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Abstract
We study pairs of symmetries of a Riemann surface of genusg � 2, whose prod-

uct has ordern > 2, assuming that one of them is fixed point free. We start our
considerations by giving some bounds for the number of ovalsof a symmetry with
fixed points and showing their attainment, later we take intoaccount the number of
points fixed by the product of the symmetries and we study someof its properties.
Finally we deal the problem of finding the maximal possible power of 2 which can
be realized as the order of their product.

1. Introduction

Let X be a compact Riemann surface of genusg � 2. By a symmetryof X we
mean an antiholomorphic involution� of X. By the classical result of Harnack the
set of fixed points of� consists of at mostgC 1 disjoint simple closed curves, which
are calledovals. If � has gC 1� q ovals then we shall call it an (M � q)-symmetry,
according to Natanzon’s terminology from [12]. Furthermore, � is calledseparatingor
non-separatingif X n Fix(� ) has two or one connected component respectively.

The study of symmetries of Riemann surfaces is important dueto the categor-
ical equivalence under which a compact, connected Riemann surface X corresponds
to a smooth, complex, projective and irreducible algebraiccurve CX. Furthermore, a
Riemann surfaceX admits a symmetry� if and only if the corresponding curveCX has
a real formCX(� ) and two such symmetries give rise to the real forms non-isomorphic
over the realsR, if and only if they are not conjugate in the group Aut�(X) of all, in-
cluding antiholomorphic, automorphisms ofX. Finally, the set Fix(� ) is homeomorphic
to a smooth projective model of the corresponding real formCX(� ) and in this paper
we focus our attention on curves having two real forms one of which has noR-rational
points. The latter are known in the literature as thepurely imaginary curvesand they
correspond to fixed point free symmetries of Riemann surfaces, an example of such a
curve is the one given byxn C yn D �1 for n even.
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The aim of this paper is to solve some of the problems brought up by Bujalance,
Costa and Singerman in [2] and Natanzon in [12], which were studied in [5, 9, 10],
for the case of at least one of the symmetries being fixed pointfree. Here we fill
the gaps existing in the literature of the topic, showing this way some differences and
similarities to the case of both symmetries having fixed points. For our considerations
we use important results given by Izquierdo and Singerman in[6] and following their
terminology, we shall say that a Riemann surface of genusg admits the pair (0,t)n, if
it admits a pair of symmetries� , � where� is fixed point free,� has t ovals and��
has ordern.

The results we give in the first parts of the paper complete thestudies of some
problems appearing in [5] and [9]. First of all, we give upperbounds for the number
t of ovals of symmetry� , in terms of the genusg of the surface and the ordern of
the product�� . We also show attainment of these bounds for infinitely many values of
g. Later we take into account the numberm of points fixed by the product�� . As in
[5], we use theorem of Macbeath from [11] to give more specific bounds fort and we
show their attainment. We also study properties of the number m of points fixed by
the product�� , showing that the upper bound form can be realized for an orientation
preserving automorphism being the product of our symmetries. Furthermore, we show
some other values form, which are attained and, in contrast to the case of pairs of
symmetries with fixed points, we see that the numberm of points fixed by the product
has to be even. In the last part of the paper we study how far from being commutative
can be a pair of symmetries one of which is a fixed point free symmetry, i.e. we find
sharp upper and lower bound for the maximal order of the product of the symmetries
in question, given the numbers of their ovals.

2. Preliminaries

We shall prove our results using theory of non-euclidean crystallographic groups
(NEC groupsin short), by which we mean discrete and cocompact subgroupsof the
groupG of all isometries of the hyperbolic planeH including those that reverse orien-
tation. The algebraic structure of such group3 is coded in the signature:

(1) s(3) D (hI �I [m1, : : : , mr ]I {(n11, : : : , n1s1), : : : , (nk1, : : : , nksk )}),

where the brackets (ni 1, : : : , nisi ) are called theperiod cycles, the integersni j are the
link periods, mi proper periodsand finally h the orbit genusof 3.

A group 3 with signature (1) has the presentation with the following generators,
called canonical generators:

x1, : : : , xr , ei , ci j , 1� i � k, 0� j � si and a1, b1, : : : , ah, bh

if the sign isC or d1, : : : , dh otherwise,
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and relators:

xmi
i , i D 1, : : : , r , c2

i j�1, c2
i j , (ci j�1ci j )

ni j , ci 0e�1
i cisi ei , i D 1, : : : , k, j D 1, : : : , si

and

x1 � � � xr e1 � � � eka1b1a�1
1 b�1

1 � � � ahbha�1
h b�1

h or x1 � � � xr e1 � � � ekd2
1 � � � d2

h ,

according to whether the sign isC or �. The elementsxi are elliptic transformations,
ai , bi hyperbolic translations,di glide reflections andci j hyperbolic reflections. Reflec-
tions ci j�1, ci j are said to beconsecutive. Every element of finite order in3 is con-
jugate either to a canonical reflection or to a power of some canonical elliptic element
xi , or to a power of the product of two consecutive canonical reflections.

Now an abstract group with such presentation can be realizedas an NEC group3
if and only if the value

2�
 
"hC k � 2C rX

iD1

�
1� 1

mi

�C 1

2

kX
iD1

siX
jD1

�
1� 1

ni j

�!
,

where" D 2 or 1 according to the sign beingC or �, is positive. By [13] this value
turns out to be the hyperbolic area�(3) of an arbitrary fundamental region for such
group and we have the following Hurwitz–Riemann formula

[3 W 30] D �(30)=�(3)

for a subgroup30 of finite index in an NEC group3.
Now NEC groups having no orientation reversing elements areclassical Fuchsian

groups. They have signatures (gI CI [m1, : : : , mr ]I {�}), which shall be abbreviated as
(gIm1, : : : , mr ). Given an NEC group3, the subgroup3C of 3 consisting of the
orientation-preserving elements is called thecanonical Fuchsian subgroup of3 and
for a group with signature (1) it has, by [14], signature

(2) ("hC k � 1Im1, m1, : : : , mr , mr , n11, : : : , nksk ).

A torsion free Fuchsian group0 is called asurface groupand it has signature
(gI �). In such caseH=0 is a compact Riemann surface of genusg and conversely,
each compact Riemann surface can be represented as such orbit space for some0.
Furthermore, given a Riemann surface so represented, a finite groupG is a group of
automorphisms ofX if and only if G D 3=0 for some NEC group3.

Let C(G, g) denote the centralizer of an elementg in the groupG. The following
result from [4] is crucial for the paper
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Theorem 2.1. Let XDH=0 be a Riemann surface with the group G of all auto-
morphisms of X, let G D 3=0 for some NEC group3 and let � W 3 ! G be the
canonical epimorphism. Then the number of ovals of a symmetry � of X equals

X
[C(G, �(ci )) W �(C(3, ci ))],

where the sum is taken over a set of representatives of all conjugacy classes of canon-
ical reflections whose images under� are conjugate to� .

For a symmetry� we shall denote byk�k the number of its ovals. The indexwi D [C(G, �(ci )) W �(C(3, ci ))] will be called acontribution of ci to k�(ci )k.
3. Ovals of non-commuting pairs of symmetries

The starting point for this paper are the results of Bujalance, Costa and Singerman
from [2] (see also Natanzon in [12]) and their generalizations, given in [9]. Recall,
that the upper bound for the total number of ovals of a pair of symmetries with fixed
points, whose product has ordern, on a Riemann surface of genusg depends on the
parity of n and is equal to 4g=nC2 for n even and 2(g�1)=nC4 for n odd. Moreover,
these bounds are attained whenever 4g=n or 2(g � 1)=n are integers. If not, then we
can study the natural bounds, given by integer part, i.e. [4g=n] C 2 for n even and
[2(g� 1)=n] C 4 for n odd. In [9] it was shown that this new bound is attained forn
even for infinitely many values ofg. For oddn there is a better bound [2(g�1)=n]C3,
which is attained. Here, we shall give the analogous bound for the number of ovals of
symmetry � . Obviously we shall assume thatn > 2 is even, as otherwise both the
symmetries would be fixed point free as conjugate ones. As we shall see, also in this
case we get two different bounds, depending on the parity ofn=2. Moreover, there are
more conditions necessary for their attainment, as one has to be more careful about the
epimorphism� W 3! Dn defining the surface and the action.

We shall use the lemma below, which follows easily from Theorem 2.1

Lemma 3.1 (see also Theorem 2 in [2]).Let n be even and GD Dn D3=0 be the
group of automorphisms of a Riemann surface XD H=0 generated by two non-central
symmetries: fixed point free symmetry� and a symmetry� and let CD (n1, : : : , ns) be a
period cycle of3. Then reflections corresponding to C contribute tok�k at most t ovals
in total, where t is the number of even link periods if s� 1 and some ni is even and at
most2 ovals in total for the remaining cases.

Proof. Let� W 3! G be the canonical epimorphism. The centralizer of any non-
central involution in Dn has order 4. Sinceci 2 C(3, ci ), we have thatwi � 2. If
c belongs to two odd link periods then we can assume thatc does not contribute tok�k, while if c belongs to an even link periodn0 and cc0 has ordern0 then (cc0)n0=2 2
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C(3, c). Now �((cc0)n0=2c) ¤ 1 since ker� is a Fuchsian group and therefore we see
that �(C(3, c)) has order 4.

We also need the following two results from [6], which give some restrictions on
the possible combinations ofg, n and t .

Theorem 3.2. If a Riemann surface X of even genus g admits a pair(0, t)n with
t > 0, then n� 2 mod 4and t is odd.

Theorem 3.3. If a Riemann surface of genus g admits a pair(0, t)n and n� 0
mod 4, then g is odd.

Now we can give the upper bound for the number of ovalst for a Riemann surface
X of genusg, admitting the pair (0,t)n

Theorem 3.4. Let X be a Riemann surface of genus g, admitting a pair (0, t)n

where n> 2 is an even integer. Then, the following conditions hold:
(1) If n � 0 mod 4, n > 4 then t � 4(g � 1)=n and the bound is attained when
4(g� 1)=n is even or nD 8;
(2) If n D 4, then t� g and the bound is attained for every odd g;
(3) If n � 2 mod 4, then t� 2(g� 1)=nC 2 and the bound is attained if2(g� 1)=n
is an integer.

Proof. Let firstn � 0 mod 4,n > 4 and letG D h� , � i D Dn. Now G D 3=0
for some surface Fuchsian group0 and an NEC group3 with signature

(hI �I [m1, : : : , mr ]I {(�)l , C1, : : : , Ck}),

whereCi D (ni 1, : : : , nisi ), si � 1 and letsD s1C � � � C sk. By the Hurwitz–Riemann
formula we get�(3) D 2�(g� 1)=n and by Lemma 3.1, as 2l C s � t , we have

2�(g� 1)

n
D �(3)

� 2��"h � 2C kC l C r

2
C s

4

�
� 2��"h � 2C kC l

2
C r

2
C t

4

�

which gives t � 4(g � 1)=n whenever"h C k C l=2C r =2 � 2. So we only have to
consider the following cases:
(a) h D 1, sgn(3) D �, k D r D 0, l D 1,
(b) h D r D k D 0 and l D 2 or l D 3,
(c) h D r D 0, k D l D 1,
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(d) h D k D 0, r D 1 and l D 1 or l D 2,
(e) h D l D 0, k D r D 1.

Observe that in case (a) the condition�(3) > 0 does not hold and in cases (b)–(d)
there is no epimorphism� W 3! Dn giving a pair (0,t)n. So we only have to deal with
the case (e). For the epimorphism� W 3! Dn to exist, the signature of3 must be of
the form

(0I CI [m]I {(n1, : : : , ns)})

for somem� 4. Now if there is at least one odd link period then, by Lemma 3.1, we
obtain s � t C 1 and

2�(g� 1)

n
D �(3)

� 2���2C 1C 1� 1

4
C t

4
C 1

3

�

> 2�� t

4
C 1

12

�

which gives< 4(g� 1)=n.
Now if all the link periods are even and at least two of them aregreater than 2, then

(3)

2�(g� 1)

n
D �(3)

� 2���2C 1C 1� 1

4
C t � 2

4
C 3

4

�

D 2� � t
4

and the theorem holds ast � 4(g� 1)=n.
Let now only one of the link periods be greater than 4. In such case it is easy to

see, that for the epimorphism to exist it must be thatn � m� 8. Hence

2�(g� 1)

n
D �(3)

� 2���2C 1C 1� 1

8
C t � 1

4
C 3

8

�

D 2� � t
4

which again givest � 4(g� 1)=n.
So we may assume that3 has a signature of the form

(4) (0I CI [m]I {(2, s: : : , 2)}).



SYMMETRIES OF RIEMANN SURFACES 879

But in such case the epimorphism� W 3! Dn cannot exist forn > 4, as it would have
to send the consecutive canonical reflections alternatively to � and � (�� )n=2. Hence�(e) may be equal to 1, (�� )n=2 or (�� )�n=4, depending on the parity ofs. Moreover,�(e) and �(x1) have the same order, as the relationx1eD 1 holds in3. It follows that
in such case there is no epimorphism onto Dn for n > 4, n � 0 mod 4.

To see that the bound above is attained whenever 4(g� 1)=n is even, consider an
NEC group3 with signature (1I�I[�]I{(2,4(g�1)=n: : : ,2)}) and an epimorphism�W 3! Dn

defined by�(d) D � , �(e) D 1 and sending canonical reflections alternatively to� and� (�� )n=2. In such case0 D ker(�) is a Fuchsian surface group andX D H=0 is a
Riemann surface of genusg admitting a pair (0, 4(g� 1)=n)n.

For n D 8, we only have to consider the case when (g � 1)=2 is odd, as we
treated the opposite case (g� 1)=2 even above. Consider an NEC group3 with signa-
ture (0I CI [8]I {(2, (g�1)=2�1: : : , 2, 4)}) and an epimorphism� W 3! Dn defined by�(x) D�(e)�1 D �� and sending canonical reflections to

� , � (�� )4, � , : : : , �� �� �
(g�1)=2

, � (�� )2.

Also here� gives rise to the configuration of symmetries we looked for.
Let us now consider the case ofn D 4. It follows from the proof of the previ-

ous case, thatt � g � 1 for all the possible signatures of3 except signature (4). In
such case we define an epimorphism� by putting �(x) D �(e)�1 D �� and sending
consecutive canonical reflections alternatively to� and � (�� )2, starting with the for-
mer and finishing with the latter. This leads to the Riemann surface X D H=ker� of
odd genusg, admitting the pair (0,g)4.

Let finally n � 2 mod 4 and letG D h� , � i D Dn. Now G D 3=0 for some
surface Fuchsian group0 and an NEC group3 with signature

(hI �I [m1, : : : , mr ]I {(�)l , C1, : : : , Ck}),

whereCi D (ni 1, : : : , nisi ), si � 1. Observe, that all the link periods are odd, as sym-
metry � is fixed point free and so images under� of all the canonical reflections are
conjugate to� . By the Hurwitz–Riemann formula we get�(3) D 2�(g� 1)=n and by
Lemma 3.1, as 2(kC l ) � t , we have

2�(g� 1)

n
D �(3)

� 2��"h � 2C kC l C r

2
C s

4

�
� 2��"h � 2C r

2
C t

2

�
which gives t � 2(g � 1)=n C 2 if "h C r =2 � 1. So leth D 0, r D 1. In such case
we have�(ei ) ¤ 1 for some period cycleCi . Observe that, by [6] (see in particu-
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lar Cases 2 (i), 3 (i) on pp. 7–8, and Note on p. 9), any connecting generator mapped
nontrivially forces the total possible amount of ovals to bediminished by 1. It follows
that 2(kC l ) � t C 1 with

2�(g� 1)

n
� 2���2C 1� 1

2
C t C 1

2

�

� 2�� t

2
� 1

�

hencet � 2(g� 1)=nC 2.
So we only have to consider the caseh D r D 0. If so, there are at least two

period cycles, sayC1, C2 in the signature of3, with �(e1), �(e2) being non-trivial. It
follows, as above, that 2(kC l ) � t C 2 and so

2�(g� 1)

n
� 2���2C t C 2

2

�

D 2�� t

2
� 1

�

which givest � 2(g� 1)=nC 2.
To see that the bound is attained for 2(g�1)=n being even, consider an NEC group

with signature

(1I �I [�]I {(�)(g�1)=nC1})

and an epimorphism�W 3! Dn D h� ,� j � 2,� 2,(�� )ni defined by�(ei )D 1, �(ci 0)D � ,�(d1) D � . In such caseX DH=ker(�) is a Riemann surface of genusg, admitting the
pair (0, 2(g� 1)=nC 2)n.

Now if 2(g� 1)=n is odd, then we take an NEC group3 with signature

(0I CI [2]I {(�)(g�1)=nC3=2})
and an epimorphism onto Dn, defined by�(c10) D ��� , �(e1) D �(x1) D (�� )n=2,�(ci 0) D � and �(ei ) D 1 for i � 2. Here we also obtained a configuration we were
looking for.

Now we shall prove that there are infinitely many values ofg for which n � 0
mod 4 does not divide 4(g� 1) and the natural bound [4(g� 1)=n] is attained. On the
other hand, forn� 2 mod 4 andn not dividing 2(g�1) the bound [2(g�1)=n]C2 is
not attained, but there is a new bound [2(g� 1)=n] C 1 which is attained for infinitely
many values ofg. These results are analogous to the case of symmetries with fixed
points (see [9] for more details).
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Theorem 3.5. For arbitrary even n> 8, n � 0 mod 4 there are infinitely many
values of g for which n does not divide4(g � 1) and there exists Riemann surface of
genus g admitting a pair(0, [4(g� 1)=n])n.

Proof. Let3 be an NEC group with signature

�
0I CI [n]I {�2, 2u: : : , 2,

n

2

�}�

for some nonnegative integeru and consider an epimorphism� W 3 ! Dn D h� , � j� 2,� 2, (�� )ni defined by�(e1)D �(x1)�1 D �� , �(c10)D � and which sends first 2uC1
reflections corresponding to the unique nonempty period cycle alternatively to� and� (�� )n=2 and �(c12uC1) D � (�� )2. Then, by Lemma 3.1,� defines the configuration
(0, 2uC 1)n of two symmetries on a Riemann surface of genusg D nu=2C n=2� 1.
Now observe that 4(g�1)=n D 2uC2�8=n and so, asn > 8, we have [4(g�1)=n] D
2u C 1. Hence we have constructed the configuration of symmetriesrequested in the
theorem indeed.

Theorem 3.6. Let X be a Riemann surface of genus g, admitting a pair (0, t)n,
where n> 2 is an even integer such that n� 2 mod 4and n does not divide2(g�1).
Then t� [2(g � 1)=n] C 1 and there are infinitely many values of g for which this
bound is attained.

Proof. Let n, g be as in the theorem and letG D h� , � i D Dn. Here G D 3=0
for some surface Fuchsian group0 and an NEC group3 with signature

(hI �I [m1, : : : , mr ]I {(�)l , C1, : : : , Ck}),

where as usualCi D (ni 1, : : : , nisi ), si � 1. Again, like in the proof of part (3) of
Theorem 3.4, all the link periods are odd. Asn does not divideg� 1, it follows that
there are proper or link periods in the signature of3. Let us assume first thath D 0.
Here, for the epimorphism� W 3! Dn to exist there are several possibilities. First of
all, assume that there are no link periods and all the connecting generators are mapped
to 1. Then for the epimorphism to exist, there are two even proper periods, which are
greater than 2 as (g� 1)=n is not an integer. Therefore

2�(g� 1)

n
D �(3)

� 2���2C 2� 2

4
C kC l

�

� 2�� t

2
� 1

2

�
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as 2(kC l ) � t , by Lemma 3.1, and sot � 2(g� 1)=nC 1. If there are no link periods
but there is some connecting generatorei mapped nontrivially, then again there are at
least two even proper periods greater than 2, as (g � 1)=n is not an integer. By [6],
2(kC l ) � t C 1 and we have 2�(g� 1)=n D �(3) � 2�(�2C 2� 2=4C (t C 1)=2)�
2� � t=2, resulting with t � 2(g � 1)=n. If there are at least two link periods, then
for the epimorphism to exist either there are also at least two proper periods or one
proper period and one connecting generator mapped nontrivially, or else at least two of
the generatorsei are mapped nontrivially. In all of the cases we obtain 2�(g� 1)=n D�(3) � 2�(�2C t=2C2=2C2=3)� 2�(t=2�1=3), giving t � 2(g�1)=nC2=3. Finally,
if there is only one link period, then the connecting generator corresponding to the
nonempty period cycle is mapped nontrivially and there is also an even proper period
greater than 2, resulting with 2�(g�1)=nD �(3) � 2�(�2C3=4C (t C1)=2C1=3)�
2�(t=2� 5=12) and sot � 2(g� 1)=nC 10=12.

Assume now thath � 1. If there are at least two proper periods, then 2�(g� 1)=n D�(3) � 2�(1� 2C 2=2C t=2) � 2� � t=2 and sot � 2(g � 1)=n. If there is only one
proper period, then there is also at least one connecting generatorei mapped nontrivially
and, by [6] again, 2(k C l ) � t C 1 giving t � 2(g � 1)=n as above. Finally, if there are
no proper periods, then there is a nonempty period cycle and if there are at least two link
periods, we have 2�(g� 1)=n D �(3) � 2�(1� 2C t=2C 2=3)� 2�(t=2� 1=3) and so
t � 2(g� 1)=nC 2=3. Now if there is only one link period, then the connecting generator
of the nonempty period cycle is mapped nontrivially and the image is not (�� )n=2. Hence
the epimorphism cannot exist.

Now it is enough to observe, that all the values we obtained inresulting inequalities,
are smaller than 2(g � 1)=nC 2 and the difference is at least 1. Therefore there are also
smaller than [2(g� 1)=n] C 2, which finishes the first part of the proof. We have showed
that t � [2(g� 1)=n] C 1.

For the attainment, let us consider an NEC group3 with signature

�
0I CI [�]I {�n

2

�2
, (�)u

}�

for some nonnegative integeru and an epimorphism defined by�(c10) D �(c21) D � ,�(c20) D �(c11) D � (�� )2, �(e1) D �(e2)�1 D �� and �(ci 0) D � , �(ei ) D 1 for i � 3.
Here H=ker(�) gives rise to the Riemann surface of genusg D nu C n � 1, which
admits a pair (0, 2uC 2)n. Now 2(g � 1)=n D 2uC 2� 4=n, n � 6 and so 2uC 2D
[2(g�1)=n]C1 which means that indeed we constructed a configuration of symmetries
in question.

4. Points fixed by the product of symmetries

Now we shall state some results concerning the numberm of points fixed by the
product of two symmetries. The next result coming from [11] (see also [7]) is crucial
for the paper
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Proposition 4.1. Let Zn D 1=0 be the cyclic group of orientation preserving auto-
morphisms of a Riemann surface XD H=0 and let x1, x2, : : : , xr be the set of canonical
elliptic generators of a Fuchsian group1 with periods m1, : : : , mr respectively. Then the
number m of points of X fixed by an element g2 Zn of order d is given by the formula

mD n
X 1

mi
,

where the sum is taken over those i for which d divides mi .

Let X be a Riemann surface admitting a pair (0,t)n and let G D h� , � i D Dn.
Now G D 3=0 for some surface Fuchsian group0 and an NEC group3 with sig-
nature (1). The subgroup of3=0 of orientation preserving automorphisms is gener-
ated by the product�� and is3C=0. Observe now that in our case there are no link
periods equal ton, as one of the symmetries is fixed point free. Therefore we have
the following

Corollary 4.2. The product of two symmetries� and � of a Riemann surface X
has 2r fixed points, where r denotes the number of proper periods equal to n in the
signature of3 in the presentationh� , � i D 3=0.

Now we shall recall the upper bound form, which was given in [8]:

Proposition 4.3. The number of points fixed by an orientation preserving auto-
morphism of order n of a Riemann surface of genus g, does not exceed2(gCn�1)=(n�1)
and the bound is attained whenever n�1 divides2g.

In the sequel we shall denote the maximal possible number 2(gCn�1)=(n�1) of
fixed points byM. It is not hard to prove, that the bound above can also be realized
for the product of two symmetries having fixed points whenever n�1 divides 2g. Now
we shall give some conditions under which an integerm � M D (2gC n� 1)=(n � 1)
can be realized as the number of points fixed by the product of two symmetries, one
of them being fixed point free. Observe that in particular taking a D 0 in part (2) of
the next result gives us the necessary and sufficient condition for the maximal possible
numberM of fixed points to be attained

Theorem 4.4. The following conditions hold:
(1) If there exists a Riemann surface of genus g, having a pair of symmetries, at least
one without ovals, whose product has order n and has MD 2(gC n� 1)=(n� 1) fixed
points then n,g� 2 are integers such that n�1 divides g and n,g have different parity;
(2) Conversely, let g, n be integers such that M is attained as the number of points
fixed by the product of two symmetries whose product has ordern and one of them is
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fixed point free. Let also1 < u < n be a proper divisor of n and a� 0 an integer.
Then, if n is even any value0 � mD M � 4ua is also attained and if n is odd, then
all the values0� mD M � 2ua are attained.

Proof. We shall prove the necessity first. Let us assume thatX is a Riemann
surface, having a pair of symmetries� , � , such that at least one of them is fixed point
free, their product has ordern and hasM D 2(g C n � 1)=(n � 1) fixed points. Let
G D h� , � i D Dn. Now G D 3=0 for some surface Fuchsian group0 and an NEC
group3 with signature

(hI �I [n, M=2: : : , n, m1, : : : , mr ]I {(�)l , C1, : : : , Ck}),

whereCi D (ni 1, : : : , nisi ), si � 1. By the Hurwitz–Riemann formula we get�(3) D
2�(g� 1)=n and so

2�(g� 1)

n
D �(3)

D 2��"h � 2C kC l C g

n
C 1� 1

n
C R1 C R2

�
,

where

R1 D rX
iD1

�
1� 1

mi

�
and R2 D 1

2

kX
iD1

siX
jD0

�
1� 1

ni j

�
.

It follows that r D k D 0 and"hC l D 1, as otherwise there would be no epimorphism� W 3 ! G. By Corollary 4.2, M is even and son � 1 divides g. Now if n is even,
M=2 is even and soM D 2g=(n�1)C 2 is divisible by 4, which means thatg=(n� 1)
is odd. It follows that ifn is even, theng is odd. Now if n is odd theng must be
even, asn� 1 divides g.

For the proof of (2), let firstn be even. Consider an NEC group3 with signature

�
2(u � 1)aI �I hn

u
, 2a: : : , n

u
, n, M=2�2ua: : : , n

iI {(�)}
�

and an epimorphism� W 3! Dn D h� , � j � 2, � 2, (�� )ni defined by�(e1) D 1, �(c10) D� , �(di )D � and sending the canonical elliptic generatorsxi , i D 1,: : : , 2a alternatively
to (�� )u and (�� )u and generatorsxi , i D 2aC1, : : : , M=2� 2uaC 2a alternatively to�� and �� . As before,H=ker(�) gives rise to the Riemann surface of genusg, which
admits a pair (0, 2)n and the product of the symmetries hasM � 4ua fixed points.

Let now n be odd. If 4 dividesM, then we take an NEC group3 with signature

�
(u � 1)aC 1I �I hn

u
, a: : : , n

u
, n, M=2�ua: : : , n

iI {�}

�
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and an epimorphism� W 3! Dn D h� , � j � 2, � 2, (�� )ni defined as in the previous case
if a is even. If a is odd we take� such that�(di ) D � and �(x1) D �(x2) D (�� )2u,�(x3)D (�� )4u and� sends the canonical elliptic generatorsxi , i D 4,:::,a alternatively
to (�� )u and (�� )u, �(xaC1) D �(xaC2) D (�� )2, �(xaC3) D (�� )4 and generatorsxi ,
i D a C 4, : : : , M=2 � uaC a alternatively to�� and �� . In both cases we obtain
a Riemann surface of genusg, admitting a pair (0, 0)n with the product havingm D
M � 2ua fixed points.

Let now M � 2 mod 4. Consider an NEC group with the signature as in the
previous case. Ifa is even, the epimorphism defined similarly as above forM � 0
mod 4 anda odd, gives rise to the configuration we looked for. Ifa is odd, then
we take the epimorphism defined similarly as in the caseM � 0 mod 4,a even. As
before,H=ker(�) gives rise to the Riemann surface of genusg, which admits a pair
(0, 0)n and the product of the symmetries hasM � 2ua fixed points.

Now we shall take into account the numberm of points fixed by the product��
and give bounds for the number of ovals of symmetry� . Similarly to the case of two
symmetries with fixed points (see also [5]), we obtain boundsfor the number of ovals
in terms ofg, n, andm and show their attainment for some series ofg, n, m. Observe,
that we can assume thatn is even, as otherwise both symmetries would be fixed point
free as conjugate ones.

Theorem 4.5. Let X be a Riemann surface, admitting a pair (0, t)n, with the
product having m fixed points. Then the following conditionshold:
(1) If n � 2 mod 4, then t� ((2gC m� 2)=n) C 4� m and this bound is attained
whenever g is odd, m� 4 and n divides gC (m=2)� 1;
(2) If n � 0 mod 4 and m> M � 2 then t� 2 and this bound is attained for any
odd g with mD M;
(3) If n � 0 mod 4,n > 4 and m� M � 2, then t� ((4gC 2m� 4)=n)C 4� 2m and
this bound is attained if n divides2gCm� 2;
(4) If n D 4 and m� M � 2, then t� gC 3� (3m=2) and this bound is attained for
any odd g.

Proof. Let firstn� 2 mod 4 and let as beforeG D h� ,� i D Dn. Now G D 3=0
for some surface Fuchsian group0 and an NEC group3 with signature

(5) (hI �I [n, m=2: : : , n, m1, : : : , mr ]I {(�)l , C1, : : : , Ck}),

whereCi D (ni 1, : : : , nisi ), si � 1 andsD s1C � � �C sk. Observe, as in the last case of
the proof of Theorem 3.4, that all the link periods are odd. Bythe Hurwitz–Riemann
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formula we get�(3) D 2�(g� 1)=n and by Lemma 3.1, as 2(l C k) � t , we have

(6)

2�(g� 1)

n
D �(3)

� 2��"h � 2C kC l C m

2
� �1� 1

n

�C s

4

�

� 2���2C m

2
� �1� 1

n

�C t

2

�

which givest � 2(g� 1)=nC 4�m(1� 1=n) � (2gCm� 2)=nC 4�m.
Now, for the attainment, considerg, n and m � 4 such thatg is odd andn div-

ides gC m=2� 1. Observe that in such casem=2 is even. Let3 be an NEC group
with signature

(0I CI [n, m=2: : : , n]I {(�)l }),

where l D (gCm=2� 1)=nC 2�m=2 and let� W 3! Dn D h� , � i be an epimorphism
sending all the canonical reflections to� , all the generatorsei to 1, and the canonical
elliptic generatorsxi alternatively to�� and �� . Then X D H=ker� is a Riemann
surface of genusg, which admits a pair (0, (2gCm� 2)=nC 4�m)n with the product
having m fixed points. Observe also, that the bound cannot be attainedfor mD 0, as
in such case we would havet D 2(g� 1)=nC 4> 2(g� 1)=nC 2, a contradiction.

Let now n� 0 mod 4 andm> M�2. Let, as aboveG D h� ,� i D Dn. Now G D3=0 for some surface Fuchsian group0 and an NEC group3 with signature (5). If
there are no even link periods in the signature of3, then as above we gett � 2g=nC
2� (m� 2)(1� 1=n).

If k > 0 and there are even link periods, then by Lemma 3.1, 2l C s� t and so

(7)

2�(g� 1)

n
D �(3)

� 2��"h � 2C kC l

2
C m

2
� �1� 1

n

�C s

4

�

� 2���1C m

2
� �1� 1

n

�C t

4

�

which givest � 4(g�1)=nC4�2m(1�1=n)D (4gC2m�4)=nC4�2m. Observe now,
that for m> M�2 we get that 4g=n�2(m�2)(1�1=n) < 2g=nC2�(m�2)(1�1=n) <
4. So we may assume that there are no even link periods. If�(ei ) ¤ 1 for some
empty period cycleCi , then this cycle contributes with 1 oval by Theorem 2.1 and
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so 2(l C k) � t C 1. Hence

2�(g� 1)

n
D �(3)

� 2��"h � 2C kC l C m

2
� �1� 1

n

�C t C 1

2

�

� 2���3

2
C m

2
� �1� 1

n

�C t

2

�

which gives t � 3=2. Similarly, if there are nonempty period cycles we get�(3) �
2�(�2C t=2Cm=2 � (1� 1=n)C 1=3) which in turn givest < 5=3� 2=n < 2.

Therefore we may assume that all the period cycles are empty and for all i , �(ei )D 1,
which means that all period cycles contribute with two ovals. Hence, ast < 4, it must be
that t � 2. For the attainment it is enough to consider the signature and an epimorphism
from the proof of Theorem 4.4, case whenn is even,a D 0. Observe also that the bound
is attained withmD M.

We shall treat the bound for cases (3), (4) together. Asm � M � 2, we get that
2g=nC 2� (m� 2)(1� 1=n) � 4g=n� 2(m� 2)(1� 1=n) and so by the previous parts
of the proof t � (4gC 2m� 4)=nC 4� 2m, which givest � gC 3� 3m=2 for n D 4.
Now for the proof of the attainment, consider an NEC group3 with signature

(0I CI [n, m=2: : : , n]I {(2, s: : : , 2)}),

wheresD (4gC 2m� 4)=nC 4� 2m is even and let� W 3! Dn D h� , � i be an epi-
morphism sending the consecutive canonical reflections alternatively to� and � (�� )n=2,
canonical elliptic generators alternatively to�� and �� . If 4 divides m, then we take�(e1)D 1 and if nD 4 andm=2 is odd, we take�(e1)D �� . In both cases we obtain a
Riemann surface of genusg, admitting a pair (0,t)n, with the product havingm fixed
points andt being maximal.

5. Order of the product of the symmetries

In this section we investigate the case of non-conjugate andnoncommuting pairs of
symmetries. Our aim is to find sharp upper and lower bound for the maximal order of the
product of the symmetries in question, given the numbers of their ovals. Now conjugate
symmetries have the same topological properties, in particular they have the same num-
bers of ovals, so without loss of generality we shall restrict ourselves to non-conjugate
symmetries. By the Sylow theorem we may assume that in fact these symmetries gener-
ate a dihedral 2-group as all Sylow 2-groups are conjugate. Observe, that Theorem 3.4
implies in particular restrictions for the order of the product of symmetries in question.
Here we define a function

�g W {0, : : : , gC 1} ! N,
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where�g(q)D n if and only if 2n is the biggest power of 2 being realized as the order
of the product of a pair of (M�q)- and fixed point free symmetries on a Riemann sur-
face of genusg. As we consider only pairs of non-commuting symmetries generating a
2-group, then by Theorem 3.3 we can assume thatg is odd. Observe however, that this
result does not give any conditions on the number of ovals of the second symmetry. In
particular, it can also be a fixed point free symmetry. We shall study this case in the
last part of the paper.

5.1. Pairs of symmetries with one being fixed point free. Similarly to the case
of symmetries with fixed points, which was studied in [10], weshall use an upper bound
for the number of ovals of one of the symmetries in question, i.e. gC 1�q, in terms of
the genus of the surface and the order of the product of the symmetries. By Theorem 3.4,
the following corollary holds true, which allows us to give an upper bound for�g(q) in
the next theorem.

Corollary 5.1. Let X be a Riemann surface of genus g, having pair of (M � q)-
and fixed point free symmetries� , � , whose product has order2n with n� 2. Then the
following conditions hold:
(1) If n > 2 then q� gC1� (g�1)=2n�2 and the bound is attained when(g�1)=2n�2

is even or nD 3;
(2) If n D 2, then q� 1 and the bound is attained for any odd g.

Theorem 5.2. The order of the product of an(M � q)- and a fixed point free
symmetry on a Riemann surface of genus g, satisfying

(8) gC 1� g� 1

2n�2
� q < gC 1� g� 1

2n�1

for some n> 2, does not exceed2n and so�g(q) � n. If the parameters g, q satisfy

(9) 1� q < gC 3

2

then the order does not exceed22 D 4 and so�g(q) � 2.

Proof. Observe that in the first case the number of ovals of (M � q)-symmetry
satisfiesg C 1 � q > g=2n�1. Let d denote the order of the product of the symmet-
ries and assume to a contrary thatd is a power of 2 such thatd � 2nC1. Now by
Corollary 5.1 we have

q � gC 1� g� 1

2n�1

which leads to a contradiction, as in the same timeq < gC 1� g=2n�1.
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Let us now consider the second case, that isg,q satisfy (9). Assume to a contrary
that the product of our symmetries is at least 23 D 8. Then by Corollary 5.1 we have
q � (gC 3)=2 and on the other handq < (gC 3)=2, a contradiction.

It is more challenging to show that this bound is in fact attained.

Theorem 5.3. Let g, q and n be integers such that2n�1 divides g� 1 and for
n > 2 or n D 2 respectively(8) or (9) holds. Then�g(q) D n, that is there exists
Riemann surface of genus g having a pair of(M �q)- and fixed point free symmetries� , � with the product of order2n.

Proof. Observe that with our assumptiongD 2n�1aC 1 for somea � 1 andgC
1�(g�1)=2n�2 is an even integer, so we can assume thatq D gC1�(g�1)=2n�2C� D
gC 1� 2aC � where� � 0 is an integer. Observe also that the last equality in turn
gives g C 1 � q D 2a � � which is the number of ovals of one of the symmetries
in question.

Let first � D 2�. Consider an NEC group3 with signature

(1I �I [2, �: : : , 2]I {(2, gC1�q: : : , 2)})

and an epimorphism� W 3! D2n D h� , � i defined as follows for the consecutive ca-
nonical reflections corresponding to the nonempty period cycle

� , � (�� )2n�1
, � , � (�� )2n�1

, : : : , �� �� �
for which �(d1) D � , �(xi ) D (�� )2n�1

, �(e) D 1 for � even. If � is odd we take�(e) D
(�� )2n�1

. With such a definition, by Lemma 3.1,� gives rise to the configuration of
two (M�q)- and fixed point free symmetries on a Riemann surface of genus g, whose
product has order 2n.

Let now � D 2� C 1 with n > 2. Observe, that it follows thatq � g � 2 asq is
odd and (8) holds. Indeed, in such caseq < g C 1� a � g as a � 1. Now take an
NEC group3 with signature

(1I �I [2, �: : : , 2]I {(2, g�1�q: : : , 2, 4, 4)})

and an epimorphism� W 3! D2n D h� , � i for which �(d1) D � , �(xi ) D (�� )2n�1
for

i D 1,:::,� and mapping the canonical reflections corresponding to the nonempty period
cycle respectively to

� , � (�� )2n�1
, � , � (�� )2n�1

, : : : , � (�� )2n�1� �� �
g�q

, � (�� )2n�2
, �
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with �(e)D 1 for � even and�(e)D (�� )2n�1
otherwise. Again, in both cases,� defines

the configuration of two (M�q)- and fixed point free symmetries on a Riemann surface
of genusg, whose product has order 2n.

Let now n D 2. Consider an NEC group3 with signature

(0I CI [2, 
: : : , 2, 4]I {(2, gC1�q: : : , 2)})

where
 D (q � 3)=2C 1. Define an epimorphism� W 3! G by taking �(xi ) D (�� )2

for i D 1, : : : , 
 , �(x
C1) D �� and which sends the consecutive canonical reflections
alternatively to� and ��� . Furthermore, take�(e) D �� for 
 odd and�(e) D ��
otherwise. This definition leads to the configurations of symmetries in question.

The proof of the previous theorem gives us some information on a lower bound
for �g(q) for g D 2ua C 1. In such case�g(q) � uC 1, provided thatq � g C 1�
(g � 1)=2u�1 if u > 1 and q � 1 for u D 1. In particular takingu D 1 leads to the
following corollary, which was also presented in [6].

Corollary 5.4. For any odd g and q� 1 there exists Riemann surface of genus g,
having a pair of non-commuting(M � q)- and fixed point free symmetries.

5.2. Pairs of fixed point free symmetries. In this part we study the case of
Riemann surfaces of genusg having two fixed point free symmetries� , � with the
product of order 2n, n � 2. By Theorem 3.3, we may assume thatg is odd. So let
g D 2ua C 1 for some odda and u � 1. First of all, we shall give the upper bound
for �g(gC 1).

Theorem 5.5. Let g, n � 2 be integers such that g is odd and

2n � 1� g < 2nC1 � 1.

Then�g(gC 1)� n and this bound is attained if and only if gD 2nC1� 1� 2n�l and
0� l < n or gD 2nC1 C 1� 2nC1�l for 1� l < n.

Proof. Let n, g be integers holding conditions of the theorem and assume that
we have a Riemann surface of genusg, having a pair of fixed point free symmetries
with the product of order 2v with v > n. Now let G D h� , � i D D2v D 3=0 for some
surface Fuchsian group0 and an NEC group3 with signature

(10) (hI �I [m1, : : : , mr ]I {�}).

Note, that there are no period cycles, as our symmetries haveno ovals. Moreover, for
the epimorphism� W 3 ! h� , � i D D2v to exist it must be thath > 0 and sign is�.
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By the Hurwitz–Riemann formula, we know that (g�1)=2v D �(3)=2� . Now, asg <
2nC1 � 1 andv � nC 1, we see that

(11)
�(3)

2� D g� 1

2v < 1� 1

2v�1
.

Now, as v > n � 2 we see that there are proper periods in the signature of3 and
there are at least two as the relation�(x1 � � � xr ) D 1 must hold. Hencer � 2. Now
if h � 2 we see that�(3)=2� � 1 and (11) does not hold. But ifh D 1, then for
the epimorphism to exist, there must a proper period equal 2v, as otherwise the image
of � does not give D2v . Furthermore again, there are at least two such periods for the
relation �(x1 � � � xr ) D 1 to hold. This gives�(3)=2� � 1 � 1=2v�1 and also in this
case we obtain the contradiction followed by the assumptionv > n.

Note, that we only used the fact thatg < 2nC1 � 1. In the same way one shows,
that for g< 2n�1 the order of the product of two fixed point free symmetries isstrictly
smaller than 2n. Hence the bound for�g(gC 1) can be attained only forg � 2n � 1.

Now we shall prove the necessary and sufficient condition forthe attainment of
the bound. For, we shall find exact values ofg for which 2n � 1 � g < 2nC1 � 1 and�g(g C 1) D n. As before letG D h� , � i D D2n D 3=0 for some Fuchsian surface
group 0 and an NEC group3 with signature (10). First of all, asg < 2nC1 � 1 we
see, again by the Hurwitz–Riemann formula, that�(3)=2� < 2�1=2n�1. Observe now
that if h > 4, h D 3, r > 0 or h D 2, r � 4 then�(3)=2� > 2� 1=2n�1 which is not
our case here.

Thus let firsth D 2 and r D 3. If two of the periods are equal 2, then the epi-
morphism� W 3! D2n does not exist as the relation�(x1x2x3) D 1 cannot hold inG.
Hence at least two of them are greater than two which leads to acontradiction as in
such case�(3)=2� � 1=2C 3=4C 3=4D 2.

Now if hD 2, r D 2 then the proper periods are equal for the relation�(x1x2)D 1
to hold and must be strictly smaller than 2n as otherwise�(3)=2� D 2 � 1=2n�1,
a contradiction.

Let finally h D 1. Observe that for our epimorphism� to exist, there must be at
least two proper periods equal 2n. Now if there are more than three periods in to-
tal, then�(3)=2� � 2� 1=2n�1, which contradicts the assumption. Therefore the total
number of periods forh D 1 is at most three.

Note that, as we have observed before, the case ofr D 1 is impossible for we
would have�(x1)D 1 in such situation, which contradicts the fact that ker� is Fuchsian
surface group.

Therefore the only possibilities for the signature are:
(1) h D 1, r � 3 and two of the periods are equal 2n;
(2) h D 2, r D 2 and the periods are strictly smaller than 2n;
(3) h D 3, r D 0.
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For the case (1) andr D 3 we obtain an NEC group3 with the signature

(1I �I [2n, 2n, 2l ]I {�}),

where 1� l < n. By the Hurwitz–Riemann formula, we have the equality (g�1)=2n D�(3)=2� and as�(3) D 2�(2 � 1=2n�1 � 1=2l ) we see thatg D 2nC1 � 1 � 2n�l .
To see that there actually exists an epimorphism for such a group 3 define � W 3 !h� , � i D D2n as �(d) D � for the only glide reflection,�(x1) D �� , �(x2) D (�� )2n�l�1

and �(x3) D (�� )2n�l
. This definition leads to the configuration of two fixed point free

symmetries with the product of order 2n on the Riemann surface of genusg D 2nC1�
1� 2n�l for 1� l < n.

Now for r D 2 we get the signature of an NEC group3 being of the form

(1I �I [2n, 2n]I {�}).

Hence by the Hurwitz–Riemann formula again,gD 2n�1. For the sufficiency take an
epimorphism� to be defined as�(d) D � , �(x1) D �(x2)�1 D �� . We obtain the con-
figuration of symmetries we looked for, on a Riemann surface of genusg D 2n � 1D
2nC1 � 1� 2n�l for l D 0.

Given the conditions for the case (2) we have the signature ofthe form

(2I �I [2l , 2l ]I {�})

with 1 � l < n and for the necessary condition observe that�(3) D 2 � 1=2l�1 and
so by the Hurwitz–Riemann formulag D 2nC1C 1� 2nC1�l . To see that this condition
is also sufficient one takes an epimorphism� defined as�(d1) D � , �(d2) D � and�(x1)D �(x2)�1 D (�� )2n�l

. This definition provides the configuration of fixed point free
symmetries with the product of order 2n on a Riemann surface of genusg D 2nC1 C
1� 2nC1�l with 1� l < n.

Finally let us consider the third case. Now our NEC group3 has signature

(3I �I [�]I {�}).

By the Hurwitz–Riemann formula,gD 2nC 1. As before, we can find the proper pair
of symmetries by defining an epimorphism� as �(d1) D �(d2) D � , �(d3) D � . The
last case is equivalent to the previous one withl D 1.

Now we shall give some results concerning a lower bound for�g(gC1), assuming
that g D 2uaC 1 for someu � 1 and odda.

Theorem 5.6. For gD 2uaC1 we have�g(gC1)� u and this bound is attained
for arbitrary u � 2 and aD 1. Moreover, for any odd g there exists a Riemann surface
of genus g, having a pair of non-commuting fixed point free symmetries.
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Proof. First we shall construct, for anyg as in the theorem, a Riemann surface of
genusg, having two fixed point free symmetries, whose product has order 2u. Consider
an NEC group3 with signature

(aC 2I �I [�]I {�})

and an epimorphism� W 3 ! D2u D h� , � i defined by �(d1) D � , �(d2) D � � � D�(daC2) D � . This gives rise to the configuration in question, hence�g(gC 1)� u.
Now, for the attainment takeg D 2u C 1, u � 2 and letn > u be arbitrary. Recall

that from our previous considerations it follows that forg < 2n � 1 the order of the
product of the fixed point free symmetries is at most 2n�1. Here in fact we haveg <
2n � 1 as 2n � 2u � 2> 0 for n > u � 2. Therefore forg of the form above, the order
of the product of two fixed point free symmetries is at most 2u. Together with the first
part of the proof we get the equality�g(gC 1)D u.

We shall prove the last part of the theorem. Clearlyg may be written in the form
g D 2b C 1. If b is even then it is enough to take signature of an NEC group and
epimorphism to be analogous to the one given in the first part of the proof. Now if
bD 2v C 1, take an NEC group with signature

(v C 1I �I [4, 4]I {�})

and an epimorphism� W 3! D4 for which �(di ) D � , �(x1) D �(x2)�1 D �� .
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