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Abstract

We answer Mark Kac's famous question [13], “can one hear thapeshof a
drum?” in the negative for orbifolds that are spherical spéarms. This is done
by extending the techniques developed by A. Ikeda on lensespto the orbifold
setting. Several results are proved to show that with gentestrictions on the di-
mensionalities of orbifold lens spaces we can obtain iripitmany pairs of iso-
spectral non-isometric lens spaces. These results aregimegralized to show that
for any dimension greater than 8 we can have pairs of isospetn-isometric orbi-
fold lens spaces.
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1. Introduction

Given a closed Riemannian manifol®i( g), the eigenvalue spectrum of the asso-
ciated Laplace Beltrami operator will be referred to as thecgum of M, g). The
inverse spectral problem asks the extent to which the spacéncodes the geometry
of (M, g). While various geometric invariants such as dimensiodume and total
scalar curvature are spectrally determined, numerous geanof isospectral Riemann-
ian manifolds, i.e., manifolds with the same spectrum, stiwat the spectrum does not
fully encode the geometry. Not surprisingly, the earliesiraples of isospectral mani-
folds were manifolds of constant curvature including flai {§14]), hyperbolic mani-
folds ([22]), and spherical space forms ([10], [11] and [8) particular, lens spaces
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are quotients of round spheres by cyclic groups of orthogtraasformations that act
freely on the sphere. Lens spaces have provided a rich sofiisespectral manifolds
with interesting properties. In addition to the work of lkedited above, see the recent
results of Gornet and McGowan [9].

In this paper we generalize this theme to the category of Rigmnan orbifolds.

A smoothorbifold is a topological space that is locally modelled on an orb#cgp
of R" under the action of a finite group of diffeomorphismRiemannianorbifolds
are spaces that are locally modelled on quotients of Rieraanmanifolds by finite
groups of isometries. Orbifolds have wide applicabilityy £xample, in the study of
3-manifolds and in string theory.

The tools of spectral geometry can be transferred to théngetif Riemannian
orbifolds by using their well-behaved local structure ($ég [20] and [21]). As in
the manifold setting, the spectrum of the Laplace operatos compact Riemannian
orbifold is a sequence 8 A; <1, < A3 =<...-71 co where each eigenvalue is repeated
according to its finite multiplicity. We say that two orbiflsl are isospectral if their
Laplace spectra agree.

The literature on inverse spectral problems on orbifoldess developed than that
for manifolds. Examples of isospectral orbifolds includgrg with boundary ([1] and
[3]); isospectral flat 2-orbifolds ([6]); arbitrarily laggfinite families of isospectral orbi-
folds ([19]); isospectral orbifolds with different maxii&otropy orders ([16]); and
isospectral deformation of metrics on an orbifold quotieha nilmanifold ([15]).

In this article, we study the spectrum of orbifold lens spadee., quotients of
round spheres by cyclic groups of orthogonal transformatithat have fixed points
on the sphere. Generalizing the work of Ikeda (see [10], |rid [12]) we construct
the generating function for the spectrum and systemaficahstruct isospectral orbi-
fold lens spaces. Section two introduces the orbifold lgreces and their generating
functions. In section 3, we will develop the proofs of our maheorems. We will
first prove:

Theorem 3.1.6. () Let p>5 (alt. p > 3) be an odd prime and let nx 2
(alt. m > 3) be any positive integer. Let & p™. Then there exist at least twg — 6)-
dimensional orbifold lens spaces with fundamental groupsrder p" which are iso-
spectral but not isometric.

(i) Let pi, p2 be odd primes such that & p; - p2 > 3. Then there exist at least
two (q — 6)-dimensional orbifold lens spaces with fundamental groopsrder p - p2
which are isospectral but not isometric.

(i) Let g = 2™ where m> 6 is any positive integer. Then there exist at least two
(g — 5)-dimensional orbifold lens spaces with fundamental groap®rder 2™ which
are isospectral but not isometric.

(iv) Let g= 2p, where p is an odd prime and p 7. Then there exist at least two
(q — 5)-dimensional orbifold lens spaces with fundamental groap®rder 2p which
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are isospectral but not isometric.

To prove these results we proceed as follows:
(1) Depending on the number qf (alt. p;, p,) divisors ofq = p™ (alt.q = p1 - p2),
we reformulate the generating function in terms of ratiopalynomial functions.
(2) Then we classify the number of generating functions thatwill get by imposing
different conditions on the domain values of these polymbrhinctions.
(3) We prove sufficiency conditions on the number of genegafunctions that would
guarantee isospectrality for non-isometric orbifold lemmces.

The techniques used to prove these results parallel sirtglainiques from the
manifold lens space setting used in [10].

Generalizing this technique, we will get our second set ofnmesults:

Theorem 3.2.5. Let We {0, 1, 2,...}.
(i) Let P>5 (alt. P> 3) be any odd prime and let m 2 (alt. m> 3) be any positive
integer. Let g= P™. Then there exist at least twlq + W —6)-dimensional orbifold lens
spaces with fundamental groups of ordef® Rvhich are isospectral but not isometric.
(i) Let P, P, be two odd primes such that-g P, - P, > 33. Then there exist at least
two (q + W — 6)-dimensional orbifold lens spaces with fundamental groap®rder
P; - P, which are isospectral but not isometric.
(iii) Let g = 2™ where m> 6 is any positive integer. Then there exist at least two
(g + W — 5)-dimensional orbifold lens spaces with fundamental grooporder 2™
which are isospectral but not isometric.
(iv) Let q = 2P, where P> 7 is an odd prime. Then there exist at least t¢ep+
W — 5)-dimensional orbifold lens spaces with fundamental groapsrder 2P which
are isospectral but not isometric.

A consequence of this theorem is that for every integer 9, we can find a pair
of isospectral non-isometric orbifold lens spaces of dish@mx.

In Section 4 we look at specific examples that show what thierdifit generating
functions would look like and the types of orbifold lens spad¢hat correspond to each
generating function.

2. Orbifold lens spaces

In this section we will generalize the idea of manifold lepsaes to orbifold lens
spaces. Manifold lens spaces are spherical space forms wieenedimensional sphere
S" of constant curvature 1 is acted upon by a cyclic group of fpxeiht free isometries
on S". We will generalize this notion to orbifolds by allowing tlugclic group of iso-
metries to have fixed points. For a more general definitionrbifalds see Satake [17]
and Scott [18]. For details of spectral geometry on orbgpldee Stanhope [20] and
E. Dryden, C. Gordon, S. Greenwald and D. Webb in [5]).
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To obtain our main results we will focus on a special subfgnai lens spaces.
Our technique will parallel Ikeda’s technique as developedl0].

2.1. Preliminaries. Let q be a positive integer that is not prime. Set
-1

qT if q is odd,

Jo =

if g is even.

NI

Throughout this article we assume thgt> 4 and thatq is not prime.
For any positive integen with 2 < n < gy — 2, we denote byi(q, n) the set of
n-tuples @i, ..., pn) of integers. We define a subskf(g, n) of I(q, n) as follows:

lo(d, n) = {(Pr, ..., pn) € [(a, n) | pi # £p; (Modq), 1<i <j<n,
g.c.d(p1, ..., pn, Q) = 1}.

We introduce an equivalence relationlitg, n) as follows: (i,..., pn) is equivalent
to (s1,..., %) if and only if there is a numbel prime toq and there are numbers
g € {—1, 1} such that p4,..., pn) is a permutation ofeylsy,..., e\ls,) (modq). This
equivalence relation also defines an equivalence relatipiy@, n).

We setl(q, n) = (g, n)/~ and lo(q, n) = Io(q, n)/~.

Let k = gp — n. We define a mapw of lg(g, n) into lg(q, k) as follows:

For any elementf, ..., pn) € To(q, n), we choose an elementy(..., g) € lo(q, k)
such that the set of integers

It is easy to see that this map is a well defined bijection.
The following proposition is similar to a result in [10]:

Proposition 2.1.1. Let Ip(g, n) be as above. Then

e q—lo(‘*’),

n

where (%) = 1 if gon = 0, and

|
Qy___ % otherwise.
n n! (go — n)!
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Proof. Letly(q, n) be as above. Consider a subﬁ’@m, n) of Io(g, n) as follows:

(@ n) = {(p1, ..., Pn) € lo(g, n) | at least one of they is co-prime toq}.

It is easy to see that the equivalence relationig(q, n) induces an equivalence relation
on Ig(g,n). Since we eliminate classes where none of ptis is co-prime tog, we get

[lo(a, NI = [15(q, NI,
where I4(q, n) = [(g, n)/~. Now consider a subsdt)(q, n) of (g, n) as follows:
5@, M) = {(Pr, .-, Pn) € Tp(@, M) [ L= p1 <+ < Pn =< o).

Then it is easy to see that any elemenﬂ~’5(t|, n) has an equivalent element ﬁg(q, n).
On the other hand, for any equivalence classlj(, n), the number of elements in

Fg(q, n) which belong to that class is at mast Hence we have:

o 1= 15 mi= i mi =5 (1) = (%),

n—-1 Qo \ N
This proves the proposition. []

Lemma 2.1.2. Let g= p™ or g = p;- p2, where p py, p, are primes. Let D be
the set of all non-zero integers mod q that are not co-primg.td’hen|D]| is even if
g is odd and|D] is odd if q is even.

Proof. Forq = p™.

If q is odd, thenp is an odd primeg/p = p™* which is an odd number. There-
fore the number of elements D, (p™*—1) is even.

If g is even, thenp = 2. q/p = 2™ is even. So the number of elements [n
(2™-1 - 1), is odd.

Forq = p1-p2 (P1 # P2).

If q is odd, then bothp; and p, are odd primes. The number of elementsDn
is (@/p1 +q/p2—2) = (p2 + p1— 2) which is even sincep; + p is even.

If q is even, then one of they;’s is 2 and the other is an odd prime. Assume
p1 = 2. So, the number of elements I is (q/p1 +q/P2—2) = (P2 + P1—2) =
(p2 + 2—2) = p,, which is odd.

This proves the lemma. O

We will say that|D| = 2r if |D| is even; andD| = 2r — 1 if |D] is odd, wherer
is some positive integer. It is easy to see thatDf is even, then exactly members
of D are less tham. If |D| is odd, thenr —1 members ofD are strictly less than
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0o and one member ob is equal toqy (recall that for everg, we setqy = /2, and
for odd q, we setqy = (g — 1)/2).
With these results we now obtain a better lower bound|fefg, n)|.

Proposition 2.1.3. Let Io(q, n), 14(a, n), I5(q, n) and 1%(g, n) be as in Propos-
ition 2.2.1 Let k= gy —n. Then

T EDS n—ft(qrfjllj{)(;),

t=u

where u=r —k ifr >k and u=0ifr <k, and r is as defined above.

Proof. The number of ways in which we can assign values togfsein (1 =
P1, P2, - - -, Pn) € 15(q, n) such thatt of the p;’s are not co-prime toq is

Qo—1—-r\/r
n—-1-t)J\t)
On the other hand for any equivalence class, n) with t of the p;’s not being

co-prime toq, the number of elements which belong to that class is at mest. So
the number of such possible classes is at least

1 (Q—1—-r\/r
m(n_l_t)(t)'
Now if r > k, this would mean that > gg—r, orn—1> gp—1—r. This means that
t cannot take any values less thar- k, since that would mean that we are choosing
(n—1-1), a number larger thargd —1—r) from gp — 1 —r and that is not possible.
So, the smallest value fdrin this case can be — k.

On the other hand, if <k, thenn <qgy—r,orn—1=<qgy—1—r. This means
that it is possible for us to choosetuples in fg(q, n) with all values being co-prime
to g. Thus, the smallest value farwould be 0 in this case.

It is obvious that the maximum valuecan take isr since (1,pz, ..., pn) cannot
have more tham values that are not co-prime @ Now, adding up all the degrees
for different values oft we get

L1 [go—1-r\/r
[lo(a, M) = [15(q, n)| = —( )( )
° 0 ;n—t n—1-t )\t

whereu=0if r <k andu=r —kif r > k.
This proves the proposition. O
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DEFINITION 2.1.4. (i) Letq be a positive integer angt a primitive g-th root
of 1. We denote byQ(y) the g-th cyclotomic field over the rational number fiet@
and denote bydy(2) the g-th cyclotomic polynomial

q-1
Dq(2) = Z z.
t=0

Let A be the set of residues maylthat are co-prime ta. We define a map)q of
lo(q, k) into Q(y)[z] as follows:

For any equivalence class in(q, k), we take an elementy, . .., o) of Io(q, k)
which belongs to that class. We define

K
Yok - - -, ad@ =Y []e-v*Hz-r ).
leA i=1

This polynomial inQ(y)[Z] is independent of the choice of elements which belong to
the class qj, ..., gk]. Therefore, the map is well-defined.
(i) Given q = p™, we define

Bj = {x (modq) € Z*: p! | x, p'*™* § x}.

We define the maps«gf( of lp(q, k) into Q(y)[Zz] as follows:

k
oMan ... ad@ =Y [J@-r"e—r 9.
|€Bj i=1

(i) Now assumeq = p; - p2. We define the following sets of numbers that are not
co-prime toq.

B={xp|x=12,...,(p2—1)}
and
C={xp|x=12,...,(p1—1).
We define mapsyqx and g« as follows:
k
ag k(G - - -, Al (2) = ; E(Z -y (z—y )

and

k
Ba.x([0, - .., qI)(2) = Z l_[(z_ yq”)(z_ V*Qil).

leC i=1
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Since ¢ — Y4z — y~9') = (y%'z — 1)(y~%'z — 1), the following proposition is
easy to see.

Proposition 2.1.5. If we put

2%
aq k([ -, AD(2) = Z(_l)i by 221,
i=0

2k
Bax(lan, -, AD(@) = Y (-1 a2,
i=0

then we have
() & = ax-i, bi,j = bokiy.j, b =ba-i and ¢ = cxj,
(i) ao = |A], bo,j = |Bj|, bo = |B| and @ = |C]|.

2.2. Orbifold lens spaces and their generating functions. Let q be a positive
integer andpy, ..., pn be n integers modq such thatg.c.d(py, ..., pn,q) = 1. We
denote byg the orthogonal matrix given by

R(p1/q) 0
g= ,
O R(pn/q)

_ ( cosZx6O sin2r0 ; — (g
whereR(0) = (_ Sin 210 oS 20 ) Theng generates the cyclic subgro@= {g'},_,

of orderq of the orthogonal grou(2n).
We define a lens spade(q: pi,-- -, pn) as follows:

L@: p1, ..., pn) = /G,

L(q: p1,..., pn) is a good smooth orbifold witts*"~* as its covering manifold.
Let = be the covering projection 08"~ onto $*"~1/G

7 s LG,

Since the round metric of constant curvature oneSBh! is G-invariant, it induces a
Riemannian metric or8*"1/G.
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We emphasize that, in contrast to the classical notion of lgpace, we do not
require that the integerg, be co-prime toq, and thus we allow the lens spaces to
have singular points. In particular they are good orbifoldenceforth, the term “lens
space” will refer to this generalized definition.

Proposition 2.2.1. Let L=L(Q: p1,..., pa) and L' = L(q: s, ..., s,) be lens
spaces. Then L is isometric td If and only if there is a number | co-prime with g and
there are numbers; & {—1, 1} such that(ps,..., p,) is a permutation ofe;lsy, ..., enlsn)
(mod q).

Proof. AssumeL is isometric toL’. Let ¢ be an isometry betweeh and L’.
Then ¢ lifts to an isometryg of S*1. In other words is an orthogonal transform-
ation that conjugate§ and G’ whereL = $"1/G and L’ = $"1/G".

So ¢ takesg, a generator ofG, to g', a generator ofG’. This means that the
eigenvalues ofy and g' are the same. This means that egghis equivalent to some
Is; or —Isj (mod q). That means ffy, ..., pn) iS a permutation of€lsy, ..., enlsn)
(modq), forg e{-1,1}, (i=1,...,n).

Conversely, assume that there exists an intéger-prime withq and numberg €

{(-1,1 (i =1,...,n) such that py,..., pn) is a permutation of glsy, ..., enls,)
(mod q).
Note that the isometry 08"~1 onto S*"~! defined by the map
(Z1, o 0 Ziy oo Z0) = (ZoO) o0 Zoi)s - - o0 Zo()s
whereo is a permutation, induces an isometry Iofg: s;, ..., Sy) onto L(Q: Sy, - - -»
So(i)s - - -+ So(my)- Sinceg’ is also a generator o', the lens spacé(q: Isy, . . ., Isy) is

identical toL(q: sy, ..., Sh).
Now the above isometry induces an isometryLdf: s;,...,s,) onto L(Q: elsq, ...,
enls,). This means that’ = L(q: s,..., ) is isometric toL(q: elsy, .. ., elsy).

But (eilsy, ..., enlsy) is simply a permutation of g, ..., pn) (mod q). Therefore
L(Q: p1,-.., pn) is isometric toL(q: elsy, ..., eilsy), which, in turn, is isometric
to L(g: s, ..., S). This proves the converse. []

For any f € C*°(L(g: ps1,..., pn)), We define the Laplacian on the lense space as
A(r* f) = n*(Af). We construct the generating function associated with_eqglacian
on L(g: p1,..., pn) analogous to the construction in the manifold case (seg [10]
and [12]).

Let A, A and A denote the Laplacian o1, L(q: p1,..., pn) and R?,

respectively.
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DEFINITION 2.2.2. For any non-negative real number we define theeigen-
spacesE,\ and E; as follows:

E.={f eC®(S )| Af =aif),
E, ={f eC®L@Q: pr..., pn) | AF = Af}.

The following lemma follows from the definitions ak and smooth function.

Lemma 2.2.3. Let (E;)c be the space of all G-invariant functions & . Then
dim(E;) = dim(E)g.

Let Ag be the Laplacian ofR?" with respect to the flat K&hler metric. Set =
izil X2, where i, Xz, . . ., Xzn) is the standard coordinate system RA'.

For k > 0, let P¥ denote the space of complex valued homogeneous polynomials
of degreek on R?". Let H¥ be the subspace d?* consisting of harmonic polynomials
on R?",

HK={f e PX| Apf =0}.
Each orthogonal transformation B" induces canonically a linear isomorphism Pf.

Proposition 2.2.4. The space K is O(2n)-invariant, and P¢ has the direct sum
decomposition PK = Hk@r2P*2. The injection map:i $" 1 — R?" induces a linear
map i*: C*(R™) — C>®(S"1). We denotei(H¥) by HX.

Proposition 2.2.5. # is an eigenspace ofA on $"! with eigenvalue { +
2n —2) and > 2, H¥ is dense in €(S*"1) in the uniform convergence topology.

Moreover HX is isomorphic to H. That is i*: HX = 7.

For proofs of these propositions, see [2].
Now by Lemma 2.2.3 and Proposition 2.2.5, we get

Corollary 2.2.6. Let
L(@: Py, .-, pn) = S /G
be a lens space an@it'é be the space of all G-invariant functions #*. Then
dim Exion 2) = dimHK.

Moreover for any integer k such thadlim H'é # 0, k(k + 2n — 2) is an eigenvalue of
A on L(Q: pu, ..., pn) with multiplicity equal todim 7, and no other eigenvalues
appear in the spectrum oA.
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DEFINITION 2.2.7. Thegenerating function Kz: py, ..., pn) associated to the
spectrum of the Laplacian oh(q P1s---s pn) is the generating function associated to
the infinite sequencédimH& ), i.e.,

Fo(z: pr. -, o) = ) _(dimHE)Z<.
k=0

By Corollary 2.2.6 we know that the generating function deiees the spectrum
of L(q: p1,..., pn). This fact gives us the following proposition:

Proposition 2.2.8. Let L=L(g: py1,---, pn) and L' = L(Q": sy, .- -, s,) be two
lens spaces. Letqfz: py, ..., pn) and Ry(z: sy, ..., s,) be the generating functions
associated to the spectrum of L and, kespectively. Then L is isospectral td If

and only if R(z: p1, ..., pn) = Fg(z: s, .- -, Sh)-

The following theorem ([10] and [11]) holds true for the ddbdl lens spaces as well.

Theorem 2.2.9. Let L(Q: p1,..., pn) be a lens space andqfz: py,..., pn) the
generating function associated to the spectrum @: Lps,..., pn). Then on the domain
{ze C ||z < 1},

1-7
Fq(ZI P, ..., pn - Z I_L l(Z—J/p‘I)(Z_V pi|)

Corollary 2.2.10. Let L(Q: p1,-.-, Pn) be isospectral to [q': s1,..., ). Then
a=0a.

Now let £(q, n) be the family of all (& — 1)-dimensional lens spaces with funda-
mental groups of ordeq, and letZy(q, n) be the subfamily of£(q, n) defined by:

Lo(@,n) = {L(Q: Py, - - -, pr) € £(a,n) | pi # £p; (modq), 1<i < j <n}.

The set of isometry classes @f(q, n) is denoted by£(q, n), and the set of isometry
classes ofZo(q, n) is denoted byZo(q, n).

By Proposition 2.2.1, the map(q: ps,.--, pn) = (P1,-- -, pn) of Lo(q, n)
(resp.£(q,n)) onto Io(q,n) (resp.i(g,n)) induces a one-to-one map betwe&p(q, n)
and lo(q, n) (resp.£(qg, n) and I(q, n)).

The above fact, together with Proposition 2.1.3, gives @sfthlowing:

Proposition 2.2.11. Retaining the notations as abgwee get

|Lo(d, n)| = Xr: n—it(qr?:ll:tr)(;)

t=u
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where u=r —k if r > k, and u=0if r <k; r is the number of residuesiod q that
are not co-prime to q and are less than or equal ¥ q

Note that by Proposition 2.2.1, we also get that
catar il = o ()
Co

n

Next, we will re-formulate the generating functidfy(z: ps,..., pn) in a form that will
help us find isospectral pairs that are non-isometric.

Proposition 2.2.12. Let L(q: py, ..., pn) be a lens space belonging (g, n),
k=qo—n, and letw be the map of (g, n) onto ly(q, k) defined inSection 2.1 Then
@) Ifg=P™ where P is a primgwe have

1-2) n Yak(py - .., (@A -2)
(1-27 ®q(2)

L oD, - P~ z2>}

1
Fq(z: pl,..., pn): a{

q
L G @ o

j=1

(i) If g=Py-P,, where R and B are primes we have

(1-29) n Yo xw(pa, - -, pa])(D(1 - 2°)

(1-2= Dq(2)

agk(w(py, - .-, pPa])(D(1 - 2°)
(@p,(2))P1(1 — 2)Pr1

Bak (P, - ., PR~ zZ)}
@n@)A-27* [’

1
Fq(z: pr, ...y pn) = a{

+

+

whereyrg k, o i, 2gk and Bqk are as defined irDefinition 2.1.4and ®(z) = Ef)‘:lo Z.

()
q.,k’
Proof. We choose integexg, . .., gk such that the set of integers
{p].! _p11 ey pny _prh qu _qu LR qk1 _qk}

forms a complete set of residues mqd
(i) We write

(1-29
[Teiz=yPhz—y=P)

Fq(Z: p11~-~1pn - [
leA

m-1
(1-2)
FL 2T (z—yﬁ')(z—y—n')]'
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Now, for anyl € A, we have

1 _ [T y¥e-y ™)
[To@—yPhE—y=P) ®q(2) '
For | € Bj, we have
1 = y¥)@E—y™)

M= 7)e—y ™)~ (@ @7 a-27

where d(z) = YU % 2.
Now, (i) follows from these facts.

(i) We write
1 -2
Fo(Z: P, ..., Pn) = — _
q(Z: ;1 Pn) q|:§ M z— yP))(z— y—P)
1-2%
! ; [TLi(z—yPh(z—yph
1-29
’ g:: [Teaz—yP)(z~ y—pil)}-
Again, forl € A,
! - [T (z—y¥)z—y~9)
[Teiz—yPYz—y P @q(2) )
For | € B, we have
! — Hik=1(z_ til)(Z— V*QH)

[Tiz—yPHEz—yP)  (Pp(@)P(1—2)Pt
For| € C, we have

1 CTEaz—y¥)z -y
[Tiz—yP)Ez—y )~ (®p,(2)%(1— 2P

Now, (ii) follows from these facts. []
From Proposition 2.2.8 and Proposition 2.2.12, we get tileviing proposition

Proposition 2.2.13. Let L=L(Q: p1,..., pn) and L' = L(Q: s, ..., S) be lens
spaces belonging t@o(q, n). Let k= qgo —n.
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(i) Ifq=P™ then L is isospectral to Lif
Yak(w(pw - .., Pn])) = Ygk(w(lsy, - . ., sl))
and

ahw(ps, -, o) = agr(w(lsy, - -, s1)

for j=1,...,m-1
(i) If g = Py- Py, then L is isospectral to Lif

Vak((p1, -, Pn))) = Yqk(w(s, - .., s]),
aqk(w(pLs -, Pal)) = agk(w([sL ..., s))
and

Bax(w(p1, - -, pPnl)) = Bgk(w([st, - - -, sn)))-

3. Isospectral non-isometric lens spaces

By applying Proposition 2.2.11 and Proposition 2.2.13 wd wtain our main
theorem in this section for odd-dimensional lens spacest,Nee will extend the re-
sults to obtain even-dimensional pairs of lens spaces sporeling to every pair of
odd-dimensional lens spaces.

3.1. Odd-dimensional lens spaces.From the results in Sections 2 and 3 we get
the following diagrams: Fog = P™,

(3.1) Lo(g, n) = lo(g, n) % lo(@, k) — Q"(»)I4,

where 70 = (Yq, al. ..., el ), and QM(y)[2] denotesm copies of the field of
rational ponnomiaIsQ(y)[z] For q= PPy,

(3.2) Lo(@, n) = lo(a, n) —> lo(, k) —> A’

qk

whereS(S) (1/fq'k, g ks ﬂq,k).

Now, from Proposition 2.2.13, (m) (resp. S(i)() is not one-to-one, then we will
have non-isometric lens spaces havmg the same generatimogidn. This would give
us our desired results. A

We first calculate the values for the required coefficientg s, aé{)z, og,2 and B, 2.

Using Proposition 2.1.5 we can calculate the values of thws coefficients of
Yok ik gk and By

First we will find coefficients forz and z? for any givenk, and from that we can
find the values fok = 2.
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From the definitions ofyq k([q1, - - ., ak]), in the notation of Proposition 2.1.5, it
is easy to see that

i=1leA i=1leA i=1leA
Similarly,
k k k
bj=2) D v =2} 5 v a=2) ) »%
i=11eB; i=11eB i=11leC
Also,
ay = Z[kJr ooyl 3 pmEral . $ pamwl g $ y—(q—Qx)|j|
leA 1<i<t=<k 1<i<t=<k 1<i<t=k 1<i<t=<k
=k|A| +22 Z VACREY +22 Z pla-al,
leA 1<i<t=k leA 1<i<t=k
Similarly,
by, = K|Bj| +2Z Z y @+a)l +2Z Z y @
leB; 1<i<t<k leB; 1<i<t<k
b, = k|B| + ZZ Z yatal 4 22 Z VACT N
leB 1<i<t<k leB 1<i<t<k
CZ=k|C|+ZZ Z y(qi+qt)| +22 Z J,(qi*qm’
leC 1<i<t=k leC 1<i<t=k

where|A|, |Bj|, |B| and|C| are cardinalities ofA, B;, B and C—as defined in Def-
inition 2.1.4—respectively.

Proposition 3.1.1. Let p be an odd prime and letg p™ where m is an integer
greater thanl. Let ¢ = (q—1)/2. Let k=2 and n=qgp—2. Then the mapséi‘,? and

833,1 as defined in(3.1) and (3.2) (@nd hence the generating functjoare dependent
only on where the various;'g and their sums and differences reside.

In a similar fashion we can find values of coefficients of highewers ofz when
k > 2. These coefficients will contain terms that include higkems and differences
of the variousg;’s in the powers ofy.

We will prove two propositions that will give us upper bounals the number of
expressions forrc(‘flz and Sésﬂ respectively, wheré = 2.

Proposition 3.1.2. Let p be an odd prime and letg p™ where m is an integer
greater thanl. Let qp = (Q — 1)/2. Let k=2 and n= gy — 2. Then the number of
expressions thatéf% can have is at most fn
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Proof. We will find the number otréf% by considering the following cases:

CAsELl: 01, 0€Bj(j =1,2,...,(m—1)) whereB; = {x (modq) e Z*: pl |
X, Pttt x}. If g o € Bj, then either both of, £+ gy lie in B;j or else one lies in
B;j and the other in som& with j <k <m—1. Thus there aren— j possibilities.
As j varies from 1 tom—1, we thus obtainff—1)+(mM—2)+---+1=m(m—1)/2
expressions.

CAse 2. 0 € Bj andg € B, B; # B,. We may assumg < t. It follows that
01 £ gz both lie in Bj. Thus asj andt vary, we obtain(mgl) = (m—1)(m-2)/2
expressions.

CAase 3: qgp € Bj andqy € A, or vice versa. Here we note thet & g, always
belongs toA. Therefore, in this case we will gein(— 1) possible expressions f ’;
one each for the case whegge A andqg, € Bj (j =1, 2,..., (m—1)), or vice versa.

CASE 4: i, o € A. We will get 1 possible expression @f =g, € A. Then we
will get 1 possible expression each for the case when g, € A andg. —a € Bj (or
vice versa) forj =1, 2,...,(m—1). There are no other possibilities in this case. So the
maximum number of possible expressions féﬁ% in this case will bem—1+1=m.

Case 1 though Case 4 are the only possible cases that ocdkef@. Adding up
the numbers of all possible expressions fé% from each case we get the maximum

number of possible expressions thé’f% can have:

m(m — 1) n (m=1)(m-2)
2 2
m?—m+m?—-3m+2+2m—2+4+2m  2m? 5

= — =m-.
2 2

+(M=1)+m

O]

Proposition 3.1.3. Let q = py - p2, where p, p, are distinct odd primes. Let
0o = (q—1)/2. Let k=2 and n= gp — 2. Then the number of possible expressions
for S is at most11.

Proof. As in the previous proposition, we prove this resyitdonsidering all the
possible cases foy; and g, (whereq; + g, is not congruent to 0 (mod)).

Case 1: qi, 2 € Bor (1,02 € C), whereB={xp | x=1,..., (p2— 1)} and
C={xp|x=1,...,(pp—1)}. Theng£tq, € B or (q: £, € C, respectively). There
are no other possibilities for this case.

CASE 2: (1 € B andqg; € C (or vice versa). We have just one possible expression
in this case, whem; + gp € A

CAsE3: que Agge Borags € A g € C (or vice versa). We will get one
expression each whemy £+ g, € A. Then we will get one possible expression for the
case wheng; € A, g € B, andgy + g2 € A, g1 — gz € C (or vice versa). We will
get one more possible expression for the case wfien A, g, € C, andq; + Oz € A,

01 — g2 € B (or vice versa). So, in this case we get a possible 4 expressay 8((13%
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CAseE 4: 1, g2 € A. We will get one possible expression wheretqg, € A. We
get another possible expression wheget-g, € A andg; — gz € B (or vice versa). We
get a third possible expression where+ g, € A andg; — g, € C (or vice versa). We
get a fourth possible expression where+ o, € B and g, — g2 € C (or vice versa).
So, we get a total of 4 possible expressions 3@92 in this case.

Case 1 through Case 4 are the only possible cases than can focck = 2.
Adding up the number of all possible expressions 5@ from each case we get the

maximum number of possible expressions ‘B;éf‘%
2+1+4+4=11 O

It is important to note that in the above propositions the bemof possible ex-
pressions is thenaximumnumber of expressions that can happen. It is possible that
for a givenqg = p™ or g = p; - p2 not all the expressions will occur. We will see this
in an example later.

We now prove two similar propositions for evenof the form 2" and 2p, where
m is a positive integer angb is a prime.

Proposition 3.1.4. Let q=2" where m> 3. Let ¢ =q/2, i.e, g = 21 Let
k=2 and n= gy — 2. Then the number of possible expressions nfj!%t can have is
at most(m — 1)%.

Proof. We proceed as in the previous propositions.

CAsEl: 1,2 € Bj (j =1,2,...,(m—3)), whereBj = {x (modq) € Z*: 21 | x,
2141+ xJ.

We first note that the cases whege, q; € By 2 or By_1 will not occur. Now
whenaq, o € Bj, then one of they; + g, or g — g will belong to Bj; and the other
will belong to B; for t > j + 1.

Now, with g1, 02 € Bj (where j < m—2), we get (n—2— j) possible expressions

()
for 7, 5.

So, in this case, the total number of possible expressiownséf;) are:

(m—2)(m-3)

(M=-3)+M-4)+---+3+2+1= 5

CAse 2. qi € B andqp € B;, whereB; # B;. We can assume thgt<t. This
would mean thaty & g € Bj always. So, as in Case 2 of Proposition 3.1.2, we get
that the total number of expressions fréf% will be (m—1)(m— 2)/2.

CASE 3. o € Bj and gz € A (or vice versa). We notice thaj; £ ¢ € A al-
ways. So, just like in Case 3 of Proposition 3.1.2, we will gedt the total number
of possible expressions fmé’% will be (m—1).
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CASE 4: i, g2 € A. In this case one of; + g2 or g — g will belong to B;
and the other will belong to one of thg; for j > 1. Therefore, for this case we will
get (m — 2) possible expressions fcnéf), one each for the case whep + g, € By
(@at.gq—geBy)andgr—gx e By (@lt.qu+ g e By) fort =2,3,...,m—1.

Now, adding up all the possible expressions from the fouesadove we get the
maximum number of possible expressions fé%;

(m—2)(m-23) n (m—-1)(m-2)

+(M-1)+mM-2)

2 2
_ m2—-5m+6+m?—3m+2+2m—2+2m—4
N 2
=m’—2m+1=m-1% O

Our next proposition gives us the maximum number of expmssforsé?% when
g = 2p for some primep.

Proposition 3.1.5. Let q= 2p where p is an odd prime. Lebg q/2 = p. Let
k =2 and n= qp— 2. Then the number of possible expressionsSff% is at most6.

Proof. As before we will analyze the different possible sasBote that in this
situation we haveB = {2, 4, 6,...,2(p—1)} andC = {p}.

Case 1. 01, g2 € B. We will haveq; + g, € B always. Notice that in this case
01, g2 cannot belong ta&C sinceC has only one element. So we get 1 possible expres-
sion in this case foSy).

CASE 2. (€ B, g2 € C. In this caseq; + ¢, € A always. So, we get 1 possible
expression in this case fcﬁ(f%.

CASE3: qu e A gpeBorg e A geC. Whengy € A andqg, € C, then
g1 + g2 € B always. So, we get 1 possible expression .5@ Whenq; € A, 0z € B,
we will get 1 possible expression for the situation whgnt+ g, € A. We will get
another possible expression fﬁf)z whereq;+qz € A (alt.q;— gz € A) andg;—g2 € C
(alt. g1 + gz € C).

So, there are a total of 3 possible expressions&‘@ in this case.

Case 4: qi, g2 € A. Thenqgy -, € B always. So, we get 1 possible expression
for this case.

Now, adding up all the possible expressions from the aboue dases we get the
maximum number of possible expressions 83?’2 tobe 1+14+3+1=6. O

With these four propositions, we are now ready for our firsimtheorem.



ISOSPECTRALNON-ISOMETRIC ORBIFOLD LENS SPACES 19

Theorem 3.1.6. (i) Let p> 5 (alt. p > 3) be an odd prime and let nx 2
(alt. m > 3) be any positive integer. Let & p™. Then there exist at least twg — 6)-
dimensional orbifold lens spaces with fundamental groupsrder p" which are iso-
spectral but not isometric.

(i) Let p, p2 be odd primes such that & p; - p, > 33. Then there exists at least
two (g — 6)-dimensional orbifold lens spaces with fundamental groopsrder p - p2
which are isospectral but not isometric.

(i) Let g = 2™ where m> 6 be any positive integer. Then there exist at least two
(q — 5)-dimensional orbifold lens spaces with fundamental groap®rder 2™ which
are isospectral but not isometric.

(iv) Let g= 2p, where p> 7 is an odd prime. Then there exist at least t(gp— 5)-
dimensional orbifold lens spaces with fundamental groupsrder 2p which are iso-
spectral but not isometric.

Proof. We first recall from Proposition 2.2.11 that

aamiz Y 2(22)()

t=r-2
for k =2 andr > 2. Thus fork = 2 andr > 2 we have

(3.3)
1£o(q, M)| = ﬁ (n jol__r(r__l 2)) (r i2)

1 Qo—r—1 r 1 [qo—r—21\/r
+n—(r—l)((n—l)—(r—1))(r—1)+m(n—r—1)(r)
_ 1 Qo—r—1 r
_qo—2——r+2(%—2—1—r—|—2)(r—2)
1 Qo—r—1 r
+qo—2——r+1(QO—2—1—r+1)(r—1)

1 Qo—r—-1 .
[ =0y —2
+qo—z—r(qo—z—r—l) s e

_ 1 Qo—r—1 r n 1 Qo—r —1 r

T go—r\g-r—-1)\r—=2) qo—-r—1\g-r—-2/\r—-1
1 Qo—r —1\/r

+QO—V—2(Qo—f—3)(T)

1 rir—1) 1
_QO_r.l. 2 +(q0_r_1)-(qo—r—1)-r
1 G- —1)@-r-2) ,
(Q—r—-2) 2
r(r—1) (Qo—r—1)

= +rt
2(go—r) 2
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It is sufficient to show that the final expression in (3.3) ieajer than the number of
possible expressions for the generating functions condpintePropositions 3.1.2-3.1.5
in order to establish the existence of isospectral pairsoofisometric lens spaces.
() For g = p™, we have a total oim? possible expressions faréf% from Propos-
ition 3.1.2. So, we will have isospectrality when (3.3) ieater than or equal o’ + 1.
That is

rer—1) (Q-r-1_

+r+ >m’+1
2o —r) 2
= =1+ 2(@—1)+ (-G —r —1) = 2(q —r)(m* +1)

=Sr2—r+(@-n2r+g-r—-1-2m?-2]>0

= (*—r)+(GQ—"r)q+r—2m*—3]>0
=121 4+ + qof — Go2m? — 30p — Gof — % + 2m?r + 3r > 0
= qo(Qo — 2m? —3) + 2r(m* + 1) > 0
= —qol2M? + 3) — o] = —2r (M° + 1)
(34) = qol(@m*+3)—qo] < 2r(m?+1).

So for any givenm, we can choos& big enough so thatr#? 4+ 3 < ¢p. This would
guarantee isospectrality. We can calculatby r = (p™* —1)/2 in this case. Now if
p=>5,q0>(5"-1)/2>2m?+3 for all m > 2. This is easy to see sincéd 5 4m?+7
for m > 2 as the left hand side grows exponentially greater than ititg hand side.
So, for all p>5 and allm > 2, (3.4) will be true and we will get isospectral pairs of
dimension ¢ — 6) = 2n — 1. Now for g = 3™, we have % > 4m? + 7 for m > 4. So
we will have isospectrality. We check cases= 2 andm = 3.

Whenm=2,q=9,r =1, q=4. So L.H.S. of (3.4) gives 4[2(4 3—4] =
4(7)= 28 and R.H.S. of (3.4) gives 2(1)#@ 1) = 10. So the sufficiency condition is
not satisfied.

Whenm = 3,q=27,r =4, qo = 13. L.H.S. of (3.4) gives 13[2(% 3—13] =
13[8] = 104 and R.H.S. of (3.4) gives 2(4)[8 1] = 8(10) = 80. So the sufficiency
condition is not satisfied.

However, when we check individually all the possible expi@ss for these cases
we realize that they are less thant.

For g = 32, the only two expressions are for the cases wea A, gy € By, op +
g2 € A andqgy, gz € A, g1+ 02 € A, g1 — 2 € B;. No other possible expressions exist.

However, there are only two classes iy(q, n), i.e., [Lo(q, n)] = 2. The two
classes are

[1, 2] = {(p1, P2) € Lo(@, 2) | p1, P2 € A},
[1, 3] = {(p1, P2) € Lo(@, 2) | pr € A P2 € By (alt. p1 € By, pp € A)},
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wheren =2, A=1{1,2,4,5,7, 8 and B, = {3, 6}.

Therefore, we do not obtain isospectral pairs.

For q = 3%, there are 7 expressions (instead 6f=39 possible expressions). The
case whereq;, 02, q1 £ 02 € B; and the case wherey, gz € B, do not occur. This
gives us 2 less expressions than the estimated number oft%h8uumber of classes
is greater than or equal to
13-4-1 2

4(4—1) 2
4 =—-+4+4=8->7 (f 3.3)).
(13— 4) +4+ 5 3 +4+ 3 > (from (3.3))

This means we will have non-isometric isospectral lens epachis gives us our result
that for p > 3 andm > 3, we will get isospectral pairs that are non-isometric.
(i) Forg=p1-p2, r =(p1+ p2—2)/2. From (3.3) and Proposition 3.1.3 we get the
following sufficiency condition:

-1 . (@G-r-1)
(3.5) 2(Go—r) 2

= qo(25—qp) < 24r.

12

From this we get that fogy > 25, we will always find non-isometric, isospectral lens
spaces because (3.5) will always be satisfied. We now checkdses where =
200 + 1 < 51.
For g < 51, andq = p; - p2 with p;, p, being odd primes, there are only the
following possibilities:
(@ q=3-7=21;,B=1{3,6,9, 12, 15, 1B C = {7, 14. In this case we have 9
instead of 11 possible expressions. The case whgi® € C = {7, 14 is not pos-
sible, and the case whetg, 0, € A andg; ==, € A is also not possible since then
0. = —q; (mod q). Therefore, we get 2 less expressions. now for isospégtrae
use (3.3):

4(4-1) (10-4-1) 1
Jo—a AT T T

which is not greater than 9. So the isospectrality conditiomot met.

(b) q =3-5=15. In this case we have 7 instead of 11 expressions. IBete

{3,6,9,12 andC = {5, 10. In this case, the following cases do not occgy; 0, €

ChneA el xR eA 0 uETReA J,REA QG +0 €A

01—z € C. So we get 4 less expressions than 11. To check for isosjigctre

use (3.3) and get 3(3 1)/(2(7—3)) + 3+ (7 —3—1)/2 = 5(1/4), which is less

than 7. So the isospectrality condition is not satisfied. @rand (b) it can be

easily shown thatLy(q, n)| is equal to 9 and 7 respectively. This means that there

are no isospectral pairs in these cases.
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(c) g=3-11=133. B={3,6,9, 12, 15, 18, 21, 24, 27, 3@&nd C = {11, 232.
Here qo = 16 andr = 6. We check for isospectrality using (3.5):

q(25— o) = 16(25— 16) = 144,
24r = 24(6) = 144.

So (3.5) is satisfied.
(d) g=5-7=35,B={5,10,15,20,25,30andC = {7,14,21,28. Hereqo = 17
andr = 5. Using (3.5) we get

0o(25 — o) = 17(25— 17) = 138,
24r = 24(5) = 120.

So (3.5) is not satisfied. However, we notice that in this dhgeactual number
of expressions is 10 instead of 11. So, we use (3.3) to checks&spectrality.
Plugging inr =5 andgp = 17 into (3.3) we get
54 11 1
@ .

2 2112 - 10,
) Pt 2 T

This implies thatSé‘?’; is not one-one and therefore, we will have non-isometric
isospectral lens spaces in this case.

(e) Finally, we checkq = 3-13 = 39. Hereqy = 19 andr = 7. Using (3.5)
we see

00(25— qo) = 19(25— 19) = 114,
24 = 24(7) = 168.

So (3.5) is satisfied and we will have isospectral pairs iis tase. (a)—(e) are

all the cases off = p; - p2 < 51, wherep,, p, are odd primes. Combining these

results with the fact that foq > 51, (3.5) will always be satisfied, we prove (iii).
(i) Let g = 2™. We use Proposition 3.1.4 and (3.3) to get a sufficiency ¢mmdior
isospectrality:

(-1, @-r-1

2
2@ —r) > > (m—1°%+ 1.

Hereqp = 2"/2 = 2™ 1 and 2 = 2™ . Therefore,qo = 2r in this case. Simplifying
the above inequality, we get

Qo[(2m? — 4m + 5) — qo] < 2r(m? — 2m + 2).
But sinceqp = 2r, we get

(3.6) (m? — 2m + 3) < qp.
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If m> 6, thenm? — 2m + 3 < 2™, Further, the right hand side of (3.6) grows ex-
ponentially bigger than the left hand side msgrows. Form = 3, 4 and 5, the actual
number of expressions faréf% are 4, 9 and 16 respectively. Further, it can be easily
shown that form = 3, 4 and 5,|£o(q, n)| is 4, 9 and 16 respectively. Therefore, for
m =3, 4 and 5 we do not get isospectrality. This gives us (iii).
(iv) Using Proposition 3.1.5 and (3.3) we get the sufficienopndition for isospectrality
for g = 2p, where p is an odd prime> 7. Note that in this casgy = q/2 = p and
r = (q + 2)/4. Now for isospectrality we should have

-1 . @-r—1)

2(@o—r) 2

= o(15—qo) < 14

= p(15-p) =7(p+1)

=0<p>—8p+7 or (p—1)(p—7)=0.

7

Since p is positive, whenevep > 7, we will have isospectrality. Wheg = 2-5 = 10,
then |£o(q, n)] = 6 = number of expressions foﬁé‘?’)z. So, we do not get isospectral
pairs whenp = 5. This proves (iv). []

3.2. Lens spaces for general integers.Let
L=L(@Q: pw..., pn) = 1/G
and
L'=L(: pr,-- -, pn) = S"Y/G

be two isospectral non-isometric orbifold lens spaces daimdéd in Section 3.1 where
G =(9), G'=(g).

R(p1/q) O
g= ..
0 R(Pn/a)
and
R(s1/0) 0
g/ — .

0) R($,/0)
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We define
R(pz1/0) O
G = ;
" R(pn/a)
0 I
and
R(si/q) 0
G = ;
W* R(s:/0)

0 hw

where Iy is the W x W identity matrix for some integeW. We can defineGy., =
(Gw+) and G(NJr = (Gw,). Then Gw. and GW+ are cyclic groups of ordeq. We

define lens spacelsy = "W1/Gy., andLy,, = S"*W=1/Gy,, . Then, like Prop-
osition 2.2.1, we get:

Proposition 3.2.1. Let Ly and L{,, be as defined above. Thdny, is iso-

metric to I:(N+ iff there is a number | co-prime with g and there are numbers e
{—1, 1} such that(ps,..., pn) is a permutation ofleils, ..., ejls,) (mod q).

The following lemma follows directly from this proposition

Lemma 3.2.2. Let L, L, Lw+ and L}, be as defined above. Then L is iso-
metric to L iff L. is isometric toLy,,

We get the following theorem:

Theorem 3.2.3. Let ﬁg"*(q, n, 0) be the family of all(2n + W — 1)-dimensional
orbifold lens spaces with fundamental groups of order q trat obtained in the man-
ner described above. Ldty. € £¥V+(q, n, 0) (where [,g"*(q, n, 0) denotes the set of
isometry classes 0@3"*(q, n, 0)). Let F&"’Jf(z: P1,..., pn, 0) be the generating function

associated to the spectrum bfy... Then on the domaitize C | |z| < 1},

1
Pz~ yP1)’

(1+ 7 1
F(}N+(z: P1, ..., Pn, 0) = Z)W 1 Z ]—[i“:l(Z— 14

Proof. Recall the definitions of\o, r2, P¥, HX %X and H¥ from Section 2.
We extend the definitions foR®"*W. That is, let Ay be the Laplacian orR?"W



ISOSPECTRALNON-ISOMETRIC ORBIFOLD LENS SPACES 25

with respect to the flat Riemannian metriz = 32" x2 where €, ..., Xan1w)

is the standard coordinate system BA™Y; for k > 0, P is the space of complex
valued homogeneous polynomials of degieén R>W: HX is the subspace oPX
consisting of harmonic polynomials d@®"*W; 7K is the image ofi*: C*(R*"*W) —
Co(S+W-1) wherei: S2W-1 5 R?"*W s the natural injection; and({ is the space
of all G-invariant functions of#X.

Then from Proposition 2.2.4 and Proposition 2.2.5, we gat ¥ is O(2n + W)-
invariant; PX has the direct sum decompositid® = H* @ r2P%2; 74X is an eigen-
space ofA on S"W-1 with eigenvaluek(k + 2n + W — 2); Y72 #K is dense in
C>®(S™+W-1) in the uniform convergence topology af¢f is isomorphic toHX.

This along with the results in Corollary 2.2.6, where d+on+w-1) = dimHém,
we get

o0

Fq(z: pl, LR pn! 0) = Z(dlm Hléw+)2k.
k=0

Now Gy is contained inSQ(2n + W).
Let xx and xx be the characters of the natural representationS@gn + W) on
HX and PX respectively. Then

_ 1 i 1gh -
(3.7) dim ’H'é == xk(@w+) = = Z xk(Gw)-
w |GW+| q 1=1

Gw+€G
Proposition 2.2.4 gives
(38) @) = T(Bw-) — Ae-2(Gw-),

where x; = 0 for t > 0.
If W is even, then we can view the spaP¥ as having a basis consisting of all
monomials of the form:

22 = @) @) @ @)

whereW = 2v and wherelp,y + Jnyy = i1+ -+ ingw + j1+ -+ jnw = k and
il, ceey in+v, jl, c ey er_v Z O Then,

Gy, (2 - Z) = ylrPdtinpil =il ——inpl (71 2y,
If W is odd, (sayW = 2u + 1), then we get for basis oPX
z.7. ZL+2U+1 = (Zl)il e (Zn+u)i”+u : (21)]-1 T (Z"H-u)jn+u < (Zns2us1)'s

wherezy our1 = Xnew Where i, Y1,..., Xnew_1, Ynew_1, Xntw) IS the standard euclid-
ean coordinate system d®®"*W with z = x +iy; fori =1,2,...,n+W—1, and
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i1, dngu Jo - os Jnpu t= 0 @ndip +-+- +inpu + j1+ -+ g =k =
Intu + Jntu +t. SO, in that case

~| I 5 i1 Pal +-+in Pl =j1prl——Jnpal (5] 5
O, (@ -2 - Zojourr) =yt Tl Tl (70 2 7 i),
So, for W, even case, we will get

Fy' "(z: p1 .- -, Pn, 0)
q

I
Q|
NE

=~
I
o

Xk(gl\lv+)zk
1

1-2) S -
= D3 al@w )2
q =1 k=0
2y 9
_(1=2) DD N A R
q I=1 K=0 lnsy+ o=k
1-22) e - i i
o=t 50 DI DI A R A L
q =1 k=0 Insy+dnso=k
P% (y_pnl Z)jn . Zin+1+'"+in+v+jn+l+'"+jn+u
1-22) L A2 v _ v
=( )Z (1+J/p'IZ+)/Zp'IZZ—i---')(1+)/_p'IZ—i-)/_ZpiIZZ—i-"')
q 1=1i=1
x(1+z+224.-)W
_a- ) @ 1

on {zeC||z] <1}

qa ZTLA—")d—y P)L—2"

_ @A+ 1 1
T a-g"t ZH. (= yP)E—y Pl

For W odd case, we get by similar calculations,

yi 1Pl etinpol = jupal = o pul £

|
M-
gk
]

IntutJniutt=k

(1—22) Lo pal )i Pnl S\in (5, —P1l 5y i1
= YD Y MY

=1 k=0 Insy+nsutt=K

o)

X (V*Pn| Z)jn . Zin-ﬁ—1+"'+in+u+I'n+1+'"+jn-¢-u7Lt
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(1—22 4.0
Z]_[(1+ypi'z+ y?PIZ2 4o A+ y Pzl )
I=1i=1

x(1+z+22+-- )W

_ Q@ 7) 1
S q Z Hin:l(l— yPIZ)(1—y-Pl)(1— )W on {zeC||z <1}

_ (A+7 1 1
=a_gvi Z]‘[i”:l(z—ypi')(z—yfp") as before. O

Corollary 3.2.4. When LQq: py,--., pn) and L(Q: sy, ..., &) have the same gen-
erating function then Ly, and L}, (as defined aboyealso have the same generat-
ing function.

Proof. This follows from the fact that

1
FqW+(Z: P, - - -, Pns O) = qu(Z: Py .-y pn) O

The above results give us the following theorem.

Theorem 3.2.5. () Let P> 5 (alt. P > 3) be any odd prime and let i 2
(alt. m > 3) be any positive integer. Let g P™. Then there exist at least tw@ +
W — 6)-dimensional orbifold lens spaces with fundamental groapsrder P" which
are isospectral but not isometric.

(i) Let P, P, be two odd primes such that-g P, - P, > 33. Then there exist at least
two (q + W — 6)-dimensional orbifold lens spaces with fundamental groap®rder
P; - P, which are isospectral but not isometric.

(iii) Let g= 2™ where m> 6 is any positive integer. Then there exist at least two
(g + W — 5)-dimensional orbifold lens spaces with fundamental grooporder 2™
which are isospectral but not isometric.

(iv) Let g = 2P, where P> 7 is an odd prime. Then there exist at least t¢ep+

W — 5)-dimensional orbifold lens spaces with fundamental groapsrder 2P which
are isospectral but not isometric.

Corollary 3.2.6. (i) Let x> 19 be any integer. Then there exist at least two
x-dimensional orbifold lens spaces with fundamental gsoaporder25 which are iso-
spectral but not isometric.

(i) Let x> 27 be any integer. Then there exist at least two x-dimensiortafaid lens
spaces with fundamental group of ord&8 which are isospectral but not isometric.
(iii) Let x > 59 be any integer. Then there exist at least two x dimensionbifad
lens spaces with fundamental group of or@@rwhich are isospectral but not isometric.
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(iv) Let x> 9 be any integer. Then there exist at least two x dimensionaifaid lens
spaces with fundamental group of ordé4 which are isospectral but not isometric.

Proof. (i) Letq =25 andW € {0, 1, 2, 3,...} in (i) of the theorem.

(i) Let q=33 andW € {0, 1, 2, 3,...} in (ii) of the theorem.

(i) Let q =64 andW € {0, 1, 2, 3....} in (iii) of the theorem.

(iv) Letq=14 andW € {0, 1, 2, 3,...} in (iv) of the theorem. ]

When W is an odd number, we get even dimensional orbifold tgees that are
isospectral but not isometric.

4. Examples

In this section we will look at some examples of isospectai-isometric orbifold
lens spaces by calculating their generating functions. Wealgo look at an example
that will suggest that our technique can be generalized ifginen values ok = gp—n.
Recall thatgy = (q—1)/2 for oddq andqo = q/2 for eveng. In the previous sections
we assumedk = 2. The technique for getting examples for higher value& o simi-
lar, but as we shall see, the calculations for the differgpes$ of generating functions
becomes more difficult ak increases.

In all the examples we will denote a lens spacellfy: pi, ..., pn) = S1/G,
R(pz1/9) 0

where G is the cyclic group generated lgy= ( ) We will write

0 " R(pn/0)
G = (9).

4.1. Examples fork = 2.

EXAMPLE 4.1.1. Letq =5 =25qo=(q—1)/2=12,n =10,k =2, A =
{1,2,3,4,6,7,8,9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 28, B4= {5, 10, 15, 20.
Let w([py, ..., Pro]) = [G1, G2]. Let y = €/25 and A = €7'/5. ag = |A| = 20, b1 =
Bl =4, 2 cav' =0, Yip, v' = -1, Xjea X = -5 and ) g, A' = 4 (from (4.1)).

Case 1: qi,02€ By andqg; £ g € B;. So,

Va5, Al Q])(2) = 202* + 202° + 202% + 20z +- 20,
o ([ar, )(2) = 42 — 162° + 242 — 162 + 4.
This corresponds to the case whem,[..., pwo =[1, 2, 3,4, 6, 7, 8,9, 11, 12] which

corresponds to a manifold lens spaces.
CASE 2: Since there is only on®; this case does not occur.
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CAse3: qpeByandgy € A (alt.gs € A 02 € By). g1 £ 02 € A always. So,
Vo5 AL, G])(2) = 202" + 102° 4 40z% + 10z + 20,
o (o, (D) = 42* — 673 + 422 — 62+ 4
corresponding to
[p1,-.., P =11, 2,3,4,5,6,7,8,9, 11],
and to
[s1,...,%00 =1, 2,3,4,6,7,8,9, 10, 11],
and
[P - -, Paol # [S1,- - -, S10]-

So, we get two isospectral non-isometric orbifolds; = L(25: 1, 2, 3,4,5,6, 7, 8,
9,11) andL, = (25: 1, 2, 3,4,6,7,8,9, 10, 11). We denote By the singular set
of Li. ThenX; = {(0,0,..., X9, X10, 0, 0,...,0) € S | x2 + x2, = 1} and T, =
{(0,0,..., %17, X18, 0, 0) € S'° | x&, + X2, = 1} with isotropy groups(g7) and (g3) where

R(5p1/25) 0 R(p1/5) 0
g = - = -
0 R(5p10/25) 0 R(p10/5)
and
R(s1/5) 0
o = . ,
0 R(s10/5)

where g; and g, are generators 06, and G,, respectively withL; = S'°/G; and
L, = S%/G,. ¥, and X, are homeomorphic t&'. We denote the two isotropy groups
by Hi = (g7) and H, = (g3).

Case4: (a) g, 2 € Aandg £ g € A. So,

Vs Al 0, G2])(2) = 202* + 407° + 20,
o) ([on, GI)(2) = 47* + 47 + 42 + 4z + 4
corresponding to
L3=1(25:1,2,3,4,5,6,7,8,9, 10F S'Gs, where Gz = (gs),
Ls=1L(25:1,2,3,4,5,6,7, 8 10, 11 S'G,, where Gs = (gu),
and
Ls=L(25:1,2,3,4,5,6,7 10, 11, 12 S'%Gs, where Gs = (gs).
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The isotropy groups fols, L4 and Ls are (g3), (g3) and (g2), respectively. £z, =4
and s are all homeomorphic t&®. So, here we get 3 isospectral orbifold lens spaces
that are non-isometric.

(b) qneeAandgr+ge€ By, q1—g2€ A (alt.gr+g2 € A a1 — 02 € By). So,

Va5, A0, 02])(2) = 202* + 302° + 20,
agls)' A, Q) (2) = 42" + 42° + 1472 + 4z + 4

corresponding to

Lg=1L1(25:1,2,3,4,56,7,9,10, 15 819/66, where Gg = (gs)
and

L;=1(25:1,2,3,4,5,6,7, 8,10, 18 S'°G;, where G; = (g;).

Then, againXs and X; are homeomorphic t&, andLg and L, have isotropy groups
(g8) and (g?).

EXAMPLE 4.1.2. q=3*=27,0=13,k=2,n=11 andA={1,2,4,5,7, 8,
10,11,13,14,16,17,19, 20, 22, 23, 25} 28, = {3,6,12, 15,21, 24 B, = {9, 18. Let
w([p1,..., p1a]) = [O1, ). Let y = €¥1/27 ) = 2"1/9 and§ = e*"'/3 be primitive 27,
9 and 39 roots of unity, respectively. Here we get isospectral rsmietric pairs only
in two cases:

CAasel: qpeBrandg e A(alt.qp e Aandge € By). g1 £ g € A always. So
we get,

Vo7, A[01, G2])(2) = 182* + 362° + 18,
o) [0, Ge])(2) = 62* + 62° + 1222 + 62 + 6,
of (o, @))(2) = 224 — 27~ 22+ 2
corresponding to
L, =1L1(27:1,2,4,5,6,7,9, 10, 11, 12, 13),
L, =1L1(27:1,4,5,6,7,8,9, 10, 11, 12, 13)
and

Ly=L(27:1,2,5,6,7,8,9, 10, 11, 12, 13).

If G1 = (g1), G2 = (Q2), Gs = (gs) are such that.; = $/G;, L, = $%'/G; and
L3 = SZl/Gg, then
%1 ={(0,0,..., X9, X10, 0,X13, X14, 0. ..., X19, X20, 0, 0)€ S?*: isotropy group= (g5)}
U{(0,0,..., X13,%14,0,..., 0)€ S*: isotropy group= (g3)},
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,={(0,0,...,%7,%,0,..., X13, X14, ..., 0, X19, X20, 0, 0)€ S?*: isotropy group= (g3)}
u{(0,0,...,X13,%14,0,...,0)€ S*: isotropy group=(g3)},

23=1{(0,0,...,%X7,%g,0,..., X13, X14, - ., X19, X20, 0, 0)€ S?': isotropy group= (g3)}
U{(0,0,...,X13,%14,0,...,0)e S*: isotropy group= (g3)}.

So all three orbifolds have the same isotropy type and allsthgular sets are homeo-
morphic to S°.

CASE2: 1+ eB,qu—gpeA@tg+ogeA gi—0 < B). So we get,

Yo7 [0, G2l)(2) = 182* + 362° + 18,
o) (lon, G))(2) = 62° + 622 + 6,
o2 ([th, B)(2) = 22 + 42> + 62° + 42 + 2

corresponding to

Ls=1L(27:1,3,4,5,6,7,9, 10, 11, 12, 13) $Y/G,; G4 = (q4),
Ls =L(27:1,3,4,5,6,7,8,9,11, 12, 13) $Y/Gs; Gs = (gs),
Le=L(27:1,3,5,6,7,8,9,10, 11, 12, 13) S1/Gs; G = (gs).

Then,

¥4 = {(0, 0,X3, X4, 0,. .., 0, Xg, X10, 0, 0,X13, X14, O, . . ., X19, X20, 0, 0) € S**
with isotropy group= (g3)}
U{(0,0....,0,%s3 X, O,. .., 0) € S with isotropy group= (g3)},

%5 = {(0, 0,Xs, X4, 0, .., 0, Xg, X10, 0, . ., 0, Xa5, X1, O, 0, X0, Xz, 0, 0) € S
with isotropy group= (g2)}
U{(,0,...,0,xi5 %16, 0,. .., 0) e S* with isotropy group= (gs)},

6 = {(0, 0, X3, X4, 0, 0,X7, Xg, 0, .., 0, X33, X14, O, .. ., 0, Xg9, X20, 0, 0) € S?*
with isotropy group= (g2)}
U{(,0,...,0,Xi3 %14, 0,. .., 0) € S** with isotropy group= (gg)}.

So, the singular sets are all homeomorphic So and they all have the same isot-
ropy types.

ExXAMPLE 4.1.3. Letq=5-7=35,00=(35—-1)/2=17, k=2, n = 15. Here
A=1{1,23,4,6,8,9,11,12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 2732, 32, 33, 34
B = {5, 10,15, 20, 25,30andC = {7,14, 21, 28. Here we get isospectral non-isometric
pairs in three cases:



32 N. SHAMS UL BARI

CAsel: e A xeB, g1 £ e A So we get,
Vas AL, G])(2) = 242" + 62° + 522° + 62 + 24,
ags Al Gl)(2) = 62° + 42° + 82% + 4z + 6,
Bas A[q1, Q))(2) = 42" — 62° + 422 — 62 + 4

corresponding to

L1=1(35:1,3,4,5,6,78,09,11, 12, 13, 14, 15, 16, 17)5°/Gy,
L,=1(35:1,24,6,78,9, 10, 11, 12, 13, 14, 15, 16, H75*°/G..

L, andL, are isospectral non-isometric orbifold lens spad@s—= (g1) and G, = (g).
21 ={(0,...,0,%7,%g,0,...,0,Xz5, X26, 0,..., 0) € S* with isotropy group=(g/{)}
U{(0,...,0,X11, X12,0,..., 0,X23, X24, 0,..., 0) € S*° with isotropy group= (g)},
¥ ={(0,...,0,X15,X16,0,.. ., 0,Xz5, X6, 0,. .., 0) € S*° with isotropy group= (g;)}
U{(,...,0,Xg, X10,0,..., 0,X23, X24, 0,...., 0) € S*° with isotropy group= (g3)}.
¥, and X, are both homeomorphic t&8% x S°.

CASE 2: 01,02 € A
(@ qi+gx e A So we get,

Vs A[q1, Q])(2) = 242* — 42° 4 527 — 4z + 24,

o35, A[01, G2])(2) = 62* + 42° + 82° + 4z + 6,

Bas.A[q1, Q) (2) = 42* + 42° + 42° + 4z + 4
corresponding to

Ls=1L(35:1,3,56,78,09,10, 11, 12, 13, 14, 15, 16, £75”/G3

and

Ls=L(35:1,3,4,5,78,9, 10,11, 12, 13, 14, 15, 16, HF*°/G,,

where G = (gs) and G4 = (gs). Thus,
S3={(0,...,0,%, X, 0., 0,X15, X16, 0. . ., 0, X0, X0, O...., 0) € 2
with isotropy group= (g5)}
U{(0,...,0,X9,X10,0,...., 0,Xz3, X4, 0,...., 0) € *° with isotropy group= (g3)},
Sa=1(0,...,0,X7,%g, 0., 0,%15, X6, O;. . ., 0, Xo5, 25, O,....., 0) € 2
with isotropy group= (g;)}
U{(0,...,0,Xg, X10,0,..., 0,X23, X24, 0,..., 0) € S*° with isotropy group= (g3)}.
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¥3 and £, are homeomorphic t& x S°.
(b) qi+0d2€ A gq1—0 € B. So we get,

Vs A[01, 021)(2) = 242* — 42° + 427% — 4z + 24,
ass, A([q1, 9])(2) = 62* + 4Z° + 82° + 4z + 6,
Bss A[a, ])(2) = 47" + 42° + 147% + 4z + 4

corresponding to
Ls=L(35:1,3,4,5,6,7,9, 10, 11, 12, 13, 14, 15, 16, ¥75°°/Gs

and
Le = L(35:1,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, £75°°/Gs,

where Gs = (gs) and Gg = (Js)-
S5={(0,...,0,%7, %, 0......, 0,X15, X16, 0. .., 0, Xo5, X2, O,...., 0) & S2°
with isotropy group= (g¢)}
U{(0,...,0,x11,X12, 0,..., 0,X3, X24, 0,. .., 0) € S* with isotropy group= (g2)},
S6=1{(0,...,0,%s, X, 0., 0,X15, X16, 0. .., 0, Xo5, X0, 0,...., 0) € &°
with isotropy group= (gg)}
U{(0,...,0,Xg, X10, 0,..., 0,X23, X24, 0,..., 0) € S*° with isotropy group= (gg)}.

Y5 and X are homeomorphic t&® x S°.

Our final example for the case whén= 2 comes whery is even.

EXAMPLE 4.1.4. lLetq=2-7=14,qo=14/2=7, k=2 andn = 5. Here
A=1{1,3,59 11,18 B={2,4,6, 8, 10, 12andC = {7}. Here we get isospectral
non-isometric pairs in only one case:

CAsELl: g1 €A peB, gpxqeA

a=2) y+2) AN =21)+2(-1)=0,

leA leA

b=23 y +2) A =2(-1) +2(-1) = -4,

leB leB
=2) y'+2) 2 =2-1)+21)=0,
leC leC
a=2/Al+4) y' =2(6)+4(1)=12+ 4 = 16,
leA

b, =2B|+4) y' =2(6)+4(-1)=12-4=8,
leB
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C2=2Cl+4) y' =2(1)+4(-1)=2-4=-2.
leC

So we get,

Vs A[th, Gl)(2) = 62* + 162% + 6,
a14.A[01, Q1)(2) = 62* + 42° + 82° + 4z + 6,
Bra Al Rl)(2) = 2* — 222+ 1

corresponding to
L, =L1(14:1,2,4,5, 7)=5/G;
and
L,=L(14:1,4,5,6, 7)= /G,
where G; = (g;) and G, = (Qy).
%1 = {(0, 0,3, X4, Xs, Xs, 0, 0, 0, 0)e S” with isotropy group= (g{)}
U{(O,...,0,x%g, X10) € S’ with isotropy group= (g3},
%2 ={(0, 0,%s, X4, 0, 0,7, X, 0, 0) € S’ with isotropy group= (g3)}
U{(0,...,0,xg, Xxi0) € S’ with isotropy group= (g3)}.

¥, and X, are homeomorphic t&® x St.
4.2. Example fork = 3.

EXAMPLE 4.2.1. Letq=5"=25,qy=(25—-1)/2=12, k=3, n=09. Let
w([P1,---, Pa]) = [01, 02, 03]. HereA=1{1,2,3,4,6,7,8,9,11,12,13,14,16,17,18, 19,
21, 22, 23, 24 and B; = {5, 10, 15, 20.

We will consider all the possible cases for the various pmigses of g’s,

(@ £0;)'s and @1 £ 02 £0s)'s lying in A or B;. Many of these possibilities will
not occur in our present example gf=25. However, these possibilities are stated
because they may occur for higher valuesqof

Case 1. All the gi’s € B;. This case does not happen fpr= 25 since at most
2 of thegi’'s can be inB; at one time by the definition ofy(25, 3).

CAase 2: All the g’s € A. Sincek = 3, we can’'t have more than 3 of tlp+q;

(1 <i < j = 3) belonging toB;. Also, at most only one of thg; + g, + g3 can be
=0 (mod 25).

Further, if one of they; + g, + gz is congruent to 0 (mod 25), then we can't have
any other of theg; + g, + gz belong toB;. Also, at most 1 of they; + g, g3 can
be in B;.
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Further, if one of they; + g, £+ gz is congruent to 0 (mod 25), then at most 1 of
theqg £q; (for 1 <i < j < 3) can be inB;. Similarly, if one of theq; £ g, +0qz € By,
then at most 1 of the, &= g; can be inB;. We note that the above results hold true
for all g = P2, where P is any odd prime.

We now look at the various sub-cases for Case 2.

(@) Allofthegy =g, +t0gsz € Aand all of theqg £g; € A(1<i < j <3). This
case does not occur fay = 25.

(b) All of the gy =040z € A and exactly one of thg £q; € By (1 <i < j <3).
This case does not occur for= 25.

(c) Allof the q1+0go£03 € A and exactly two of they £q; € By (1 <i < j <3).
Again, this case does not occur fqr= 25.

(d) Exactly one of the +=0>+03 € B; and all of thegi £q; e A(1=<i < j <3).
This case does not occur for= 25.

(e) Exactly one of they £0,4+093 =0 (modq) and all ofgy £9; e A(1<i <
j <3). This case also does not occur fpe= 25.

(f) Allof the g1 £02+03 € A and exactly 3 of they £0; € By (1<i < j <3).

In this case, we get isospectral, non-isometric pairs simeeayet,

V25 A0, U2, Gs])(2) = 202° + 302" + 302° + 20,
ase {[01, G2, Gs])(2) = 42° + 62° + 302* + 202° + 3022 + 62 + 4
corresponding to
L, =L(25:1,4,5,6,7,8,9, 10, 11 S/G;
and
L,=1(25:1,2,3,5,7,8,9, 10, 12 S/G,,
where G; = (g1) and G, = (Qy).
1 ={(0,...,0,%s %, O,. .., 0, X5, X6, 0, 0) € S'” with isotropy group= (g5)},

Y ={(0,...,0,%7, %, 0,..., 0,Xs, X1, 0, 0) € S'” with isotropy group= (g3)}.

(h) Exactly one of theg; + g, + g3 is congruent to 0 (mod 25) and one of the
g £0; (for 1<i < j=<3)isin B;. We again get isospectral non-isometric pairs
here since,

Va5 A0, G2, Gs])(2) = 202° + 502" + 102° + 502° + 20,
a5 [0, O, Gs])(2) = 42° + 62° + 10z* + 102° + 102° + 67 + 4
corresponding to

Ls=L(25:1,2, 3,4,5 6,78, 10 S7/G3, Gz = (gs),
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Ls=1L(25:1,2 3,4,56,7,9, 10= S/Gs, Ga = (Qu),
Ls=1(25:1,2,3,4,5,6,8,9,10: S/Gs, Gs = (gs),
Le=L(25:1,2,3,4,5,7,8,9, 10 S/Gs, G = (0s),
L;=1(25:1,2,4,5,6,7,8,9,10: S/G;, G7 = (g7),

Lg=L(25:1,4,5,6,7,8,9 10, 12 S/Gg, Gg = (0g),
Lo=L(25:1,3,5,6,7,9, 10, 11, 12 SY7/Gy, Gg = (go),
Lio=L(25:1,2,5,6,7,8,9,10, 12 SY/Gio, Gio = (Q10)-

So, in this case we get a family of 8 orbifold lens spaces thatisospectral but
mutually non-isometric.

¥3={(0,...,0,Xg, X10,0,..., 0,X17, X18) € S*' with isotropy group= (g3)},
24={(0,...,0,Xg, X10, 0,..., 0,X17, X18) € S with isotropy group= (g3)},
¥5={(0,...,0,Xg, X10, 0,..., 0,X17, X18) € S with isotropy group= (g2)},
6 ={(0,...,0,Xg, X10,0,..., 0,X17, X18) € S* with isotropy group= (g2)},

¥7={(0,...,0,X7,%g,0,...,0,X17, X38) € S*" with isotropy group= (g3)},
Y3 ={(0,...,0,Xs, %, 0,...,0,X15, X16, 0, 0)€ S'” with isotropy group= (g3)},
29={(0,...,0,Xs,%,0,...,0,X13, X14, 0,..., 0) € S* with isotropy group=(g3)},
%10=1{(0,...,0,Xs, X, 0,..., 0,X15, X16, 0, 0)€ S'” with isotropy group= (g3)}.
All of the %; (for i =3, 4,...,10) are homeomorphic t&°.
(h) Exactly one of they; £+ g, £ gz is congruent to 0 (mod 25) and one of the
g £q; (for 1<i < j <3)isin B;. Here we get,
Vo5 Al G2, Ga])(2) = 202° 4 502* — 407> + 507° + 20,
25,01, G, 03])(2) = 42° + 62° + 102" + 102° + 102° + 62 + 4

corresponding to
Li1=L(25: 1,3,4,5,6,7,8,9,10% S/G11, Gi1=(gu1),
Li,=L(25:1,3,5,7,8,9,10,11,12 SY/G11, Gio=(Q12).
¥11={(0,...,0,X7,Xg,0,...,0,X17, X1g) € S'" with isotropy group= (g3,)},
%12=1{(0,...,0,Xs, X6, 0,...,0,X13, X13, 0,..., 0) € S'” with isotropy group=(g5,)}.

¥1; and X1, are homeomorphic t&3.
2 (a)-2 (h) are all of the possible cases when alldfie € A.
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Case 3: Two of theg’s € A and one of they’s € B;. In this case we will have
at most one of they + g, £ gz congruent to 0 (mod 25).

Also, we can have at most one of the+q; (1 <i < j <3) in B;.

Further, it can be shown that at most two of tpet g, g3 can be inB;. Also, if
one of theq; + g, =gz is congruent to 0 (mod 25), then at most one of the remaining
0102103 can belong toB;. In fact, it can be shown that exactly one of the remaining
01 £ g2 + gz must belong toB;.

All of these results can be shown to be trge= P2, where P is any odd prime.
Now we consider all the sub-cases for Case 3.

(a) If all the qi & 0o £ g3 belong to A and exactly one of the; =0; (1 <i <
j < 3) belongs toB;. This case does not occur for= 25.

(b) Exactly one of they; & g, &= g3 belongs toB; and the remaining belong to
A. This case does not occur fgr= 25.

(c) If all of the g1 & o £ gz belong to A and all of theq; £9; (1<i < <3)
belong toA. Then we get

Y25 Al G, GaI)(2) = 202° + 102° + 602° + 207 + 6022 + 10z + 20,
o) [0, G, Gal)(2) = 42° —42° — 4z + 4
COfI’eSponding to

Lis=L(25:1,2,3,4,5,6,7,8, 9% S7/Gi, Gus = (gua),
L14 - L(25. 1, 2, 3’ 4’ 5’ 6! 71 81 11%: 517/G141 Gl4 = (gl4)1
Lis=L(25:1,23,4,5,6,7,9, 12 S/G15, Gis = (01s),
Lig=L(25:1,3,5,6,7,8,9,11, 12 S'/G1s, Gis = (Qu6),
Li7=101(25:1,2,4,5,6,7,8,9, 12 S/G17, Gi17 = (017).

We get a family of 5 orbifold lens spaces that are non-isometnd isospectral.

213={(0,...,0,X%g, X10, 0,. .., 0) € S with isotropy group= (g3,)},
Y14 ={(0,...,0,Xg, X10, 0,..., 0) € S with isotropy group= (g3,)},
%15 = {(0,..., 0,Xg, X10, 0,. .., 0) € S* with isotropy group= (g3s)},

Y16 ={(0,...,0,%s, X6, O,..., 0) e St with isotropy group= (g3,
17 =1{(0,...,0,%7, X, 0,..., 0) € S with isotropy group= (g3,)}.
All the %i’s (i = 13,..., 17) are homeomorphic t&".

(d) Exactly two of theq; & g, £ gz belong toB; and exactly one of the; + q;
(1 <i <] <3) belongs toB;.
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Here we get,

Y2530, G2, Ga])(2) = 202° + 102° + 502* + 402° + 5022 + 10z + 20,
a§15)’3([q1, O, Gz])(2) = 42° — 42° + 102* — 202° + 1022 — 4z + 4

corresponding to

Lig=L(25:1,2,3,4,56,7,8, 12 S7/Gis, Gig= (gug),
Lio=L(25:1,2,34,5,6,7,9, 113 S/G1s, Gio= (g10).

We have

Y18 ={(0,...,0,Xg, X10, 0,. .., 0) € S* with isotropy group= (g3s)},
19 ={(0,...,0,%g, X10, 0,. .., 0) € S with isotropy group= (g3,)}.
(e) One of theq; =qg2+0q3 is congruent to 0 (mod 25), and one of thet g, +qs3
is in By, and exactly one of thej & ¢; (1=<i < j <3)is in By.
Here we get,
Vs, 4[01, G2, Ga])(2) = 202° + 102° + 507* — 102° 4 502° + 10z + 20,
a2 ([0, O, Ga])(2) = 42° — 42° + 102* — 202° + 102 — 4z + 4

corresponding to
Loo=L(25:1,2,3,4,6,7, 8,10, 12 S"/Gs, Gop = (020),
Loy =L(25:1,4,6,7,8,9,10, 11, 12 SY/Gy, Go1 = (g21),
Loy =L(25:1,3,4,5,6,7,9,11, 12 SY/Gy, Goo = (go2).

We have
Y20 ={(0,..., 0, X5 X6, 0, 0)€ S'" with isotropy group= (g3,)},
o1 ={(0,..., 0, X3, X14, 0,. .., 0) € S* with isotropy group= (g3;)},
22 ={(0,...,0,%7, g, 0,...,0) e S with isotropy group= (g3,)}.
There are no other sub-cases for Case 3.
CAse 4: One of theg's € A and two of thegi's € B;. In this caseg; + g, £ 03
will always belong toA, and exactly two of they = ¢ (1 <i < j < 3) will belong

to B;. There are no other variations that will occur in this case.
Here we get,

Va5, A1, 02, Ga])(2) = 202° + 202° + 40z* + 402> + 402% + 20z + 20,
o (a1, G, Qal)(2) = 42° — 1475 + 207 — 207 + 2072 — 14z + 4
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corresponding td_(25: 1,2, 3,4,6,7,8,9,11) and we do not get isospectral pairse No
that this lens space is a manifold.

As this example illustrates, we can extend our techniquek fer2 to higher values

of k and we will get many examples of isospectral non-isometrisifold lens spaces.
At the same time, the example also illustrates the difficuttyaccounting for all the
possible cases as the valuelofs increased.
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