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Abstract
In this paper we study the entire solutions of a class of paid\llen—Cahn
equations
(0.1) —Au(X, Y) + a)W (u(x, ) = 0, (x,y) € R,

wherea(x): R — R* is a periodic, positive function and/ € C2(R, R) is a double-
well potential. We look for the entire solutions of the ab@a@guation with asymp-
totic conditionsu(x, y) — o+ asx — Foo uniformly with respect toy € R. Via
variational methods we find infinitely many solutions.

1. Introduction

In this paper we consider a class of Allen—Cahn equation
—AUu(X, y) +a(X)W (u(x, y)) =0, (x,y) € R?,
(1.1) "T uix,y) =ox uniformly w.rt.y € R,
X—>0o0

where we assume

(H1): a(x) € C(R) is T periodic and positive;

(Hy): W(t) is a non-negativeC? function with two zeroso. and W/(o.) = 0, and
there exists aRy > 0 such thatW’(s)s > 0 for any |s| > Ry.

Potentials satisfying the assumptioH,} are widely used in physical models. For
example, the Ginzbrug—Laudau potentl(s) = (s> —1)? and the Sine—Gordon poten-
tial W(s) = 1+ cosrs) are introduced to study various problems in phase tramsiti
and condensed state physics. Functiorepresents the mixed state of material and the
global minima of W represents pure phase. The introduction of an oscillatacyof
a(x) can be used to describe inhomogeneity of the material.

For autonomous case, i.@(x) is identically a constant, Ghoussoub and Gui first
proved a long standing conjecture by De GiorgiR? (see [11]). L. Ambrosio and
X. Cabré in [10] proved the conjecture R" whenn < 3. For 4< n < 8, assuming
an additional limiting condition oru, O. Savin proved that this conjecture is also true
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(see [12]). These results tell us that the solutions redtmeme dimensional solutions
0o modulo space transition, and the problem (1.1) is in fact dineensional.

In [5], F. Alessio, L. Jeanjean and P. Montecchiari studied)(Linder the same
conditions with|u| < 1. Giveno_, o, € {01, 02, ..., 0m}, 0_ # o, Whereo; is zero
of W(t), they got the existence of multiple layered solutions deliegy on bothx and
y. Firstly, they discussed some features of the one dimeakjmmoblem associated to
(1.2), i.e.,

—4(x) +a()W'(a(x)) =0, x €R,
(1.2) {XETOO q(X) = ox uniformly w.r.t.y € R.

Then they considered the functiongl(q) = fR(l/2)|Q(x)|2 + a(x)W(q(x)) dx on the
Hilbert spaceE = {q € HL(R) | [zld(X)[?dx < +o00} endowed with the norniq||? :=
19(0)|? + fR|Q(x)|2dx. They showed that, given anye {1,..., m}, there exist some
j()e{d,...,m}\ {i} such that the functionaF attains its minimum on the sét' =
{q € {F < 400} | limy__q(t) = 0i, liMy_ 10 q(t) = ojg)}. Settingc(i) := minp F(q),
the set' = {q e T | F(q) = c¢(i)} is considered. Finally the critical discreteness
assumption oriC' was verified, i.e.,
(x)i: There existd) # Ko C K', setting/C;j = {q(- —jT) | g € Ko} for j € Z, such that
(i) Ko is compact with respect to thel'(R) topology;
(i) K' = UieZ Kj and there exists soméy > 0 such that if j # j’ then
d(KCj, Kjr) = do.
Here d@, B) = inf{||gu(x) —02(X) || .2®)/q1 € A, 2 € B}, A, B CT'. They obtained the
following result.

Theorem 1.1 ([5]). Let (H1)—(H,) be satisfiedthen for any ie {1,..., m} for
which (x); holds there exist,...&§ € Z\ {0} such that{Z'tzlnlg, In e NU{0}} =Z,
and for which for any. € {1,...,1} there exists a solution,ue C%(R?) to (1.2) with
o_ = 0j, 0. = 0jj), satisfying

(1.3) , lim dist(u.(x, ), Kp) = yIirjrg dist(u,(x, y), ’Ci,a) =0.

In fact, the assumption«; excludes the autonomous case, i.e);«(ii) cannot hold
whena is a constant. In [5], the authors checked th§ py perturbations analysis.

In [6], Alessio and Montecchiari extended the results in [BYl roved the exist-
ence of infinitely many periodic solutions to (1.1) of the Kweorbits type.

Theorem 1.2 ([6]). Let (Hy)—(H,) be satisfied and assume that conditio(k);
holds true. If ¢ € (c, c*) is a regular value of F then there exist J> 0, j, € Z\ {0}
and a solutionv, € C%(R?) to the problem(1.1) such that

) En(Y) = —(1/2)18yvp( -, VIFo@ + Flup(-, y)) = ¢, for any yeR;



INFINITELY MANY SOLUTIONS FORALLEN—CAHN EQUATION 53

i) F(vp(-,0))= F(vp(-, Tp)) = Cp, vp(+,0) € o, vp(+, Tp) € T'j, and Fvp(-,Y)) > Cp
for any ye (0, Tp);

i) vp(-,=y) =vp(-,y) and vp(-, y+Tp) = vp(+-, To—y) for any ye R, in particular,
vp( -+, Y+ 2Tp) = vp(+, y) for any (x, y) € R2,

Due to conservation of energy, the solutiog satisfies the Neumann boundary
conditions dyvp(X, 0) = dyvp(X, Tp) for any x € R, thus the solution iMR x [0, Ty]
can be extended to an entire one. Theorem 1.2 guaranteexitiienee of a brake
orbits type solution at levet, wheneverc, € (c, c*) is a regular value of. By Sard
Smale theorem and local compactness properties,othey proved the set of regular
values of F is open and dense irt[c*]. Then Theorem 1.2 provides in fact the exist-
ence of an uncountable set of geometrically distinct twoettigional solutions to (1.1)
of the brake orbits type.

Inspired by [7], we will show the existence of infinitely matgyered solutions
of (1.1).

For problem (1.2), we define the action functional

F@) = [ 5I400R + a0w(aeo) dx

on the space

E:= {q € HL(R) /R|Q(x)|2dx < +oo}.
Moreover one can consider the minima Bfon the subclas$ of E
Ir:= {q eE Xﬂrpoo q(x) =o_, Xﬂrpoo q(x) = a+}.
For problem (1.1), we also define the corresponding actiowtional

o 1 2 _
o= [ | [ 519u6c )7 + 2w, v dx-c| ay
on
H = {ue HL(R? |u(-,y) el for ae.y €R}.

Note that the solutions of (1.2) are the minimizersggt), i.e., u(x, y) = q(x) is one
dimensional, symmetric solution of (1.1). We gét:= {q € T" | F(q) = minr F(q)}.
We write z3 ~4 25 if z1(X) = z(x + jT) for somej € Z.

If IC/~ is finite, thenkC is constituted by isolated points, which takes an essential
role like (x); in [5]. Taking a similar argument, we get the minimizey on H; :=
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{ue M | limyo_dUu(-,Yy),0) = limy, s dUu(-,y),0) =0}, & € Z, such that

@(uy) = mingo M. Herem; = infyeyy, @(u) andC; = {u € He | p(u) = m;}, & € Z.
We meanu; ~y uy if there exists somg € Z such thatui(x, y + j) = ux(X, y).
If £/~ andC,/~y are finite, we set

Up:={ueH|D((-,—-L),q) =4, Du(-,L),q,) =48}
and
u’l = {U EH | D(U( ) _L)1 qn) =< 81 D(U(', L)a QO) =< 8}

Let us define an odd numb& € N, p=(py,..., pn) € ZN, 0 = (01,...,0n) € (0, )N
with oj # 0j_1 for all i =2,..., N. We also define

Hupo :={UeH|UX y—p)el, forae. &y)eR?i=1,...,N}

and look for multibump solutions on it.
Note that there are only two zeres. for W(t). Similar as in [5], here we need
the following assumption
(x): There exist9) # Ko C K, settingCj = {q(-—jT) | q € Ko} for j € Z, there result
(i) Ko is compact with respect to thel(R) topology;
(i) £ = Uz Kj and there exists somelp > 0 such that if j # ' then
d(’CJ, ]Cj,) > do.
Following the procedure of [7], we get the existence of indlyi many heteroclinic
solutions of multibump type.

Theorem 1.3. Let (Hi)—(Hy) be satisfiedthen (1.1) admits infinitely many solu-
tions distinct up to periodic transitions. More precisely Wwave
(i) the setk of periodic solutions 0f(1.2) is hot empty
(i) if the set/C/~y is finite then there exists somg € Z such that the sefC, of
heteroclinic type solutions ofl1.1) is not empty
(iii) if the setK) is finite, then for every odd number NN, p=(py,..., pn) € ZN
ando = (o1,...,0n) € {0,n}N with p —pi_1 > 4L ando; # o1 foralli =2,..., N,
the set/Cy,p,, Of multibump type solutions ofl.1) is not empty.

2. One dimensional symmetric solutions

In this section, we look for one dimensional symmetric Sohg of equation (1.1).
We consider the action functional

F@ = [ 51008 + aow(a0o) dx
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on the space
€= {a e Hi®) | [P ax < oo}
R

which is endowed with the Hilbert normig|| = (|q(0)[2+ f,|a(x)[2dx) "%, It's standard
to show thatF is weakly lower semicontinuous ok (see also [5]). Now one can
consider the subclass @, i.e.,

I:= {q €E | lm qx)=o-, lm q(x)= U+}-
There exists a minimizeq € I' such thatF(q) = minr F(q) := ¢, i.e., the classC :=
{g eI'| F(q) = c} is not empty. Moreover, each element fhis a classic solution
to (1.2).

Finally, by the definition ofl" and quadratical behavior & aroundo.., then the
following L2 metric is well defined o

172
d(ql,qz)=(/R |q1(x)—q2(x)|2dx) . Vo g el

Note that the metric spac& (d) is not complete and we will denote lyits completion.
We also need to define another metric Ion

D(a1, 02) = a1 — QellHiw), VY1, 02 € T

REMARK 2.1. As in [5], if g, € T such thatF(qg,) — c, then there existg €
such that, along a subsequen¢g, — ql/Hir) — O.

Clearly, for anyr > 0 there exists somb;, > 0 such that

(2.1) if qel’ and 7ir]1£||q —QllHiwy =1 then F(q) =c+ h.
[¢[S]

Let
H:={ue HL®R? |u(-,y) el for ae.yeR}.
We note that ifu € #, then the functiony — [;(1/2)|Vu(x, y)|? + a(x)W(u(x, y)) dx

is measurable and greater than or equat tior a.e.y € R. Therefore the functional
¢:H — RU {400} given by

_ 1 2 _
ow = [ [[R 2 IV, ) + aoW(u(x, ) dx c}dy. ue,
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is well defined and it can be rewritten in the more enlightgniiorm

o) = /I;UR %|8yu(x, )2 dx + F(u(-, y))—c] dy, ueH.
We see thatp(u) > 0 whenu € H, if q € K, then the functioru(x, y) = q(x) belongs
to H and ¢(u) = 0, i.e., the one dimensional solution of (1.1) is global mmal of
@ on H. If there are infinite elements iC distinct up to periodic transitions, then
Theorem 1.3 is true. Otherwise, we will analyze the case aher
(%) K is finite distinct up to periodic transitions.

3. Two dimensional heteroclinic solutions

In this section, we assumex)( K is constituted by isolated points that we will
enumerate by, &€ € Z. Also, setting

(3.1) inf D(Qg, g,) := o = 3ro,
§#n
we havea > 0, since by §) K is locally finite.

REMARK 3.1. As in [5], if (y1,¥2) CR andu € H are such that ikxc|u(-, y)—
qllHiwy =1 > 0 for a.e.y € (y1, y2), then

(3:2) o(u) = v2h, d(u(-, yo), (-, y2)).
Especially, corresponding g = «/3, let us fixhg > 0 such that
(3.3) if gel’ and 7ir}Cf||q =l i) = %O, then F(q) > c+ ho.
ge

If ue H, we obtain fory;, y, € R that

[ 1t ) - i,y ax = |
R R
< ly2— vl / /Iayu(x, y) dy|? dy dx

R JR

< 2¢(u)|y2 — yil.

2
dx

Y2
/ a,u(x, y) dy
Y

1

If ¢(u) < 400, then the functiony — u(-, y) is Holder continuous from a dense subset
of R. Following the procedure introduced by Alessio, Jeanjeah ldontecchiari in [5]
(see also [12]), we look for solutions to (1.1) depending othithe variablex andy.

Lemma 3.1. For any C > 0 there exists C> 0 such that if ue H N {p < C},
thend(u(-, y1), u(-, y2)) = C’ for any y, y» € R.
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Proof. Denotingy(y) = u(-,y),y € R, we can considey as a path ir¢t{. For any
y1, Y2 € R, by compactnesy ([yi, y2]) intersects only a finite number of seB, (),

EeZ. Let{B |i=1,...,k} be the family in{B(c) | B, () N y([y1, Y2I) # 9,
& € Z} such that ify(y) ¢ Uik=1 Bi, Y € [v1, ¥2], by (3.1), then d{( -, K)) > ro, and
dist(Bj, Bi11) >rg fori € {1,...,k—1}. Moreover, we have maidiam(B;)) < 2ro.

From (2.1) and (3.2) one obtains that

C > ¢(u) > v/2hg max{d(y (y1), ¥ (y2)) — 2kro, (k — 1)ro},
hence dg(y1), y(y2) < 3C/+/2hg + 2rp :=C'. O

The consequence of (2.1) and Lemma 3.1 is that they providenmation on the
asymptotic behavior of the functions in the sublevelspofsy — +oo.

Lemma 3.2. If u € H N {¢ < 400}, then there existté. € Z such that
du(-,y), gs,) > 0as y— +oc.

Proof. If ¢(u) < +o0, by the definition ofp(u), we haveF(u(-,y)) — ¢ as
y — %o0, i.e., liminfy_ . d(u(:,y),K) = 0. Since by Lemma 3.1 the path— u(:,y)
is bounded in#, there existé. € Z such that liminf_ .+ du(-,y),q.) =0. Or
else we assume by contradiction that limjinf.. du(-,y), g:,) >r > 0, then there
exist infinite many intervalsgf, s) C R, i € N such that d{(-, y), £) > r /2 for any
y € (pi, §), by the definition ofe and (3.2) we have

@(U)ZZ\/Zhr 'rE:‘i‘OO,
i=1

which is a contradiction. Similarly, one can prove {im ., d(u(-, y), g: ) = 0. []

By Lemma 3.2 we can restrict ourselves to consider the elemien?{ which
have prescribed limits ay — +oo. By periodicity it is sufficient to consider, for
& € Z, the classes

He = {u eH | lim du(-,y),q)= lim du(-,y) g)= O}
y—>—00 y—+o0

and

mes = inf o(u) and K¢ ={ueHs|pUu) =m}, §&eZ.

ueH;

Using suitable test functions, one can prove timt< +oo for any § € Z. Moreover,
we have the following lemma.
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Lemma 3.3. There holds m > /2hgrg for any & # 0 and m — +oo as
|&] = 4o00.

Proof. It's easy to see thaD(qo, g:) — +oo as |£| — +oo, by the definition
of H; and Lemma 3.1, It follows tham; — +oco as || — +oc. To prove the first
estimate, letté # 0 andu € H,, we haveD(u(-,y), o) - 0 asy — —oo while
liminfy_ . D(u(-, y), go) > D(qo, 0¢) > «. By the continuity ofu( -, y) there exists
(Y1, ¥2) C R such thatro < d(u( -, y), qo) < 2ro for any y € (y1, ¥2), by (), ro <
d(u(-, y), K), and using (3.2) we have(u) > +/2horo and the lemma follows. [J

By Lemma 3.3, there exists somee Z such that

3.4 m, = minme.
( ) n 5720 3

As we will see in the next lemma, the minimality property pfallows us to further
characterize the functions K, whose action is close tm,.

REMARK 3.2. We define

0 (X) it y>y+1,

Xety, WX, y) = {U(x, VVo+1-y)+d(X)(y—Yo) if Yo=y<Vyo+1,
u(x, y) if 'y <yo,
u(x, y) when y >y, +1,

Xey, (WX, y) = {U(x, Y)Y — Yo) + Qs(X)(Yo + 1—y) when yo <y <yo+1,
0: (X) when y < vy,

and set
p
ven@ =02 = [| [ Siauax+ FC, ) —c|ay.

Lemma 3.4. There exists & € (0,ro/2), and for anyé$ € (0, §p) such that if
u e He and g(u) < m, + As, then
@) if D(u(-,y),K) =4 forallye(s, p),then p—s=<ls;
(i) if D(u(-, Yo), do) = & then Du(-, y), do) <o for all y < yo;
(iii) if D(u(-, Yo), Gy) = & then Du(-, ), d,) <ro for all y > yo;
(iv) if £ € Z\ {0, n}, then D(u(-,y), g) > 6 for all y e R.

Proof. By (2.1),F(u(-,y)) >c+hs for y € (s, p), by (3.2) we havan, + 1, >
p(u) = hs(p —s), thus p —s = (1/hs)(m, + 4,) :=Is.

To prove (ii), we first fix some notations. Note Remark 2.1, fmy § > O,
by continuity there exists &5 with A4; — 0 as§ — 0, and§ € (0, V/24;), As <
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min{(ro/5)+v/ho/2, (1/4)m,} such that for anyu € #,
(3.5) if D(u(-,y),K)<38, then F@u(-,Yy)) <c+ As.

Let u € H, be such thatp(u) < m, + As and assume thays € R is such that
D(u( -, Yo), qo) =< 80, We definet(x, y) = X{,yo,l(u)(X, y), note thatl € #, and so
¢(G) = m,, then

m, < p(0) = (u) — 9%, (W) + ¢¥_y ()

and

Yo

O (U) < As + /

Yo—1

1 _
[ 31uc 30— o dx + o, )~ ay,
Since D(a(-,Y),t) = D(U(-,Yo).Go) = 101 Y & (YoL,0), then F(a(-,y))~¢ <, and
1 2
X (u) < A5+ 53 + As < 3hs.

Assume by contradiction that there exists< yp such thatD(u(-, y1), Qo) > ro, then
by continuity there existsy(, y;) C (Y1, Yo) such thatD(u(-, y), do(-)) € (ro/2, o) for
a.e.y € (v, Yp) and D(u(-, y;), u(-, yp)) = ro/2. Hence by (3.2)

r
3 = ¥_(u) > \/2h050 > ),

which is a contradiction. Similarly one can show (iii).

To prove (iv), we assume by contradiction that there exigpt€ R and& € R \
{0,n} such thatD(u(-, yo), 0) < 8. Letus = ngyo(u)(x,y), Uz = X¢ v, (U)(X, y) and note
thatu; € He while uy(- —&, -) € H,—¢. Sincem, = ming.o Mg, theng(us) + ¢(uz) >
2m,, and we have

o(U1) + @(U2) = p(U) — @0 H(U) + @™ (uU1) + @30T (uy)
< o(u) + @0 (u1) + )0 (u2)
<My 4 s + @0 H(Ur) + @ (uy).
Since D(u(-, ), G¢) = D(u(-, Yo), G¢) = and D(uz(-, ¥), gs) < D(U(-, Yo), G¢) = &

for y € [yo, Yo + 1], then ¢3¢ (u1) + @32 (u2) < 245 by (3.4), which leads to that
m, < 3ks, it's a contradiction. O

We are now able to prove the following compactness propefrtth® minimizing
sequence ofp in #,. It will be sufficient to use the direct method of the calcubfs
variation to show that the functiongl admits a minimum in clas$,.
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Lemma 3.5. Let (un) C H,, ¢(un) = m, be such that Qun(-, 0),K) > § for any
n € N, then there exists ,ue K, such that up to a subsequencg + u, as n— oo
weakly in H. (R?). Moreoveyr D(un(-, y), u,(-, y)) — O for a.e. ye R as n— ooc.

Proof. Let (n) C H, be such thafp(u,) < m, + As; for anyn € N. Assume that
lunllL= < Ro, indeed otherwise we can consider the minimizing sequehce=
max{min{un, Ro}, —Ro}. SinceD(uy(-,0),K) > §, by Lemma 3.4 we hav® (un(-, y), qo) <
rofory <—lsandD(un(-, y), q,) <rofory>l;.

Since ¢(un) < m, + As, there exists a functiom,, € K, such that along a sub-
sequencal, — u, in HY(Q) for every @ € R? (refer to [5]), andD(u,(-, y), do) <o
for y < —ls and D(u,(-,y),q,) <ro for y > 1;. By Lemma 3.2 we conclude that
D(u,(-,y), o) = 0 asy - —oo and D(u,(-, y),q,) = 0 asy — +oo, i.e., u, € H,.
By weak semi-continuity ofp (see[5]), we havep < m,, thusu, € ,.

To prove the last argument, we first claim théf(un) — ga%z(un) for Vy; < y» € R.

Indeed by semicontinuitypy?(u,) < liminfn_.. ¢J?(u). Assume by contradiction
that there exists a intervaly, y») such that lim sup. .. (¢3’(un) — ¢32(u,)) > & > O.
By the continuity ofy — u(-, y), there existsBy,(Yo) C (Y1, Y2) and a subsequence
(Un;) C (un) such thatgg, (y)(Un;) — @B, (v0)(Uy) = €0/2 @sj — oo. Then

(p))//f(um) - (p))//f(un) = w(yleZ)\Bhg(yO)(unJ) - (p(ylx)’Z)\Bho(yO)(u’I)
+ thO(YD)(unj) - (thO(YD)(u'])
and lim infj%o(w,’,’f(uni) — @3(U,)) = €0/2, it's a contradiction.

Sincey; < Y, is arbitrary, lety; — Y, by the definition ofp we haveF (un(-, y)) —
F(u,(-, y)) for every fixedy € R asn — oo. Let

Xy := X(u(-, y)) = supix € R [ min|u(X, ) F 0| = po},

where pg = (1/6)|lo+ —o_|. Since F(un(-, y)), F(u,(-,y)) < 400, for Ve > 0O, there
exists a constarty, . > 0 related toy and e such that

1
(356) [ Sl + a0W(un(x, y) dx < awee
[X—=Xy|>ly,e
and
1 2
@7 /| o Il 00w 6, ) dx < awer
X=Xy|>ly,-

Observing thatW(u(x, y)) > wolu(X, y) — Q(x — Xy)|? for any |[x — Xy| > Iy,



INFINITELY MANY SOLUTIONS FORALLEN—CAHN EQUATION 61

then we have

(3.8) / lun(X, ¥) — Q(x — Xy)[?dx < &
X=Xy |>ly

and

(3.9) [ty - Q- xR dx <.
[Xx=Xy|>ly

Sinceuy( -, y) = u,(-,y) in L*(R) and by (3.8), (3.9) we haven(-,y) = u,(-,y)
in L%(R). By (3.6), (3.7) we havef, W(un(X, ¥)) dX — [ W(u,(X, ¥)) dx, and since
F(un(:,y)) = F(u,(-,y)), we obtainfR|axun(x, y)[2dx — fR|3xu,,(x,y)|2dx. Together
we have|lun(-,y) —u,(-, Ylniw) = 0, i.e., D(Un(-, y), Uuy(-,y)) = 0 asn - co. L[]

In fact, u, € C3(R?) is a classical solution to (1.1) witfiu, || ~g2 < Ro (see [5]).
Lemma 3.5 admits two dimensional heteroclinic solutiongltd), if the set/C,, is in-
finite distinct up to transitions, then Theorem 1.3 holdsheédwise, we will analyze
the case where
(xx) K, is finite distinct up to transitions.

4. Multibump type solutions

In this section, we assume)(and ). Sinceu,(x, y+0), Y6 € R are solutions
to (1.1), and df¢, g,) > 3ro for gz, g, € K, £ # n, we define

n

K2 = {u ek,

D(U(-. 0), ) = 31of.

REMARK 4.1. LetJ = {D(u(-,i),qo) | u€ K, i €Z}, by (xx) the setJ is
countable and so the sét = (0, rg) \ J is non countable, dense subset of r(§),

Lemma 4.1. For all § € A there exists aA € (0,rg) such that if ue #, satisfies
D(u(-, &), qo) = 6 for some¢ € Z, thenp(u) > m, + A.

Proof. By contradiction assume that there exists a sequapce 7, such that
¢(up) = m, and D(un( -, &), do) = 8 for someé € Z. Sinced < ro, by Lemma 3.5
there exists a1 € K, such that up to a subsequengg-,y) — u(-, y) in H(R). Then
D(u(-, &), qo) = é andu € K,,, which contradicts with the assumptidne A. O

REMARK 4.2. Foru e HL.(R?), letT(x,y) = u(x,—Y), (x,y) € R?, and set{, =
{ue# |GeH,) We havep(u) = ¢(t) and so that inf, ¢ = m,. Settingk, =
UeH,|puy=m}={ueH|uekK}), J=(Du(-,i)q,)|uek,ieZz and
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A = (0,rp) \ J, and arguing as in Lemma 4.1 one can prove that fos @l A there
exists aA € (0, 4) such that ifu € 7-_[,7 satisfiesD(u( -, &), g,) = 8§ for someé € Z,
thenp(u) > m, + A.

If (*x) holds, we can choosée AN A and A € (0, ro) such that ifu € H, and
D(u(-, &), qo) = é for someé € Z, oru € H, and D(u(-, &), o) = & then

(4.2) p(u) >=m, + A.

Now let us fix some constants, lét > 0 be such that\ < A/2. Lete € (0,5) be
such thati, < A/8. LetL € N be such that. > (m, + f\)/hg, whereh, is given by
(2.1) and such that there existsug € I, with

D(uy(-, —L), qo) =4, D(uy(-, L), ) =36.
We define
Up={ueH|Du(-, —-L),q) <6, Du(-,L),q,) =<3}
and

U,={ueH|Du(-, -L),q,) <8 Du(-,L),q) <8}

Lemma 4.2. If u € U,, o € {0, n} satisfiesp?;, (u) <m, + A, then there exist
|~ e[-2L, —L] and IT €[L, 2L] such that

D(-,17),q) <e and Du(-,17),q)<e if o =0
or
D(u(-,1%),q,)<e and Du(-,17),q)<¢e if o=n.

Proof. We consider the cage= 0, the other case follows. By contradiction, as-
sume that there exist & € Up such thatg?, (u) <m, + A and D(u(-, Y), ¢o) > &
for all y € [-2L, —L]. Then, by (2.1) we have~(u(-,y)) > h. + c for all y €
[-2L, —L], therefore

m, + A > ¢ (u) > 975 (u) > Lh,,

which is a contradiction with the choice df. In the same way, we can prove the
existence of * € [L, 2L] such thatD(u(-, "), q,) < . O
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Then we obtain

Lemma 4.3. If u €l,, o € {0, n} satisfiesp?5, (u) <m, + A, then
D(u(-,—L), ) <86 and D(u(-,L),q,)<dé if oc=0

or
D(u(-,—-L),q,) <86 and Du(-,L),q)<d if o=n.

Proof. We consider the cagse= 0, the other case follows similarly.
Let u € Uy with @25, (u) <m, + A and letl~ e [-2L, —L] andI* € [L, 2L] be
given by Lemma 4.2, we sét = xg,- o X;H(u) thend € #H,. SinceD(U(-, y), q,) <

D(u(-,1%),q,) <& wheny e (I, + 1), theng|. T(0) < A, and alsop] () < A.,
we obtain

o) < ¢?5, (U) + 24, <m, + A +20, <m, + A,
by the choice ofs and A.
Setting U(x, y) = G(x,y + L), U € H, with @) = ¢(@) < m, + A and

D(u(-,0),qo) <3, by (4.1) we exclude the cag(u(-,0),qo) =4, i.e., D(U(-, 0),q0) < §.
So we concludeD(u( -, —L), qo) < §. []

One can see that Lemma 4.3 excludes the case that minimizgins Ipe on the bor-
der of the set. We now define the classes of functions in whieHaok for multibump
solutions. Let us defindl € N, N is odd,p = (p1,..., pn) € ZN, 0 = (01, ..., 00) €
{0, n}N with 0; # o;_1 foralli =2,..., N. We set

Hupo ={UEH |UX Y —p) €U, forae. & y)eR? i=1,...,N}
and my, po = infy, o

REMARK 4.3. Given anyi € {1,..., N}, we define

. _Juyx,y—p) if o =0,
wix, y)‘{un(x, b—y) if o —n.

By Lemma 4.2, there exidf € [pi —2L, pi —L] and ;" € [pi + L, pi + 2L] such that
D(wi(-,17),0s) < ¢
and

D(w|( ! Ii+)’ q0i+1) =e.
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Settingw; = x, |- o X:+1 i+ (wi), then we havep(ii) < m, + 2A,.

Lemma 4.4. If u € Hy,p, satisfiesp(u) = my p,, then (pg‘fzzLL(u) <m, + A,

Vi=1,...,N.

Proof. We define

li={i e {L,.... N} | P20 () > m, + A},
IT=(iefl,...,N}\I]i+1el},

and
I"={ie{l,...,N}\I|i—1€el}.

It's obvious that Card(* U | ) < 2 Cardl.

Applying Lemma 4.2 for evenyi € |, we can letl” € [pp — 2L, p — L] and
I¥ € [p + L, pi +2L] be the corresponding real numbers. Let us consider the sets
of consecutive intervals

p1+ P2

Jl={yeR|ysT}, JN={yeR|sz},

2

J = yeR|pi71—+pi§y§w , i=2,...,N—-1,
2 2
and note that* € J,i =1,..., N.
For anyi € {i,..., N}, we replaceu in J; with the function
Wi if iel,
Xon 1~ © X;HH(U) if iel-nNnI™,
0= X, (U) if iel \I1T,
X:+1 1+ (U) if ielt\I1-,
u if otherwise.
Note thatl € Hn,p,» and sog(l) > ¢(u). Moreovert = u if and only if | =9, i.e.,
the lemma holds if and only = @.
If i €1, then

i +2L i +2L o ~ 2L ~
‘ngzL (U) = ¢,§sz (wi) =m, + 2x, < gﬂgfm_ (u) + 2x, — A.
Ifiel " UIlT, then

i +2L ,~  +2L
Wg,sz @ =< Wg,sz (u) + 2.
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Finally, letting 1€ = {1,..., N}\ (1 Ul-UI*).
If1el® 2#1° then

(0) = P (@) + Y eh @+ Y. eh @)
iel iel-Ul+t
< @) + (2», — A) Card() + 21, Card( ~ U I ).
If Nel® N—1:#I¢ then
o(0) = @ o (@) + Y @R ZH @+ > P ()
iel iel-Ul+
< o(u) + (21, — A) Card() + 22, Card( ~ U I *).
In any case, we have

(1) < o(u) + (21, — A) Card() + 24, Card(~ U 1 7).

Since Card(~U1*) < 2Card(), we have thal must be empty, otherwisg(() < ¢(u),
it's a contradiction because is a minimizer. O

Theorem 4.1. Assume tha(x) and (xx) hold, then for every odd number M
N, p=(p1,--., pn) € {0, n}N, where p # pi_1 > 4L and o; # oi_1, there exists a
U € Hn,po Such thatp(u) = my p,. Moreover u is classical solution of(1.1) with

[ullL~®2 =< Ro.

Proof. Let (n) C Hn,p» be such thatp(u,) - mnp., by Lemma 3.6 there
exists a subsequence still notad,) and au € H such thatu, — u in H. By lower
semicontinuity ofp, ¢(u) < my .. By lower semicontinuity of theH! norm, we have

D(U( ’ _L)1 QO) < ||rI;T1>|£f D(un( ] _L)v QO) = )

and

D(u(-, L), ay) = ”rr]liogf D(un(-, L), gy) =34,

thereforep(u) = My, p,o.
By Lemmas 4.4 and 4.3, we hal@(u( -, pp — L),0,) <8 and D(u(-, pi +
L), 0s.,) <6 foralli =1,..., N. Here we argue as in Lemma 3.5 that

DMU(+,¥),0s)<ro for y<p-—L
and

D(U( ' y)’ q0i+1) =To for y>p+ L.
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By Lemma 3.2 we have

DU(-,y),q)—0 for y<p—L
and

D(u(-,y).9,) >0 for y> pny+L.

Using standard regularity arguments, we can concludeuttmlongs toC(R?) and
it is a classical solution to (1.1) withul|lcg2) < C (refer to [S] and [7]). ]
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