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Abstract

For an oriented link diagrand, the warping degred(D) is the smallest number
of crossing changes which are needed to obtain a monotogeadiafrom D. We
show thatd(D) + d(—D) + sr(D) is less than or equal to the crossing numbeiDof
where —D denotes the inverse dd and sr(D) denotes the number of components
which have at least one self-crossing. Moreover, we give &sszey and sufficient
condition for the equality. We also consider the minindéD) + d(—D) + sr(D) for
all diagramsD. For the warping degree and linking warping degree, we shmwes
relations to the linking number, unknotting number, and $pétting number.

1. Introduction

The warping degree and a monotone diagram is defined by Kdivémcan ori-
ented diagram of a knot, a link [7] or a spatial graph [8]. Tharping degree repre-
sents such a complexity of a diagram, and depends on thetati@n of the diagram.
For an oriented link diagranD, we say thatD is monotone if we meet every cross-
ing point as an over-crossing first when we travel along athgonents of the oriented
diagram with an order by starting from each base point. Thitson is earlier used
by Hoste [5] and by Lickorish—Millett [9] in computing polynoal invariants of knots
and links. The warping degreé(D) of an oriented link diagranD is the smallest
number of crossing changes which are needed to obtain a mmnatiagram fromD
in the usual way. We give the precise definitions of the wayplegree and a mono-
tone diagram in Section 2. LetD be the diagramD with orientations reversed for
all components, and we caltD the inverse ofD. Let ¢(D) be the crossing number
of D. We have the following theorem in [13] which is for a knot diag:

Theorem 1.1 ([13]). Let D be an oriented knot diagram which has at least one
crossing point. Then we have

d(D) + d(-D) + 1 < ¢(D).

Further, the equality holds if and only if D is an alternating diagram.
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Let D be a diagram of am-component link i( > 1). Let D' be a diagram on a knot
componentL' of L, and we callD' a component ofD. We define a property of a
link diagram as follows:

DEFINITION 1.2. A link diagramD has property c if every componentD' of
D is alternating, and the number of over-crossingsDdfis equal to the number of
under-crossings oD' in every subdiagranD' U D! for eachi # j.

Note that a diagranD has propertyC if D is an alternating diagram in the case that
r = 1. We generalize Theorem 1.1 to a link diagram:

Theor.em 13. LetD be an oriented link diagrajrand si(D) the number of com-
ponents D such that D has at least one self-crossing. Then we have

d(D) + d(—D) + sr(D) =< ¢(D).
Further, the equality holds if and only if D has property C.

For example, the link diagrar® in Fig. 1 hasd(D) + d(—D) +sr(D) =3+3+2 =
8 =c(D). Let D be a diagram of a link. Leti(D) be the unlinking number oD. As
a lower bound for the valud(D) + d(—D) + sr(D), we have the following inequality:

Theorem 1.4. We have
2u(D) + sr(D) < d(D) + d(—D) + sr(D).

The rest of this paper is organized as follows. In Section 2,define the warping de-
greed(D) of an oriented link diagranD. In Section 3, we define the linking warping
degreeld(D), and consider the valud(D) + d(—D) to prove Theorem 1.3. In Sec-
tion 4, we show relations of the linking warping degree ane linking number. In
Section 5, we apply the warping degree to a link itself. Int®ec6, we study rela-
tions to unknotting number and crossing number. In Sectiowé define the splitting
number and consider relations between the warping degmre¢hansplitting number. In
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Fig. 2.

Section 8, we show methods for calculating the warping deged the linking warp-
ing degree.

2. The warping degree of an oriented link diagram

Let L be anr-component link, andD a diagram ofL. We take a sequenca of
base pointsy (i =1, 2,...,r), where every component has just one base point except
at crossing points. TheD,, the pair of D anda, is represented b, = Dgl U Dgz U
---U D} with the order ofa. A self-crossing pointp of D; is a warping crossing
point of Dé if we meet the point first at the under-crossing when we go altire
oriented diagraer; by starting froma (i =1, 2,...,r). A crossing pointp of D;
and DéJ is a warping crossing point between;Dand DE’;J if p is the under-crossing
of D; (L <i<j<=<r) Acrossing pointp of D, is a warping crossing point of
Da if p is a warping crossing point oD, or a warping crossing point betweeby,
and D, [7].

For example in Fig. 2p is a warping crossing point oIDall, andq is a warping
crossing point betwee;1 and D§2. We define the warping degree for an oriented link
diagram [7]. Thewarping degreeof D,, denoted byd(D,), is the number of warping
crossing points ofD,. The warping degreeof D, denoted byd(D), is the minimal
warping degreal(D,) for all base point sequencesof D. Ozawa showed that a non-
trivial link which has a diagranD with d(D) = 1 is a split union of a twist knot or
the Hopf link andr trivial knots ¢ > 0) [11]. Fung also showed that a non-trivial knot
which has a diagranD with d(D) = 1 is a twist knot [14].

For an oriented link diagram and its base point sequédbge- Dgl U Dgz u---u

D;, , we denote b)d(Dj.,{_) the number of warping crossing points bg We denote by
d(Di, DAJ.) the number of warping crossing points betw@b and D;j. By definition,
we have that

d(Da) = ) d(D}) + Y _d(Dj, D).
i=1

i<j
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Thus, the set of the warping crossing points @f is divided into two types in the
sense that the warping crossing point is self-crossing or floe pair D, is monotone

if d(Dy) = 0. For example D, depicted in Fig. 3 is monotone. Note that a monotone
diagram is a diagram of a trivial link. Hence we haw@D) < d(D), whereu(D) is
the unlinking number oD ([10], [15]).

3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We first define the tigkivarping de-
gree, which is like a restricted warping degree and which rie&stions to the crossing
number and the linking number (see also Section 4). The numbe@on-self warp-
ing crossing points does not depend on the orientation. Vileedéhe linking warping
degreeof D,, denoted byid(D,), by the following formula:

d(Da) = 3" d(D}, D)) = d(Da) — Y d(D}),
1

i<j i=

where D‘aw D;j are components oD, (1 <i < j <r). The linking warping degree
of D, denoted byld(D), is the minimalld(D,) for all base point sequences It does
not depend on any choices of orientations of components.ekample, the diagram
D in Fig. 4 hasld(D) = 2. A pair D, is stackedif Id(D,;) = 0. A diagramD is
stackedif |d(D) = 0. For example, the diagrai in Fig. 4 is a stacked diagram. We
remark that a similar notion is mentioned in [5]. Note that anwmtone diagram is a
stacked diagram. A link. is completely splittablef L has a diagranD without non-
self crossings. Notice that a completely splittable links lk@mme stacked diagrams.

The linking crossing numbeof D, denoted bylc(D), is the number of non-self
crossing points oD. Remark thaic(D) is always even. For an unordered diagr&m
we assume thab' and D' U D/ denote subdiagrams d with an order. We have the
following relation of linking warping degree and linkingassing number.
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Lemma 3.1. We have

(D) < O,

Further, the equality holds if and only if the number of over-crossirng D is equal
to the number of under-crossings of B every subdiagram DU D! for every i# j.

Proof. Leta be a base point sequence Df anda the base point sequeneewith
the order reversed. We call the reverse ofa. Since we have thatd(D,) + Id(D3) =
Ic(D), we have the inequalityd(D) < Ic(D)/2. Let D be a link diagram such that
the number of over-crossings @' is equal to the number of under-crossings f
in every subdiagranD' U D! for eachi # j. Then we havdd(D,) = Ic(D)/2 for
every base point sequenee Hence we havdd(D) = Ic(D)/2. On the other hand,
we consider the case the equalityd2D) = Ic(D) holds. For an arbitrary base point
sequence of D and its reversa&, we have

ld(D,) > Id(D) = Ic(D) — Id(D) > Ic(D) — Id(Da) = Id(Da) > Id(D).

Then we havdc(D) — Id(D,) = Id(D). Hence we havéd(D,) = Id(D) for every base
point sequence. Leta = (ag, ap, ..., &-1, a1, &, &2, - - -, &) be the base point
sequence which is obtained froex= (as, @z, . . ., &, &1, - - - » &) by exchangingay
andag1 (k=1,2,...,r —1). Then, the number of over-crossings Bf is equal to
the number of under-crossings B in the subdiagranDX U D¥*! of D, because we
haveld(D,) = Id(Dy). This completes the proof. []

We next consider the valud(D) + d(—D) for an oriented link diagranD and the
inverse—D. We have the following proposition:

Proposition 3.2. Let D be an oriented link diagram. The valu€@) + d(—D)
does not depend on the orientation of D.

Proof. LetD’ be D with the same order and another orientation. Since we have
d(D') = d(D') or d(D'") = d(—D'), we haved(D'") +d(—D'") = d(D') + d(—D') for
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eachD' and D'’. Then we have

d(D’) +d(-D") = ) "d(D") +1d(D') + > " d(—D") + Id(—D’)

i=1 i=1

= > {d(D") + d(—D")} + 21d(D)

i=1
= ) {d(D') + d(-D')} + 21d(D)

i=1

=Y d(D') +1d(D) + > d(-D') + Id(-D)
i=1 i=1

= d(D) + d(—D). O

A link diagram is aself-crossing diagramf every component ofD has at least one
self-crossing. In other words, a diagran of anr-component linkL is a self-crossing
diagram ifsr(D) = r. We have the following lemma:

Lemma 3.3. Let D be a self-crossing diagram of an r-component link. Then
we have

d(D) + d(—D) +r = c¢(D).
Further, the equality holds if and only if D has property C.

Proof. We have

d(D) + d(=D) +r = > d(D') +1d(D) + > d(~D') + Id(~D) +r
i=1 i=1

=) {d(D') + d(~D') + 1} + 21d(D)

i=1

<> ¢(D') + 21d(D)

i=1

<> ¢(D') + Ic(D)
i=1
= ¢(D),

where the first inequality is obtained by Theorem 1.1, andséheond inequality is ob-
tained by Lemma 3.1. Hence we have the inequality. The aguadilds if and only if
D has propertyC which is obtained by Theorem 1.1 and Lemma 3.1. O

We give an example of Lemma 3.3.
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ExAMPLE 3.4. In Fig. 5, there are three diagrams with 12 crossingse dia-
gram D is a diagram such that any component is alternating and hasBnon-self
crossings and 3 under-non-self crossings. Then we Wéiz® + d(—D) +r = 12 =
c(D). The diagramD’ is a diagram which has a non-alternating component diagram.
Then we haved(D’) + d(—D’) +r = 10 < ¢(D’). The diagramD” is a diagram such
that a component has 2 over-non-self crossings and 4 umheself crossings. Then
we haved(D"”) +d(—D") +r = 10 < c(D").

Lemma 3.3 is only for self-crossing link diagrams. We proveedrem 1.3 which is
for every link diagram.

Proof of Theorem 1.3. For every compond@itsuch thatD' has no self-crossings,
we apply a Reidemeister move of type | as shown in Fig. 6. Therobtain the diagram
D' from D', and D'’ satisfiesd(D'") = d(—D'') = 0 = d(D') = d(—D') and¢(D'’) =
1 =¢(D') + 1. For example the base poirgs b; in Fig. 6 satisfyd(D}) = d(D') = 0,
d(-D},) = d(—D') = 0. We remark that ever' andD'" are alternating. We denote by
D’ the diagram obtained fror® by this procedure. Since every component has at least
one self-crossing, we apply Lemma 3.3@6. Then we have

d(D") + d(=D’) +r < ¢(D’).
And we obtain
d(D) + d(—=D) +r < ¢(D) + (r —sr(D)).
Hence we have

d(D) + d(—D) + sr(D) < ¢(D).
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The equality holds if and only iD has propertyC. [l

4. The linking warping degree and linking number

In this section, we consider the relation of the linking wagpdegree and the link-
ing number. For a crossing poim of an oriented diagramg(p) denotes the sign of
p, namelye(p) = +1 if p is a positive crossing, and(p) = —1 if p is a negative
crossing. For an oriented subdiagrddh U D/, the linking numberof D' with DI is
defined to be

Link(DhDJ’):% > ep).

peDiNDI

The linking number ofD' with D! is independent of the diagram (cf. [3], [7]). We
have a relation of the linking warping degree and the linkingnber of a link diagram
in the following proposition:

Proposition 4.1. For a link diagram D we have the followindi) and (ii).
(i): We have

> ILink(D', D)| < Id(D).

i<j

Further, the equality holds if and only if non-self under-crossing<Dé in D' U DI are
all positive or all negative with an orientation for everytsliagram D U D/ (i < j).
(ii): We have

1) > JLink(D', D)] = 1d(D) (mod 2).

i<]j
Proof. (i): For a subdiagra®' UD! (i < j) with d(D', DI) = m, we show that
Link(D', D')| < d(D', D).

Let p1, P, ..., Pm be the warping crossing points betwe® and DI, and g(p1),
e(p2), ..., e(pm) the signs of them. Since a stacked diagram is a diagram ofrra co
pletely splittable link, we have

) Link(D', DY) — (e(p1) + &(p2) + - - + &(pm)) = 0
by applying crossing changes pt, ps, ..., pm for D' U D!, Then we have

ILink(D', D)| = le(p1) + &(P2) + - -+ + &(Pm)] <m = d(D', D).
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Hence we obtain

> |Link(D', D¥)| < Id(D).

i<j

The equality holds if and only if non-self under-crossings@ in D' U D/ are all
positive or all negative with an orientation for every sidgiamD' U DI (i < j).

(i): By the above equality (2), we observe that Lilk( D) = &(p1) + &(p2) +
<o +e(pm) = e(qr) +e(g) +- - - +e(an), where px (resp.gk) is a non-self under-crossing
(resp. over-crossing) ob' in D' U D/, Id(D' UDJ) =m andlc(D' UD/) = m+n. A
similar fact is also mentioned in [12]. We have

Link(D', D') = &(p1) + &(p2) + - - - + &(Pm)
m (mod 2)
=d(D', D).

Hence we have the modular equality

> |Link(D', D!)| = 1d(D) (mod 2). O

i<j
ExampPLE 4.2. In Fig. 7,D has (0, 2, 3),E has (0, 2, 2), and= has (4, 4, 4),
where (,m,n) of D denotes tha}_, _;|Link(D', D’)| =1, Id(D) = m, andlc(D)/2 = n.

The total linking numberof an oriented linkL is defined to beZi<j Link(D', D)
with a diagram and an order. We have the following corollary:

Corollary 4.3. We have

r
Z Link(D', D) = Z{a(pk) | p«: a non-self warping crossing point of ;P
i<j k=1

wherea is a base point sequence of D.
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Fig. 8.

Corollary 4.3 is useful in calculating the total linking nber of a diagram. For example
in Fig. 8, the diagramD with 4 components and 11 crossing points &) = 4.
We have that the total linking number &f is O by summing the signs of only 4 cross-
ing points.

5. To a link invariant

In this section, we consider the minimd(D) + d(—D) for minimal crossing dia-
gramsD of L in the following formula:

e(L) = min{d(D) + d(—D) | D: a diagram ofL with ¢(D) = c¢(L)},

where ¢(L) denotes the crossing number bf In the case wher& is a non-trivial
knot, we have

©) e(K) + 1 < ¢(K).

Further, the equality holds if and only K is a prime alternating knot [13]. Note that
the condition for the equality of (3) requires thBtis a minimal crossing diagram in
the definition ofe(L). We next definec*(L) and e*(L) as follows:

c*(L) = min{c(D) | D: a self-crossing diagram di},
€*(L) = min{d(D) + d(—D) | D: a self-crossing diagram df with ¢(D) = c*(L)}.

As a generalization of the above inequality (3), we have tilwing theorem:
Theorem 5.1. For an r-component link Lwe have
e*(L) +r <c*(L).

Further, the equality holds if and only if every self-crossing diagreD of L with
¢(D) = c*(L) has property C.
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Proof. LetD be a self-crossing diagram df with ¢(D) = ¢*(D). We assume
that D satisfies the equalitg(D) + d(—D) = e*(L). Then we have

e*(L) +r =d(D) +d(-=D) +r

= _d(D') +1d(D) + > d(-D') +Id(~D) +r

i=1 i=1

=) {d(D') + d(~D') + 1} + 21d(D)

i=1

<Y ¢(D') + 21d(D)

i=1

<Y ¢(D') + Ic(D)

i=1
=¢(D) = c*(L),

where the first inequality is obtained by Theorem 1.1, andstmond inequality is ob-

tained by Lemma 3.1. ID has a non-alternating componet, or D has a diagram

D' U D/ such that the number of over-crossings @f is not equal to the number of
under-crossings ob', then we havee*(L) +r < c*(L). On the other hand, the equality
holds if D has propertyC. O

We have the following example:

EXAMPLE 5.2. For non-trivial prime alternating knots', L?,...,L" (r > 2), we
have a non-splittable link. by performingn;-full twists for every L' and L'** (i =
1,2,...,r) with L"*! = L as shown in Fig. 9, where we assume thatandn, have
the same sign. Note that we do not change the type of knot coempeL’. Let D be
a diagram ofL with ¢(D) = c(L). Then we notice thaD is a self-crossing diagram
with ¢(D) = ¢*(L). We also notice thaD has propertyC becausdc(D' U D) = 2|n;|
and Link(D', DI) = n;, andlc(D* U D) = 2|n; + n;| and Link(D%, D) =n; +n; in
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the case where = 2. Hence we have*(L) +r = c*(L) in this case.
We have the following corollary:

Corollary 5.3. Let L be an r-component link whose all components are non-
trivial. Then we have

e(L) +r <c(L).

Further, the equality holds if and only if every diagram D of L witfDg = ¢(L) has
property C.

Proof. Since every diagrar® of L is a self-crossing diagram, we haeél) =
e*(L) andc(L) = c*(L). ]

We also consider the minimal(D) + d(—D) + sr(D) and the minimalsr(D) for dia-
gramsD of L in the following formulas:

f(L) = min{d(D) + d(—D) + sr(D) | D: a diagram ofL},
sr(L) = min{sr(D) | D: a diagram ofL}.
Note that the valuef (L) and sr(L) also do not depend on the orientation lof Jin
and Lee mentioned in [6] that every link has a diagram whidtriets to a minimal
crossing diagram for each component. Then we have the foltpwroposition:

Proposition 5.4. The value §fL) is equal to the number of non-trivial knot com-
ponents of L.

The following corollary is directly obtained from Theoren31

Corollary 5.5. We have
f(L) <c(L).
Proof. For a diagranD with ¢(D) = ¢(L), we have
f(L) = d(D) + d(—D) + sr(D) < ¢(D) = c(L),
where the second inequality is obtained by Theorem 1.3. ]

We have the following question:

QUESTION 5.6. When does the equalitf/(L) = c(L) hold?
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ExAMPLE 5.7. In Fig. 10, there are two link diagranis and E. We assume that
D (resp.E) is a diagram of a link_ (resp.M). We havef (L) = ¢(L) = 5 because we
haved(D) + d(—D) +sr(D) = 2+ 2+ 1 and we knowd(D') > u(3;) = 1, ld(D) > 1,
andsr(D) > sr(L) = 1, whereD' is any diagram of 3 On the other hand, we have
that f (M) < ¢(M) becausef (M) < d(E)+d(—E)+sr(E) =3+3+1=7<10=c(M).

6. Relations of warping degree, unknotting number, and crosing number

In this section, we enumerate several relations of the wgrpiegree, the unknot-
ting number or unlinking number, and the crossing numbett |D§ be D with ori-
entation forgotten. We define the minimal warping degreeDofor all orientations
as follows:

d(|DJ) := min{d(D) | D: |D| with an orientatiof.

Note that the minimad(|D|) for all diagramsD of L is equal to the ascending number
a(L) [11]:

a(L) = min{d(|D]) | D: a diagram ofL}.

Let E be a knot diagram, and a diagram of anr-component link. We review
the relation of the unknotting number(E) (resp. the unlinking numbeu(D)) and
the crossing numbec(E) (resp.c(D)) of E (resp.D). The following inequalities are
well-known [10]:

(4) u(g) < c(E)2— 1,
(5) u(D) < @

Moreover, Taniyama mentioned the following conditions [1Bhe necessary condition
for the equality of (4) is thak is a reduced alternating diagram of some [§2torus
knot, or E is a diagram withc(E) = 1. The necessary condition for the equality of (5)
is that everyD' is a simple closed curve of? and every subdiagrar®' U DI is an
alternating diagram.
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Hanaki and Kanadome characterized the link diagrdnsvhich satisfyu(D) =
(c(D) — 1)/2 as follows [4]: LetD = D' U D?U---U D" be a diagram of am-
component link. Then we have

c¢(D) -1
2

u(D) =

if and only if exactly one ofD?, D?,..., D' is a reduced alternating diagram of a
(2, p)-torus knot, the other components are simple closed cuwes?, and the non-
self crossings of the subdiagrad’ U D/ are all positive, all negative, or empty for
eachi # j. In addition, they showed that any minimal crossing diaganof a link
L with u(L) = (c(L) — 1)/2 satisfiesu(D) = (c(D) — 1)/2.

Abe and Higa study the knot diagranis which satisfy

c(D) -2

u(D) = 2

Let D be a knot diagram withu(D) = (c(D) — 2)/2. They showed in [1] that for any
crossing pointp of D, one of the components dd,, is a reduced alternating diagram
of a (2, p)-torus knot and the other component Bf, has no self-crossings, whei®,
is the diagram obtained fronD by smoothing atp. In addition, they showed that
any minimal crossing diagrar® of a knot K with u(K) = (¢(K) — 2)/2 satisfies the
above condition.

By adding to (4), we have the following corollary:

Corollary 6.1. For a knot diagram E we have

u(E) < d(Ep < LB =T
Further, if we have
u(E) = aep = T2

then E is a reduced alternating diagram of soii2g p)-torus knot or E is a diagram
with ¢(E) = 1.

By adding to (5), we have the following corollary.

Corollary 6.2. (i): For an r-component link diagram Dwe have

u(D) < d(|DJ) < @.
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(ii): We have

c(D)
u(D) =d(|D|) = >
if and only if every D is a simple closed curve a$¢ and the number of over-.crossi'ngs
of D' is equal to the number of under-crossings of iD every subdiagram DU D!
for each i# j.
(ii): If we have

u(o) = (o) = 2,

then every Dis a simple closed curve of? and for each pair j j, the subdiagram
D' u D! is an alternating diagram.

Proof. (i): The equalityu(D) < d(|D]|) holds becausei(D) < d(D) holds for
every oriented diagram. We show thd({D|) < c(D)/2. Let D be an oriented diagram
which satisfies

d(D) = ) d(D') + Id(D) = d(|DJ).

i=1
Then D also satisfies

(6) d(D') < C(TDi)

for every componenD' because of the orientation d@. By Lemma 3.1, we have

(7) |d(D)§@_
2
Then we have
: : ‘. ¢(D') Ic(D)
;d(D)—Hd(D)f; T

by (6) and (7). Hence we obtain the inequality

c(D)
d(|D|) < —
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(i): Suppose that the equality(|D|) = ¢(D)/2 holds. Then the equalities

®) o) - 42
and
©) |d(D)='—C(—2[2

hold by (6) and (7), wher@ has an orientatio‘n such thd{D) = d(|D|). The equality
(8) is equivalent to that(D') = O for every D'. We prove this by an indirect proof.
We assume that(D') > 0 for a componenD'. In this case, we have the inequality

(10) d(D') +d(-D') + 1 < ¢(D)

by Theorem 1.1 sinc®' has a self-crossing. We also have

1D (o) = 4(-0) = )

becaused(D') < d(—D') and (8). By substituting (11) for (10), we have
c(D') + 1 < ¢(DY).

This implies that the assumptio(D') > 0 is contradiction. Therefore ever' is
a simple closed curve. The inequality (9) is equivalent tat tthe number of over-
crossings ofD' is equal to the number of under-crossingsf in every subdiagram
D' U DI for eachi # j by Lemma 3.1. On the other hand, suppose that ewrys
a simple closed curve, and the number of over-crossingd'os equal to the number
of under-crossings oD' in every subdiagranD' U D! for eachi # j, then we have

. __Ie(D) (D)
d(ID) =ld(D) = —— = —~.
(iii):  This holds by Corollary 6.2 (i) and above Taniyamasndlition. O

Let K be a knot, and_ anr-component link. Letu(K) be the unknotting number of
K, andu(L) be the unlinking number of.. The following inequalities are also well-
known [10]:

(12) u() = X222
(13) u(L) < 4B

2
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The following conditions are mentioned by Taniyama [15]:eTirecessary condition for

the equality of (12) is thaK is a (2, p)-torus knot @: odd, # +1). The necessary

condition for the equality of (13) is that has a diagranD such that evenD' is a

simple closed curve 082 and every subdiagrar®' U D/ is an alternating diagram.
By adding to (12) and (3), we have the following corollary:

Corollary 6.3. (i): We have

u(K) < eTK) = &2_1
(ii): We have
iy < 8 0=

if and only if K is a prime alternating knot.
(iii): If we have

oK) _ o(K)—1

u(K) == o

then K is a(2, p)-torus knot(p: odd, # +1).
By adding to (13), we have the following corollary:

Corollary 6.4. For a diagram of an unoriented r-component ljnke have

L) _ o)

u(L) < ==

Further, if the equality L) = e(L)/2 = ¢(L)/2 holds then L has a diagram D=
D'uD?U---U D" such that every Dis a simple closed curve of? and for each

pair i, j, the subdiagram DU D/ is an alternating diagram.

Proof. We prove the inequality(L) < e(L)/2. Let D be a minimal crossing dia-
gram of L which satisfiese(L) = d(D) + d(—D). Then we obtain

e(L) = d(D) + d(—D) > 2u(D) > 2u(L).
The condition for the equality is due to above Taniyama’sdition. []

7. Splitting number

In this section, we define the splitting number and enumerdttions of the warp-
ing degree and the complete splitting number. H®mditting number(resp.complete
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splitting numbey of D, denoted bySplit(D) (resp.split(D)), is the smallest number of
crossing changes which are needed to obtain a diagram ofttalsigl (resp. completely
splittable) link from D. The splitting number of a link which is the minim&lplit(D)
for all diagramsD is defined by Adams [2]. Thénking splitting number(resp.linking
complete splitting numbgrof D, denoted bySplit(D) (resp.lsplit(D)), is the smallest
number of non-self-crossing changes which are needed @wnohtdiagram of a split-
table (resp. completely splittable) link frod. We have the following propositions:

Proposition 7.1. (i): We have
split(D) < d(|DJ).

(ii): We have

split(D) < Isplit(D) < Id(D) < @ = LE)'

We give examples of Proposition 7.1.

ExAmMPLE 7.2. The diagramD in Fig. 11 hassplit(D) = 2 < d(|D]) = 3. The
diagramE in Fig. 11 hassplit(E) = d(|E|) = 3.

ExampLE 7.3. The diagranD in Fig. 12 hassplit(D) = 1 < Isplit(D) = 2. The
diagramE in Fig. 12 hassplit(E) = Isplit(E) = 2.
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EXAMPLE 7.4. The diagranD in Fig. 13 haslsplit(D) = 3 < Id(D) = 5. The
diagramE in Fig. 13 haslsplit(E) = Id(E) = 5.

We raise the following question:

QUESTION 7.5. When does the equality

split(D) = d(|D),
split(D) = Isplit(D)

or
Isplit(D) = Id(D)
hold?

8. Calculation of warping degree

In this section, we show methods for calculating the warpiegree and linking
warping degree by using matrices. First, we give a methodccétculating the warping
degreed(D) of an oriented knot diagranD. Let a be a base point oD. We can
obtain the warping degred(D,) of D, by counting the warping crossing points easily.
Let [Dy] be a sequence of som@™and “u”, which is obtained as follows. When we
go along the oriented diagram from a, we write down ©” (resp. “u”) if we reach
a crossing point as an over-crossing (resp. under-crgssingumerical order. We next
perform normalization to[D,], by deleting the subsequenceu” repeatedly, to obtain
the normalized sequendd,|. Then we have

d(D) = d(Da) — 3 #Dal,

where #| D, | denotes the number of entries {D,|. Thus, we obtain the warping
degreed(D) of D. In the following example, we find the warping degree of a knot
diagram by using the above algorithm.
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Fig. 15.

ExAamPLE 8.1. For the oriented knot diagraid and the base poird in Fig. 14,
we haved(D,) = 4 and [Da] = [oouuouuouuouoouodu By normalizing [D,], we
obtain | D] = [uuod. Hence we find the warping degree Bf as follows:

d(D)=4—%x4=2.

For some types of knot diagram, this algorithm is useful imfolating the warping
degree or looking into its properties. We enumerate the gutigs of an oriented dia-
gram of a pretzel knot of odd type in the following example:

ExXAMPLE 8.2. LetD = P(eing, e2ny,...,emNm) be an oriented pretzel knot dia-
gram of odd type § € +1, -1, n;, m: odd > 0), where the orientation is given as
shown in Fig. 15. We take base poirdasb in Fig. 15. Then we have

d(Da) = d(~Dy) = c(2D) + (_1);18i

and
#|Dal = #[—Dy].

Hence we haveal(D) = d(—D) in this case. In particular, iD is alternating i.es; =
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az bs

Fig. 16.
& =--- =gy = +1, then we have that
c¢(D) 1
d(D) = — — -.
(D) > 3

We next explore how to calculate the linking warping dedidfd®) by using matrices.

For a link diagramD and a base point sequenaef D, we define arr-square matrix

M(Da) = (m;j) by the following rule:

e Fori # j, mj; is the number of crossings @' and D! which are under-crossings
of D'.

e Fori=j, mj=d({D).

We show an example.

EXAMPLE 8.3. ForD, and Dy, in Fig. 16, we have

010 0 2 2
M(Dy)=|1 0 0, MDp)=|0 0 1].
2 20 010
We note thald(D,) is obtained by summing the upper triangular entrieddD,),
that is

Id(Da) = Z mij,

i<]j
and we notice that

d(Da) = Zmij,

i<j

where m;; is an entry ofM(Dg) (i, j = 1,2,...,r). For the base point sequence
a = (a, a,...,a+1, &, ..., a) wWhich is obtained from a base point sequerchy
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exchangingay andag,; (k =1, 2,...,r —1), the matrixM(Dy) is obtained as follows:

M(Da’) = PkM(Da) P;:l,

where
1
01 1 for (,])=(k k+1),k+1k)
P« = ;oM = and (,j)=(@,0)i #k k+1),
10 !
0 otherwise.
1

With respect to the linking warping degree, we have
Id(Dg) = Id(Da) — My k41 + Miyak,

wheremy .1, My 1k are entries ofM(D,). To enumerate the permutation of the order
of a=(ay, a, ..., &), we consider a matrixQ = P"1P'2... P2P! where P" de-
notesP,Pny1--- Py, (N <k, <r—1) or the identity matrixg,. SinceQ depends on the
choices ofk, (n=1,2,...,r —1), we also denot&) by Qy, wherek = (kg, ko, ..., k1)

(n <k, <r) and we regardP" = E, in the casek, = r. Hence we obtain the follow-
ing formula:

ld(D) = nr(in{z mi

i<j

mij: an entry OkaM(Da)le}'

Thus, we obtain the warping degree of an oriented link disgby summing the warp-
ing degreedd(D') (i =1, 2,...,r) and the linking warping degrelel(D).
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