ)||fz, / D dx ~ ||(3x, B, v/ ®x0)[|%.
0 0
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We next consider the remainder terms. We first estimate ihe tdrm on the right hand
side of (4.15). Using Lemma 3.3 and the Sobolev and Younguialges, we obtain
(4.17)

~ . .
/0|(6+26t)h|dX5/0 |ﬁh|dx+2/0 |5¢h] dx
< ClallZ oI Ihlle: + ell5e 122 + CelIhlI2
< e(llinlZ. + 15clZ2) + C(IFIEZ IR + I1h12.)
< e(llxlIZ. + 15e1F2)
+ CIDI U 1Yo + 1) 8100?72+ 1) + Juy Y21+ 1) ¥2}

for any ¢ > 0, whereC, is a positive constant depending en By Lemmas 3.1, 3.2
and 3.3, and the same computation as in (4.17), we estiRa@nd R, as

[ |R1|dxs<:[ (|ﬁ|+|w|+|wx|)q>x52dx+c/ (1] + [ dx
0 0 0

(4.18) < C(I3lle~ + s DIV OxTNF2 + Cllollzloxllz (M + [¥x1?2)
= C>IT = + U DIV x0lIE2 + ell 5l
+ CelllFAlus 1Yo + )7 1og (2 + 1) + Juy (1 + 1))

and

/ IRo| dx
0

sc/ (|6|+|w|+|wx|)ﬁt6xdx+c:[ |9 | (57 + 03) dX
0 0

+ C/o (Wil + [WxI® + [l + )2 dx

~ ~ ~ ~n13/2~ 11/2
4.19) = CUvlle= + s DTz + Noxl1F2) + CIRIEIT N U exllie + ¥l 2)

+ ClI9 el Bell(I¥xlIFa + Il 1wl )
< CUIT > + lus D(IeIZ: + 1122) + ellvnlZ

+ Cell o2 (1l 722 + 1l 72+ 10lI®s + 101 1122
< C>ID e~ + lup DTNz + [15cllLz) + ell5elZ

+ Cell o lus Mo@ + 0778 + us PFA+ )72 + Jus A+ )73

for any ¢ > 0, whereC, is a positive constant depending en Therefore, integrat-
ing (4.15) over (0f), substituting (4.17), (4.18) and (4.19) into the resultagquality
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and takinge and sug.;<t|lv(t)[ln: + |uy| sufficiently small, we obtain

t
<112 =~ 12 ~ 2 ~ 2 <12
IIUIIHHrllvtIILer/o [oxlITe + N0ellLe + 1V Px0] L. dT
~ 2 ~ 2 6
= C(lITollfy: + IT2lFz + lus 7).

Finally, by the positivity ofw in Lemma 4.8 and the simple relationg = wyv +
wiy and vy = wyv + wug, we find that|jv|| 2 ~ ||v]|.2 and

loxllLe = C(IV ®xllLe + 10xllL2),  [19xlle = CIV Pxvlie + llxlL2),
[velle = CUIV @xvliz + o), olle = CUIV @xvlie + fluellL2).

Thus, by using the above inequalities, we have the desirgahas (4.1) and complete
the proof of Proposition 4.1. []

Proof of Theorem 2.1. The global existence of solutions te ithitial-boundary
value problem (1.1) can be proved by the continuation argiirbased on a local ex-
istence result in Proposition 3.4 combined with the comesiing a priori estimate in
Proposition 4.1. We omit the details and refer the readeid t@]. []

5. Convergence rates of stationary solutions

In this section, we prove Theorems 2.3 and 2.4. The main ifl&@eqroofs are due
to Ueda [7]. We use the space-time weighted energy metheatdinted in Kawashima—
Matsumura [2]. Before stating the proofs, we give a prepamatirhe following lemma
is concerning the inequality of the nonlinear tefimand the weight functionw.

Lemma 5.1. Suppose that (u) satisfies(1.2) and f'(0) < 0. Let w(u) be the
weight function defined bf4.2). Then for suitably large integer mthere exists a pos-
itive constant ¢ such that

(5.1) (fw — f'w)(u) > ¢
for u € [u_, O]

Proof. By the definition of weight functiomw, we have
(fw = f'w)(u) = §(fg" — f'g)(u).

In order to derive the desired inequality, we decomposenterval [u_, 0] into [u_,—r],
[-r,—r/2] and [-r/2,0]. We first consider the case [,—r]. Foru € [u_,—r], we have

(fg — f'g)(u) = —2mP™ 1 f (u) + f'(u)(—u?™ + r2m)}

= —2mu2m‘1{ f’(u)(—l + ‘—

(5.2) rIP™
U )% + f(U)}.
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Here, we note thajr /u| < 1 and f(u) > co, |f'(u)] < C for u € [u_, —r], where ¢y
and C are positive constants. Thus we can choossufficiently large such that

2m
)i+f(u)z%.

2m

(5.3) f’(u)(—1+ ‘5

Therefore, (5.2) and (5.3) imply the following inequality

(5.4) (fg — f'g)(u) > comr®™?1 > 0.

For the casal € [-r,—r /2], sincef >0, g > 0 and f’ < 0 < g, it immediately holds
/ !’ / / r
(5.5) (fg' — f'g)(u) = (fg)(u) = (fg)(—é) > 0.

Finally, for the casau € [-r/2, 0], sincef >0,g >0 and f' <0 < g, we get

(5.6) (fg ~ 1O = (FoE = _min (9w >0.

Thus combining (5.4), (5.5) and (5.6), we obtain the des&stimate (5.1). ]
Proof of Theorem 2.3. When we consider the case= 0, the solution of (1.1)
converges to the stationary solutign In this case, applying the weighted energy method,

we obtain the equation (4.14) witih = 0. More precisely, we get the following differ-
ential equality.

(5.7) (E+R)+D+F=R+R,

whereE, D, F, R, and R, are defined by
E= w(¢))(%52 + 02 4 2 + m) + (f"w — fw”)(p)pyi?,
D = w(@)( + 5) + 2(f'w — fu')(¢)iivx + %(f”w — fw")(@)ox1%,
F= —%w(q&)xﬁz — w(g)(D0x + 20t vy)

+ (F(¢ + w(@)v) — f()v - /Ov (¢ +w(g)n) — f(#)dn,

Ri = O(|1))¢xt?,  Re = O(|7])tx.
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Here, we note that the perturbatianis defined byv = u — ¢ and v is defined by
v = w(¢)v. Applying Lemma 5.1 toF, we calculateF as

5.8) -F = %(fw’ — f'w)(@)1? + w(e)(Diy + 20 x) + O(|5]%)

> ci? — C(#2 + 97) + O(|3]3),

wherec and C are positive constants.
Let y and 8 be any positive constants satisfying<Oy, 8 < «. We multiply the
equality (5.7) by (3+ t)”(1 + x)#, obtaining
(5.9)
(A+t)A+xPE+R)—yQ+t)) XA+ x(E+R)+ (1+1t)(1+x)D

F{A+) A+ xR —BA+) A+ X TF =1+ 1)1+ X’ (R + R).

Substituting (5.8) into (5.9), integrating the resultanédquality overR. x (0, t) and
taking sug;t|v(t)|L~ sufficiently small, we have

t
A+ 016 50 3T + [ @t o (16 50 VBN + BITEIE; ) dr
t t
<CE2+yC / (L + )@, 61, (@), dr + BC / @+ 1) G SO dr
0 4 0 p-1

for an arbitraryy and g with 0 < y, B < «, whereC is a constant independent of

y and . For the above estimate, applying the induction argumertcan obtain the

desired estimate (2.3) in Theorem 2.3. For the details, ier ithe readers to [6, 7].
O

Finally, we prove Theorem 2.4 by using the space-time weidlgnergy method.
Proof of Theorem 2.4. Le#, 8 > 0. Multiplying (5.7) by €’'e”*, we obtain

{P'eX(E + R} — BEP'&X(E + Ry) + e”'e*D + {'e”*F}, — ael'e”*F

(5.10) -
= e (R + Ry).

Substituting (5.8) into (5.10), integrating the resultamquality overR, x (0,t) and
taking sug;t|lv(t)|L~ sufficiently small, we get

t t
&1 i DO+ [ &G IR, dr v [ el o
wt ], | i |

t t
< CEp+ o [ &I50IE, dr + (@ + A)C: [ &I 5, dr.
0 ! 0 !
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whereCy, C; andC are positive constants independenteofind 8. Takinge > 0 and
B > 0 suitably small such thaBCy < o« and ¢ + B)C; < 1, we obtain the desired
estimate in Theorem 2.4 and complete the proof. [l
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