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Abstract
The present article is the final part of a series on the classification of the totally

geodesic submanifolds of the irreducible Riemannian symmetric spaces of rank 2.
After this problem has been solved for the 2-Grassmannians in my papers [7] and
[8], and for the space SU(3)=SO(3) in Section 6 of [9], we now solve the classi-
fication for the remaining irreducible Riemannian symmetric spaces of rank 2 and
compact type: SU(6)=Sp(3), SO(10)=U(5), E6=(U(1) � Spin(10)), E6=F4, G2=SO(4),
SU(3), Sp(2) andG2.

Similarly as for the spaces already investigated in the earlier papers, it turns out
that for many of the spaces investigated here, the earlier classification of the max-
imal totally geodesic submanifolds of Riemannian symmetric spaces by Chen and
Nagano ([5], §9) is incomplete. In particular, in the spacesSp(2),G2=SO(4) andG2,
there exist maximal totally geodesic submanifolds, isometric to 2- or 3-dimensional
spheres, which have a “skew” position in the ambient space inthe sense that their
geodesic diameter is strictly larger than the geodesic diameter of the ambient space.
They are all missing from [5].

1. Introduction

The classification of the totally geodesic submanifolds in Riemannian symmetric
spaces is an interesting and significant problem of Riemannian geometry. Presently, I
solve this problem for the irreducible Riemannian symmetric spaces of rank 2.

The totally geodesic submanifolds of the 2-GrassmanniansGC
2 (Rn), G2(Cn) and

G2(Hn) have already been classified in my papers [7] and [8]; moreover the totally geo-
desic submanifolds of SU(3)=SO(3) have been classified in Section 6 of my paper [9]. In
the present paper I complete the classification of the totally geodesic submanifolds in the
irreducible Riemannian symmetric spaces of rank 2 (simply connected and of compact
type) by considering the remaining spaces of this kind; theyare the spaces of type I

SO(10)=U(5), E6=(U(1) � Spin(10)), SU(6)=Sp(3), E6=F4 and G2=SO(4)
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as well as the spaces of Lie group type

SU(3), Sp(2) and G2I
herein G2, F4 and E6 denote the exceptional, simply connected, compact, real Lie
groups.

It should be mentioned that already Chen and Nagano gave whatthey claimed to
be a complete classification of the isometry types of maximaltotally geodesic sub-
manifolds in all Riemannian symmetric spaces of rank 2 in §9 of their paper [5] based
on their (MC, M�)-method. However, as it will turn out in the present paper, their
classification is faulty also for several of the spaces underconsideration here. In par-
ticular, in the spaces Sp(2),G2 and G2=SO(4), there exist maximal totally geodesic
submanifolds, isometric to spheres of dimension 2 or 3, which have a “skew” position
in the ambient space in the sense that their geodesic diameter is strictly larger than the
geodesic diameter of the ambient space; these submanifoldsare missing from Chen’s
and Nagano’s classification. Also in the spaces SO(10)=U(5) and E6=(U(1) � Spin(10)),
such “skew” totally geodesic submanifolds exist, althoughthey are not maximal. More-
over several other details of Chen’s and Nagano’s classification are incorrect. For a
detailed discussion with respect to the individual spaces studied, see the following re-
marks of the present paper:

space SO(10)=U(5) E6=(U(1) � Spin(10)) SU(6)=Sp(3) E6=F4 G2=SO(4) SU(3) Sp(2) G2

Remark 3.11 3.6 4.5 4.3 5.5 4.7 3.9 5.3

Even apart from these problems, Chen’s and Nagano’s investigation is not satisfac-
tory, as they name only the isometry type of the totally geodesic submanifolds, with-
out giving any description of their position in the ambient space. (Such a description
can, for example, be constituted by giving explicit totallygeodesic, isometric embed-
dings for the various congruence classes of totally geodesic submanifolds, or at least
by describing the tangent spaces of the totally geodesic submanifolds (i.e. the Lie triple
systems) as subspaces of the tangent space of the ambient symmetric space in an ex-
plicit way.)

The usual strategy for the classification of totally geodesic submanifolds in a
Riemannian symmetric spaceM D G=K , which is used also here, is as follows. Let
g D k�m be the decomposition of the Lie algebra ofG induced by the symmetric
structure of M. As it is well-known, the Lie triple systemsm0 in m (i.e. the linear
subspacesm0 � m which satisfy [[m0, m0], m0] � m0) are in one-to-one correspond-
ence with the (connected, complete) totally geodesic submanifolds Mm0 of M run-
ning through the “origin point”p0 D eK 2 M, the correspondence being thatMm0 is
characterized byp0 2 Mm0 and Tp0 Mm0 D � (m0), where� W m! Tp0 M is the canonical
isomorphism.
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Thus the task of classifying the totally geodesic submanifolds of M splits into two
steps: (1) To classify the Lie triple systems inm, and (2) for each of the Lie triple
systemsm0 found in the first step, to construct a (connected, complete)totally geodesic
submanifoldMm0 of M so that p0 2 Mm0 and ��1(Tp0 Mm0) D m0 holds.

Herein, step (1) is the one which generally poses the more significant difficulties.
As an approach to accomplishing this step, we describe in Section 2 for an arbitrary
Riemannian symmetric spaceM of compact type relations between the roots and root
spaces ofM and the roots resp. root spaces of its totally geodesic submanifolds (regarded
as symmetric subspaces). These relations provide conditions which are necessary for a
linear subspacem0 of m to be a Lie triple system. However, these conditions are not
generally sufficient, and therefore a specific investigation needs to be made to see which
of the linear subspaces ofm satisfying the conditions are in fact Lie triple systems; this
investigation is the laborious part of the proof of the classification theorems.

It should be emphasized that to carry out this investigationfor a given Riemannian
symmetric spaceM, it does not suffice to know the (restricted) root system (with multi-
plicities) of that space, or equivalently, the action of theJacobi operatorsR( � , v)v on the
various root spaces. Rather, a full description of the curvature tensor ofM is needed.
The well-known formulaR(u,v)w D�[[u,v],w] relating the curvature tensorR of M to
the Lie bracket of the Lie algebrag of the transvection groupG of M lets one calculate
R relatively easily if M is a classical symmetric space (theng is a matrix Lie algebra,
with the Lie bracket being simply the commutator of matrices), but not so easily ifM
is one of the exceptional symmetric spaces, because then theexplicit description of the
exceptional Lie algebrag as a matrix algebra is too unwieldy to be useful.

In its place, we use the description of the curvature tensor based on the root space
decomposition ofg which was described in [9], and which permits the reconstruction
of R using only the Satake diagram of the Riemannian symmetric spaceM. To actually
carry out the computations involved in the application of the results from [9], we use
the example implementation of the algorithms forMaple also presented in that paper;
this implementation is found onhttp://satake.sourceforge.net. Whenever
in the present paper, a claim is made about the evaluation of the Lie bracket of a Lie
algebra or the curvature tensor of a Riemannian symmetric space for specific input vec-
tors, the result has been obtained in this way.Maple worksheets containing all the cal-
culations can also be found onhttp://satake.sourceforge.net.

Certain of the spaces under investigation here are locally isometric to totally geo-
desic submanifolds of others; more specifically, we have thefollowing inclusions of
totally geodesic submanifolds:

Sp(2)=Z2 � SO(10)=U(5)� E6=(U(1) � Spin(10)),

SU(3)� SU(6)=Sp(3), (SU(6)=Sp(3))=Z3 � E6=F4, G2=SO(4)� G2.

If M is a Riemannian symmetric space andM 0 � M a totally geodesic submanifold,
then the totally geodesic submanifolds ofM 0 are exactly those totally geodesic sub-
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manifolds of M which are contained inM 0. For this reason, we can obtain a classi-
fication of the totally geodesic submanifolds ofM 0 from a classification of the totally
geodesic submanifolds ofM: We just need to determine which of the totally geodesic
submanifolds ofM are contained inM 0. Thus we do not need to carry out the clas-
sification of totally geodesic submanifolds for each space under investigation here in-
dividually by the approach described above. Rather it suffices to do the classification
for the three spacesE6=(U(1) � Spin(10)), E6=F4 and G2, by virtue of the mentioned
inclusions we then also obtain classifications for the remaining Riemannian symmetric
spaces of rank 2.

The present paper is laid out as follows: Section 2 contains general facts on Lie
triple systems, in particular on the relationship between their (restricted) roots resp. root
spaces, and the roots resp. root spaces of the ambient space.Section 3 is concerned pri-
marily with the investigation of the Riemannian symmetric spaceE6=(U(1) � Spin(10)):
In Subsection 3.1 we make general observations about the geometry of this space; using
these results we then classify the Lie triple systems ofE6=(U(1) � Spin(10)) in Sub-
section 3.2, corresponding to step (1) of the classificationas described above. In Sub-
section 3.3 we describe totally geodesic embeddings for each congruence class of Lie
triple systems inE6=(U(1) � Spin(10)), thereby completing the classification of totally
geodesic submanifolds for that space. In Subsections 3.4 and 3.5, we use the inclu-
sions of totally geodesic submanifolds Sp(2)� G2(H4) resp. SO(10)=U(5)� E6=(U(1) �
Spin(10)) to derive the classification of totally geodesic submanifolds in Sp(2) resp. in
SO(10)=U(5) from previous results.

Section 4 covers the investigation ofE6=F4 and is structured similarly: After the in-
troduction of basic geometric facts on that space in Subsection 4.1, we classify its Lie
triple systems in Subsection 4.2. As a consequence of the classification it turns out that
in E6=F4, all maximal totally geodesic submanifolds are reflective.Thus we can learn
the global isometry type of the corresponding totally geodesic submanifolds from the
classification of reflective submanifolds in symmetric spaces by Leung, [13], as is de-
scribed in Subsection 4.3, and do not need to construct totally geodesic embeddings in
this case explicitly. In Subsections 4.4 resp. 4.5 we use theinclusion (SU(6)=Sp(3))=Z3 �
E6=F4 resp. SU(3)� SU(6)=Sp(3) to derive the classification for the space SU(6)=Sp(3)
resp. SU(3). The space SU(3)=SO(3), whose totally geodesic submanifolds have already
been classified in Section 6 of [9], is contained in SU(3); therefore its Lie triple systems
also occur in the present paper. Subsection 4.6 gives the relationship between the types
of Lie triple systems of SU(3)=SO(3) as defined in Section 6 of [9] and types of Lie
triple systems defined here.

Section 5 then investigates the Lie groupG2 seen as a Riemannian symmetric
space. In Subsection 5.1 we investigate the geometry of thisspace, then we proceed in
Subsection 5.2 to the classification of its Lie triple systems, and describe embeddings
for (most of) its totally geodesic submanifolds in Subsection 5.3. In Subsection 5.4
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we use the inclusionG2=SO(4)� G2 to derive a classification of the totally geodesic
submanifolds ofG2=SO(4).

Finally, in Section 6 we give a table of the isometry types of the maximal totally
geodesic submanifolds of all irreducible Riemannian symmetric spaces of rank 2 and
compact type, thereby summarizing the results of my papers [7], [8], [9] (Section 6),
as well as of the present paper.

The results of the present paper were obtained by me while working at the Univer-
sity College Cork under the advisorship of Professor J. Berndt. I would like to thank
him for his dedicated support and guidance, as well as his generous hospitality.

I would also like to thank the referee of this paper for his very detailed report,
which helped me greatly to bring this paper into a more readable form, and for calling
my attention to a flaw in the treatment of the Lie groupG2 in the first version of
this paper.

2. General facts on Lie triple systems

In this section we suppose thatM D G=K is any Riemannian symmetric space of
compact type. We consider the decompositiong D k�m of the Lie algebrag of G in-
duced by the symmetric structure ofM. BecauseM is of compact type, the Killing
form κ W g � g ! R, (X, Y) 7! tr(ad(X) Æ ad(Y)) is negative definite, and thereforeh � , � i WD �c � κ gives rise to a Riemannian metric onM for arbitrary c 2 RC. In
the sequel we suppose thatM is equipped with such a Riemannian metric.1

Let us fix notations concerning flat subspaces, roots and rootspaces ofM (for the
corresponding theory, see for example [14], Section V.2): Alinear subspacea � m is
called flat if [ a, a] D f0g holds. The maximal flat subspaces ofm are all of the same
dimension, called therank of M (or m) and denoted by rk(M) or rk(m); they are called
the Cartan subalgebrasof m. If a Cartan subalgebraa � m is fixed, we put for any
linear form � 2 a�

m� WD fX 2 m j 8Z 2 a W ad(Z)2X D ��(Z)2Xg
and consider the (restricted) root system

1(m, a) WD f� 2 a� n f0g j m� ¤ f0gg
of m with respect toa. The elements of1(m, a) are called (restricted) roots of m with
respect toa, for � 2 1(m, a) the subspacem� is called theroot spacecorresponding
to �, and n� WD dim(m�) is called themultiplicity of the root �. If we fix a system
of positive roots1C � 1(m, a) (i.e. we have1C P[ (�1C) D 1(m, a)), we obtain the

1The dependence of the sectional curvature ofM on the choice of the Riemannian metric is as
follows: If we multiply the Riemannian metric with some factor c > 0, then this causes the sectional
curvature function to be multiplied with 1=c.
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(restricted) root space decompositionof m:

(1) m D a�M
�21C m�.

The Weyl group W(m, a) is the transformation group ona generated by the reflections
in the hyperplanesfv 2 a j �(v) D 0g (where� runs through1(m, a)); it can be shown
that the root system1(m, a) is invariant under the action ofW(m, a).

Let us now consider a Lie triple systemm0 � m, i.e.m0 is a linear subspace ofm
so that [[m0, m0], m0] � m0 holds. In spite of the fact that the symmetric space corres-
ponding tom0 does not need to be of compact type (it can contain Euclidean factors),
it is easily seen that the usual statements of the root space theory for symmetric spaces
of compact type carry over tom0, see [7].

More specifically, the maximal flat subspaces ofm0 are all of the same dimen-
sion (again called therank of m0), and they are again called theCartan subalgebras
of m0. For any Cartan subalgebraa0 of m0, there exists a Cartan subalgebraa of m

so thata0 D a \ m0 holds. With respect to any Cartan subalgebraa0 of m0 we have a
root system1(m0, a0) (defined analogously as form) and the corresponding root space
decomposition

(2) m0 D a0 � M
�21C(m0,a0) m

0�
(with a system of positive roots1C(m0, a0) � 1(m0, a0)); we also again calln0� WD
dim(m0�) the multiplicity of � 2 1(m0, a0). 1(m0, a0) is again invariant under the ac-
tion of the corresponding Weyl groupW(m0, a0). It should be noted, however, that in
the case where a Euclidean factor is present inm0, 1(m0, a0) does not span (a0)�.

The following proposition describes the relation between the root space decompo-
sitions (2) ofm0 and (1) ofm. In particular, it shows the extent to which the position
of the individual root spacesm0� of m0 is adapted to the root space decomposition (1)
of the ambient spacem. These relations will play a fundamental role in our classifica-
tion of the Lie triple systems in the Riemannian symmetric spaces of rank 2.

Proposition 2.1. Let a0 be a Cartan subalgebra ofm0, and let a be a Cartan
subalgebra ofm so thata0 D a \m0 holds.
(a) The roots resp. root spaces ofm0 and ofm are related in the following way:

1(m0, a0) � f�ja0 j � 2 1(m, a), �ja0 ¤ 0g.(3)

8� 2 1(m0, a0)W m0� D
0
B� M
�21(m,a)�ja0D�

m�
1
CA \m0.(4)

In particular, if � 2 1(m, a) satisfies�ja0 D 0, thenm0 is orthogonal tom�.
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(b) We haverk(m0) D rk(m) if and only if a0 D a holds. If this is the case, then
we have

(5) 1(m0, a0) � 1(m, a), 8� 2 1(m0, a0)W m0� D m� \m0.
Proof. See [7], the proof of Proposition 2.1.

For the remainder of the section, we fix a Cartan subalgebraa0 of m0, and leta
be any Cartan subalgebra ofm so thata0 D a \m0 holds.

DEFINITION 2.2. Let � 2 1(m0, a0) be given. Recall that by Proposition 2.1 (a)
there exists at least one root� 2 1(m, a) with �ja0 D �. We call �
(a) elementary, if there exists only one root� 2 1(m, a) with �ja0 D �;
(b) composite, if there exist at least two different roots�, � 2 1(m, a) with �ja0 D� D �ja0.

Elementary roots play a special role: If� 2 1(m0, a0) is elementary, then the root
spacem0� is contained in the root spacem�, where� 2 1(m, a) is the unique root with�ja0 D �. As we will see in Proposition 2.3 below, this property causes restrictions for
the possible positions (in relation toa0) of �. The exploitation of these restrictions will
play an important role in the classification of the rank 1 Lie triple systems in the rank
2 spaces under investigation.

It should also be mentioned that in the case rk(m0) D rk(m) we havea0 D a, and
therefore in that case every� 2 1(m0, a0) is elementary (compare Proposition 2.1 (b)).

For any linear form� 2 a� we now denote by�℄ the Riesz vector corresponding
to �, i.e. the vector�℄ 2 a characterized byh � , �℄i D �. Here h � , � i D �c �κ is again
the inner product obtained from the Killing formκ of g.

Proposition 2.3. Let � 2 1(m0, a0) be given.
(1) If � is elementary and� 2 1(m, a) is the unique root with�ja0 D �, then we have�℄ 2 a0.
(2) If � is composite and�, � 2 1(m, a) are two different roots with�ja0 D � D �ja0,
then �℄ � �℄ is orthogonal toa0.

Proof. For (a) see [7], the proof of Proposition 2.3 (a); (b) is obvious.

Proposition 2.4. Suppose that� 2 1(m0, a0) is a composite root such that there
exist precisely two roots�, � 2 1(m, a) with �ja0 D � D �ja0. Because of� 2 (a0)�,
we have�℄ 2 a0; we suppose that this element can be written as a linear combination�℄ D a�℄ C b�℄ with non-zero a, b 2 R.
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Then we have a, b > 0, and there exists a linear subspacem0� � m� and an iso-
metric linear map8 W m0� ! m� so that

(6) m0� D
�

x C
r

b

a
8(x) x 2 m0�

�

holds. In particular we have n0� � minfn�, n�g.
Proof. See [8], the proof of Proposition 2.4.

We mention one important principle for the construction of Lie triple systems with
only elementary roots.

DEFINITION 2.5. A subset10 � 1(m, a) is called aclosed root subsystemof1(m, a) if for every � 2 10 we also have�� 2 10, and if for every�, � 2 10 with�C � 2 1(m, a) we have�C � 2 10.
Proposition 2.6. Let 10 be a closed root subsystem of1(m, a), and let10C be a

positive root system of10. Thenm0 WD spanRf�℄ j � 2 10g�L�210C m� is a Lie triple

system inm. m0 is called theLie triple system associated to10.
Proof. This follows immediately from the fact that for any�, � 2 1(m, a) [ f0g

we have

[m�, m�] � k�C� � k��� and [k�, m�] � m�C� �m���,

see [14], Proposition VI.1.4c, p. 60. Herek� denotes the root space ofk corresponding
to � 2 1(m, a).

The isotropy groupK of the symmetric spaceM acts onm via the adjoint repre-
sentation, i.e. byK �m! m, (g, v) 7! Ad(g)v; this action is called theisotropy action.
In the investigation of Riemannian symmetric spaces, the orbits of this action play an
important role. In the case of spaces of rank 2, they form a 1-parameter family, which
can be parametrized in the following way (generalizing the approach that was used for
the 2-Grassmannians in [7] and [8]):

We suppose thatM is of rank 2, and fix a Weyl chamberc in a. We denote the
two rays ina delineating this Weyl chamber byR1 and R2; in the case where1(m, a)
contains roots of different length (i.e. the root system1(m, a) is of one of the types
B2, BC2 or G2), we suppose thatR1 points into the direction of one of the shorter
roots. Let'max be the angle betweenR1 and R2; 'max equals�=3, �=4, �=4 or �=6,
according to whether1(m, a) is of type A2, B2, BC2 or G2, respectively.
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Any given v 2 m n f0g is congruent under the isotropy action to one and only
one vectorv0 2 c, and we denote the angle betweenR1 and v0 by '(v). In this way
we obtain a continuous function' W m n f0g! [0, 'max]. Two vectorsv1, v2 2 m withkv1k D kv2k ¤ 0 are congruent under the isotropy action if and only if'(v1) D '(v2)
holds. We call the value'(v) the isotropy angleof a vectorv 2 m n f0g.

Notice that if m0 is a Lie triple system ofm of rank 1, then' is constant on
m0nf0g, and Proposition 2.3 shows that there are only finitely manyt 2 [0,'max] so that
there exists a Lie triple systemm0 � m of rank 1 with'j(m0nf0g)D t and dim(m0) � 2.
We will call the valuet for such a Lie triple systemm0 the isotropy angleof m0. On
the other hand, ifm0 is of rank 2, then we have'(m0 n f0g) D [0, 'max].

3. The symmetric spacesE6=(U(1) � Spin(10)), Sp(2) and SO(10)=U(5)

3.1. The geometry ofE6=(U(1) � Spin(10)). In the present section we will study
the Hermitian symmetric space EIIIWD E6=(U(1) � Spin(10)), which has the Satake
diagram

.

We consider the Lie algebrag WD e6 of the transvection groupE6 of EIII, and the
splitting g D k� m induced by the symmetric structure of EIII. Herek D R� so(10)
is the Lie algebra of the isotropy group of EIII, andm is isomorphic to the tangent
space of EIII in the origin. TheE6-invariant Riemannian metric on EIII induces an
Ad(U(1) �Spin(10))-invariant Riemannian metric onm. As was explained in Section 2,
this metric is only unique up to a factor; we choose the factorin such a way that the
shortest restricted roots of EIII (see below) have length 1.

The root space decomposition. Let t be a Cartan subalgebra ofg which is max-
imally non-compact, i.e.t is chosen such that the flat subspacea WD t\m of m is of the
maximal dimension 2, and hence a Cartan subalgebra ofm. Then we consider the root
system1g � t� of g with respect tot, as well as the restricted root system1 � a� of
the symmetric space EIII with respect toa. EIII has the restricted Dynkin diagram with
multiplicities �6,� 8[1], in other words: its restricted root system1 is of type BC2,
i.e. we have1 D f��1, ��2, ��3, ��4, �2�1, �2�2g, where (�1, �3) is a system of
simple roots of1, these two roots are at an angle of (3=4)� with �3 being the longer
of the two, and we have�2 D �1C �3, �4 D 2�1 C �3. Moreover, the restricted roots
have the following multiplicities:n�1 D n�2 D 8, n�3 D n�4 D 6 and n2�1 D n2�2 D 1.
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1 has the following graphical representation:

To be able to apply the results from [9] and the correspondingcomputer package
for the calculation of the curvature tensor of EIII, we need to describe the relationship
between the restricted roots of the symmetric space EIII andthe (non-restricted) roots
of the Lie algebrae6. For this purpose, we order the simple roots ofe6 as they are
numbered in the Satake diagram of EIII given above. Then we label the 36 positive
roots of e6 by �1, : : : , �36 in the order in which they are produced by Algorithm (R) in
Section 2 of [9] based on this ordering of the simple roots. Itturns out that�1, : : : , �36

have the following coordinates with respect to the simple roots of e6 ordered as before:

�1 (1, 0, 0, 0, 0, 0)�2 (0, 1, 0, 0, 0, 0)�3 (0, 0, 1, 0, 0, 0)�4 (0, 0, 0, 1, 0, 0)�5 (0, 0, 0, 0, 1, 0)�6 (0, 0, 0, 0, 0, 1)�7 (1, 0, 1, 0, 0, 0)�8 (0, 1, 0, 1, 0, 0)�9 (0, 0, 1, 1, 0, 0)

�10 (0, 0, 0, 1, 1, 0)�11 (0, 0, 0, 0, 1, 1)�12 (1, 0, 1, 1, 0, 0)�13 (0, 1, 1, 1, 0, 0)�14 (0, 1, 0, 1, 1, 0)�15 (0, 0, 1, 1, 1, 0)�16 (0, 0, 0, 1, 1, 1)�17 (1, 1, 1, 1, 0, 0)�18 (1, 0, 1, 1, 1, 0)

�19 (0, 1, 1, 1, 1, 0)�20 (0, 1, 0, 1, 1, 1)�21 (0, 0, 1, 1, 1, 1)�22 (1, 1, 1, 1, 1, 0)�23 (1, 0, 1, 1, 1, 1)�24 (0, 1, 1, 1, 1, 1)�25 (0, 1, 1, 2, 1, 0)�26 (1, 1, 1, 1, 1, 1)�27 (1, 1, 1, 2, 1, 0)

�28 (0, 1, 1, 2, 1, 1)�29 (1, 1, 1, 2, 1, 1)�30 (1, 1, 2, 2, 1, 0)�31 (0, 1, 1, 2, 2, 1)�32 (1, 1, 1, 2, 2, 1)�33 (1, 1, 2, 2, 1, 1)�34 (1, 1, 2, 2, 2, 1)�35 (1, 1, 2, 3, 2, 1)�36 (1, 2, 2, 3, 2, 1)

To find out which restricted root of EIII corresponds to each root of g D e6, we
consider the involutive automorphism� on g which describes the symmetric structure
of EIII; we tabulate the orbits of the action of� on the root system1g and the re-
stricted root of EIII corresponding to each orbit (compare Section 4 of [9]):

orbit f�1, ��21g f�6, ��18g f�7, ��16g f�11, ��12g f�23, ��23g
corresp. restr. root �1 �1 �1 �1 2�1

orbit f�17, ��31g f�20, ��30g f�22, ��28g f�24, ��27g f�36, ��36g
corresp. restr. root �2 �2 �2 �2 2�2

orbit f�2, ��25g f�8, ��19g f�13, ��14g f�26, ��35g f�29, ��34g f�32, ��33g
corresp. restr. root �3 �3 �3 �4 �4 �4
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Moreover, we have� (�k) D �k for k 2 f3, 4, 5, 9, 10, 15g.
In the sequel of this paper, we need a parametrization of the restricted root spaces of

EIII; in the calculations we will use this parametrization to pinpoint individual vectors
in the root spaces ofm. For this purpose we introduce the notations already used in
[9]. First, we note that there exists a Chevalley basis (X�)�21g for gC with Chevalley
constants (c�,�)�,�21g , i.e. for any�, � 2 1g we havec�,� 2 R,

[X�, X� ] D
8<
:

c�,�X�C� if � C � 2 1g,�℄ if � C � D 0,
0 otherwise,

and c��,�� D �c�,� (see, for example, [10], §VI.1); it has been shown in Section3 of
[9] that the Chevalley data can be chosen in such a way thatX� D �X�� holds (where
X denotes the conjugation ofX 2 gC with respect to the real formg). For � 2 1g and
z 2 C, we have

(7) V�(z) WD 1p
2

(zX� � zX��) 2 g,

and the root spaceg� of the real Lie algebrag corresponding to the root� is given
by g� D fV�(z) j z 2 Cg (see [9], Proposition 3.3 (d)).

Like in [9], Proposition 5.2 (a) we now describek� WD g� \ k and m� WD g� \ m

for � 2 1g. In the case� Æ � ¤ �� , we put for z 2 C
K�(z) WD 1p

2
(V�(z)C s�V�Æ� (z))

and

M�(z) WD 1p
2

(V�(z) � s�V�Æ� (z)),

herein s� 2 f�1g is characterized by the equation� (V�(z)) D s�V�Æ� (z). In the case� Æ � D � we notek� D g� D fV�(z) j z 2 Cg andm� D f0g. In the case� Æ � D ��
we put for t 2 R

QK�(t) D �V�(i t ) if s� D 1,
V�(t) if s� D �1

and

QM�(t) D �V�(t) if s� D 1,
V�(i t ) if s� D �1.

Then we havek� D f QK�(t) j t 2 Rg andm� D f QM�(t) j t 2 Rg.
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We now apply this general parametrization of restricted root spaces to the symmet-
ric space EIII using the description of the restricted rootsand the orbits of� for EIII
given above. Forc1, : : : , c4 2 C and t 2 R, and whereA denotes either of the letters
K and M, we put:

A�1(c1, c2, c3, c4) WD A�1(c1)C A�6(c2)C A�7(c3)C A�11(c4),

A2�1(t) WD QA�23(t),

A�2(c1, c2, c3, c4) WD A�17(c1)C A�20(c2)C A�22(c3)C A�24(c4),

A2�2(t) WD QA�36(t),

A�3(c1, c2, c3) WD A�2(c1)C A�8(c2)C A�13(c3),

A�4(c1, c2, c3) WD A�26(c1)C A�29(c2)C A�32(c3).

Then we havem�k D M�k (C, C, C, C) andm2�k D M2�k (R) for k 2 f1, 2g, andm�k D
M�k (C, C, C) for k 2 f3, 4g.

The action of the isotropy group. We next look at the isotropy action of EIII.
Regarding it, we use the notations introduced at the end of Section 2, in particular
we have the continuous function' W m n f0g! [0, �=4] parametrizing the orbits of the
isotropy action. For the elements of the closurec of the positive Weyl chamberc WDfv 2 a j �1(v) � 0, �3(v) � 0g, we can explicitly describe the relation to their isotropy
angle: (�℄2, �℄1) is an orthonormal basis ofa so that with vt WD cos(t)�℄2 C sin(t)�℄1
we have

(8) c D �s � vt t 2 �0,
�
4

�
, s 2 R�0

�
,

and because the Weyl chamberc is bordered by the two vectorsv0D �℄2 with '(v0)D 0

and v�=4 D (1=p2)�℄4 with '(v�=4) D �=4, we have

(9) '(s � vt ) D t for all t 2 �0,
�
4

�
, s 2 RC.

The action of the subgroupK0 of K whose Lie algebra is the centralizerk0 WDfX 2 k j [X,a] D 0g of a in k leaves the restricted root spacesm� invariant. The Dynkin
diagram ofk0 is given by the black roots in the Satake diagram of EIII (see above),
therefore we havek0 D (t \ k) �L K�l (C), where the sum runs over all those roots�l of e6 with � (�l ) D �l , i.e. l 2 f3, 4, 5, 9, 10, 15g. Because of this and the fact that
dim(t \ k) D 4 holds, it follows thatk0 is isomorphic tou(4), and henceK0 is locally
isomorphic to U(4).

By using theMaple implementation to look at the adjoint action ofk0 on the root
spacesm�, we can describe the action ofK0 on the root spaces in more detail:
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Proposition 3.1. For k 2 f1, 2g the action of K0 on m�k is locally equivalent to
the vector representation ofU(4), this means that if we denote by' the linear isometry

' W C4! m�k , (c1, c2, c3, c4) 7! M�k (c1, c2, c3, c4),

there exists a local isomorphism of Lie groups8 W U(4)! K0 so that the following
diagram commutes:

U(4)� C4 8�' K
K

K0 �m�k

AdKC4 ' Km�k ,

where the left vertical arrow represents the canonical action of U(4) on C4.
Moreover, if we fixv 2m�k nf0g, then the Lie subgroup U0 WD fB 2 U(4) j B('�1v)D'�1vg of U(4) is isomorphic toU(3), and hence the Lie subgroup K00 WD fg 2 K0 j

Ad(g)v D vg of K0 is locally isomorphic toU(3). For l 2 f3, 4g, the action of K00 on
m�l is locally equivalent to the vector representation ofU(3), meaning that if we denote
by  the linear isometry

 W C3! ml , (c1, c2, c3) 7! M�l (c1, c2, c3),

there exists a local isomorphism of Lie groups9 W U(3)! K 0
0 so that the following

diagram commutes:

U(3)� C3 9� K
K

K 0
0 �m�l

AdKC3  Km�l ,

where the left vertical arrow represents the canonical action of U(3) on C3.
In particular we see thatAd(K0) acts “ jointly transitively” on the unit spheres in

m�k andm�l in the sense that for any givenv1, v2 2 m�k andw1,w2 2 m�l with kv1k Dkv2k and kw1k D kw2k there exists g2 K0 with Ad(g)v1 D v2 and Ad(g)w1 D w2.
Finally, we note that the linear isometries

m�1 ! m�2, M�1(c1, c2, c3, c4) 7! M�2(c2, c1, c4, c3)

and

m�3 ! m�4, M�3(c1, c2, c3) 7! M�4(c1, c2, c3)

commute with the action ofAd(K0) on the respective root spaces.
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The complex structure of EIII. EIII is a Hermitian symmetric space; the action
of its complex structureJ on m is given by Jjm D ad(j )jm, where j is a element of
the centerz(k) of k so that (ad(j )jm)2 D �idm holds. Becausez(k) is one-dimensional,
this condition already determinesj up to sign; we find via computations with theMaple
package for computation of the Lie bracket ofe6 that

j D 2

3
(�℄1 � �℄6)C 1

3
(�℄3 � �℄5)C K2�1(1)� K2�2(1)

is one of the two possible choices; here we again denote for� 2 t� by �℄ 2 t the dual
of � with respect to the Killing formκ of g, i.e. the vector so thatκ(�℄, � )D � holds.

Using this presentation ofj and the formulaJv D ad(j )v for v 2 m, we can again
use theMaple package to calculate the action ofJ on m. In this way, we obtain for
c1, : : : , c4 2 C and t , s 2 R:

J(t�℄1C s�℄2) D 1

2
(M2�1(t) � M2�2(s)),

J(M�1(c1, c2, c3, c4)) D M�1(ic1, �ic2, ic3, �ic4),

J(M�2(c1, c2, c3, c4)) D M�2(ic1, �ic2, ic3, �ic4),

J(M�3(c1, c2, c3)) D M�4(ic1, �ic2, �i c3),

J(M�4(c1, c2, c3)) D M�3(ic1, �ic2, i c3),

J(M2�1(t)) D �2t�℄1,

J(M2�2(s)) D 2s�℄2.

In particular we see thatm�1 and m�2 are complex linear subspaces ofm, whereasa,
m2�1 � m2�2, m�3 and m�4 are totally real linear subspaces withJ(a) D m2�1 � m2�2

and J(m�3) D m�4.

3.2. Lie triple systems in E6=(U(1) � Spin(10)). We are now ready to describe
the Lie triple systems in EIII.

DEFINITION 3.2. Let V be a unitary space. We say that anR-linear subspace
U � V is
(a) of CP-type (C, dimC(U )) if it is a complex subspace ofV ,
(b) of CP-type (R, dimR(U )) if it is a totally real subspace ofV .

Theorem 3.3. The linear subspacesm0 of m listed in the following are Lie triple
systems, and every Lie triple systemf0g ¤ m0 ¨ m is congruent under the isotropy
action to one of them.2

2Please read Remarks 3.5 and 3.6 below before you suspect thatthere might be Lie triple systems
missing from the list.
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• (Geo,' D t) with t 2 [0, �=4]:
m0 D R(cos(t)�℄2C sin(t)�℄1) (compareEquation (8)).

• (P , ' D 0, (C, 5)):
m0 D R�℄2�m�2 �m2�2.

• (P , ' D �=4, � ) with � 2 fS5, S6, S7, S8, OP2g:
Put H WD �℄1C �℄2 and QH WD M2�1(1)C M2�2(1).

For � D Sk: m0 is a k-dimensional linear subspace ofRH �m�4 � R QH.
For � DOP2: m0 D RH�fM�1(c1, c2, c3, c4)CM�2(c2, c1,�c4,�c3) j c1, c2, c3, c4 2Cg� M�4(C, C, C)� R QH.

• (P � P1, (K1, l ), K2) with l 2 f4, 5g, K1, K2 2 fR, Cg and (K1, K2) ¤ (R, R):
We havem0 D a�m0�1

�m0
2�1
�m0

2�2
, wherem0�1

is a subspace ofm�1 of CP-type
(K1, l � 1), and where we put for k2 f1, 2g m0

2�k
WD m2�k if Kk D C, m0

2�k
WD f0g ifKk D R.

• (Q):
m0 D a� M�3(C, C, C)� M�4(C, C, C)� M2�1(R)� M2�2(R).

• (Q, � ) where� is one of the types listed in[7], Theorem 4.1for mD 8, i.e. � is
one of(G1,k) with k� 8, (G2,k1, k2) with k1C k2 � 8, (G3), (P1,k) with k� 8, (P2),
(A), (I1, k) with k � 4, and (I2, k) with k� 4:

m0 is contained in a Lie triple systemOm0 of type (Q), corresponding to a complex
quadric Q8, and regarded as a Lie triple system ofOm0, m0 is of type� according to
the classification in[7], Theorem 4.1.
• (G2C6):

m0 D a�M�1(C,C, 0, 0)�M�2(C,C, 0, 0)�M�3(0, 0,C)�M�4(0, 0,C)�M2�1(R)�
M2�2(R).
• (G2C6, � ), where � is one of the following types listed in[8], Theorem 7.1for
nD 4: (P ,' D arctan(1=2), (K, k)) with K 2 fR,Cg and k� 2, (P ,' D �=4, (K, 2)) withK 2 fR,C,Hg, (G2, (K, k)) with K 2 fR,Cg and k2 f3, 4g, and (P �P , (K, k), (K0, k0))
with K, K0 2 fR, Cg and kC k0 � 4:

m0 is contained in a Lie triple systemOm0 of type(G2C6), corresponding to a com-
plex Grassmannian G2(C6), and regarded as a Lie triple system ofOm0, m0 is of type�
according to the classification in[8], Theorem 7.1.
• (G2H4):

m0 D a� M�1(R, R, R, R)� M�2(iR, iR, iR, iR)� M�3(R, R, R)� M�4(R, R, R).
• (G2H4, � ), where � is one of the following types listed in[8], Theorem 5.3for
nD 2: (P ,' D 0, (K, 2)) with K 2 fR,C,Hg, (S,' D arctan(1=3), 3), (P ,' D �=4, (S3)),
(P ,' D �=4, (H, 1)), (S5,' D �=4), (G2, (H, 1)), (S1�S5, k) with 3� k � 5, and (Sp2):

m0 is contained in a Lie triple systemOm0 of type(G2H4), corresponding locally to
a quaternionic Grassmannian G2(H4), and regarded as a Lie triple system ofOm0, m0
is of type� according to the classification in[8], Theorem 5.3.
• (DIII):

m0 D a�M�1(C, 0,C, 0)�M�2(C, 0,C, 0)�M�3(0,C,C)�M�4(0,C,C)�M2�1(R)�
M2�2(R).
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We call the full name(Geo,' D t), (P , ' D 0, (C, 5)) etc. given in the above table the
type of the Lie triple systems which are isotropy-congruentto the space given in that
entry. Then every Lie triple system ofm is of exactly one type.

In the type names of Lie triple systems of rank1, the value given in the form' D t
is the isotropy angle(see the end ofSection 2)of the Lie triple systems of that type.

The Lie triple systemsm0 of the various types have the properties given in the
following table. The column“ isometry type” gives the isometry type of the totally geo-
desic submanifolds corresponding to the Lie triple systemsof the respective type in ab-
breviated form(without specification of the scaling factors of the Riemannian metrics),
for the details seeSection 3.3.

type ofm0 dim(m0) rk(m0) m0 complex or
totally real? m0 maximal isometry type

(Geo,' D t) 1 1 totally real no R or S1

(P , ' D 0, (C, 5)) 10 1 complex no CP5

(P , ' D �=4, Sl ) l 1 totally real no Sl

(P , ' D �=4,OP2) 16 1 totally real yes OP2

(P � P1, (R, l ), C) l C 2 2 neither no RPl � CP1

(P � P1, (C, l ), R) 2l C 1 2 neither no CPl � RP1

(P � P1, (C, l ), C) 2l C 2 2 complex for l D 5 CPl � CP1

(Q) 16 2 complex yes Q8

(Q, � ) see[7], Theorem 4.1 no
(G2C6) 16 2 complex yes G2(C6)

(G2C6, � ) see[8], Theorem 7.1 no
(G2H4) 16 2 totally real yes G2(H4)=Z2

(G2H4, � ) see[8], Theorem 5.3 totally real no
(DIII) 20 2 complex yes SO(10)=U(5)

REMARK 3.4. The Lie triple systems of type (Q, � ), (G2C6, � ) and (G2H4, � )
are contained in Lie triple systems of type (Q) (corresponding to a complex quadric
Q8), (G2C6) (corresponding toG2(C6)) and (G2H4) (corresponding toG2(H4)=Z2), re-
spectively. To obtain explicit descriptions of these types, one needs to apply the results
in [7] and [8] on the classification of Lie triple systems in these spaces.

To be able to do so, it is important to know how the root systemsof the Lie triple
systems of type (Q), (G2C6) and (G2H4) are embedded in the root system of EIII, and
also how the function' parametrizing the orbits of the isotropy action defined forQm

and G2(Kn) in [7] resp. in [8] relates to the corresponding function' defined for EIII
in the present paper.

Because the Lie triple systems of type (Q), (G2C6) and (G2H4) have maximal
rank in EIII, their respective root systems1(Q), 1(G2C6) and1(G2H4) are simply sub-
sets of the root system1 of EIII (see Proposition 2.1 (b), and also see the proof of
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Theorem 3.3 below). In fact, from the definition of these types in Theorem 3.3 it fol-
lows immediately that we have

1(Q) D f��3, ��4, �2�1, �2�2g,1(G2C6) D 1,

1(G2H4) D f��1, ��2, ��3, ��4g.
For each of the typesO� 2 f(Q), (G2C6), (G2H4)g we now letm O� be a Lie triple

system of EIII of typeO� , and let' O� W m O� n f0g! [0, �=4] be the function parametrizing
the orbits of the isotropy action of the symmetric space corresponding tom O� (i.e. Q8,
G2(C6) or G2(H4)=Z2) as introduced in [7] at the beginning of Section 4.2 resp. in[8],
Section 4. Note that in these cases, we always measured the angle '(v) from the vector
corresponding to the shortest root present inQn resp.G2(Cn) for large n, even if this
root vanishes for certain small values ofn (as happens forG2(H4)). Keeping this in
mind, and considering the root systems1 O� as given above, we see that the functions' O� is related to the function' W m n f0g ! [0, �=4] parametrizing the isotropy orbits
of EIII by

'(Q)(v) D �
4
� '(v) for v 2 m(Q) n f0g,

'(G2C6)(v) D '(v) for v 2 m(G2C6) n f0g,
'(G2H4)(v) D �

4
� '(v) for v 2 m(G2H4) n f0g.

REMARK 3.5. We now introduce alternative definitions for some typesof Lie
triple systems, to make it more intuitive that indeed all congruence classes of Lie triple
systems are covered in Theorem 3.3, and also to simplify the notations in what follows.

First, we consider the types (G2C6, � ) resp. (G2H4, � ) also for those types� listed
in [8], Theorem 7.1 fornD 4 resp. in [8], Theorem 5.3 fornD 2 which have not been
mentioned in Theorem 3.3. Then a Lie triple system of EIII is contained in a Lie triple
system of type (G2C6) resp. (G2H4) if and only if it is of type (G2C6, � ) resp. of type
(G2H4, � ) with some� .

Moreover, we define the types (P , ' D 0, (K, l )) for anyK 2 fR,Cg and l � 5: We
say that a linear subspace ofm is of that type if and only if it is isotropy-congruent
to m0 D R�℄2�m0�2

�m0
2�2

, wherem0�2
� m�2 is a linear subspace ofCP-type (K, l �1)

and we putm0
2�2
WD m2�2 if K D C, m0

2�2
WD f0g if K D R. Any such space is a Lie

triple system ofm, and the Lie triple systems of these types are exactly those which
are contained in a Lie triple system of type (P , ' D 0, (C, 5)).

Likewise, we can define the type (P , ' D �=4, � ) also for � D Sl with l � 4 and
for � D KP2 with K 2 fR, C, Hg in the following way: We putH WD �℄1 C �℄2 andQH WD M2�1(1)C M2�2(1). Then a Lie triple system is of type (P , ' D �=4, Sl ) if it
is isotropy-congruent to al -dimensional linear subspace ofRH � m�4 � R QH . A Lie
triple system is of type (P , ' D �=4,KP2) if it is congruent to the Lie triple system
m0, where we have
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• for K D R: m0 D RH � fM�1(t , 0, 0, 0)C M�2(0, t , 0, 0) j t 2 Rg,
• for K D C: m0 D RH � fM�1(c, 0, 0, 0)C M�2(0, c, 0, 0) j c 2 Cg � R QH ,
• for K D H: m0 D RH � fM�1(c1, c2, 0, 0) C M�2(c2, c1, 0, 0) j c1, c2 2 Cg �
M�4(0, 0,C) � R QH .
Then the Lie triple systems of EIII which are contained in a Lie triple system of type
(P , ' D �=4,OP2) are exactly those which are of a type of the form (P , ' D �=4, � ).

Finally, the type (P � P1, (K1, l ), K2) can be defined also forl � 3, and also forK1 D K2 D R by applying the same definition as in the Theorem. Then the Lietriple
systems of EIII which are contained in (P �P1, (C, 5),C) are exactly those which are
of the type (P � P1, (K1, l ), K2) with someK1, K2 2 fR, Cg and l � 5.

These “newly defined” types are identical, however, to typesof the form (Q, � ) or
(G2C6, � ) defined in Theorem 3.3. This is detailed in the following table:

The type . . . defined here is identical to the type . . . from
Theorem 3.3.

(G2C6, (P ,'D0, (R, k))) (Q, (I2,k))
(G2C6, (P ,'D0, (C, k))) (Q, (I1,k))

(G2C6, (S,'Darctan(1=3), 2)) (Q, (A))
(G2C6, (P ,'D�=4, (R, 1))) (Q, (P1, 1))
(G2C6, (P ,'D�=4, (C, 1))) (Q, (P1, 2))
(G2C6, (P ,'D�=4, (S3))) (Q, (P1, 3))

(G2C6, (P ,'D�=4, (H, 1))) (Q, (P1, 4))
(G2C6, (G2, (R, 1))) (Q, (I2, 2))
(G2C6, (G2, (C, 1))) (Q, (I1, 2))
(G2C6, (G2, (R, 2))) (Q, (P1, 4))
(G2C6, (G2, (C, 2))) (Q, (G1, 4))
(G2C6, (S1 � S5, k)) (Q, (P2, 1,k))

(G2C6, (Q3)) (Q, (G2, 3))
(G2H4, (P ,'D0,� 0)) with dim(� 0)D1 (Q, (P1,w(� 0)))

(G2H4, (P ,'Darctan(1=3), 2)) (G2C6, (P ,'Darctan(1=2), (R, 2)))
(G2H4, (P ,'D�=4, (K, 1))) with K2 fR,Cg (G2C6, (P ,'D0, (K, 1)))

(G2H4, (G2, (K, 1))) with K2 fR,Cg (G2C6, (P ,'D�=4, (K, 2)))
(G2H4, (G2, (R, 2))) (G2C6, (P � P , (R, 1), (R, 1)))
(G2H4, (G2, (C, 2))) (G2C6, (G2, (R, 4)))

(G2H4, (P � P , � 0, � 00)) with dim(� 0)Ddim(� 00)D1 (Q, (G2,w(� 0),w(� 00)))
(G2H4, (S1 � S5, 1)) (G2C6, (P � P , (R, 1), (R, 1)))
(G2H4, (S1 � S5, 2)) (G2C6, (P � P , (C, 1), (R, 1)))

(G2H4, (Q3)) (G2C6, (G2, (R, 3)))
(P ,'D0, (R, 1)) (Geo,'D0)
(P ,'D0, (R, 2)) (G2C6, (P ,'D0, (C, 1)))
(P ,'D0, (R, 3)) (G2C6, (P ,'D0, (S3)))
(P ,'D0, (R, 4)) (G2C6, (P ,'D0, (H, 1)))
(P ,'D0, (R, 5)) (G2H4, (S5,'D�=4))

(P ,'D0, (C, l )) with l �4 (Q, (I1, l ))
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The type . . . defined here is identical to the type . . . from
Theorem 3.3.

(P ,'D�=4,Sl ) with l �4 (Q, (P1,l ))
(P ,'D�=4,KP2) with K2 fR,C,Hg (G2C6, (P ,'D�=4, (K, 2)))

(P � P1, (K1, l ),K2) with l �3 (G2C6, (P � P , (K1, l ), (K2, 1)))
(P � P1, (R, l ),R) with l �5 (G2H4, (S1 � S5, l ))

As an example for proving these identities, we consider the type (P , ' D 0, (C, 4)). To
prove that this type is identical to the type (Q, (I1, 4)), it suffices to show that the space

m0 WD R�℄2� M�2(C, C, C, 0)� M2�2(R)

of type (P , ' D 0, (C, 4)) is isotropy-congruent to a space Ad(g)m0 contained in the
Lie triple system

Om0 WD a� M�3(C, C, C)� M�4(C, C, C)� M2�1(R)� M2�2(R)

of type (Q). Because Ad(g)m0 has the isotropy angle 0 with respect to EIII, it has the
isotropy angle�=4 with respect toQ8 (see Remark 3.4); because it is also a complex sub-
space, it then must be of type (Q, (I1, 4)) by the classification of Lie triple systems of the
complex quadric given in [7], Theorem 4.1. —To show that suchan isotropy-congruence
indeed holds, notice that withZ WD K�7(

p
8) 2 k we have ad(Z)�℄2 D ad(Z)M2�2(t) D

0 and

ad(Z)M�2(c1, c2, c3, 0)D M�3(c2, c1, �c3)C M�4(�c1, �c2, c3)

for any t 2 R, c1, c2, c3 2 C. This shows that withg WD exp(�=2Z) 2 K we have

Ad(g)m0
D R�℄2� fM�3(c2, c1, �c3)C M�4(�c1, �c2, c3) j c1, c2, c3 2 Cg� M2�2(R)

� Om0.
REMARK 3.6. For the space EIII, Table VIII of [5] correctly lists thelocal isom-

etry types of themaximal totally geodesic submanifolds. However, the totally geo-
desic submanifolds corresponding to the types (G2H4) and (Q) are of isometry type
G2(H4)=Z2 resp.GC

2 (R10) � Q8 (see Section 3.3), and not of isometry typeG2(H4)
resp.G2(R10) (as [5] claims).

It should be noted that EIII contains spaces of rank 1 as totally geodesic sub-
manifolds in a “skew” position in the sense that their geodesic diameter is strictly larger
than the geodesic diameter of the ambient space EIII. However, none of them is max-
imal in EIII. The “skew” totally geodesic submanifolds which are maximal among the
totally geodesic submanifolds of EIII of rank 1 are those of the types (G2H4, (P , ' D
arctan(1=3), 3)) (isometric to anRP3 of sectional curvature 2=5), (Q, (A)) (isometric to
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a 2-sphere of radius (1=2)
p

10) and (G2C6, (P , ' D arctan(1=2), (C, 2)) (isometric to
a CP2 of holomorphic sectional curvature 4=5). The existence of these “skew” totally
geodesic submanifolds cannot be inferred from Table VIII of[5]. For explicit construc-
tions of these “skew” totally geodesic submanifolds inG2(H4), Q3 resp.G2(C6), see
[8], Sections 6 and 7.3

The remainder of the present section is concerned with the proof of Theorem 3.3.
We first mention that it is easily checked using theMaple implementation of the

algorithms for the computation of the curvature tensor thatthe spaces defined in the
theorem, and therefore also the linear subspacesm0 � m which are congruent to one
of them, are Lie triple systems. It is also easily seen that the information in the table
concerning the dimension, the rank, and the question ifm0 is complex or totally real is
correct (for the latter, use the description of the complex structure of EIII given in Sec-
tion 3.1). The information on the isometry type of the corresponding totally geodesic
submanifolds will be proved in Section 3.3.

Note that the information on the individual types of Lie triple systems given in the
table in the Theorem is invariant under congruence transformation, as is, in the case of
Lie triple systems of rank 1, the isotropy angle of the Lie triple system (which is given
in the form' D � � � in the names of the types of rank 1 Lie triple systems). Consider-
ing the information given in the table, and in the corresponding tables in the classifica-
tion theorems cited from [7] and [8] for the types (Q, � ), (G2C6, � ) and (G2H4, � ) (in
view of the isotropy angle, take Remark 3.4 into account), wesee that no two of the
types of Lie triple systems given in the Theorem coincide in all the mentioned charac-
teristics. Therefore no Lie triple system is of more than onetype.

We next show that the information on the maximality of the Lietriple systems
given in the table is correct. For this purpose, we presume that the list of Lie triple
systems given in the theorem is in fact complete; this will beproved in the remainder
of the present section.

That the Lie triple systems which are claimed to be maximal inthe table indeed
are: This is clear for the type (DIII), because it has the maximal dimension among all
the Lie triple systems of EIII. The Lie triple systems of the types (P , ' D �=4,OP2),
(Q), (G2C6) and (G2H4) all are of dimension 16, therefore if they were not maximal,
they could only be contained in a Lie triple system of type (DIII), because these are
the only ones of greater dimension. The spaces of the types (P , ' D �=4,OP2) and
(G2H4) are real forms of EIII, and therefore cannot be contained ina (complex) Lie

3The most general of these constructions in [8] is the construction of a “skew” HP2 (of type
(P , ' D arctan(1=2), (H, 2))) in G2(H7) described in Section 6 of [8]. It is based on the funda-
mental 14-dimensional representation with quaternionic structure of Sp(3), which is realized as a sub-

representation of the representation of Sp(3) on
V3 C6, see also [4], p. 269ff. I would like to remark

that this representation is not equivalent to the representation of Sp(3) onJ(3,H)C involved in Cartan’s
construction of isoparametric hypersurfaces in the sphere. This is easily seen, because the latter repre-
sentation, although it is also 14-dimensional and irreducible, admits a real structure, and thus cannot
admit a quaternionic structure, see [4], Proposition II.6.5, p. 98.
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triple systems of type (DIII). The restricted Dynkin diagrams with multiplicities of the
Lie triple systems of type (Q) and (DIII) are �1 ) �6 and �4 )� 4[1], respectively.
Thus the short roots in a Lie triple system of type (Q) have greater multiplicity than
all the roots in a Lie triple system of type (DIII), and hence aLie triple system of
type (Q) cannot be contained in any Lie triple system of type (DIII) either. Assume
that the Lie triple systemm0 WD a�M�1(C, C, 0, 0)�M�2(C, C, 0, 0)�M�3(0, 0,C)�
M�4(0, 0,C)� M2�1(R)� M2�2(R) of type (G2C6) were contained in a Lie triple sys-
tem of type (DIII) i.e. in a space isotropy-congruent toOm0 WD a � M�1(C, 0,C, 0)�
M�2(C, 0,C, 0)�M�3(0,C,C)�M�4(0,C,C)�M2�1(R)�M2�2(R). Then there would
exist g 2 K so that Ad(g) maps M�k (C, C, 0, 0) onto M�k (C, 0,C, 0) for k 2 f1, 2g.
But this is a contradiction to the fact that the action of Ad(g) commutes with the map
M�1(c1, c2, c3, c4) 7! M�2(c2, c1, c4, c3) (Proposition 3.1), so also the Lie triple systems
of type (G2C6) cannot be contained in a Lie triple system of type (DIII). Finally, we
note that the Lie triple systems of type (P � P1, (C, 5),C) are of rank 2 and have
the Dynkin diagram� 8[1] �1. They have a restricted root of multiplicity 8, which is
greater than the multiplicity of any root in any other Lie triple system of EIII of rank 2.
Therefore also this type is maximal.

That no Lie triple systems are maximal besides those mentioned in the theorem
follows from the following table:

Every Lie triple system of type. . . is contained in a Lie triple system of type. . .
(Geo,'D t) (P � P1, (R, 1),R)

(P , 'D�=4, Sk) (P , 'D�=4,OP2)
(P � P1, (K, l ), R) (P � P1, (K, l ), C)

(P � P1, (K, l ), C) with (K, l )¤ (C, 5) (P � P1, (C, 5),C)
(Q, � ) (Q)

(G2C6, � ) (G2C6)
(G2H4, � ) (G2H4)

We now turn to the proof that the list of Lie triple systems of EIII given in The-
orem 3.3 is indeed complete. For this purpose, we let an arbitrary Lie triple systemm0
of m, f0g ¤ m0 ¨ m, be given. In the sequel, we will also use the additional names
for types of Lie triple systems introduced in Remark 3.5; it has been shown there that
these types are equivalent to other types defined in Theorem 3.3.

Because the symmetric space EIII is of rank 2, the rank ofm0 is either 1 or 2.
We will handle these two cases separately in the sequel.

We first suppose thatm0 is a Lie triple system of rank 2. Let us fix a Cartan
subalgebraa of m0; because of rk(m0) D rk(m), a is then also a Cartan subalgebra of
m. In relation to this situation, we use the notations introduced in Sections 2 and 3.1.
In particular, we consider the positive root system1C WD f�1, �2, �3, �4, 2�1, 2�2g of
the root system1 WD 1(m, a) of m, and also the root system10 WD 1(m0, a) of m0.
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By Proposition 2.1 (b),10 is a root subsystem of1, and therefore10C WD 10 \ 1C
is a positive system of roots for10. Moreover, in the root space decompositions of
m andm0
(10) m D a�M

�21C m� and m0 D a�M
�210C m

0�
the root spacem0� of m0 with respect to� 2 10C is related to the corresponding root
spacem� of m by m0� D m� \m0.

As was noted in Section 3.1,m�k is a complex subspace ofm for k 2 f1, 2g. The
following proposition describes how the position ofm0�k

in m�k with respect to the com-
plex structure is controlled by the presence of the root 2�k in 10.

Proposition 3.7. For k 2 f1, 2g, m0�k
is either a complex or a totally real subspace

of m�k ; it is a complex subspace if and only if2�k 2 10 holds.

Proof. First suppose 2�k 2 10. Because ofn2�k D 1 we then havem0
2�k
D m2�k D

M2�k (R). For any givenv 2 m0�1
we have4 R(�℄k, v)M2�k (1)D �(1=8)Jv, and this vector

is a member ofm0 by the fact thatm0 is a Lie triple system. ThusJv 2 m�k\m0 D m0�k

holds, and hencem0�k
is a complex subspace ofm�k .

Now suppose 2�k � 10. For any givenv, w 2 m0�k
we havem0 3 R(�℄k, v)w D

(1=8)hv, wi�℄1C (1=8)hv, JwiM2�k (1); because of 2�k � 10 it follows that hv, Jwi D 0
holds. Hencem0�k

is a totally real subspace ofm�k .

We now distinguish three cases depending on the structure of10, which we will
treat separately in the sequel:
(a) �3, �4 2 10,
(b) either, but not both, of�3 and �4 are members of10,
(c) �3, �4 � 10.

CASE (a). Because of�3 2 10, there existsv 2 m0�3
with kvk D 1. By Propos-

ition 3.1, there existsg 2 K0 � K so that Ad(g) mapsv into M�3(0, 0, 1), and therefore
m0 into another Lie triple systemm00 WD Ad(g)m0, so that we haveM�3(0, 0, 1)2 m00�3

.
This argument shows that we may suppose without loss of generality that M�3(0, 0, 1)2
m0�3

holds.
We have for anyv D M�1(c1, c2, c3, c4):

R(�℄1, v)M�3(0, 0, 1)D
p

2

16
M�2(c1i , c2i , �c3i , �c4i ),

4The evaluation ofR is done here, as in all the following situations, using theMaple package
described in [9], as explained in the Introduction.
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and for anyv D M�2(c1, c2, c3, c4):

R(�℄2, v)M�3(0, 0, 1)D �
p

2

16
M�1(c1i , c2i , �c3i , �c4i ).

Because of the fact thatm0 is a Lie triple system, it follows that we have for any
c1, : : : , c4 2 C
(11) M�1(c1, c2, c3, c4) 2 m0�1

� M�2(c1i , c2i , �c3i , �c4i ) 2 m0�2
.

This equivalence in particular implies (�1 2 10, �2 2 10) and n0�1
D n0�2

.
Because10 is invariant under the Weyl transformation given by the reflection in

(�℄3)?,a (note �3 2 10), we also have (2�1 2 10, 2�2 2 10).
Let us first suppose 2�1, 2�2 2 10. Then m0�k

is a complex subspace ofm�k for
k 2 f1, 2g by Proposition 3.7. Hencen WD n0�1

D n0�2
is an even number, and we consider

the possible values 0, 2, 4, 6, 8 forn individually in the sequel.
If n D 0 holds, we have10 D f��3,��4,�2�1,�2�2g; this is a closed root sub-

system of1. Therefore the maximal linear subspaceOm0 WD a �L�210 m� of m cor-
responding to10 is a Lie triple system (see Proposition 2.6); its corresponding Dynkin
diagram with multiplicities is�1) �6. Therefore the totally geodesic submanifold cor-
responding toOm0 is locally isometric to the complex quadricQ8. m0 is also regarded
as a subspace ofOm0 a Lie triple system; thereforem0 is of one of the types described
in the classification of the Lie triple systems ofQm in [7]. It follows that if m0 D Om0
holds, thenm0 is of type (Q); otherwise it is of type (Q, � ), where � is one of the
types of Lie triple systems ofOm0 as described in [7], Theorem 4.1 formD 8.

For n ¤ 0, an argument based on Proposition 3.1 similar to the previous one shows
that we may suppose without loss of generality besides the earlier conditionM�3(0, 0, 1)2
m0�3

alsoM�1(1, 0, 0, 0)2 m0�1
. Becausem0�1

is a complex subspace ofm�1, we then in fact
haveM�1(C, 0, 0, 0)� m0�1

. This fact induces further relations between the root spaces of
m0 besides (11), which we now explore.

For anyv WD M�3(d1, d2, d3) we have

u WD R(�℄2, v)M�1(1, 0, 0, 0)D �
p

2

16
M�2(id3, 0, i d2, �id1)

and

R(u, M�1(1, 0, 0, 0))�℄1 D 1

128
v C 1

128
M�4(�d1, d2, d3).

An analogous calculation applies starting withv D M�4(d1, d2, d3), and in this way we
see via the fact thatm0 is a Lie triple system:

M�3(d1, d2, d3) 2 m0�3
H) M�2(id3, 0, i d2, �id1) 2 m0�2

,(12)

M�3(d1, d2, d3) 2 m0�3
� M�4(�d1, d2, d3) 2 m0�4

.(13)
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Moreover for anyv WD M�2(c1, c2, c3, c4) we have

R(M�1(1, 0, 0, 0),v)�℄3 D
p

2

8
M�3(�c4i , �c3i , c1i )

and therefore, again by the fact thatm0 is a Lie triple system

(14) M�2(c1, c2, c3, c4) 2 m0�2
H) M�3(�c4i , �c3i , c1i ) 2 m0�3

.

We can use these relations to draw the following consequences from the fact
M�1(C, 0, 0, 0)� m0�1

: First, from (11) we obtainM�2(C, 0, 0, 0)� m0�2
. By (14) there-

from M�3(0, 0,C)� m0�3
follows, and therefrom we finally obtain by (13):M�4(0, 0,C)�

m0�4
. Remember for the sequel also that we havem2�k D M2�k (R) for k 2 f1, 2g.
If nD 2 holds, then we in fact havem0�1

D M�1(C, 0, 0, 0) andm0�2
D M�2(C, 0, 0, 0);

because of (12) we then havem0�3
D M�3(0, 0,C), and thereforem0�4

D M�4(0, 0,C) by
(13). Thus we see by the root space decomposition (10) that

m0 D a� M�1(C, 0, 0, 0)� M�2(C, 0, 0, 0)� M�3(0, 0,C)� M�4(0, 0,C)

� M2�1(R)� M2�2(R)

holds, and thusm0 is of type (G2C6, (G2, (C, 3))).
If n D 4 holds, then the Dynkin diagram with multiplicities corresponding tom0

is �l ) � 4[1] with some 1� l � 6; from the classification of irreducible Riemann-
ian symmetric spaces (see, for example, [14], p. 119, 146) wesee thatl D 2 and
l D 4 are the only possibilities. Ifl D 2 holds, we havem0�3

D M�3(0, 0,C) and
m0�4
D M�4(0, 0,C). Because ofn D 4 we see from (14) thatm0�2

D M�2(C, C, 0, 0)
and therefore by (11) alsom0�1

D M�1(C, C, 0, 0) has to hold. Thus we see that

m0 D a� M�1(C, C, 0, 0)� M�2(C, C, 0, 0)� M�3(0, 0,C)� M�4(0, 0,C)

� M2�1(R)� M2�2(R)

holds, and hencem0 is of type (G2C6). On the other hand, ifl D 4 holds, we letv 2 m0�1
be a unit vector which is orthogonal toM�1(C, 0, 0, 0)� m0�1

; we havev D
M�1(0, c2, c3, c4) with somec2, c3, c4 2 C, and

(15) m0�1
D M�1(C, 0, 0, 0)� Rv � RJv

holds. Because ofv 2 m0�1
, we haveM�2(0, c2i , �c3i , �c4i ) 2 m0�2

by (11), therefore
M�3(�c4, c3, 0) 2 m0�3

by (14), thusM�2(0, 0,�ic3, �ic4) 2 m0�2
by (12), and hence

finally M�1(0, 0,c3, c4) 2 m0�1
by (11). From (15) and the explicit description ofJ in

Section 3.1 we see that

(0, 0,c3, c4) 2 R(0, c2, c3, c4)� R(0, �ic2, ic3, �ic4)
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holds; this implies that we have eitherc2 D 0 or c3 D c4 D 0. In fact, c3 D c4 D 0
is impossible, because then we would havem0�1

D M�1(C, C, 0, 0), therefore by (11)
also m0�2

D M�2(C, C, 0, 0), and therefore by (12)m0�3
� M�3(0, 0,C), in contradic-

tion to l D 4. Therefore we havec2 D 0 and thusv D M�1(0, 0,c3, c4). We have
ad(K�4(2))M�1(0, 0,c3, c4) D M�1(0, 0,�c4, c3), therefore by the application of a ro-

tation Ad(exp(H )) with suitable H 2 R�℄4 � K�4(C) � su(2) to m0, we can arrange
c4 D 0, and thusm0�1

D M�1(C, 0,C, 0). Then we havem0�2
D M�2(C, 0,C, 0) by (11),

m0�3
D M�3(0,C, C) by (14) and the fact thatl D 4, andm0�4

D M�4(0,C, C) by (13).
Therefore

m0 D a� M�1(C, 0,C, 0)� M�2(C, 0,C, 0)� M�3(0, C, C)� M�4(0, C, C)

� M2�1(R)� M2�2(R)

is of type (DIII).
The casen D 6 cannot occur, because the Dynkin diagram with multiplicities cor-

responding tom0 would then be�l ,� 6[1] with some 1� l � 6; (14) showsl � 4.
But the classification of irreducible Riemannian symmetricspaces (see [14], p. 119,
146) shows that no symmetric space with such a diagram exists.

Finally, if n D 8 holds, we havem0�k
D m�k for k 2 f1, 2g, from (14) we obtain

m0�3
D m�3, from (13) we then obtainm0�4

D m�4, and we also havem0
2�k
D m2�k for

k 2 f1, 2g. Thus we havem0 D m.
Let us now consider the case where 2�1, 2�2 � 10. Thenm0�1

andm0�2
are totally

real subspaces ofm�1 resp.m�2 by Proposition 3.7. We either have�1, �2 2 10 or�1, �2 � 10 because of the invariance of10 under the Weyl transformation induced by�3 2 10. If �1, �2 � 10, i.e.10 D f��3, ��4g holds, thenm0 is again contained in
a Lie triple system Om0 of type (Q), and therefore, by the classification of Lie triple
systems in Om0 given in [7], m0 is of type (Q, � ), where� is one of the types listed in
Theorem 4.1 of [7] formD 8.

So we now suppose�1,�2 210. Once again using Proposition 3.1, we may suppose
without loss of generality thatm0�1

� M�1(R, R, R, R) holds becausem0�1
is totally real,

and also thatM�1(1, 0, 0, 0)2 m0�1
holds. The proof of Equations (12)–(14) was based

only on the fact thatM�1(1, 0, 0, 0)2 m0�1
holds, and therefore these equations will again

be valid in the present situation. Therefore we havem0�2
� M�2(iR, iR, iR, iR) by (11),

thenm0�3
� M�3(R, R, R) by (14), and thenm0�4

� M�4(R, R, R) by (13).
Thereforem0 is contained in the Lie triple system

Om0 WD a� M�1(R, R, R, R)� M�2(iR, iR, iR, iR)� M�3(R, R, R)� M�4(R, R, R),

of type (G2H4). Om0 has the Dynkin diagram�3) �4, and therefore the corresponding
totally geodesic submanifold is locally isometric toG2(H4). m0 is also a Lie triple
system of Om0, therefore we have eitherm0 D Om0, or m0 is of one of the types described
in the classification of Lie triple systems ofG2(HnC2) given in Theorem 5.3 of [8]
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for n D 2. It follows thatm0 is either of type (G2H4) (if m0 D Om0 holds), or of type
(G2H4, � ), where � is one of the types of Lie triple systems ofOm0 as described in
Theorem 5.3 of [8] forn D 2.

CASE (b). Here we suppose that either, but not both, of�3 and �4 are in 10.
Without loss of generality we may suppose�3 2 10, �4 � 10. Because10 is invariant
under its Weyl transformation group, we then have10 D f��3g and thereforem0 D
a�m0�3

is of type (Q, (G2, l , 1)) with l WD 1C n0�3
, 2� l � 7.

CASE (c). So now we have�3, �4 � 10. Let us first consider the case where at
least one of the roots�1 and �2 is not in 10. Without loss of generality we suppose�2 � 10, so that we have10 � f��1, �2�1, �2�2g. For k 2 f1, 2g we put Kk WD C
if 2�k 2 10, Kk WD R if 2�k � 10. Proposition 3.7 then shows thatm0�1

is a linear

subspace ofm�1 of type (K1, dimK1(m
0�1

)). It follows thatm0 is of type (P�P1, (K1, 1C
dimK1(m

0�1
)), K2).

Now consider the case�1, �2 2 10. As before, we may use Proposition 3.1 to
suppose without loss of generality thatM�1(1, 0, 0, 0)2 m0�1

holds. Let v 2 m0�2
be

given, sayv D M�2(c1, c2, c3, c4) with c1, : : : , c4 2 C, then we have

m0 3 R(M�1(1, 0, 0, 0),v)�℄3 D �
p

2

8
M�3(ic4, i c3, �ic1).

Because of�3 � 10 it follows that we havec1 D c3 D c4 D 0 and thus we havem0�2
�

M�2(0,C, 0, 0). Without loss of generality we may supposeM�2(0, 1, 0, 0)2 m0�2
. Now

let v 2 m0�1
be given, sayv D M�1(c1, c2, c3, c4) with c1, : : : , c4 2 C, then we have

m0 3 R(M�2(0, 1, 0, 0),v)�℄3 D
p

2

8
M�3(ic3, i c4, ic2).

Because of�3 � 10 we obtainc2 D c3 D c4 D 0, and thusm0�1
� M�1(C, 0, 0, 0). Because

m�k is either complex or totally real according as whether 2�k is or is not a member of10
by Proposition 3.7, we see thatm0 is of the type (G2C6, (P � P , (K1, 2), (K2, 2))), where
for k 2 f1, 2g we putKk WD C if 2�k 2 10, Kk WD R if 2�k � 10.

This completes the classification of the Lie triple systems of EIII of rank 2.
We now turn our attention to the case wherem0 is a Lie triple system of rank 1.

Via the application of the isotropy action of EIII, we may suppose without loss of gen-
erality thatm0 contains a unit vectorH from the closurec of the positive Weyl chamber
c of m (with respect toa and our choice of positive roots). By Equations (8) and (9)
we then have with'0 WD '(H ) 2 [0, �=4]

(16) H D cos('0)�℄2C sin('0)�℄1.

Because of rk(m0) D 1, a0 WD RH is a Cartan subalgebra ofm0, and we havea0 D
a\m0. It follows from Proposition 2.1 (a) that the root systems10 and1 of m0 resp.m
with respect toa0 resp. toa are related by

(17) 10 � f�(H )�0 j � 2 1, �(H ) ¤ 0g
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with the linear form�0 W a0 ! R, t H 7! t ; moreover form0 we have the root space
decomposition

(18) m0 D a0 �M
�210C m

0�
where for any root� 2 10, the corresponding root spacem0� is given by

(19) m0� D
0
B� M

�21�(H )D�(H )

m�
1
CA \m0.

If 10 D¿ holds, then we havem0 D RH , and thereforem0 is then of type (Geo,' D'0). Otherwise by the same consideration as in my classification of the Lie triple systems
in G2(Hn) ([8], the beginning of Section 5.2), we see that

'0 2
�

0, arctan

�
1

3

�
, arctan

�
1

2

�
,
�
4

�

holds; moreover in the cases'0 D arctan(1=3) and'0 D arctan(1=2), 10 cannot have
elementary roots in the sense of Definition 2.2.

In the sequel we consider the four possible values for'0 individually.
The case'0 D 0. In this case we haveH D �℄2 by Equation (16) and therefore

�1(H ) D 2�1(H ) D 0, �2(H ) D �3(H ) D �4(H ) D 1, 2�2(H ) D 2.

Thus we have10 � f��, �2�g with � WD �2ja0 D �3ja0 D �4ja0 by Equation (17),
m0 D RH �m0� �m0

2� by Equation (18), andm0� � m�2 �m�3 �m�4 andm0
2� � m2�2

by Equation (19).
We first note that if in factm0� � m�2 holds, then by the same argument as in the

proof of Proposition 3.7,m0� is either a complex or a totally real linear subspace of
m�2, depending on whether 2� is or is not a member of10. Thereforem0 then is of
type (P , ' D 0, (K, l )) with K 2 fR, Cg and l WD dimK(m0�)C 1.

Also, if m0� � m�3 � m�4 holds, thenm0 is contained in a Lie triple systemOm0
of type (Q), and thereforem0 is of type (Q, � ), where� is a type given in [7], The-
orem 4.1 formD 4.

Thus we now supposem0� � m�2 andm0� � m�3 � m�4, in particular we have� 210. We will show that in this situation,m0 is conjugate under the isotropy action to
another Lie triple system whose corresponding root space decomposition satisfiesm0� �
m0�2

or m0� � m0�3
� m0�4

. It then follows by the above discussion thatm0 is of one of
the types of the theorem.
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It follows from our hypothesesm0� � m�2 andm0� � m�3 �m�4 that there exists a
unit vectorv0 2 m0, say

v0 D M�2(c1, c2, c3, c4)C M�3(d1, d2, d3)C M�4(e1, e2, e3),

with (c1, c2, c3, c4)¤ (0, 0, 0, 0) and (d1, d2, d3, e1, e2, e3)¤ (0,: : : , 0). By virtue of Prop-
osition 3.1 we may suppose without loss of generality that (c1, c2, c3, c4) D (t , 0, 0, 0)
holds with somet 2 R n f0g, and furthermore that (d1, d2, d3) D (s, 0, 0) holds with
s 2 R. Then we have

(20) v0 D M�2(t , 0, 0, 0)C M�3(s, 0, 0)C M�4(e1, e2, e3).

BecauseR(H , v0)v0 is a member ofm0, the m�1-component of this vector, which
equals

t �
p

2

8
M�1(ie3, 0,�i e2, i (e1 � s)),

must vanish (because of�1(H ) D 0), and therefore we havee1 D s, e2 D e3 D 0, and
therefore

v0 D M�2(t , 0, 0, 0)C M�3(s, 0, 0)C M�4(s, 0, 0).

We have

ad(K�11(
p

8))M�2(1, 0, 0, 0)D M�3(1, 0, 0)C M�4(1, 0, 0),

and

ad(K�11(
p

8))(M�3(1, 0, 0)C M�4(1, 0, 0))D �M�2(1, 0, 0, 0),

therefore the 1-parameter subgroupfexp(K�11(t))gt2R of the isotropy group acts as a
rotation group on the planeRM�2(1, 0, 0, 0)�R(M�3(1, 0, 0)CM�4(1, 0, 0)); it follows
that a suitable member of this 1-parameter group maps (via the isotropy action)v0 onto
M�2(1, 0, 0, 0). By replacingm0 with its image under the action of that element, we
may therefore suppose thatM�2(1, 0, 0, 0)2 m0 holds.

If this replacement causes eitherm0� � m�2 or m0� � m�3 � m�4 to hold, then we
are done. Otherwise, there exists another vectorv1 2 m0�, say

v1 D M�2(c1, c2, c3, c4)C M�3(d1, d2, d3)C M�4(e1, e2, e3),

with (c1, c2, c3, c4) ¤ (0, 0, 0, 0) and (d1, d2, d3, e1, e2, e3) ¤ (0, : : : , 0), and which is
orthogonal toM�2(1, 0, 0, 0)2 m0�, whence we have Re(c1) D 0. By Proposition 3.1 we
may suppose without loss of generality (d1, d2, d3) D (1, 0, 0) (whilst maintaining the
condition M�2(1, 0, 0, 0)2 m0�). Then we have

R(H , M�2(1, 0, 0, 0))v1 D
p

2

16
M�1(ie3, 0,�i e2, i (e1 � 1))� 1

8
M2�2(Im(c1)).
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Because this vector is a member ofm0, its m�1-component must vanish. Thus we have
e1 D 1 and e2 D e3 D 0. Moreover: If 2� � 10, also them2�2-component vanishes,
and thus we have Im(c1) D 0, hencec1 D 0. On the other hand, if 2� 2 10, we also
have [K2�2(1), v0] D �(1=2)M�2(i , 0, 0, 0)2 m0, and therefore we can replacev1 byv1 � Im(c1)M�2(i , 0, 0, 0). Hence we can supposec1 D 0 in any case. Thusv1 is of
the form

v1 D M�2(0, c2, c3, c4)C M�3(1, 0, 0)C M�4(1, 0, 0).

We now calculateR(H , v1)v1 2 m0:
R(H , v1)v1 D

�kck2
4
C 1

2

� � H �
p

2

4
M�1(i c4, 0, i c2, 0).

The m�1-component of this vector again vanishes, and thus we obtainc2 D c4 D 0.
Thus we have

v1 D M�2(0, 0,c3, 0)C M�3(1, 0, 0)C M�4(1, 0, 0).

We now consider the Lie subalgebrab WD R�℄6� K�6(C) of k, which is isomorphic to
su(2). For c 2 C we have

ad(K�6(2))M�2(0, 0,c, 0)D 1p
2

(M�3(c, 0, 0)C M�4(c, 0, 0)),

and

ad(K�6(2))
1p
2

(M�3(c, 0, 0)C M�4(c, 0, 0))D �M�2(0, 0,c, 0),

therefore the connected Lie subgroupB of K with Lie algebrab acts on the complex
2-planeM�2(0, 0,C, 0)� fM�3(c, 0, 0)C M�4(c, 0, 0) j c 2 Cg as SU(2), and further

ad(K�6(2))M�2(1, 0, 0, 0)D 0,

therefore the action ofB leavesM�2(1, 0, 0, 0) invariant. Hence, by replacingm0 with
Ad(g)m0 for an appropriateg 2 B, we can transformv1 into M�2(0, 0, 1, 0), while leav-
ing M�2(1, 0, 0, 0) invariant. By replacingm0 with Ad(g)m0, we can thus ensure besides
M�2(1, 0, 0, 0)2 m0� also M�2(0, 0, 1, 0)2 m0�.

If this replacement causesm0� � m�2 or m0� � m�3�m�4 to hold, then we are done.
Otherwise, there exists yet another vectorv2 2 m0�, say

v2 D M�2(c1, c2, c3, c4)C M�3(d1, d2, d3)C M�4(e1, e2, e3),

with (d1,d2,d3,e1,e2,e3)¤ (0,:::, 0), which is orthogonal toM�2(1, 0, 0, 0),M�2(0, 0, 1, 0)2
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m0�, whence we have Re(c1)DRe(c3)D 0. By an analogous argument as previously, we
in fact obtainc1D c3D0. Then we calculate

R(H , v2)M�2(1, 0, 0, 0)

D
p

2

16
M�1((e3 � d3)i , 0,�(d2C e2)i , (e1 � d1)i )C 1

8
M2�2(Im(c1))

and

R(H , v2)M�2(0, 0, 1, 0)

D
p

2

16
M�1((e2 � d2)i , (e1 � d1)i , (d3C e3)i , 0)C 1

8
M2�2(Im(c3)).

Because these vectors are elements ofm0, their m�1-components vanish. From this fact,
we derive the equationse1 D d1 and d2 D d3 D e2 D e3 D 0. Using the fact that these
equations hold, we now calculate

R(H , v2)v2 D
�kck2

4
C jd1j2

2

�
H C

p
2

4
M�1(i c4d1, 0, i c2d1, 0).

Also this vector is an element ofm0, and thus itsm�1-component once again van-
ishes, whence it follows (becaused1 ¤ 0) that we havec2 D c4 D 0, hencev2 D
M�3(d1, 0, 0)C M�4(d1, 0, 0).

Now let Z WD K�1(2). Then we have ad(Z)v2 D 0,

ad(Z)M�2(1, 0, 0, 0)D 1p
2

(M�3(0, 0, 1)C M�4(0, 0, 1))DW v00,

ad(Z)v00 D �M�2(1, 0, 0, 0),

and

ad(Z)M�2(0, 0, 1, 0)D 1p
2

(M�3(0, 1, 0)C M�4(0, 1, 0))DW v01,

ad(Z)v01 D �M�2(0, 0, 1, 0).

These equations show that the adjoint action of the one-parameter subgroupB of K
tangential toZ leaves the elementv2 of m0 invariant, whereas it acts as a rotation
on the 2-planes spanned byM�2(1, 0, 0, 0) andM�3(0, 0, 1)C M�4(0, 0, 1), resp. by
M�2(0, 0, 1, 0) andM�3(0, 1, 0)C M�4(0, 1, 0). It follows that there existsg 2 B so
that we have Ad(g)M�2(1, 0, 0, 0)D v00, Ad(g)M�2(0, 0, 1, 0)D v01 and Ad(g)v2 D v2

holds. We replacem0 by the Lie triple system Ad(g)m0. Then we havev00, v01, v2 2 m0�.
For v 2 m0�, we can evaluateR(H , v)v00, R(H , v)v01 and R(H , v)v2; by the applica-
tion of arguments analogous to those used above it turns out that any suchv which
is orthogonal to theC-span ofv00, v01, v2 is necessarily zero. Therefore we now have
m0� � m�3 �m�4.

This completes the treatment of the case'0 D 0.
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The case'0 D arctan(1=3). We have by Equation (16):

H D 3p
10
�℄2C 1p

10
�℄1

and therefore

�1(H ) D 1p
10

, �2(H ) D 3p
10

, �3(H ) D 2p
10

, �4(H ) D 4p
10

,

2�1(H ) D 2p
10

, 2�2(H ) D 6p
10

.

Because there are no elementary roots (Definition 2.2) in thepresent case, it follows
by Equation (17) that we have10 � f��g with � WD �3ja0 D (2�1)ja0, and by Equa-
tions (18), (19) we havem0 D RH �m0� with m0� � m�3 �m2�1.

It follows thatm0 is contained in the Lie triple systemOm0 WD a�m�3�m�4�m2�1�
m2�2 of type (Q). Om0 corresponds to a complex quadric of complex dimension 8, and
therefore the Lie triple systems contained inOm0 have been classified in [7].m0 is a Lie
triple system of rank 1, and its isotropy angle arctan(1=3) corresponds to the isotropy
angle�=4� arctan(1=3)D arctan(1=2) in Om0, as has been explained in Remark 3.4. It
therefore follows from the classification in [7], Theorem 4.1 that m0 is, as Lie triple
system of Om0, of type (A). Thusm0 is as Lie triple system ofm of type (Q, (A)).

The case'0 D arctan(1=2). In this case we have by Equation (16):

H D 2p
5
�℄2C 1p

5
�℄1

and therefore

�1(H ) D 1p
5

, �2(H ) D 2p
5

, �3(H ) D 1p
5

, �4(H ) D 3p
5

,

2�1(H ) D 2p
5

, 2�2(H ) D 4p
5

.

Because there are no elementary roots (Definition 2.2) in thepresent case, it follows
by Equation (17) that we have10 � f��,�2�g with � WD �1ja0 D �3ja0, 2� D �2ja0 D
(2�1)ja0, and by Equations (18), (19) we have

(21) m0 D RH �m0� �m0
2�

with m0� � m�1 �m�3 andm0
2� � m�2 �m2�1.

We have�℄ D (3=5)�℄1 C (2=5)�℄3 and (2�)℄ D (1=5)(2�1)℄ C (4=5)�℄2. By Prop-
osition 2.4 it follows that there exist linear subspacesm0�3

� m�3, m0
2�1
� m2�1 and

isometric linear maps8� W m0�3
! m�1, 82� W m0

2�1
! m�2 so that

(22) m0� D
�

x C
r

3

2
8�(x) x 2 m0�3

�
and m0

2� D fx C 282�(x) j x 2 m0
2�1

g
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holds; in particular we have for the multiplicities of the roots of m0: n0� � 6 and
n02� � 1. We now consider the cases 2� 2 10 and 2� � 10 separately.

First suppose 2� 2 10. Then we haven02� D 1 and m0
2�1
D m2�1 D M2�1(R).82�(M2�1(1)) is a unit vector inm�2, and via Proposition 3.1, we may suppose with-

out loss of generality that82�(M2�1(1))D M�2(1, 0, 0, 0) holds. By Equation (22)m0
2�

is then spanned by the vector

(23) v2� WD M2�1(1)C 2M�2(1, 0, 0, 0).

We now letv 2m0� be given, sayv D M�1(a1,a2,a3,a4)CM�3(b1,b2,b3) with ak,bl 2 C.
Becausem0 is a Lie triple system, we havevR WD R(H , v2�)v 2 m0. The root space de-
composition (21) together with Equations (22) shows that therefore them�4-component
of vR, which is equal top

5

20
M�4(i (�b1Cp2a4), i (b2Cp2a3), i (b3Cp2a1))

must vanish, and thus we have

(24) b1 D p2a4, b2 D �p2a3, b3 D �p2a1.

By Equation (22) we have8�(M�3(b1, b2, b3)) D p2=3M�1(a1, a2, a3, a4); because8�
is isometric, it follows that

2

3

X
k

jakj2 DX
k

jbkj2 (24)D 2(ja4j2C ja3j2C ja1j2)

and hence

ja2j2 D 2(ja1j2C ja3j2C ja4j2)

holds. It follows that the projection map

m0� ! C, v D M�1(a1, a2, a3, a4)C M�3(b1, b2, b3) 7! a2

is injective, and hence we haven0� � 2. We now givevR D R(H , v2�)v explicitly for
the situation wherev satisfies Equations (24):

vR D
p

5

20
(M�1(ia1, ia2, ia3, �ia4)Cp2M�3(�ia4, i a3, i a1)).

BecausevR 2 m0� is therefore orthogonal tov, we see thatn0� 2 f0, 2g holds. If n0� D 0,
then we havem0 D RH � Rv2�, and thus we see thatm0 is of type (G2C6, (P , ' D
arctan(1=2), (C, 1))). If n0� D 2 then by Proposition 3.1 we may suppose without loss

of generality thatv D M�1(1,
p

2, 0, 0)C M�3(0, 0,�p2) holds; then we havem0 D
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RH �Rv�RvR�Rv2� with 4vR D M�1(i , i
p

2, 0, 0)C M�3(0, 0,
p

2i ). Thereforem0
is then of type (G2C6, (P , ' D arctan(1=2), (C, 2))).

Let us now consider the case 2� � 10, so thatm0 D RH � m0� holds. If � � 10,
thenm0 D RH is of type (Geo,' D arctan(1=2)), otherwise because of Proposition 3.1,
we may suppose without loss of generality that

v� WD M�1(1,
p

2, 0, 0)C M�3(0, 0,�p2) 2 m0�.

If n0� D 1 holds, then we havem0 D RH � Rv�, and thereforem0 is then of type
(G2H4, (S, ' D arctan(1=3), 2)) (note that the isotropy angle' D arctan(1=2) of m0 cor-
responds to the isotropy angle�=4�arctan(1=2)D arctan(1=3) within the type (G2H4)
by Remark 3.4). Otherwise, we let another vectorv 2 m0� which is orthogonal tov�
be given, say

v D M�1(a1, a2, a3, a4)C M�3(b1, b2, b3)

with ak, bl 2 C, and considervR WD R(H , v�)v 2 m0. Both them�2-component and
the m2�1-component must vanish (because of 2� � 10). The m�2-component ofvR is
proportional to

M�2(i (
p

2b3C 2a1), i (2b3C 2a2), i (
p

2 b2 � 2a3 � 2b1), i (�2b2 � 2a4 �p2b1))

and so we have

b3 D �p2a1, b3 D �a2, � 2b1Cp2 b2 D 2a3

and

�p2b1 � 2b2 D 2a4,

hence

(25) b1 D �2

3
a3 �

p
2

3
a4, b2 D

p
2

3
a3 � 2

3
a4, b3 D �a2 and a2 D p2a1.

Moreover them2�1-component ofvR is proportional toM2�1(Im(a1�p2a2)) and so we

have Im(a1 �p2a2) D 0, hence Im(a1) D p2 Im(a2)
(25)D �2 Im(a1), and thus

(26) Im(a1) D Im(a2) D 0.

Further, the condition thatv is orthogonal tov� gives

0D hv, v�i D Re(a1)Cp2 Re(a2) �p2 Re(b3)
(25)D Re(a1 �p2a2)
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and therefore Re(a1) D p2 Re(a2)
(25)D 2 Re(a1), hence

(27) Re(a1) D Re(a2) D 0.

From Equations (26) and (27) we obtaina1 D a2 D 0. By the remaining equations
from (25) we now see that

v D M�1(0, 0,c, d)C M�3

��2

3
c�
p

2

3
d,

p
2

3
c� 2

3
d, 0

�

holds with some constantsc, d 2 C.
We now consider the Lie subalgebrab WD R�℄4�K�4(C) of k0, which is isomorphic

to su(2). For z2 C, we have ad(K�4(z))H D ad(K�4(z))v� D 0, whereas ad(K�4(z)) acts
on the complex plane

w WD �M�1(0, 0,c, d)C M�3

��2

3
c�
p

2

3
d,

p
2

3
c� 2

3
d, 0

�
c, d 2 C�

as a skew-adjoint, invertible endomorphism forz¤ 0. It follows that the adjoint action
of the connected Lie groupB � K with Lie algebrab on m leavesH andv� invariant,
whereas it acts onw as SU(2) does. Therefore there existsg 2 B so that Ad(g) leaves
H and v� invariant, and satisfies Ad(g)v D M�1(0, 0, 3, 0)C M�3(�2,

p
2, 0). By re-

placingm0 with the Lie triple system Ad(g)m0 from the same congruence class, we can
thus arrange that

v D M�1(0, 0, 3, 0)C M�3(�2,
p

2, 0)

holds. Hence we see that in the casen0� D 2, m0 D RH � Rv� � Rv is of type
(G2H4, (S, ' D arctan(1=3), 2)).

Finally we show that the casen0� � 3 cannot happen: Letv0 2 m0� be orthogonal
to both v� andv. Then, as above, them�2-component and them2�1-component of both
R(H , v�)v0 and R(H , v)v0 have to vanish, and these conditions yieldv0 D 0.

The case'0 D �=4. In this case we have by Equation (16):H D (1=p2)�℄2 C
(1=p2)�℄1 and therefore

�1(H ) D 1p
2

, �2(H ) D 1p
2

, �3(H ) D 0, �4(H ) D 2p
2

,

2�1(H ) D 2p
2

, 2�2(H ) D 2p
2

.

It follows by Equation (17) that we have10 � f��, �2�g with � WD �1ja0 D �2ja0,
2� D �4ja0 D (2�1)ja0 D (2�2)ja0, and by Equations (18), (19) we have

(28) m0 D RH �m0� �m0
2�

with m0� � m�1 �m�2 andm0
2� � m2�1 �m2�2 �m�4.
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Further information on the structure of elements ofm0� resp. ofm0
2� can be ob-

tained: First letv 2 m0� be given, sayv D M�1(a1, a2, a3, a4)C M�2(b1, b2, b3, b4) with

ak, bk 2 C. By Proposition 2.4 and the fact that�℄ D (1=2)(�℄1C�℄2) holds, we see that
we havek(a1, : : : , a4)k D k(b1, : : : , b4)k, in particularn0� � 8.

Similarly, for anyv 2 m0
2�, sayv D M�4(c1, c2, c3)CM2�1(t)CM2�2(s) with ck 2 C

and t ,s2 R, we consider the vectorvR WD R(H ,v)v 2m0. Thea-component ofvR must
be proportional toH , and this condition yieldsjt j D jsj, hencet D �s. Moreover,
because of�3(H ) D 0, them�3-component ofvR, which is proportional to

M�3(ic1(s� t), ic2(t � s), i c3(s� t)),

has to vanish, and thus we have eitherc1 D c2 D c3 D 0 or t D s. If we have t D�s, and hencec1 D c2 D c3 D 0, we put Y WD K2�1(
p

8) � K2�2(
p

8), then we have

ad(Y)H D M2�1(1)�M2�2(1) and ad(Y)(M2�1(1)CM2�2(1))D 4
p

2�℄3. These equations
show that a Lie triple systemm0 where the caset D �s occurs is congruent under the
adjoint action of a member of the 1-parameter subgroup ofK induced byY to a Lie
triple system corresponding to the caset D s. By replacingm0 with the latter Lie triple
system, we may suppose without loss of generality that in anycase

m0
2� � m�4 � R(M2�1(1)C M2�2(1))DW Om02�

holds.
In the case� �10 it now follows immediately thatm0 is of type (P ,' D �=4,S1Cn02� ).
So let us now turn our attention to the case� 2 10. m0 corresponds to a Riemann-

ian symmetric space of rank 1; the classification of these spaces gives that we have
n02� 2 f0, 1, 3, 7g (corresponding to the projective spaces over the reals, thecomplex
numbers, the quaternions, and the octonions, respectively), and thatn02�C1 dividesn0�.

We continue our investigation of the structure ofm0�: Let v 2 m0� be given, sayv D M�1(a1, : : : , a4) C M�2(b1, : : : , b4) with ak, bk 2 C. Then them�3-component of
R(H , v)v 2 m0 equals

M�3

� � i

8
(a4b1C a1b4C b2a3C a2b3), � i

8
(a4b2 � a3b1C a1b3 � a2b4),

i

8
(b1a1 � a4b4C b3a3 � b2a2)

�
.

Because of�3(H ) D 0, this has to vanish. In this way it follows that

m0� � fM�1(a1, a2, a3, a4)C M�2(a2, a1, �a4, �a3) j a1, : : : , a4 2 Cg DW Om0�
holds.

Therefore in any casem0 is contained in the Lie triple systemOm0 WD RH� Om0�� Om02�
of type (P , ' D �=4,OP2). The totally geodesic submanifold corresponding toOm0 is a
Cayley planeOP2, andm0 also is a Lie triple system ofOm0. Therefore it follows from
the classification of the Lie triple systems ofOP2 (see [15], Section 3), thatm0 is of
one of the types (P , ' D �=4,KP2) with K 2 fR, C, H, Og.
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This completes the proof of the classification of Lie triple systems in EIII.

3.3. Totally geodesic submanifolds inE6=(U(1) �Spin(10)). We now study the
geometry of the totally geodesic submanifolds of EIII associated to the Lie triple sys-
tems found in Theorem 3.3. Of course, the local isometry typeof the submanifolds
can easily be obtained by determining the restricted root system (with multiplicities)
of the corresponding Lie triple systems as they are given in Theorem 3.3. But to ob-
tain the global isometry type, and also to understand the position of the submanifolds
in EIII better, we describe the totally geodesic submanifolds of EIII explicitly. We will
also want information on how the transvection groups of the respective submanifolds
are embedded inE6, the transvection group of EIII.

In this way, we obtain the results of the following table. Herein, we ascribe the
type of a Lie triple system also to the corresponding totallygeodesic submanifold (or to
a corresponding totally geodesic embedding). Forl 2 N andr > 0 we denote bySl

r the
l -dimensional sphere of radiusr , and forκ > 0 we denote byRPl

κ
the l -dimensional

real projective space of sectional curvatureκ, and byCPl
κ

the l -dimensional com-
plex projective space of constant holomorphic curvature 4κ. Note that with these no-
tations,RPl

κ
is a real form ofCPl

κ
. Moreover, withHPl

κ
resp.OP2

κ
we denote the

l -dimensional quaternionic projective space resp. the Cayley projective plane, with their
invariant Riemannian metrics scaled in such a way that theminimal sectional curvature
equalsκ. Also for the irreducible Riemannian symmetric spaces of rank 2, their in-
variant Riemannian metrics are a priori only defined up to a positive constant; in the
table below we describe the appropriate metrics of these spaces by giving the lengtha
of the shortest restricted root of the space in the indexsrrDa. We continue to use also
the additional names of types introduced in Remark 3.5.

type of Lie triple system isometry type properties5

(Geo,' D t) R or S1

(P , ' D 0, (K, l )) KPl
κD1 (K, l ) D (C, 1): Helgason sphere

(P , ' D �=4, Sk) Sk
rD1=p2

(P , ' D �=4,KP2) KP2
κD1=2 K D O: reflective, real form, maximal

(P � P1, (K1, l ), K2) K1Pl
κD1 �K2P1

κD1
(K1, l , K2) D (C, 5,C): meridian for
(DIII), maximal

(Q) Q8
srrDp2

polar, meridian for itself, maximal
(Q, � ) see [7], Section 5
(G2C6) G2(C6)srrD1 reflective, maximal

(G2C6, � ) see [8], Section 7
(G2H4) (G2(H4)=Z2)srrD1 reflective, real form, maximal

(G2H4, � ) see [8], Section 6
(DIII) SO(10)=U(5)srrD1 polar, maximal

5The polars and meridians are also reflective, without this fact being noted explicitly in the table.
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For the application of the information from [7] and [8] it should be noted that
these two papers use different conventions regarding the metrics used on the spaces
under investigation: In the investigation of the complex quadric in [7], the metric is
normalized such that the shortest restricted roots ofQm have length

p
2, whereas in the

investigation ofG2(Cn) and G2(Hn) in [8], the metrics on these spaces are normalized
such that those linear forms which are the shortest roots inG2(Kn) for n � 5 have
length 1 (notice that they are not actually roots ofG2(K4), because their multiplicities
then degenerate to zero). Also for the investigation of EIIIin the present paper, we
normalize the metric such that the shortest roots of this space have length 1.

By looking at the root systems of the totally geodesic submanifolds of type (Q),
(G2C6) and (G2H4) of EIII (see Remark 3.4), it follows that the data given in the cited
papers on the metric properties of totally geodesic submanifolds can be carried over
without any change to the present situation for the totally geodesic submanifoldsQ8

and G2(C6) of EIII. However, for G2(H4)=Z2 it is necessary to scale the data given in
[8], as this manifold is considered with srrD p2 in [8], whereas it has srrD 1 here.

For the proof of the data in the table, and to obtain the desired information on
the position of the totally geodesic submanifolds of EIII, it is sufficient to consider the
maximal totally geodesic submanifolds. In the case of EIII every maximal totally geo-
desic submanifold is reflective (see [13]), and therefore a connected component of the
fixed point set of an involutive isometry of EIII. We will describe these submanifolds
in this way in the first instance.

To prove that the fixed point sets of the involutive isometries of EIII we investigate
below are indeed of the isometry type claimed above, we will then construct totally
geodesic, equivariant embeddings of the appropriate manifolds onto these fixed point
sets for many of the types of maximal totally geodesic submanifolds of EIII. We will
also describe the subgroups of the transvection groupE6 of EIII which correspond to
the transvection groups of these totally geodesic submanifolds.

For these investigations, we need a model of EIII in which we can carry out cal-
culations explicitly. For this purpose, we use the explicitpresentations of EIII and of
the exceptional Lie groupE6 given by Yokota in [16] and by Atsuyama in [3].

To describe these presentations, we denote byR, C D R� Ri , H D C � C j andO D H � He the four normed real division algebras: the field of real numbers, the
field of complex numbers, the skew-field of quaternions, and the division algebra of
octonions. ForK 2 fC,H,Og and x 2 K, we have the conjugatex of x. We will also
consider the complexificationKC WD K 
R RC of K with respect to another “copy”RC D R � RI of the field of complex numbers; we linearly extend the conjugation
map x 7! x of K to KC. Notice that the algebrasCC, HC andOC have zero divisors.

Let M(n�m,K) be the linear space of (n�m)-matrices overK, abbreviateM(n,K) WD
M(n � n, K), and letJ(n, K) WD fX 2 M(n, K) j X� D Xg be the subspace of Hermitian
matrices; via the multiplication map

J(n, K) � J(n, K)! J(n, K), (X, Y) 7! X Æ Y WD 1

2
(XYC Y X),
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J(n,K) becomes a real Jordan algebra forK 2 fR,C,Hg or KD O, nD 3; it becomes
a complex Jordan algebra forK 2 fRC,CC,HCg or KDOC, nD 3. J(3,O) resp.J WD
J(3,OC) is the real resp. complex exceptional Jordan algebra.

We now consider the complex projective space overJ, which we denote by [J] �CP26. For X 2 J n f0g, we denote by [X] WD (RC)X the projective line throughX; for
a subsetM � J, we put [M] WD f[X] j X 2 M n f0gg. Following Atsuyama ([3]), we
consider the submanifold

eEIII WD
8��<
��:X D

0
� �1 x3 x2

x3 �2 x1

x2 x1 �3

1
A 2 J

�1, �2, �3 2 RC, x1, x2, x3 2 OC,

�2�3 D jx1j2, �3�1 D jx2j2, �1�2 D jx3j2,

x2x3 D �1x1, x3x1 D �2x2, x1x2 D �3x3

9>>=
>>;

of J. Then Atsuyama has shown ([3], Lemma 3.1) that [eEIII] � [J] is a model of the
exceptional symmetric space EIII. In the sequel, we denote by EIII this model.

We will also use the fact that the exceptional Lie groupE6, which is the transvec-
tion group of EIII, can be realized as a subgroup of the group Aut(J) of complex-linear
automorphisms of (J, Æ ). More specifically, consider the inner producth � , � i and the op-
erationA1B defined onJ in [3], §1. Then Atsuyama showed in [3], Lemma 1.5 (2) that

E6 D f f 2 Aut(J) j 8X, Y 2 J W f (X1Y) D ( f X)1( f Y), h f X, f Yi D hX, Yig
is a model of the exceptional Lie groupE6. This model acts transitively on the model
of EIII described above.

We now define several involutive isometries on EIII (see also[16] Section 3, where
the involutive automorphisms on the exceptional Lie groupE6 are classified):
• The conjugation map�0W OC!OC induced by the real formO of OC (i.e. the or-
thogonal involution�0W OC ! OC characterized by Fix(�0) D O) induces via the map

eEIII !eEIII,

0
� �1 x3 x2

x3 �2 x1

x2 x1 �3

1
A 7!

0
� �0(�1) �0(x3) �0(x2)�0(x3) �0(�2) �0(x1)�0(x2) �0(x1) �0(�3)

1
A

an isometric involution� W EIII ! EIII.
• The orthogonal involution0 W OC ! OC characterized by Fix(0) D HC induces
via the map

eEIII !eEIII,

0
� �1 x3 x2

x3 �2 x1

x2 x1 �3

1
A 7!

0
� �1 0(x3) 0(x2)0(x3) �2 0(x1)0(x2) 0(x1) �3

1
A

another isometric involution W EIII ! EIII.
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• The linear map

eEIII !eEIII,

0
� �1 x3 x2

x3 �2 x1

x2 x1 �3

1
A 7!

0
� �1 �x3 �x2�x3 �2 x1�x2 x1 �3

1
A

induces yet another isometric involution� W EIII ! EIII. � is the geodesic symmetry

of the symmetric space EIII at the pointp0 WD
� 1 0 0

0 0 0
0 0 0

� 2 EIII.

With help of these involutions we can describe the reflectivesubmanifolds of EIII
explicitly.

The type (P , ' D �=4,OP2). The fixed point set of� equals [EIII\ J(3,O)] �OP2, a totally geodesic submanifold of EIII of type (P , ' D �=4,OP2). Notice that
this is a real form of the Hermitian symmetric space EIII.

The types (G2C6) and (P � P1, (C, 5),C). The fixed point set of the involutive
isometry W EIII ! EIII has two connected components:

F
1 WD [eEIII \ J(3,HC)],

and

F
2 WD

8<
:
2
4 0 a3e �a2e�a3e 0 a1e

a2e �a1e 0

3
5 ak 2 HC, a1a2 D a2a3 D a3a1 D 0

9=
;.

It turns out that the totally geodesic submanifoldsF
1 and F

2 of EIII are of type
(G2C6) and (P � P1, (C, 5),C), respectively. To show that they are isomorphic to
G2(C6) resp. toCP1�CP5, we will now explicitly construct isometriesf1 W G2(C6)!
F

1 and f2 W CP1 � CP5 ! F
2 which are compatible with the group actions on the

symmetric spaces involved.
For this purpose, we note thatE6 contains a subgroup which is isomorphic to

(Sp(1)�SU(6))=Z2, and which is the fixed point group of the Lie group automorphism
E6! E6, g 7!  �g � �1. This subgroup has been described explicitly by Yokota ([16],
Section 3.5) in the following way:

To associate to a given (b, B) 2 Sp(1)�SU(6) a member ofE6 � Aut(J), we need
to describe an action of (b, B) on J. For this purpose we note thatJ is (RC)-linear
isomorphic toJ(3,HC)� (HC)3 by the map

'1 W J(3,HC)� (HC)3! J, (X, x) 7! X C
0
� 0 x3e x2e�x3e 0 x1e

x2e �x1e 0

1
A.

Furthermore,M(3,HC) � J(3,HC) is (RC)-linear isomorphic to

M(6, CC)J WD fX 2 M(6, CC) j J X D X Jg,
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and (HC)3 is (RC)-linear isomorphic to

M(2� 6, CC)J WD fX 2 M(2� 6, CC) j J 0X D X Jg,
where we putJ 0 WD �

0 �1
1 0

� 2 M(2, R) and J WD diag(J 0, J 0, J 0) 2 M(6, R). These

isomorphisms are exhibited by the maps

'2 W M(3,HC)! M(6, CC)J resp. '02 W (HC)3! M(2� 6, CC)J

which transform any given matrixX 2 M(3,HC) resp. any given row vectorx 2 (HC)3

into a matrix'2(X) 2 M(6, CC) resp.'02(x) 2 M(2 � 6, CC) by mapping every entry

a C bj 2 HC (a, b 2 CC) of X into a (2� 2)-block component
�

a b�b a

�
of '2(X)

resp.'02(x). We put J(6, CC)J WD '2(J(3,HC)) � M(6, CC)J . In this way we obtain
an isomorphism betweenJ andV WD J(6, CC)J � M(2� 6, CC)J :

' WD ('2� '02) Æ '�1
1 W J! V ,

which we will use to describe the action of Sp(1)� SU(6) onJ.
To do so, we consider forK 2 fC,CCg besides SU(6,K) D fA 2 M(6,K) j A�AD

id, det(A) D 1g also SU�(6,K) WD fA 2 M(6,K) j J AD AJ, det(A) D 1g. Then we
have the isomorphism of Lie groups

8 W SU(6,CC)! SU�(6, CC), A 7! "A� "J AJ,

where we put" WD (1=2)(1C i I ) 2 CC.
We now consider the actionF0 W (Sp(1)� SU�(6, CC)) � V ! V given by

F0(b, B)(X C x) D BX B� C ('02b('02)�1)x B�1

for all (b, B) 2 Sp(1)� SU�(6, CC) and X C x 2 V . F0 induces an actionF W (Sp(1)�
SU(6))�J! J which is characterized by the fact that the following diagram commutes:

(Sp(1)� SU�(6, CC)) � V F0 KV

(Sp(1)� SU(6))� J
F

K
(idSp(1)�8)�' K

J.

'K

It has been shown by Yokota ([16], Theorem 3.5.11 and its proof) that F(b, B) 2 E6

holds for all (b, B) 2 Sp(1)� SU(6). In this way we obtain a homomorphism of Lie
groups F W Sp(1)� SU(6)! E6 with ker(F) D f�(id, id)g.

We now denote forU 2 G2(C6) by PU 2 M(6, C) the orthogonal projection onto
U . Then we haveQU WD "PU � "J PU J 2 J(6, CC)J , and therefore the map

f1 W G2(C6)! [J], U 7! ['�1(QU C 0M(2�6,CC ))]
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is well-defined. It turns out thatf1 is an isometric embedding and equivariant in the
sense that for everyB 2 SU(6), U 2 G2(C6) we have

F(id, B) f1(U ) D f1(BU).

As a consequence of this property and the fact thatf1(Ce1� Ce2) D p0 2 EIII holds,
f1 maps into EIII, and hence it maps into EIII\ [J(3,HC)] D F

1 . Because bothF
1

and G2(C6) are compact and connected, and are of the same (real) dimension 16, it
follows that the isometric embeddingf1 in fact mapsG2(C6) onto the totally geodesic
submanifoldF

1 of EIII.
To similarly construct a mapf2 W CP1 � CP5 ! F

2 , we identify C2 with H. In
this way, we can regardCP1 as the spaceflC j l 2 S(H)g. We also identifyC6 withH3. Using these identifications, we can interpret for anyl 2 C2 � H and v 2 C6 � H3

the expressionl"v as a member of (HC)3; via this expression we define the map

f2 W CP1 � CP5! [J], (lC, [v]) 7! ['�1(0J(6,CC)J C l"v�)],
which turns out to be a well-defined isometric embedding, which is equivariant in the
following sense: For all (b, B) 2 Sp(1)� SU(6), (lC, [v]) 2 CP1 � CP5, we have

F(b, B) f2(lC, [v]) D f2(blC, [Bv]).

Because of this property, and the fact thatf2(1C, [e1]) D � 0 0 0
0 0 "e
0 �"e 0

� 2 F
2 � EIII,

f2 maps into EIII, and hence it maps into EIII\ ['(0J(6,CC)J � (HC)3)] D F
2 . Because

both F
2 andCP1 � CP5 are compact and connected, and they are of the same (real)

dimension 12, it follows that the isometric embeddingf2 in fact mapsCP1�CP5 onto
the totally geodesic submanifoldF

2 of EIII.
The type (G2H4). Notice that the involutive isometries� and  commute with

each other, and therefore� Æ  is another involutive isometry of EIII. The fixed point
set of the latter involution equals

F� WD
8<
:p WD

2
4 r1 p3C q3eI p2 � q2eI

p3 � q3eI r2 p1C q1eI
p2C q2eI p1 � q1eI r3

3
5 rk 2 R, pk, qk 2 H,

p 2 EIII

9=
;.

It turns out that the totally geodesic submanifoldF� of EIII corresponds to the
type (G2H4). We will show thatF� is isometric toG2(H4)=Z2.

E6 contains a subgroup isomorphic to Sp(4)=Z2, which is the fixed point group of
the Lie group automorphismE6! E6, g 7! (� )g(� )�1. Also this subgroup has been
described explicitly by Yokota ([16], Section 3.4). We willuse his construction, which
we now describe, to obtain an action of Sp(4) onJ.

We continue to use the spaceV and the linear isomorphism' W J! V from the
previous construction, putJ(4,HC)0 WD fX 2 J(4,HC) j tr(X) D 0g, and consider the
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isomorphism of linear spaces W J! J(4,HC)0 given in the following way: ForA 2 J,
say '(A) D X C x 2 V , we put

 (A) D
0
B�

1

2
tr(X) I x

I x� X � 1

2
tr(X) � id(HC )3

1
CA,

where the right-hand expression is to be read as a block matrix with respect to the
decomposition (HC)4 D HC � (HC)3.

Notice that Sp(4) acts onJ(4,HC)0 in the canonical way, i.e. by the action

F0 W Sp(4)� J(4,HC)0! J(4,HC)0, (B, X) 7! BX B�.
Via the linear isomorphism , F0 induces an actionF W Sp(4)� J! J, characterized
by the fact that the diagram

Sp(4)� J(4,HC)0
F0 K J(4,HC)0

Sp(4)� J
F

K
idSp(4)� K

J

 K

commutes. It has been shown by Yokota ([16], the proof of Theorem 3.4.2) that for
any B 2 Sp(4), F(B) 2 E6 holds, andF(B) commutes with� 2 E6. In this way, we
obtain a homomorphism of Lie groupsF W Sp(4)! E6 with ker(F) D f�idg.

We now consider the map

f W G2(H4)! [J], U 7! [ �1(ZU )],

where for anyU 2 G2(H4) we denote byZU 2 J(4,HC)0 the linear map characterized
by ZU jU D (1=2)idU , ZU jU? D �(1=2)idU? . It is easy to see thatf is a well-defined
isometric two-fold covering map onto its image with fibersfU , U?g for U 2 G2(H4),
and that f is equivariant, i.e. that for anyU 2 G2(H4) and B 2 Sp(4) we have

F(B) f (U ) D f (BU).

Because of the latter property and the fact thatf (He1 � He2) D p0 2 EIII holds, f
maps into EIII. Moreover, we havep0 2 F� and for everyB 2 Sp(4), F(B) 2 E6

commutes with� , and thereforef maps into the totally geodesic submanifoldF� of
EIII. Because bothF� and G2(H4) are compact and connected, and they are of the
same dimension 16, it follows that the isometric immersionf in fact mapsG2(H4)
onto F� . Because f is a two-fold covering map with fibersfU , U?g, we conclude
that F� is isometric toG2(H4)=Z2.
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The types (Q) and (DIII). The connected components¤ fp0g of the fixed point
set of the geodesic symmetry atp0 are the polars of the symmetric space. (Also see
[5], §2, especially Theorem 2.8, where the polars are denoted by MC.) In the case of
EIII, the polars have also been investigated by Atsuyama in [3], §3.

It is easily seen that the fixed point set of� consists of two connected components
besidesfp0g, namely

F�
1 WD

8<
:
2
4 0 0 0

0 �2 x1

0 x1 �3

3
5 2 [J] �2�3 D jx1j2

9=
;,

and

F�
2 WD

8<
:
2
4 0 x3 x2

x3 0 0
x2 0 0

3
5 2 [J] x2x3 D 0, x2x2 D 0, x3x3 D 0

9=
;.

It turns out that the totally geodesic submanifoldsF�
1 and F�

2 are of type (Q) and
(DIII), respectively.

The complex-8-dimensional submanifoldF�
1 of the complex projective space [J] is

defined by a single non-degenerate quadratic equation, which is adapted to the Fubini–
Study metric of [J]. Hence F�

1 is isometric to the complex quadricQ8.
Furthermore, it has been shown by Atsuyama that the reflective submanifoldF�

2 is
isometric to SO(10)=U(5), see [3], the remark after Lemma 3.2 and [2], the Remark (2)
after Proposition 5.4.

3.4. Totally geodesic submanifolds in Sp(2). Our next objective is the classi-
fication of the Lie triple systems in the Lie group Sp(2), regarded as a Riemannian
symmetric space. We will use this result also in our classification of Lie triple systems
of SO(10)=U(5) in Section 3.5 below.

We will base our classification on the fact that Sp(2) is a maximal totally geo-
desic submanifold ofG2(H4) (of type (Sp2) according to the classification in [8], The-
orem 5.3). Because the Lie triple systems ofG2(H4) have been classified in [8], we
can therefore obtain a classification of the Lie triple systems by determining which of
the Lie triple systems ofG2(H4) are contained in a Lie triple system of type (Sp2).

To do so, we will work in the setting of [8] in the present section. We consider
the spaceG2(H4) D Sp(4)=(Sp(2)�Sp(2)). We letg D k�m be the canonical decom-
position associated with this space, i.e. we haveg D sp(4), k D sp(2)� sp(2)� g, and
m is isomorphic to the tangent space ofG2(H4). We will use the notations of Sec-
tion 5 of [8] in the sequel, especially we use the types of Lie triple systems defined in
Theorem 5.3 of [8] forG2(H4), i.e. for n D 2. We letm1 � m be a Lie triple system
of m of type (Sp2).
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Theorem 3.8. Exactly the following types of Lie triple systems ofm, as defined
in Theorem 5.3of [8], have representatives which are contained inm1:
• (Geo,' D t) with t 2 [0, �=4],
• (S, ' D arctan(1=3), l ) with l 2 f2, 3g,
• (P , ' D �=4, � ) with � 2 f(R, 1), (C, 1), (S3), (H, 1)g,
• (P � P , �1, �2) with �1, �2 2 f(R, 1), (C, 1), (S3)g,
• (S1 � S5, l ) with 2� l � 3,
• (Q3).
The maximal Lie triple systems ofm1 are those which are of the types: (S, ' D
arctan(1=3), 3), (P , ' D �=4, (H, 1)), (P � P , (S3), (S3)) and (Q3).

REMARK 3.9. The maximal totally geodesic submanifolds of Sp(2) of types
(S, ' D arctan(1=3), 3) and (Q3) are missing from [5], Table VIII. Their isometry
types are that of a 3-sphere of radius (�=2)

p
10 resp. of a complex quadricQ3. The

totally geodesic submanifolds of the former type are once again in a “skew” position
in the sense that their geodesic diameter is strictly largerthan the geodesic diameter� of Sp(2).

Proof of Theorem 3.8. It is easily seen that the prototypes for the types listed, as
they are given in [8], Theorem 5.3, are contained in Lie triple systems of type (Sp2).
Therefore, we only need to show that no other types of Lie triple systems ofG2(H4)
have representatives which are contained inm1.

For this purpose, we letm0 be a Lie triple system ofm which is contained inm1.
We are to show thatm0 is of one of the types listed in Theorem 3.8.

If m0 is of rank 2, then form0 to be contained inm1, it is necessary that all the
roots of m0 have at most the multiplicity of the corresponding root inm1. Because
the Dynkin diagram ofm1 is �2) �2, we see by this argument thatm0 cannot be of
one of the types (G2, � ), (P � P , �1, �2) where either of theHP-types6 �1 and �2 has
dimension� 2 or width 4, or (S1�S5, l ) where l � 4. This already shows that among
the types of Lie triple systems of rank 2 ofG2(H4), only those which are listed in
Theorem 3.8 remain.

If m0 is of rank 1, we note that ifm0 is of type (P ,' D 0, (C, 1)) or of type (P ,' D
arctan(1=2), � ) with � ¤ (R, 1), it cannot be contained inm1 because the roots 2�k are
not present inm1. Because the types (P , ' D 0, (R, 1)) and (P , ' D arctan(1=2), (R, 1))
are identical to (Geo,' D t) with t D 0 resp. witht D arctan(1=2), this argument again
leaves only the types of rank 1 which have been listed in the theorem.

For the statements on the maximality: (P � P , (S3), (S3)) and (Q3) are Lie triple
systems of rank 2, and therefore can be contained only in other Lie triple systems of
this rank. Because they have the same dimension 6 and are clearly not isomorphic,
neither of them can be contained in the other, and also for reason of dimension, nei-

6See [8], Definition 5.1.
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ther can be contained in (S1 � S5, l ) with l � 3. Therefore these two types are max-
imal in m1. From a consideration of the root systems it can also be seen that (S, ' D
arctan(1=3), 3) and (P , ' D �=4, (H, 1)) are maximal. On the other hand, (Geo,' D t),
(P , ' D �=4, (K, 1)) with K 2 fR, Cg, (P �P , �1, �2) with �1, �2 2 f(R, 1), (C, 1), (S3)g
and (S1 � S5, l ) with l � 3 are all contained in (P � P , (S3), (S3)), whereas (S, ' D
arctan(1=3), 2) is contained in (S, ' D arctan(1=3), 3). Therefore these types cannot be
maximal.

We can obtain the global isometry types of the totally geodesic submanifolds cor-
responding to the Lie triple systems of Sp(2) as listed in Theorem 3.8 from the totally
geodesic embeddings intoG2(Hn) described in [8], Section 6. When applying the in-
formation from that paper, one needs to take into account, however, that in the Sp(2)
as totally geodesic submanifold ofG2(Hn) (with the Riemannian metric considered in
that paper) the shortest restricted root has length

p
2, whereas here we want to view

Sp(2) with the metric so that the shortest restricted root has length 1. Therefore the
curvatures of the projective spaces have to be multiplied with 1=2, and the radii of
the spheres have to be multiplied with

p
2, to translate from the situation in [8] to

the present situation. In this way, we obtain the following information on the totally
geodesic submanifolds of Sp(2)srrD1, where we again use the notations introduced in
Section 3.3.

type of Lie triple system isometry type properties
(Geo,' D t) R or S1

(S,' D arctan(1=3), l ) Sl
rDp5

l D 3: maximal

(P ,' D �=4, (K, 1)) KP1
κD1=4 K D H: polar, maximal

(P ,' D �=4, (S3)) S3
rD1

(P �P , (K1, 1), (K2, 1)) K1P1
κD1=2�K2P1

κD1=2

(P �P , (K, 1), (S3)) KP1
κD1=2�S3

rD1=p2
K D R: meridian to (Q3)

(P �P , (S3), (S3)) S3
rD1=p2

�S3
rD1=p2

meridian to (P ,' D �=4, (H, 1)), maximal

(S1�S5, l ) (S1
rD1�Sl

rD1)=Z2

(Q3) Q3
srrD1 polar, maximal

3.5. Totally geodesic submanifolds in SO(10)=U(5). We now want to classify
the Lie triple systems of SO(10)=U(5). Note that this symmetric space occurs as a
maximal totally geodesic submanifold of EIII. We will use the classification of Lie
triple systems of EIII from Section 3.2 to obtain the classification for SO(10)=U(5) in
an analogous way as we used the classification inG2(H4) to obtain the classification
for Sp(2) in the previous section.

Thus we now return to the situation studied in Section 3.2. Weconsider the Riemann-
ian symmetric space EIII, and letg D k � m be the canonical decomposition ofg D e6

associated with this space, i.e. we havek D R� o(10) andm is isomorphic to the tangent
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space of EIII. We will use the names for the types of Lie triplesystems ofm as introduced
in Theorem 3.3 and Remark 3.5.

Further, we letm1 be a Lie triple system ofm of type (DIII), i.e. the totally geo-
desic submanifold of EIII corresponding tom1 is isometric to SO(10)=U(5).

Theorem 3.10. Exactly the following types of Lie triple systems ofEIII have rep-
resentatives which are contained inm1:
• (Geo,' D t) with t 2 [0, �=4].
• (P , ' D 0, (K, 4)) with K 2 fR, Cg.
• (P , ' D �=4, (Sk)) with k 2 f5, 6g.
• (P � P1, (K1, 3),K2) with K1, K2 2 fR, Cg.
• (Q, (G1, 6)).
• The types(Q, � ), where� is one of the types of Lie triple systems in the complex
quadric as defined in[7], Theorem 4.1,for mD 6, i.e.� is one of the following: (G1,k)
with k � 5, (G2,k1, k2) with k1 C k2 � 6, (G3), (P1,k) with k � 6, (P2), (A), (I1,k)
with k � 3, and (I2, k) with k � 3.
• (G2C6, (G2, (C, 3))).
• The types(G2C6, � ), where� is one of the following: (P , ' D arctan(1=2), (K, k))
with (K, k) 2 f(R, 1), (C, 1), (R, 2)g, (G2, (R, k)) with k � 3, (G2, (C, k)) with k � 2,
and (P � P , (K1, k1), (K2, k2)) with K1, K2 2 fR, Cg and k1C k2 � 3.
• (G2H4, (Sp2)).
• The types(G2H4, � ), where � is one of the following: (S, ' D arctan(1=3), 3),
(P , ' D �=4, (K, 1)) with K 2 fR, C, Hg, and (S1 � S5, 3).
The maximal Lie triple systems ofm1 are those of the types: (P , ' D 0, (C, 4)), (P �P1, (C, 3),C), (Q, (G1, 6)), (G2C6, (G2, (C, 3))) and (G2H4, (Sp2)).

REMARK 3.11. Chen and Nagano correctly list the local isometry typeof all the
maximal totally geodesic submanifolds of SO(10)=U(5) in their Table VIII of [5]. How-
ever the isometry types of the types (Q, (G1, 6)) resp. (G2H4, (Sp2))) are Q6 resp. SO(5)
(where Chen/Nagano claimG2(R8) � Q6=Z2 and Sp(2)� Spin(5) respectively). More-
over, it should be mentioned that also SO(10)=U(5) contains “skew” totally geodesic sub-
manifolds, namely the totally geodesic submanifolds of thetypes (Q, (A)) and (G2H4, (S,' D arctan(1=3), 3)), which are isometric to a 2-sphere resp. a 3-sphere ofradius

p
5,

so that their geodesic diameter
p

5� is strictly larger than the geodesic diameter� of
SO(10)=U(5). They are not maximal in SO(10)=U(5); their presence can not be inferred
from Table VIII of [5] because of the missing entries for the spacesGC

2 (R5) and Sp(2).

Proof of Theorem 3.10. For the maximal ones among the types listed, the cor-
responding totally geodesic embeddings into SO(10)=U(5) are described below, so we
know that these types, and therefore also all the other typeslisted, have representatives
contained inm1. Therefore, we only need to show that no other types of Lie triple
systems of EIII have representatives which are contained inm1.
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For this purpose, we letm0 be a Lie triple system ofm which is contained inm1.
We are to show thatm0 is of one of the types listed in Theorem 3.10.

If m0 is of rank 2, all the roots ofm0 have at most the multiplicity of the cor-
responding root inm1. Because the Dynkin diagram ofm1 is �4 , � 4[1], we see
by this argument thatm0 cannot be one of the types (P � P1, (K1, l ), K2) with l � 4,
(Q), (G2C6) and (G2H4). Moreover, we note that the intersection ofm1 with a Lie
triple system of type (Q) is of type (Q, (G1, 6)) (corresponding toQ6 � Q8 � EIII),
with a Lie triple system of type (G2C6) is of type (G2C6, (G2, (C, 3))) (corresponding
to G2(C5) � G2(C6) � EIII), and with a Lie triple system of typeG2(H4) is of type
(G2H4, (Sp2)) (corresponding to SO(5)� G2(H4)=Z2 � EIII). Therefrom everything
about the rank 2 Lie triple systems follows.

For the spaces of rank 1 a similar consideration of the multiplicities of the roots
shows thatm0 is of one of the types listed in the theorem.

Because SO(10)=U(5) is a totally geodesic submanifold of EIII, the isometrytypes
of the totally geodesic submanifolds in SO(10)=U(5) corresponding to the various types
of Lie triple systems are the same as the isometry types of thetotally geodesic sub-
manifolds in EIII of those types, which were described in Section 3.3. In particular,
the isometry types of the maximal totally geodesic submanifolds of SO(10)=U(5), and
some of their properties, are as follows:

type isometry type properties
(P , ' D 0, (C, 4)) CP4

κD1 polar
(P � P1, (C, 3),C) CP3

κD1 � CP1
κD1 meridian for (G2C6, (G2, (C, 3)))

(Q, (G1, 6)) Q6
srrDp2

meridian for (P , ' D 0, (C, 4))

(G2C6, (G2, (C, 3))) G2(C5)srrD1 polar
(G2H4, (Sp2)) SO(5)srrD1 reflective

To elucidate the position of the maximal totally geodesic submanifolds, we describe
totally geodesic embeddings for these types:

The types (P , ' D 0, (C, 4)) and (G2C6, (G2, (C, 3))). The totally geodesic sub-
manifolds of these types are the polars in SO(10)=U(5), and can therefore be obtained
as U(5)-orbits through points of SO(10)=U(5) which are antipodal to the origin point
p0 WD U(5) 2 SO(10)=U(5) in this space.

For an explicit construction, we consider both U(5) and SO(10) acting onC5; in
the latter case the action is onlyR-linear onC5 � R10. We fix a real formV of C5

(i.e. a 5-dimensional real linear subspaceV � C5 so thati � V is orthogonal toV with
respect to the real inner product onC5). Then we can describe U(5) as a subgroup of
SO(10) by

U(5)D �g 2 SO(10) g D � A �B
B A

�
, A, B 2 M(5� 5, R)

�
,
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where the matrix expression is to be read as a block matrix with respect to the split-
ting C5 D V � i � V . In the same way, we can describe the involutive automorphism
describing the symmetric structure of SO(10)=U(5):

� W SO(10)! SO(10),

�
A C
B D

� 7! �
D �B�C A

�
.

Via the linearization of� , we obtain the spacem in the splitting o(10)D u(5)� m

induced by the symmetric structure of SO(10)=U(5):

m D �� A B
B �A

�
A, B 2 o(5)

�
.

We now fix a 2k-dimensional real linear subspaceW � V (with k 2 f1, 2g) and a
“partial complex structure with respect toW”, i.e. a skew-adjoint transformationJW V !
V with J3 D �J and J(V ) D W. Then we haveX WD �

J 0
0 �J

� 2 m, and therefore

 W R! SO(10)=U(5), t 7! exp(t X) � p0 is a geodesic of SO(10)=U(5). For t 2 R andw 2 W we have

exp(t X)w D cos(t)w C sin(t)Jw
and

exp(t X)iw D cos(t)iw � sin(t)i Jw
as well as exp(t X)w0 D w0 for any w0 2 (W � iW)?. We have (t) D p0 if and only
if exp(t X) 2 U(5); from the above description it follows that this is the case if and
only if sin(t) D 0 holds, i.e. if we havet 2 �Z. Hence the geodesic is periodic with
period� , and thereforep1 WD  (�=2) is an antipodal point ofp0 in SO(10)=U(5). By
general results (see [5], Lemma 2.1), it is known that the polar M WD U(5) � p1 is a
totally geodesic submanifold of SO(10)=U(5).

To determine the isometry type of the totally geodesic submanifold M, we cal-
culate the isotropy group of the action of U(5) atp1: We have p1 D S � U(5) with
S WD exp((�=2)X) 2 SO(10); from the explicit description ofX we obtain the explicit
description

(29) SjW D JjW, SjiW D �JjiW, Sj(W� iW)? D id(W�iW)?
of S. Therefore we have forg 2 U(5):

g � p1 D p1� g � S � U(5)D S � U(5)� S�1gS2 U(5)

� g(W� iW) D W� iW,

where the last equivalence follows from Equations (29). Therefore the isotropy group
of the action of U(5) atp1 is isomorphic to U(W� iW) � U((W� iW)?) � U(2k) �
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U(5� 2k). It follows that the totally geodesic submanifoldM of SO(10)=U(5) is iso-
metric to U(5)=(U(2k) � U(5� 2k)).

In the casekD 1, M is thus isometric to U(5)=(U(2)�U(3))� G2(C5); this totally
geodesic submanifold turns out to be of type (G2C6, (C, 3)).

In the casek D 2, M is isometric to U(5)=(U(4)� U(1))� CP4; this totally geo-
desic submanifold is of type (P , ' D 0, (C, 4)).

The types (P � P1, (C, 3),C) and (Q, (G1, 6)). These types are the meridians
corresponding to the polars of type (G2C6, (C, 3)) and (P , ' D 0, (C, 4)), respectively.
This means that each of them is a totally geodesic submanifold which intersects the
corresponding polar orthogonally and transversally in onepoint.

However, in the present situation there is an easier way to describe the totally geo-
desic submanifolds of these types. Note that there are canonical embeddings SO(4)�
SO(6)� SO(10) and SO(8)� SO(10) which are compatible with the symmetric struc-
ture of SO(10)=U(5). In this way, we get totally geodesic embeddings of (SO(4)=U(2))�
(SO(6)=U(3))� CP1�CP3 and of SO(8)=U(4)� Q6 into SO(10)=U(5); they are of type
(P � P1, (C, 3),C) and (Q, (G1, 6)), respectively.

The type (G2H4, (Sp2)). Consider the map

8 W SO(5)! SO(10), B 7! �
B 0
0 B�1

�
.

For B 2 SO(5) we have8(B) 2 U(5)� B D id, and therefore8 induces an embed-

ding 8 W SO(5)! SO(10)=U(5). Its linearization mapsX 2 o(5) onto
�

X 0
0 �X

� 2 m,

and therefore8 is totally geodesic. It turns out to be of type (G2H4, (Sp2)).

4. The symmetric spacesE6=F4, SU(6)=Sp(3), SU(3) and SU(3)=SO(3)

4.1. The geometry ofE6=F4. In this section we will study the Riemannian sym-
metric space EIVWD E6=F4, which has the Satake diagram

1Æ 3� 4� 5� 6Æ
�
2

EIV does not have an invariant Hermitian structure.
We consider the Lie algebrag WD e6 of the transvection groupE6 of EIV and the

splitting g D k � m induced by the symmetric structure of EIV. Hereink D f4 is the
Lie algebra of the isotropy group of EIV, andm is isomorphic to the tangent space
of EIV in the origin. TheE6-invariant Riemannian metric on EIV induces an Ad(F4)-
invariant Riemannian metric onm. As was explained in Section 2, this metric is only
unique up to a factor; we choose the factor in such a way that the restricted roots of
EIV (see below) have the length 1.
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The root space decomposition. Let t be a Cartan subalgebra ofg which is max-
imally non-compact, i.e. it is such that the flat subspacea WD t \ m of m is of the
maximal dimension 2, and hence a Cartan subalgebra ofm. Then we consider the root
system1g � t� of g with respect tot, as well as the restricted root system1 � a�
of the symmetric space EIV with respect toa. EIV has the restricted Dynkin dia-
gram�8 �8, in other words: its restricted root system1 is of type A2, i.e. we have1D f��1,��2,��3g, where (�1,�2) is a system of simple roots of1, these two roots
are at an angle of (2=3)� and have the same length, and we have�3 D �1 C �2. All
roots in1 have the multiplicity 8, and1 has the following graphical representation:

To be able to apply the results from [9] and the correspondingcomputer pack-
age for the calculation of the curvature tensor of EIV, we again need to describe the
relationship between the restricted roots of the symmetricspace EIV and the (non-
restricted) roots of the Lie algebrae6. For this purpose, we again denote the positive
roots of e6 by �1, : : : , �36 in the way described in Section 3.1. To find out which re-
stricted root of EIV corresponds to each root ofe6, we tabulate the orbits of the action
of � on the root system1g, and the restricted root of EIV corresponding to each orbit
(compare Section 4 of [9]):

orbit f�1, ��30g f�7, ��27g f�12, ��22g f�17, ��18g
corresp. restr. root �1 �1 �1 �1

orbit f�6, ��31g f�11, ��28g f�16, ��24g f�20, ��21g
corresp. restr. root �2 �2 �2 �2

orbit f�23, ��36g f�26, ��35g f�29, ��34g f�32, ��33g
corresp. restr. root �3 �3 �3 �3

Moreover, we have� (�k) D �k for k 2 f2, 3, 4, 5, 8, 9, 10, 13, 14, 15, 19, 25g.
Again using the notationsK�(c) and M�(c) introduced in Section 3.1, we now put

for c1, : : : , c4 2 C and t 2 R, and whereA denotes one of the lettersK and M:

A�1(c1, c2, c3, c4) WD A�1(c1)C A�7(c2)C A�12(c3)C A�17(c4),

A�2(c1, c2, c3, c4) WD A�6(c1)C A�11(c2)C A�16(c3)C A�20(c4),

A�3(c1, c2, c3, c4) WD A�23(c1)C A�26(c2)C A�29(c3)C A�32(c4).

Then we havem�k D M�k (C, C, C, C) for k 2 f1, 2, 3g.
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The action of the isotropy group. We now look at the isotropy action of EIV.
Regarding it, we again use the notations introduced at the end of Section 2, in particular
we have the continuous function' W m n f0g ! [0, �=3] parametrizing the orbits of the
isotropy action. For the elements of the closurec of the positive Weyl chamberc WD fv 2
a j �1(v) � 0, �2(v) � 0g we again explicitly describe the relation to their isotropyangle:
((�℄1C�℄3)=p3,�℄2) is an orthonormal basis ofa so that withvt WD cos(t)((�℄1C�℄3)=p3)C
sin(t)�℄2 we have

(30) c D �s � vt t 2 �0,
�
3

�
, s 2 R�0

�
,

and because the Weyl chamberc is bordered by the two vectorsv0 D (�℄1C �℄3)=p3 with'(v0) D 0 andv�=3 D (�℄2C �℄3)=p3 with '(v�=3) D �=3, we have

(31) '(s � vt ) D t for all t 2 �0,
�
3

�
, s 2 RC.

The isotropy action ofK D F4 on m corresponds to the irreducible 26-dimensional
representation ofF4 (see [1], Lemma 14.4 (i), p. 95). It can be described as an action of
F4 on the 26-dimensional spaceJ(3,O)0 WD fX 2 M(3� 3,O) j X� D X, tr(X) D 0g of
trace-free, Hermitian (3�3)-matrices over the division algebra of octonionsO, for the de-
tails see [1], Chapter 16. Under the identification ofm with J(3,O)0 induced thereby, the
Cartan subalgebraa corresponds to the space of trace-free diagonal matrices, and the three
root spacesm�k (k D 1, 2, 3) correspond to the subspacesJk WD fX D (xi j ) 2 J(3,O)0 j
x11 D x22 D x33 D xkl D xkm D 0g of J(3,O)0, wherel andm are the two members off1, 2, 3g n fkg.

The subgroupK0 of F4 with Lie algebraka WD fX 2 k j [X, a] D 0g consists of those
g 2 F4 which leave all the subspacesJk invariant, and is therefore isomorphic to Spin(8)
(see [1], Theorem 16.7 (iii)).K0 acts on the three spacesJk as the three irreducible 8-
dimensional representations of Spin(8): the vector representation, and the two spin repre-
sentations; these representations are “intertwined” by the triality automorphism of Spin(8).

Proposition 4.1. We regardR8 as the real linear space underlyingC4 and for k2f1, 2, 3g we consider the linear isometry

' W R8! m�k , (c1, c2, c3, c4) 7! M�k (c1, c2, c3, c4).

Then there exists an isomorphism of Lie groups8 W Spin(8)! K0 so that the following
diagram commutes:

Spin(8)� R8 8�' K
K

K0 �m�1

AdKR8 ' Km�1,
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where the left vertical arrow represents the canonical action ofSpin(8)onR8.
If we fix v1 2 m�1 n f0g, then the Lie subgroupSpin0 WD fB 2 Spin(8)j B('�1v1) D'�1v1g of Spin(8) is isomorphic toSpin(7),and the subgroup K00 WD 8(Spin0), which is

isomorphic toSpin(7),acts transitively onm�2.
If we now also fixv2 2 m�2 n f0g, then the Lie subgroupSpin00 WD fB 2 Spin0 j

B('�1v2) D '�1v2g of Spin0 is isomorphic to the exceptional Lie group G2, and hence8(Spin00) is also isomorphic to G2.
These statements are also true for an arbitrary permutationof the indices1, 2, 3of

the root spacesm�k .

Proof. Most statements follow from the preceding discussionof the isotropy action.
For the transitivity statements, see [1], Lemma 14.13, p. 100.

4.2. Lie triple systems inE6=F4.

Theorem 4.2. The linear subspacesm0 � m given in the following are Lie triple
systems, and every Lie triple systemf0g ¤ m0 ¨ m is congruent under the isotropy
action to one of them.
• (Geo,' D t) with t 2 [0, �=3].

m0 D R(cos(t)((�℄1C �℄3)=p3)C sin(t)�℄2) (compareEquation (30)).
• (S, ' D �=6, l ) with 2� l � 9.

m0 is an l-dimensional linear subspace ofR�℄1�m�1.
• (P , ' D �=6, (K, l )) with K 2 fR, C, Hg and l 2 f2, 3g, or with (K, l ) D (O, 2).

We define the following vectors:

v0 WD M�1(1, 0, 0, 0)C M�2(1, 0, 0, 0), v1 WD M�1(i , 0, 0, 0)C M�2(�i , 0, 0, 0),

vC
0 WD M�1(0, 0, 0,i )C M�2(0, 0, 0,�i ), vC

1 WD M�1(0, 0, 0, 1)C M�2(0, 0, 0, 1),

vH
0 WD M�1(0, 0, i , 0)C M�2(0, 0,�i , 0), vH

1 WD M�1(0, 0, 1, 0)C M�2(0, 0, 1, 0),

vC H
0 WD M�1(0, 1, 0, 0)C M�2(0, 1, 0, 0), vC H

1 WD M�1(0, �i , 0, 0)C M�2(0, i , 0, 0),

vO
0 WD M�1(i , 0, 0, 0)C M�2(i , 0, 0, 0),

vC O
0 WD M�1(0, 0, 0, 1)C M�2(0, 0, 0,�1),

vH O
0 WD M�1(0, 0, 1, 0)C M�2(0, 0,�1, 0),

vC H O
0 WD M�1(0, �i , 0, 0)C M�2(0, �i , 0, 0),

H WD �℄3, w4 WD M�3(0, 0, 0, 1),

w1 WD M�3(1, 0, 0, 0), w5 WD M�3(�i , 0, 0, 0),

w2 WD M�3(0, 1, 0, 0), w6 WD M�3(0, i , 0, 0),

w3 WD M�3(0, 0, i , 0), w7 WD M�3(0, 0, 1, 0).
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Thenm0 is spanned by the following vectors, in dependence of(K, l ):
For (K, l ) D (R, 2): H , v0.
For (K, l ) D (R, 3): H , v0, v1.
For (K, l ) D (C, 2): H , v0, vC

0 ,w1.
For (K, l ) D (C, 3): H , v0, vC

0 , v1, vC
1 ,w1.

For (K, l ) D (H, 2): H , v0, vC
0 , vH

0 , vC H
0 ,w1,w2,w3.

For (K, l ) D (H, 3): H , v0, vC
0 , vH

0 , vC H
0 , v1, vC

1 , vH
1 , vC H

1 ,w1,w2,w3.
For (K,l )D (O,2): H ,v0,vC

0 ,vH
0 ,vC H

0 ,vO
0 ,vC O

0 ,vH O
0 ,vC H O

0 ,w1,w2,w3,w4,w5,w6,w7.
• (AI) .

m0 D a� M�1(R, 0, 0, 0)� M�2(R, 0, 0, 0)� M�3(0, 0, 0,iR).
• (A2).

m0 D a� M�1(C, 0, 0, 0)� M�2(C, 0, 0, 0)� M�3(0, 0, 0,C).
• (AII) .

m0 D a� M�1(C, C, 0, 0)� M�2(C, C, 0, 0)� M�3(0, 0,C, C).
• (S � S1, l ) with l � 9.

m0 D a�m0�1
with an (l � 1)-dimensional linear subspacem0�1

� m�1.
We call the full name(Geo,' D t) etc. given in the above table the type of the Lie
triple systems which are congruent under the adjoint actionto the space given in that
entry. Then every Lie triple system ofm is of exactly one type.

The Lie triple systemsm0 of the various types have the properties given in the
following table. The column“ isometry type” again gives the isometry type of the totally
geodesic submanifolds corresponding to the Lie triple systems of the respective type in
abbreviated form, for the details seeSection 4.3.

type ofm0 dim(m0) rk(m0) m0 maximal isometry type
(Geo,' D t) 1 1 no R or S1

(S, ' D �=6, l ) l 1 no Sl

(P , ' D �=6, (K, l )) dimR K � l 1 for (K, l ) 2 f(H, 3), (O, 2)g KPl

(AI) 5 2 no (SU(3)=SO(3))=Z3

(A2) 8 2 no SU(3)=Z3

(AII) 14 2 yes (SU(6)=Sp(3))=Z3

(S � S1, l ) l C 1 2 for l D 9 (Sl � S1)=Z4

REMARK 4.3. For the symmetric space EIV, Chen and Nagano correctly list the
local isometry types of the maximal totally geodesic submanifolds. However, the global
isometry types of the totally geodesic submanifolds of type(AII) resp. (S � S1, 9) is
(SU(6)=Sp(3))=Z3 resp. (S1� S9)=Z4 (and not SU(6)=Sp(3) resp.S1� S9, as Chen and
Nagano claim).

Proof of Theorem 4.2. We first mention that it is easily checked using theMaple
implementation that the spaces defined in the theorem, and therefore also the linear
subspacesm0 � m which are congruent to one of them, are Lie triple systems. Itis also
easily seen that the information in the table concerning thedimension and the rank of
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the Lie triple systems is correct. The information on the isometry type of the corres-
ponding totally geodesic submanifolds will be discussed inSection 4.3. Note that no
two types of Lie triple systems correspond to the same isometry type of totally geo-
desic submanifold, therefore no Lie triple system can be of more than one type.

We next show that the information on the maximality of the Lietriple systems
given in the table is correct. For this purpose, we presume that the list of Lie triple
systems given in the theorem is in fact complete; this will beproved in the remainder
of the present section.

Proof that the Lie triple systems which are claimed to be maximal in the table in-
deed are: This is clear for the type (P , ' D �=6, (O, 2)), because it has the maximal
dimension among all the Lie triple systems of EIV. It is also clear for the type (AII)
because it has rank 2 and maximal dimension among all the Lie triple systems of EIV
of that rank. For the type (S � S1, 9): For reason of dimension and rank, a Lie triple
systemm0 of this type could only be contained in a Lie triple system of type (AII);
howeverm0 has a root of multiplicity 8, whereas all the roots of Lie triple systems
of type (AII) have multiplicity 4, so such an inclusion is impossible. For the type
(P , ' D �=6, (H, 3)): For reason of dimension, a Lie triple systemm0 of this type
could again only be contained in a Lie triple system of type (AII); however this is
impossible becausem0 requires the multiplicity 8 for the “collapsing” roots�1 and�2.

That no Lie triple systems are maximal besides those mentioned above follows
from the following table:

Every Lie triple system of type. . . is contained in a Lie triple system of type. . .
(Geo,' D t) (S � S1, 1)

(S, ' D �=6, l ) (S � S1, l )
(P , ' D �=6, (K, 2)) with K 2 fR, C, Hg (P , ' D �=6, (O, 2))

(P , ' D �=6, (K, 3)) with K 2 fR, Cg (P , ' D �=6, (H, 3))
(AI) (A2)
(A2) (AII)

(S � S1, l ) with l � 8 (S � S1, 9)

We now turn to the proof that the list of Lie triple systems of EIV given in The-
orem 4.2 is indeed complete. For this purpose, we let an arbitrary Lie triple system
m0 of m, f0g ¤ m0 ¨ m, be given. Because the symmetric space EIV is of rank 2, the
rank of m0 is either 1 or 2. We will handle these two cases separately in the sequel.

We first suppose thatm0 is a Lie triple system of rank 2. Let us fix a Cartan sub-
algebraa of m0; because of rk(m0) D rk(m), a is then also a Cartan subalgebra ofm. In
relation to this situation, we use the notations introducedin Sections 2 and 4.1. In par-
ticular, we consider the positive root system1C WD f�1, �2, �3g of the root system1 WD1(m, a) of m, and also the root system10 WD 1(m0, a) of m0. By Proposition 2.1 (b),10 is a root subsystem of1, and therefore10C WD 10\1C is a positive system of roots
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for 10. Moreover, in the root space decompositions ofm andm0
m D a�M

�21C m� and m0 D a�M
�210C m

0�(32)

the root spacem0� of m0 with respect to� 2 10C is related to the corresponding root
spacem� of m by m0� D m� \m0.

Because the subset10 of 1 is invariant under its own Weyl transformation group,
we have (up to Weyl transformation) only the following possibilities for 10C, which we
will treat individually in the sequel:

10C D 1C, 10C D f�1g and 10C D ¿.

CASE 10C D 1C. In this case, the restricted Dynkin diagram with multiplicities

of m0 is �n0�1 �n0�2 , and the classification of the Riemannian symmetric spaces (see,
for example, [14], p. 119, 146) shows thatn0 WD n0�1

D n0�2
D n0�3

2 f1, 2, 4, 8g holds.
If n0 D 1 holds, we may suppose without loss of generality by Proposition 4.1 that

m0�k
is spanned byvk WD M�k (1, 0, 0, 0) fork 2 f1, 2g. Then we havem0 3 R(�℄1, v1)v2 D

(
p

2=8)M�3(0, 0, 0,i ), and thereforem0�3
is spanned byv3 WD M�3(0, 0, 0,i ). Thusm0 D

a�L3
kD1 m

0�k
is of type (AI).

If n0 D 2 holds, we may suppose without loss of generalitym0�1
D M�1(C, 0, 0, 0)

and v2 2 m0�2
. We then obtainv3 2 m0�3

as before, also from the equalitym0 3 R(�℄1,

M�1(i , 0, 0, 0))v2D�(
p

2=8)M�3(0, 0, 0, 1) the factM�3(0, 0, 0, 1)2m0�3
and then from the

equalitym0 3 R(�℄1, v1)M�3(0, 0, 0, 1)D �(
p

2=8)M�2(i , 0, 0, 0) the factM�2(i , 0, 0, 0)2
m0�2

. Thus we have besidesm0�1
D M�1(C, 0, 0, 0) alsom0�2

D M�2(C, 0, 0, 0) andm0�3
D

M�3(0, 0, 0,C), and thereforem0 D a�L3
kD1 m

0�k
is of type (A2).

If n0 D 4 holds, we may suppose without loss of generalitym0�1
D M�1(C, C, 0, 0)

andv2 2 m0�2
. Then as above we obtainM�2(C, 0, 0, 0)� m0�2

and M 0�3
(0, 0, 0,C) � m0�3

.
Moreover forc 2 C we have

m0 3 R(�℄1, M�1(0, c, 0, 0))v2 D
p

2

8
M�3(0, 0,ci , 0),

hencem0�3
D M�3(0, 0,C, C), and

m0 3 R(�℄1, v1)M�3(0, 0,c, 0)D
p

2

8
M�2(0, ci , 0, 0),

hencem0�2
D M�2(C, C, 0, 0). This shows thatm0 D a�L3

kD1 m
0�k

is of type (AII).
Finally, if n0 D 8 holds, we havem0�k

D m�k for k 2 f1, 2, 3g and thereforem0 D
a�L3

kD1 m
0�k
D m.

CASE 10C D f�1g. In this case we havem0 D a � m0�1
with a linear subspace

m0�1
� m�1, and thereforem0 is of type (S � S1, l ) with l WD 1C n0�1

� 9.
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CASE 10C D ¿. In this case we havem0 D a, and thereforem0 is of type
(S � S1, 1).

We now turn our attention to the case wherem0 is a Lie triple system of rank 1.
Via the application of the isotropy action of EIV, we may suppose without loss of
generality thatm0 contains a unit vectorH from the closurec of the positive Weyl
chamberc of m (with respect toa and our choice of positive roots). Then we have by
Equations (30) and (31) with'0 WD '(H ) 2 [0, �=3]

(33) H D cos('0)
�℄1C �℄3p

3
C sin('0)�℄2.

Because of rk(m0) D 1, a0 WD RH is a Cartan subalgebra ofm0, and we havea0 D
a\m0. It follows from Proposition 2.1 (a) that the root systems10 and1 of m0 resp.m
with respect toa0 resp. toa are related by

(34) 10 � f�(H )�0 j � 2 1, �(H ) ¤ 0g
with the linear form�0 W a0 ! R, t H 7! t ; moreover form0 we have the root space
decomposition

(35) m0 D a0 �M
�210C m

0�
where for any root� 2 10, the corresponding root spacem0� is given by

(36) m0� D
0
B� M

�21�(H )D�(H )

m�
1
CA \m0.

If 10 D¿ holds, then we havem0 D RH , and thereforem0 is then of type (Geo,' D'0). Otherwise it follows from Proposition 2.3 that one of the following two conditions
holds: EitherH is proportional to a root vector�℄ with � 2 1, or there exist two�, � 21 (� ¤ �) so thatH is orthogonal to�℄ � �℄. Evaluating all possible values for� and�, we see that'0 2 f0, �=6, �=3g holds.

In the sequel we consider the three possible values for'0 individually.
CASE '0 D 0. In this case we haveH D (1=p3)(�℄1 C �℄3) D (1=p3)(2�℄1 C �℄2)

by Equation (33) and therefore

�1(H ) D 1

2

p
3, �2(H ) D 0, �3(H ) D 1

2

p
3.

Thus we have10 D f��g with � WD �1ja0 D �3ja0 by Equation (34),m0 D RH � m0�
by Equation (35), andm0� � m�1 �m�3 by Equation (36).
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Assume thatm0� ¤ f0g holds. We have�℄ D (1=2)
p

3H D (1=2)�℄1 C (1=2)�℄3 and
therefore by Proposition 2.4, for anyv 2 m0�, sayv D M�1(a1, : : : , a4)CM�3(b1, : : : , b4)
with a1, : : : , a4, b1, : : : , b4 2 C, we havekak D kbk. Therefore we can suppose without
loss of generality via Proposition 4.1 thatv0 WD M�1(1, 0, 0, 0)C M�3(1, 0, 0, 0)2 m0�
holds. Then we have

m0 3 R(H , v0)v0 D 3

4
H C

p
6

8
M�2(0, 0, 0,i ).

However, this is a contradiction to the fact that because of�2(H ) D 0, no element of
m0 can have a non-zerom�2-component. So we in fact havem0� D f0g, hencem0 D RH .
This shows that (for dim(m0) � 2) the case'0 D 0 cannot in fact occur.

CASE '0 D �=6. In this case we haveH D (
p

3=2)� (1=p3)(�℄1C�℄3)C (1=2)�℄2 D�℄3 by Equation (33) and therefore

�1(H ) D 1

2
, �2(H ) D 1

2
, �3(H ) D 1.

Thus we have10 � f��,�2�g with � WD �1ja0 D �2ja0 by Equation (34),m0 D RH �
m0� �m0

2� by Equation (35), andm0� � m�1 �m�2 andm0
2� � m�3 by Equation (36).

If � � 10 holds, we thus havem0 D R�℄3 � m0
2� � R�℄3 � m�3, and thereforem0

then is of type (S, ' D �=6, l ) with l WD 1C n02�.
So we now suppose� 2 10. By the classification of the Riemannian symmetric

spaces of rank 1 we then haven02� 2 f0, 1, 3, 7g, and the totally geodesic submanifold
corresponding tom0 is isometric either toRPk, to CPk, to HPk or to the Cayley pro-
jective planeOPkD2, depending on whethern02� equals 0, 1, 3 or 7, respectively; here
we havek D n0�=(n02� C 1).

It should also be noted that we have�℄ D (1=2)H D (1=2)�℄1C (1=2)�℄2, and there-
fore we have for anyc1, : : : , c4, d1, : : : , d4 2 C by Proposition 2.4

(37) M�1(c1, : : : , c4)C M�2(d1, : : : , d4) 2 m0� H) kck D kdk.
In the sequel, we consider the four possible values forn02� individually. In our

calculations we will use the vectorsv0, vC
0 , : : : as they are defined in the entry for the

types (P , ' D �=6, (K, l )) in Theorem 4.2.
Let us first supposen02� D 0, i.e.10 D f��g. By Proposition 4.1 and because of (37)

we may suppose without loss of generality thatv0 2 m0� holds. If n0� D 1 holds, we then
havem0� D Rv0 and thereforem0 D RH �m0� is of type (P , ' D �=6, (R, 2)). Otherwise
we choosev 2 m0� to be orthogonal tov0, sayv D M�1(c1, : : : , c4) C M�2(d1, : : : , d4).
Then we have

m0 3 R(H , v0)v D 1

4
Re(c1)�℄1C 1

4
Re(d1)�℄2

C
p

2

16
M�3(i (c4 � d4), i (�c3C d3), �i (c2C d2), i (d1 � c1)).
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Because thea-component of this vector is proportional toH , we have Re(c1)D Re(d1);
this equation together with our requirement thatv be orthogonal tov0 shows Re(c1) D
Re(d1) D 0 and hencec1, d1 2 iR. Moreover, because of 2� � 10, the m�3-component
of the above vector vanishes, and thus we have

c1 D �d1 2 iR, c2 D �d2, c3 D d3 and c4 D d4,

hence

(38) v D M�1(i t , c2, c3, c4)C M�2(�i t , �c2, c3, c4)

with t 2 R. By application of another isotropy transformation, we cannow arrange thatv is proportional tov1. Thus we havev0, v1 2 m0�, and therefore in the casen0� D 2,
m0 D RH�m0� is of type (P ,' D �=6, (R, 3)). We now show that the casen0� � 3 does
not occur. For this purpose, we again letv 2 m0� be given, but now suppose thatv is
orthogonal to bothv0 and v1. Then v again has the form of Equation (38), however
the requirement thatv be orthogonal tov1 implies t D 0. Moreover, we have

m0 3 R(H , v)v1 D
p

2

16
M�3(c4i , �c3i , �c2i , 0).

Because of 2� �10, them�3-component of this vector vanishes, and thus we havec2D
c3 D c4 D 0, hencev D 0. This shows thatn0� � 3 is impossible.

Next we supposen02� D 1. Then the Lie triple systemm0 corresponds to a com-
plex projective spaceCPl , which is a Hermitian symmetric space. Letm00 � m0 be the
tangent space of a real form of this space, thenm00 will also be a Lie triple system of
m, it will be of rank 1 and correspond to the isotropy angle' D �=6, and it will have
only the root�, not 2�. As a consequence of the preceding classification of the Lie
triple systems with these properties,m00 is of type (P , ' D �=6, (R, l )) with l 2 f2, 3g.
Without loss of generality, we may therefore suppose thatm00 is the prototype Lie triple
system of the type (P ,' D �=6, (R, l )) as given in Theorem 4.2. Thus we havev0 2 m0�
and in the casel D 3 alsov1 2 m0�. Further we may suppose without loss of generality
m0

2� D Rw1. Then we have

R(w1, vk)H D
p

2

16
vC

k

for k 2 f0, 1g, and thereforevk 2 m0� implies alsovC
k 2 m0�. This shows thatm0 DRH �m0� �m0

2� is of type (P , ' D �=6, (C, l )).
Now we supposen02� D 3. Thenm0 corresponds to a quaternionic projective spaceHPl , and therefore an analogous argument as in the treatment of the casen02� D 1

shows thatm0 contains as a complex form a Lie triple systemm00 of type (P , ' D�=6, (C, l )) with l 2 f2, 3g. Without loss of generality, we may suppose thatm00 is
the prototype Lie triple system of that type as given in Theorem 4.2, and therefore
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w1 2 m0
2� and vk, vC

k 2 m0� holds, wherek D 0 for l D 2 and k D 0, 1 for l D 3.
Further we may suppose without loss of generality that alsow2 2 m0

2� holds. We have
for k 2 f0, 1g

R(w2, vk)H D �
p

2

16
vH

k and R(w2, vC
k )H D �

p
2

16
vC H

k .

Thereforevk, vC
k 2 m0� implies alsovH

k , vC H
k 2 m0� Moreover, we have

R(v0, vC H
0 )H D

p
2

4
w3,

and thereforew3 2 m0
2�. Thusm0 D RH �m0� �m0

2� is of type (P , ' D �=6, (H, l )).
Finally we supposen02� D 7. Then n0� D 8 is the only possibility by the clas-

sification of the Riemannian symmetric spaces of rank 1, andm0 corresponds to the
Cayley projective planeOP2. OP2 contains aHP2 as totally geodesic submanifold,
and thus by an analogous argument as before, we see thatm0 contains a Lie triple sys-
tem m00 of type (P , ' D �=6, (H, 2)); without loss of generality we may suppose that
m00 is the prototype Lie triple system of that type. Thus we havev0, vC

0 , vH
0 , vC H

0 2 m0�
andw1, w2, w3 2 m0

2�. Without loss of generality we may further supposew4 2 m0
2�.

We have

R(w4, v0)H D
p

2

16
vO

0 , R(w4, vC
0 )H D

p
2

16
vC O

0 ,

R(w4, vH
0 )H D

p
2

16
vH O

0 and R(w4, vC H
0 )H D

p
2

16
vC H O

0 ,

and thereforem0� is spanned byv0,vC
0 ,vH

0 ,vC H
0 ,vO

0 ,vC O
0 ,vH O

0 ,vC H O
0 . Moreover, we have

R(v0, vC O
0 )H D

p
2

4
w5, R(v0, vH O

0 )H D
p

2

4
w6

and

R(v0, vC H O
0 )H D

p
2

4
w7

and thereforem0
2� is spanned byw1, : : : , w7. Thereforem0 D RH � m0� � m0

2� is of
type (P , ' D �=6, (O, 2)).

CASE '0 D �=3. By an analogous argument as in the case'0 D 0, one shows
that this case cannot occur.

This completes the classification of the Lie triple systems in the Riemannian sym-
metric space EIV.

4.3. Totally geodesic submanifolds inE6=F4. We are interested in determining
the global isometry types of the totally geodesic submanifolds of EIV corresponding to
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the various types of Lie triple systems as they were classified in Theorem 4.2. In the
case of EIV all the maximal totally geodesic submanifolds are reflective, so we can
derive this information from the classification of reflective submanifolds due to Leung,
see [13].

Using the information from that paper, we obtain the resultsof the following table.
In it, we again use the notations introduced at the beginningof Section 3.3.

type of Lie triple system isometry type properties7

(Geo,' D t) R or S1

(S, ' D �=6, l ) Sl
rD1 l D 9: Helgason sphere

(P , ' D �=6, (K, l )) KPl
κD1=4 (K, l ) D (O, 2): polar, maximal

(K, l ) D (H, 3): reflective, maximal
(AI) ((SU(3)=SO(3))=Z3)srrD1

(A2) (SU(3)=Z3)srrD1

(AII) ((SU(6)=Sp(3))=Z3)srrD1 reflective, maximal

(S�S1, l )
�Sl

rD1�S1
rDp3

�=Z4
l D 9: meridian for
(P , ' D �=6, (O, 2)), maximal

4.4. Totally geodesic submanifolds in SU(6)=Sp(3). Similarly as we derived
the classification of the Lie triple systems resp. the totally geodesic submanifolds in
SO(10)=U(5) from that classification in EIII in Section 3.5, we now derive the classifi-
cation for SU(6)=Sp(3) from the classification in EIV, using the fact that SU(6)=Sp(3)
is the local isometry type of a maximal totally geodesic submanifold of EIV.

Thus we remain in the situation studied in Section 4.2. We consider the Riemann-
ian symmetric space EIV, and letg D k�m be the canonical decomposition ofg D e6

associated with this space, i.e. we havekD f4 andm is isomorphic to the tangent space
of EIV. We will use the names for the types of Lie triple systems of m as introduced
in Theorem 4.2.

Further, we letm1 be a Lie triple system ofm of type (AII), i.e.m1 corresponds
to a totally geodesic submanifold which is locally isometric to SU(6)=Sp(3).

Theorem 4.4. Exactly the following types of Lie triple systems ofEIV have rep-
resentatives which are contained inm1:
• (Geo,' D t) with t 2 [0, �=3],
• (S, ' D �=6, l ) with l � 5,
• (P , ' D �=6, (K, 2)) with K 2 fR, C, Hg,
• (P , ' D �=6, (K, 3)) with K 2 fR, Cg,
• (AI),
• (A2),
• (S � S1, l ) with l � 5.
The maximal Lie triple systems ofm1 are those of the types: (P , ' D �=6, (H, 2)),
(P , ' D �=6, (C, 3)), (A2) and (S � S1, 5).

7The polars and meridians are also reflective, without this fact being noted explicitly in the table.
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Proof. Similar to the proofs of Theorems 3.8 and 3.10.

REMARK 4.5. Chen/Nagano incorrectly state in [5] that the Lie triple systems of
type (AI) (corresponding to SU(3)=SO(3)) were maximal in SU(6)=Sp(3), rather these Lie
triple systems are contained in Lie triple systems of type (A2) (corresponding to SU(3)).

Also for SU(6)=Sp(3), the maximal totally geodesic submanifolds are all reflective.
Using the information from [13], we obtain the following information on the global
isometry type of the totally geodesic submanifolds of SU(6)=Sp(3) corresponding to
the various types of Lie triple systems:

type of Lie triple system isometry type properties8

(Geo,' D t) R or S1

(S, ' D �=6, l ) Sl
rD1 l D 5: Helgason sphere

(P , ' D �=6, (K, l )) KPl
κD1=4 (K, l ) D (H, 2): polar, maximal

(K, l ) D (C, 3): reflective, maximal
(AI) (SU(3)=SO(3))srrD1

(A2) SU(3)srrD1 reflective

(S � S1, l )
�Sl

rD1 � S1
rDp3

�=Z2
l D 5: meridian for
(P , ' D �=6, (H, 2)), maximal

4.5. Totally geodesic submanifolds in SU(3). Using the same strategy as before,
we next classify the totally geodesic submanifolds of SU(3), regarded as a Riemannian
symmetric space. We again letg D k�m be the splitting corresponding to EIV, and let
m1 now be a Lie triple system ofm of type (A2); then the totally geodesic submanifold
of EIV corresponding tom1 is locally isometric to SU(3).

Theorem 4.6. Exactly the following types of Lie triple systems ofEIV have rep-
resentatives which are contained inm1:
• (Geo,' D t) with t 2 [0, �=3],
• (S, ' D �=6, l ) with l � 3,
• (P , ' D �=6, (K, 2)) with K 2 fR, Cg,
• (P , ' D �=6, (R, 3)),
• (AI),
• (S � S1, l ) with l � 3.
The maximal Lie triple systems ofm1 are those of the types: (P , ' D �=6, (C, 2)),
(P , ' D �=6, (R, 3)), (AI) and (S � S1, 3).

Proof. Similar to the proofs of Theorems 3.8 and 3.10.

8The polars and meridians are also reflective, without this fact being noted explicitly in the table.
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REMARK 4.7. Chen/Nagano incorrectly state in [5] that SU(3) contains totally
geodesic submanifolds isometric to SU(2)�SU(2) and SU(3)=(SU(2)�SU(2)). This is
impossible, because SU(2)�SU(2) has the same rank as SU(3), but whereas the former
group has two orthogonal roots, the latter has not.

Once again, also for the Riemannian symmetric space SU(3), all the maximal to-
tally geodesic submanifolds are reflective. Using the classification of the reflective sub-
manifolds by Leung (in [11], Theorem 3.3 for the group manifolds, see also [12]), we
obtain the following information on the global isometry type of the totally geodesic
submanifolds of SU(3) corresponding to the various types ofLie triple systems:

type of Lie triple system isometry type properties9

(Geo,' D t) R or S1

(S, ' D �=6, l ) Sl
rD1 l D 3: Helgason sphere

(P , ' D �=6, (K, l )) KPl
κD1=4 (K, l ) D (C, 2): polar, maximal

(K, l ) D (R, 3): reflective, maximal
(AI) (SU(3)=SO(3))srrD1 reflective, maximal

(S � S1, l )
�Sl

rD1 � S1
rDp3

�=Z2
l D 3: meridian for
(P , ' D �=6, (C, 2)), maximal

4.6. Totally geodesic submanifolds in SU(3)=SO(3). The totally geodesic sub-
manifolds of SU(3)=SO(3) have already been classified in [9], Section 6. Becausethe
totally geodesic submanifolds of EIV of type (AI) are locally isometric to SU(3)=SO(3),
the Lie triple systems of SU(3)=SO(3) also occur as Lie triple systems of EIV. In the
following table, we list the correspondence between the types of Lie triple systems of
SU(3)=SO(3) as defined in [9], Proposition 6.1, and types of Lie triple systems of EIV
as defined in Theorem 4.2 of the present paper. We also give theisometry type of the cor-
responding totally geodesic submanifolds, as it has been determined in [9], Section 6; for
the application of this information it should be noted that there the metric of SU(3)=SO(3)
has been normalized in such a way that the roots have length

p
2, whereas we now want

to normalize the metric in such a way that the roots have length 1.

type
([9], Proposition 6.1)

type (Theorem 4.2) isometry type properties

(G) (Geo,' D t) R or S1

(T) (S � S1, 1)
�S1

rD1 � S1
rDp3

�=Z2

(S) (S, ' D �=6, 2) S2
rD1 Helgason sphere

(M) (P , ' D �=6, (R, 2)) RP2
κD1=4 polar, maximal

(P) (S � S1, 2)
�S2

rD1 � S1
rDp3

�=Z2 meridian, maximal

9The polars and meridians are also reflective, without this fact being noted explicitly in the table.



TOTALLY GEODESIC SUBMANIFOLDS IN SYMMETRIC SPACES 1139

5. The symmetric spacesG2 and G2=SO(4)

5.1. The geometry of the Lie groupG2, regarded as a symmetric space. In
this section we will study the exceptional compact Lie groupG2, regarded as a Riemann-
ian symmetric space. In particular we need to obtain its curvature tensor. The usual
way to do so would be to regardG2 as the quotient space (G2 � G2)=1(G2), where1(G2) WD f(g, g) j g 2 G2g is the diagonal of the productG2 � G2, and then to apply
the method of [9] to that space to compute its curvature tensor.

However, we can reduce the effort involved in the calculations by noting that in
that model of the symmetric spaceG2, the spacem which corresponds to the tangent
space at the origin, is given bymD f(X,�X) j X 2 g2g � g2�g2, and that for elements
(X, �X), (Y, �Y), (Z, �Z) 2 m, the curvature tensor is given by

�[[( X, �X), (Y, �Y)], (Z, �Z)] D �([[ X, Y], Z], �[[ X, Y], Z]).

Under the canonical isomorphismm! g2, (X,�X) 7! X, the curvature tensor of these
elements ofm therefore corresponds to�[[ X, Y], Z] 2 g2, hence the Lie triple systems
in m � g2� g2 correspond to the Lie triple systems ing2 (i.e. to the linear subspaces
of g2 which are invariant under the Lie triple bracket [[� , � ], � ] of g2). Moreover,
the isotropy action of1(G2) on m corresponds to the adjoint action ofG2 on g2. For
this reason, we can carry out the classification of Lie triplesystems by calculation in
g2 itself (instead of inm � g2 � g2). In doing so, we will only need the description
of the root system and the Lie bracket ofg2, which we obtain by application of the
results of Sections 2, 3 of [9].

In the sequel, we will consider also an Ad(G2)-invariant inner product ong2. Such
an inner product is unique up to a positive constant, which wechoose so that the short-
est roots ofg2 (see below) have the length 1.

We now fix a Cartan subalgebraa � g2 and a choice of positive roots in the root
system1 of g2 with respect toa. The Dynkin diagram ofg2 is � �, and therefore
the simple roots ofg2, which we denote by�1 and�2, have an angle of 5�=6 to each
other, where�2 is the longer root by a factor of

p
3. The other positive roots ofG2 are

�3 WD �1C �2, �4 WD 2�1C �2, �5 WD 3�1C �2 and �6 WD 3�1C 2�2.

In this way we obtain the following root diagram forG2:
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In the sequel, we will use the notationV�k (c) defined as in Equation (7) fork 2f1, : : : , 6g and c 2 C to denote an element of the root space ofg2 corresponding to
the root�k. Then the root space corresponding to�k equalsV�k (C).

We will also use the isotropy angle function' defined at the end of Section 2
for g2; remember that in the present situation, the isotropy action of the symmetric
spaceG2 is given simply by the adjoint action ofG2 on g2. We have'maxD �=6 and
thus we obtain an isotropy angle function' W g2 n f0g! [0, �=6]. For the elements of
the closurec of the positive Weyl chamberc WD fv 2 a j �1(v) � 0, �2(v) � 0g, we
once again explicitly describe the relation to their isotropy angle: (�℄4, (1=p3)�℄2) is an

orthonormal basis ofa so that withvt WD cos(t)�℄4C sin(t)(1=p3)�℄2 we have

(39) c D �s � vt j t 2
�
0,
�
6

�
, s 2 R�0

�
,

and because the Weyl chamberc is bordered by the two vectorsv0D �℄4 with '(v0)D 0

and v�=6 D (1=p3)�℄6 with '(v�=6) D �=6, we have

(40) '(s � vt ) D t for all t 2 �0,
�
6

�
, s 2 RC.

Further we note the following simple fact on the adjoint action of G2:

Proposition 5.1. Let � be a short root, and �0 be a long root of G2. Then the
adjoint action of the maximal torus TWD exp(a) on g2 leavesa pointwise fixed, and
acts “ jointly transitively” on the unit spheres in the root spaces V�(C) and V�0(C) in
the sense that for any given c1, c2, c01, c02 2 C with jc1j D jc2j and jc01j D jc02j there exists
g 2 T with Ad(g)V�(c1) D V�(c2) and Ad(g)V�0(c01) D V�0(c02).

5.2. Lie triple systems inG2. We continue to use the notations of the preced-
ing section.

Theorem 5.2. The linear subspacesm0 � g2 given in the following are Lie triple
systems, and every Lie triple systemf0g ¤ m0 ¨ g2 is congruent under the adjoint action
to one of them.
• (Geo,' D t) with t 2 [0, �=6]:

m0 D R(cos(t)�℄4C sin(t)(1=p3)�℄2) (seeEquation (40)).
• (S, ' D 0, l ) with l 2 f2, 3g:

m0 is an l-dimensional linear subspace ofR�℄1�m�1.

• (S, ' D arctan(1=3p3), l ) with l 2 f2, 3g:
m0 is an l-dimensional subspace ofspanf9�℄1C 5�℄2, V�1(1)C V�2((1=3)

p
5), V�1(i )C

V�2((1=3)
p

5i )g.
• (S, ' D �=6, l ) with l 2 f2, 3g:

m0 is an l-dimensional linear subspace ofR�℄6�m�6.
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• (P , ' D �=6, (R, l ), G) with l 2 f2, 3g:
m0 is an l-dimensional subspace ofspanf�℄6, V�2(1)C V�4(

p
3), V�2(i ) � V�4(

p
3i )g.

• (P , ' D �=6, (R, l ), A2) with l 2 f2, 3g:
m0 is an l-dimensional subspace ofspanf�℄6, V�2(1)C V�5(1), V�2(i )C V�5(i )g.

• (P , ' D �=6, (R, 3), max):
m0 D spanf�℄6, V�2(1)C V�5(1), V�2(i ) � V�3(

p
3i ) � V�4(

p
3i )C V�5(i )g.

• (P , ' D �=6, (C, 2), G):
m0 D spanf�℄6, V�2(1)C V�4(

p
3), V�3(

p
3i )C V�5(i ), V�6(1)g.

• (P , ' D �=6, (C, 2), A2):
m0 D spanf�℄6, V�2(1)C V�5(1), V�2(i ) � V�5(i ), V�6(1)g.

• (S � S, l , l 0) with l, l 0 � 3:
m0 D a�m0�1

�m0�6
, wherem0�1

� V�1(C) andm0�6
� V�6(C) are linear subspaces of

dimension l� 1 resp. l0 � 1.
• (AI):

m0 D a� V�2(R)� V�5(R)� V�6(iR).
• (A2):

m0 D a� V�2(C)� V�5(C)� V�6(C).
• (G):

m0 D a� V�1(R)� V�2(R)� V�3(iR)� V�4(R)� V�5(iR)� V�6(R).
We call the full name(Geo,' D t) etc. given in the above table the type of the Lie triple
systems which are congruent under the adjoint action to the space given in that entry.10

Then no Lie triple system is of more than one type.
The Lie triple systemsm0 of the various types have the properties given in the follow-

ing table. The column“ isometry type” again gives the isometry type of the totally geodesic
submanifolds corresponding to the Lie triple systems of therespective type in abbreviated
form, for the details seeSection 5.3.

type ofm0 dim(m0) rk(m0) m0 Lie subalgebra m0 maximal isometry type
(Geo,' D t) 1 1 yes no R or S1

(S, ' D 0, l ) l 1 for l D 3 no S2
rD1

(S, ' D arctan(1=3p3), l ) l 1 for l D 3 for l D 3 Sl
rD(2=3)

p
21

(S, ' D �=6, l ) l 1 for l D 3 no Sl
rD1=p3

(P , ' D �=6, (R, l ), G) l 1 no no RPl

(P , ' D �=6, (R, l ), A2) l 1 for l D 3 no RPl

(P , ' D �=6, (R, 3), max) 3 1 no yes RP3

(P , ' D �=6, (C, 2), G) 4 1 no no CP2

(P , ' D �=6, (C, 2), A2) 4 1 no no CP2

(S � S, l , l 0) l C l 0 2 for l , l 0 2 f1, 3g for l D l 0 D 3
�Sl

rD1 � Sl 0
rD1=p3

�=Z2

(AI) 5 2 no no SU(3)=SO(3)
(A2) 8 2 yes yes SU(3)
(G) 8 2 no yes G2=SO(4)

10Notice that in this case, the types (S � S, l , l 0) and (S � S, l 0, l ) with l ¤ l 0 are not equivalent,
because the two irreducible components of the Lie triple systems of this type correspond to spheres
of different radius, see Section 5.3.
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REMARK 5.3. The maximal totally geodesic submanifolds ofG2 of types (S, ' D
arctan(1=3p3), 3) and (P , ' D �=6, (R, 3), max), which are isometric to a 3-sphere of
radius (2=3)

p
21 and a 3-dimensional real projective space of constant sectional curvature

3=4 respectively, are missing from the classification by Chen and Nagano in Table VIII
of [5]. The submanifolds of type (S, ' D arctan(1=3p3), 3) are once again in a “skew”
position in the ambient manifoldG2 in the sense that their geodesic diameter (2=3)

p
21�

is strictly larger than the geodesic diameter (2=3)
p

3� of G2.
It should also be noted that with the three types of totally geodesic submanifolds

(P , ' D �=6, (R, 3), G), (P , ' D �=6, (R, 3), A2) and (P , ' D �=6, (R, 3), max), and
likewise with the two types (P , ' D �=6, (C, 2), G) and (P , ' D �=6, (C, 2), A2), we
have examples of totally geodesic submanifolds which are isometric to one another, but
which are not congruent under the isometry action of the ambient space.

Proof of Theorem 5.2. Once again, it is easily checked that the spaces defined in
the theorem are Lie triple systems, and thus the spaces whichare conjugate to one of
them under the adjoint action also are. It is also easily seenthat the information in
the table on the dimension and the rank of the Lie triple systems and regarding the
question which of them are Lie subalgebras ofg2 is correct. The information on the
isometry type of the totally geodesic submanifolds corresponding to the various types
of Lie triple systems will be proved in Section 5.3.

For the fact that no Lie triple system is of more than one type:Notice that, with
the exception of the types (P , ' D �=6, (K, l ), �), no two types of Lie triple systems
correspond to the same isometry type of totally geodesic submanifold, therefore none
of these Lie triple systems can be of more than one type. To show that the various
types of the form (P , ' D �=6, (K, l ), �) are also separate, we determine for a Lie
triple systemm0 of each of these types the type of the smallest Lie triple system Om0
of rank 2 which containsm0 (using thesatake package as usual). We obtain the
following result:

(41)

type of m0 type of Om0
(P , ' D �=6, (R, 2), G) (S � S, 2, 2)
(P , ' D �=6, (R, 2), A2) (AI)
(P , ' D �=6, (R, 3), G) (S � S, 3, 3)
(P , ' D �=6, (R, 3), A2) (A2)

(P , ' D �=6, (R, 3), max) Om0 D g2

(P , ' D �=6, (C, 2), G) (G)
(P , ' D �=6, (C, 2), A2) (A2)

We see that in each series of types (P ,' D �=6, (K, l ),�) with fixed (K, l ), the Lie triple
systems Om0 corresponding to the Lie triple systemsm0 of these types are of different
type. Because we already know that no Lie triple system of rank 2 can be of more
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than one type, it follows that also among the types (P , ' D �=6, (K, l ), �) no Lie triple
system can be of more than one type.

We next show that the information on the maximality of the Lietriple systems is
correct. For this purpose, we presume that the list of Lie triple systems given in the
theorem is in fact complete; this will be proved in the remainder of the present section.

That the Lie triple systems which are claimed to be maximal inthe table indeed
are: This is clear for the types (A2) and (G) because there are no Lie triple systems
of greater dimension. For the type (S � S, 3, 3), we note that if it were not maximal,
it could only be included in a Lie triple system of type (A2) or (G) for dimension rea-
sons. However, the Lie triple systems of type (S�S, 3, 3) have two orthogonal roots of
multiplicity 2, whereas the systems of type (A2) do not have a pair of orthogonal roots,
and in the systems of type (G), all roots have multiplicity 1.So such an inclusion is
not in fact possible, and hence the Lie triple systems of type(S � S, 3, 3) are max-
imal. For the type (S, ' D arctan(1=3p3), 3): Let Om0 � g2 be a Lie triple system with
m0 ¨ Om0. If Om0 were of rank 1, then it would need to have the same isotropy angle' D arctan(1=3p3) and a strictly greater dimension thanm0, but no such Lie triple
system exists. SoOm0 is of rank 2. It now follows from the description of the type
(S, ' D arctan(1=3p3), 3) that Om0 has two roots at an angle of 5�=6 to each other and
these two roots both have multiplicity 2. ThereforeOm0 D g2 holds, and hencem0 is
maximal. For the type (P , ' D �=6, (R, 3), max): Again suppose thatOm0 � g2 is a
Lie triple system withm0 ¨ Om0. Similarly as before,Om0 cannot be of rank 1. But we
also know already from Table (41) that there is no rank 2 Lie triple system Om0 with
m0 ¨ Om0 ¨ g2 either. Thereforem0 is maximal.

That no Lie triple systems are maximal besides those mentioned above follows
from the following table:

Every Lie triple system of type. . . is contained in a Lie triple system of type. . .
(Geo,' D t) (S � S, 1, 1)
(S, ' D 0, l ) (S � S, l , 1)

(S, ' D arctan(1=3p3), 2)) (G)
(S, ' D �=6, l ) (S � S, 1, l )

(P , ' D �=6, (K, l ), G) (G)
(P , ' D �=6, (K, l ), A2) (A2)

(S � S, l , l 0) with (l , l 0) ¤ (3, 3) (S � S, 3, 3)
(AI) (A2)

We now turn to the proof that the list of Lie triple systems ofg2 given in The-
orem 5.2 is indeed complete. For this purpose, we let an arbitrary Lie triple systemm0
of g2, f0g ¤ m0 ¨ g2, be given. Because the Lie algebrag2 is of rank 2, the rank of
m0 is either 1 or 2. We will handle these two cases separately in the sequel.

We first suppose thatm0 is a Lie triple system of rank 2. Let us fix a Cartan
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subalgebraa of m0; because of rk(m0) D rk(g2), a is then also a Cartan subalgebra of
g2. In relation to this situation, we again use the notations introduced in Sections 2
and 5.1. In particular, we consider the positive root system1C WD f�1, : : : , �6g of the
root system1 WD 1(g2, a) of g2, and also the root system10 WD 1(m0, a) of m0. By
Proposition 2.1 (b),10 is a root subsystem of1, and therefore10C WD 10 \ 1C is
a positive system of roots for10. Moreover, in the root space decompositions ofg2

andm0
(42) g2 D a� 6M

kD1

V�k (C) and m0 D a�M
�210C m

0�,
the root spacem0� of m0 with respect to� 2 10C is related to the corresponding root
spaceV�(C) of g2 by m0� D V�(C) \m0.

Because the subset10 of 1 is invariant under its own Weyl group, we have (up to
Weyl transformation) the following possibilities for10C, which we will treat individu-
ally in the sequel:

10C D 1C, 10C D f�2, �5, �6g, 10C D f�1, �3, �4g,
10C D f�1, �6g, 10C D f�6g, 10C D f�1g and 10C D ¿.

CASE 10C D 1C. In this case the Dynkin diagram with multiplicities ofm0 is�n1 �n2 with n1, n2 2 f1, 2g. From the classification of the irreducible Riemann-
ian symmetric spaces (see for example [14], p. 119, 146), we see thatn1 D n2 DW
n 2 f1, 2g holds. If n D 2 holds, we havem0 D g2. If n D 1 holds, we may by
virtue of Proposition 5.1 suppose without loss of generality that m0�1

D V�1(R) and
m0�2
D V�2(R) holds. Then we can calculate the remaining root spaces ofm0 one by

one: We haveR(�℄1, V�2(1))V�1(1) D 3
p

3=4 � V�3(i ) and thereforem0�3
D V�3(iR). We

have R(�℄1, V�3(i ))V�1(1)D p3=4 �V�2(1)� 1=2 �V�4(1) and thereforem0�4
D V�4(R). We

have R(�℄1, V�4(1))V�1(1)D 1=2 �V�3(i )�p3=4 �V�5(i ) and thereforem0�5
D V�5(iR). Fi-

nally, we haveR(�℄1, V�5(i ))V�2(1)D 3
p

3=4 � V�6(1) and thereforem0�6
D V�6(R). Thus

it follows from Equation (42) that

m0 D a� V�1(R)� V�2(R)� V�3(iR)� V�4(R)� V�5(iR)� V�6(R)

holds, and thereforem0 is of type (G).
CASE 10C D f�2, �5, �6g. In this case, the Dynkin diagram with multiplicities

of m0 is �n �n with n 2 f1, 2g. In the casen D 2 we havem0 D a � V�2(C) �
V�5(C) � V�6(C) and thereforem0 is of type (A2). In the casen D 1 we may sup-
pose without loss of generalitym0�2

D V�2(R) and m0�5
D V�5(R); then we havem0 2

R(�℄1, V�2(1))V�5(1) D �(3
p

3=4)V�6(i ) and hencem0�6
D V�6(iR). Therefore we have

m0 D a� V�2(R)� V�5(R)� V�6(iR), thusm0 is of type (AI).
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CASE 10C D f�1, �3, �4g. Assume thatm0 is a Lie triple system with this root
system. Then there existc, d 2 C� so thatV�1(c), V�3(d) 2 m0 holds. We have

m0 3 R(�℄1, V�1(c))V�3(d) D
p

3

2
V�2(cdi)C V�4(cdi)

and therefore in particular�2 2 10C, contrary to the hypothesis10C D f�1, �3, �4g. This
calculation shows that there do not exist any Lie triple systemsm0 of g2 with 10C Df�1, �3, �4g.

CASES10C � f�1,�6g. In this case we havem0 D a�m0�1
�m0�6

by Equation (42),
thereforem0 is of type (S � S, l , l 0) with l WD 1C dim(m0�1

) and l 0 WD 1C dim(m0�6
).

This completes the treatment of the case wherem0 is of rank 2.
We now suppose thatm0 � g2 is a Lie triple system of rank 1. We may suppose

without loss of generality thatm0 contains a unit vectorH from the closure of the
positive Weyl chamberc. By Equations (39) and (40), we then have with'0 WD '(H ) 2
[0, �=6]

(43) H D cos('0)�℄4C sin('0)
1p
3
�℄2.

Because of rk(m0)D 1, a0 WD RH is a Cartan subalgebra ofm0, and we havea0 D a\m0.
It follows from Proposition 2.1 (a) that the root systems10 and1 of m0 resp.g2 with
respect toa0 resp. toa are related by

(44) 10 � f�(H )�0 j � 2 1, �(H ) ¤ 0g
with the linear form�0 W a0 ! R, t H 7! t ; moreover form0 we have the root space
decomposition

(45) m0 D a0 �M
�210C m

0�,

where for any root� 2 10, the corresponding root spacem0� is given by

(46) m0� D
0
B� M

�21�(H )D�(H )

V�(C)

1
CA \m0.

If 10 D ¿ holds, we havem0 D RH , and thereforem0 is then of type (Geo,' D'0). Otherwise it follows from Proposition 2.3 that one of the following two conditions
holds: Either H is proportional to a root vector�℄ with � 2 1, or there exist two�, � 2 1 (� ¤ �) so that H is orthogonal to�℄ � �℄. Evaluating all possible values
for � and�, we see that'0 2 f0, arctan(1=3p3), �=6g holds.



1146 S. KLEIN

In the sequel we consider the three possible values for'0 individually.
CASE '0 D 0. In this case we haveH D �℄4 by Equation (43) and therefore

�1(H ) D 1

2
, �2(H ) D 0, �3(H ) D 1

2
, �4(H ) D 1, �5(H ) D 3

2
, �6(H ) D 3

2
.

Thus we have10 � f��, �2�, �3�g with � WD �1ja0 D �3ja0 by Equation (44),m0 DRH � m0� � m0
2� � m0

3� by Equation (45) andm0� � V�1(C) � V�3(C), m0
2� � V�4(C)

andm0
3� � V�5(C)� V�6(C) by Equation (46).

We now show that actually�, 3� � 10C holds.
Indeed, letv 2 m0� be given. Then there existc, d 2 C so thatv D V�1(c)CV�3(d)

holds. We havejcj D jdj because of Proposition 2.4 and the fact that�℄ D (1=2)�℄1C
(1=2)�℄3 holds. Next we notice that because of�2(H ) D 0, the V�2(C)-component of
every vector inm0 must vanish. However, theV�2(C)-component ofR(H , v)v 2 m0
equals (

p
3=2)V�2(cdi), and so we concludecd D 0. Because ofjcj D jdj, it follows

that we havecD d D 0 and hencev D 0. Thus we havem0� D f0g and hence� � 10.
A similar calculation also shows 3� � 10, and therefore we have10 D f�2�g and

hencem0 D RH �m0
2� with a linear subspacef0g ¤ m0

2� � V�4(C). It follows that m0
is of type (S, ' D 0, l ) with l WD 1C n02�.

CASE '0 D arctan(1=3p3). In this case we haveH D (
p

21=42)(9�℄4 C �℄2) by
Equation (43) and therefore

�1(H ) D
p

21

14
� 1, �2(H ) D

p
21

14
� 1, �3(H ) D

p
21

14
� 2,

�4(H ) D
p

21

14
� 3, �5(H ) D

p
21

14
� 4, �6(H ) D

p
21

14
� 5.

In the present case we have�℄ � a0 for every � 2 1, thereforem0 can only have
composite roots (see Definition 2.2) by Proposition 2.3 (a).This fact, together with
the above values of�(H ) and Equation (44), shows that we have10 D f��g with� WD �1ja0 D �2ja0. Moreover, we havem0 D RH � m0� by Equation (45) andm0� �
V�1(C)� V�2(C) by Equation (46).

Let v 2 m0� be given, sayv D V�1(c1)C V�2(c2) with c1, c2 2 C. We have

�℄ D �(H ) � H D �1(H ) � H D
p

21

14
� H D 1

28
(9�℄4C �℄2) D 9

14
�℄1C 5

14
�℄2,

and therefore Proposition 2.4 shows that we havejc2j D p(5=14)=(9=14)jc1j D
(1=3)

p
5jc1j.

By Proposition 5.1 we may therefore suppose without loss of generality thatv0 WD
V�1(1)C V�2((1=3)

p
5) 2 m0� holds. Then we have

(47) m0 3 R(v0, v)H D �
p

7

14
V�3(i (3c2 �p5c1)).
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Because of�3ja0 D 2� � 10, the vector (47) must vanish, and thus we have 3c2 Dp
5c1. This shows thatm0� is a linear subspace offV�1(c)CV�2((

p
5=3)c) j c 2 Cg, and

thereforem0 D RH �m0� is of type (S, ' D arctan(1=3p3), l ) with l WD 1C n0�.

CASE '0D �=6. In this case we haveH D (1=p3)�℄6 by Equation (43) and there-
fore

�1(H ) D 0, �2(H ) D
p

3

2
, �3(H ) D

p
3

2
,

�4(H ) D
p

3

2
, �5(H ) D

p
3

2
, �6(H ) D p3.

Thus we have10 � f��, �2�g with � WD �2ja0 D �3ja0 D �4ja0 D �5ja0 by Equa-
tion (44), m0 D RH � m0� � m0

2� by Equation (45) andm0� � V�2(C) � V�3(C) �
V�4(C)� V�5(C) andm0

2� � V�6(C) by Equation (46). For the sake of brevity, we put

V�(c2, c3, c4, c5) WDP5
kD2 V�k (ck) for c2, : : : , c5 2 C in the sequel.

Let us first consider the case� � 10 and therefore10 D f�2�g. Then we have
m0 D RH �m0

2�, and thereforem0 then is of type (S, ' D �=6, l ) with l WD 1C n02�.
So we now suppose� 2 10. Then we fixv0 2 m0� n f0g, say v0 D V�(c2, : : : , c5)

with c2, : : : , c5 2 C. For d 2 C we have

ad(V�6(d))v0 D
p

3

2
V�(c5d, �c4d, c3d, �c2d),

whence it follows that the Lie subgroup exp(R�℄6�V�6(C)) acts via its adjoint represen-
tation on the coordinates (c3,c4) 2 C2 of V�(c2,:::,c5) as the conjugate of the canonical
action of SU(2) onC2. Therefore, by application of a suitable element of this Liesub-
group, we can pass fromm0 to another Lie triple system of the same type, for which
c3 D 0 holds. Furthermore, by Proposition 5.1 we may suppose without loss of gener-
ality that c2D t2 andc4D t4 with t2, t4 2 R�0 holds. Thus we havev0D V�(t2, 0,t4, c5).

We now calculate

m0 3 R(H , v0)v0 D
p

3

2
((2t2

4 C 3jc5j2)�℄1C (t2
2 C t2

4 C jc5j2)�℄2)

C V�1

��3

2
t4c5i

�
.

(48)

The a-component of this vector lies inRH D R(3�℄1 C 2�℄2) (because of rk(m0) D 1),
therefore we have

2 � (2t2
4 C 3jc5j2) D 3 � (t2

2 C t2
4 C jc5j2)

and thus

(49) t2
4 C 3jc5j2 D 3t2

2 .
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From this equation it follows thatt2 ¤ 0 (otherwise we would havet4 D c5 D 0 and
hencev0 D 0). By appropriately scalingv0, we can therefore arranget2 D 1 and there-
fore v0 D V�(1, 0, t4, c5).

Moreover, theV�1(C)-component of the vector (48) vanishes (because of�1(H ) D
0), and thus we havet4c5 D 0. Therefore we have eithert4 D 0 and thenjc5j D 1 by
Equation (49), by application of Proposition 5.1 we can arrange c5 D 1; or elsec5 D 0
and thent4 D p3 by Equation (49). So we see that

either v0 D V�(1, 0, 0, 1) or v0 D V�(1, 0,
p

3, 0)

holds. We will treat these two possible cases separately.
Let us first look at the case wherev0 D V�(1, 0, 0, 1)2 m0� holds. If n0� D 1

(i.e. m0� D Rv0) holds, we necessarily have 2� � 10 (otherwisen02� C 1 divides n0�)
and thereforem0 D RH �Rv0 then is of type (P , ' D �=6, (R, 2), A2). Thus we now
supposen0� � 2 and letv 2 m0� with v ? v0 be given, sayv D V�(c2, : : : , c5) with
c2, : : : , c5 2 C. We have

m0 3 R(H , v0)v D
p

3

2
(3 Re(c5)�℄1C (Re(c2)C Re(c5))�℄2)

� 3

4
V�1(i (c3C c4))C 3

4
V�6(i (c5 � c2)).

(50)

Again, thea-component of this vector lies inRH D R(3�℄1 C 2�℄2), whence we have
2 � 3 Re(c5) D 3 � (Re(c2)C Re(c5)), hence Re(c2) D Re(c5). Because of our hypothesisv ? v0 it follows that Re(c2) D Re(c5) D 0 holds, thus we havec2 D i t2 and c5 D i t5

with t2, t5 2 R. Moreover, theV�1(C)-component of the vector (50) vanishes, and thus
we havec4 D �c3. Thus we see that anyv 2 m0� with v ? v0 is of the form v D
V�(i t2, c3, �c3, i t5) with t2, t5 2 R and c3 2 C.

We now first consider the case where 2� � 10, i.e.10 D f��g. We shall show that
in this situation, anyv 2 m0� with v ? v0 is a scalar multiple of one of the following
four vectors:

v1,? WD V�(i , 0, 0, i ), v1,k WD V�(i , �p3ie2k� i =3, �p3ie4k� i =3, i ) for k 2 f0, 1, 2g.
BecauseRv1,? [Rv1,0[Rv1,1[Rv1,2 does not contain any linear subspaces of dimen-
sion� 2, it follows thatn0� D 2 andm0� D Rv0�Rv1,k holds with somek 2 f?, 0, 1, 2g.
If we havekD ? here, thenm0 D RH�Rv0�Rv1,? is of type (P ,' D �=6, (R, 3), A2).
If k 2 f0, 1, 2g holds, thenm0 D RH�Rv0�Rv1,k is of type (P , ' D �=6, (R, 3), max):

For k D 0 this is obvious. Fork 2 f1, 2g we considerZ WD 4�℄1 C 2�℄2 2 a. Then we
have forn 2 N

ad(Z)nH D 0, ad(Z)nv0 D V�(0, 0, 0, (3i )n),

and

ad(Z)nv1,0D V�(0, �p3i � i n, �p3i (2i )n, i (3i )n),
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hence fort 2 R
Ad(exp(t Z))H D H , Ad(exp(t Z))v0 D V�(1, 0, 0,e3i t ),

and

Ad(exp(t Z))v1,0D V�(i , �p3iei t , �p3ie2i t , ie3i t ).

It follows that with g WD exp((2k�=3)Z) 2 G2, the adjoint transformation Ad(g) trans-
forms the prototype Lie triple systemRH�Rv0�Rv1,0 of type (P ,' D �=6, (R, 3), max)
given in the theorem into our givenm0 D RH � Rv0� Rv1,k, hencem0 is of that type.

For the proof thatv is a multiple of one of thev1,k (k 2 f?, 0, 1, 2g), we use the fact
that v is of the formv D V�(i t2, c3,�c3, i t5) as was shown above. Because of 2� � 10,
in the present situation also theV�6(C)-component of the vector (50) vanishes, whence
it follows that t2 D t5 holds. Thus we havev D V�(i t , c, �c, i t ) with somet 2 R and
c 2 C. If cD 0 holds, thenv is a multiple ofv1,?. Thus we now supposec¤ 0. The
V�1(C)-component ofR(H , v)v 2 m0 equalsV�1(�3tcCp3i c2); this has to vanish, and
thus we have

(51) i c2 D p3tc.

Because ofc¤ 0 this equation implies alsot ¤ 0, and therefore we can ensuret D 1
by scalingv appropriately. Writingc D rei' with r > 0 and�� < ' � � , we now
derive from Equation (51) the equalityr D �p3ie3i' , which impliesr D p3 and' D
2(k � 1)�=3C �=6 D 2k�=3 � �=2 with k 2 f0, 1, 2g, and thusc D �p3ie2k� i =3. It
follows that v D V�(i , c, �c, i ) D v1,k holds.

Let us now consider the case10 D f��, �2�g. From the classification of the
Riemannian symmetric spaces of rank 1 we know thatn02� 2 f1, 3, 7g holds. Because of
n02� � 2, we have in the present situation in factn02� D 1. Without loss of generality we
may supposem0

2� D Rw with w WD V�6(1). Therefore we have besidesH , w, v0 2 m0
also R(H , w)v0 D V�(�(3=2)i , 0, 0, (3=2)i ) 2 m0, hencev1 WD V�(i , 0, 0,�i ) 2 m0.

We now show that in factm0� D Rv0�Rv1 holds. For this purpose, we letv 2 m0�
with v ? v0, v1 be given. We need to showv D 0. As we saw above, because of
the conditionsv 2 m0� and v ? v0 we havev D V�(i t2, c3, �c3, i t5) with t2, t5 2 R
and c3 2 C. A similar calculation based on the fact that alsov ? v1 holds shows that
t2 D t5 D 0 and thereforev D V�(0, c3, �c3, 0) holds. We now have that theV�1(C)-
component ofR(H , v)v, which equalsV�1(

p
3c3

2i ), vanishes, and thus we havec3D 0,
hencev D 0. Therefore we havem0� D Rv0�Rv1 and thusm0 D RH�Rv0�Rv1�Rw
is of the type (P , ' D �=6, (C, 2), A2).

This completes the treatment of the case wherev0 D V�(1, 0, 0, 1)2 m0� holds.

We now turn to the other possible case forv0, namelyv0 D V�(1, 0,
p

3, 0)2 m0�. If
n0� D 1 holds, we again have 2� � m0, and thereforem0 D RH � Rv0 then is of the
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type (P , ' D �=6, (R, 2), G). Thus we again supposen0� � 2 in the sequel. Then we
have for anyv 2 m0� with v ? v0, say v D V�(c2, c3, c4, c5) with c2, : : : , c5 2 C,

R(H , v)v0 D 3 Re(c4)�℄1C
�p

3

2
Re(c2)C 3

2
Re(c4)

��℄2
� V�1

�
3

4
ic3C 3

2
i c3C 3

p
3

4
ic5

� � V�6

�
3
p

3

4
ic3C 3

4
ic5

�
.

(52)

Because this vector is again a member ofm0, its a-component must be proportional to
H , and thus we have

2 � (3 Re(c4)) D 3 � �
p

3

2
Re(c2)C 3

2
Re(c4)

�
,

hence Re(c4) D p3 Re(c2). Because of the conditionv ? v0, this in fact implies
Re(c2) D Re(c4) D 0. Moreover, theV�1(C)-component of the vector (52) vanishes,
and thus we have

3

4
ic3C 3

2
i c3C 3

p
3

4
ic5 D 0,

hence

(53) c5 D � 1p
3

(c3C 2c3).

This shows that anyv 2 m0� with v ? v0 is of the formv D V�(i t2,c3, i t4,�(1=p3)(c3C
2c3)) with t2, t4 2 R and c3 2 C.

Once again, we now first consider the case where10 D f��g and thusm0 D RH�
m0�. Then also theV�6(C)-component of the vector (52) vanishes, and hence we have�p3c3 D c5 D �(1=p3)(c3 C 2c3), thus c3 D c3. Thereforev then is of the formv D V�(i t2, t3, i t4, �p3t3) with t2, t3, t4 2 R. We now calculate

R(H , v)v D 1

2

p
3((10t2

3 C 2t2
4 )�℄1C (t2

2 C 4t2
3 C t2

4 )�℄2)C V�1

��3

2
t2t3C 5

2

p
3t3t4

�
.

Because this is an element ofm0, its a-component is a multiple ofH , whence it fol-
lows that

2 � (10t2
3 C 2t2

4 ) D 3 � (t2
2 C 4t2

3 C t2
4 )

and hence

(54) 8t2
3 C t2

4 D 3t2
2

holds, and itsV�1(C)-component vanishes, whence it follows that we have (3=2)t2t3 D
(5=2)

p
3t3t4, hence

either t3 D 0 or t4 D 1

5

p
3t2.
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If t3 D 0 holds, then Equation (54) shows that we havet4 D �p3t2. Otherwise we
have t4 D (1=5)

p
3t2, and therefore by Equation (54)t3 D �(3=5)t2.

This consideration shows that we havem0 D RH�m0�, where either of the follow-
ing two equations holds:

m0� D Rv0� RV�(i , 0, "p3i , 0),(55)

or

m0� D Rv0� RV�
�

i , "3

5
,

1

5

p
3i , �"3

5

p
3

�
(56)

with " 2 f�1g.
In either casem0 is of type (P ,' D �=6, (R, 3),G): If m0� is given by Equation (55),

this is obvious. On the other hand, ifm0� is given by Equation (56) (without loss of
generality with" D 1), we note thatm0 is contained in the linear spaceOm0 spanned by
the vectors

3�℄1C 2�℄2, �℄1C 4

3
�℄2C V�1(

p
3),

V�(1, 0,
p

3, 0), V�(i , 0,
p

3i , 0),

V�
�

i ,
3

5
,

p
3

5
i , �3

p
3

5

�
, V�

�
1, �3

5
i ,

p
3

5
,

3
p

3

5
i

�
.

One checks thatOm0 is a Lie triple system of rank 2 and dimension 6, and therefore
(by the preceding classification of the Lie triple systems ofg2 of rank 2) of type (S �S, 3, 3). HenceOm0 is congruent under the adjoint action to the standard Lie triple sys-
tem of type (S � S, 3, 3) given in the theorem.m0 corresponds to the diagonal in the
local sphere product corresponding toOm0, and is therefore congruent under the adjoint
action to the diagonal in the standard Lie triple system of type (S � S, 3, 3), which is
the standard Lie triple system of type (P , ' D �=6, (R, 3), G). Therefore alsom0 itself
is of type (P , ' D �=6, (R, 3), G).

Let us finally turn our attention to the case where10 D f��, �2�g holds. From
the classification of Riemannian symmetric spaces of rank 1,we again must haven02� D
1, and we again suppose without loss of generalitym0

2� D V�6(R). We then have be-

sides v0 2 m0� also m0� 3 R(H , V�6(1))v0 D V�(0, (9=2)i , 0, (3
p

3=2)i ) and thereforev1 WD V�(0,
p

3i , 0, i ) 2 m0�. Thus we haveRv0 � Rv1 � m0�. Below, we will show
that in fact m0� D Rv0 � Rv1 holds. Therefore we havem0 D RH � m0� � m0

2� DRH � Rv0� Rv1� RV�6(1), and hencem0 is of type (P , ' D �=6, (C, 2), G).
For the proof ofm0� D Rv0� Rv1 we let v 2 m0� be given, and suppose thatv is

orthogonal tov0 and v1. Then we are to showv D 0. Because ofv ? v0 and v 2 m0�
we saw before thatv D V�(i t2, c3, i t4, �(1=p3)(c3 C 2c3)) holds with t2, t4 2 R and
c3 2 C, and by a similar argument based on the evaluation ofR(H , v)v1 and v ? v1,
we see that

Im(c3) D 0 and t2 D �p3t4
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holds, thus we havev D V�(
p

3i t4, t3, i t4, �p3t3) with t3, t4 2 R. We now calculate

R(H , v)v D p3((5t2
3 C t2

4 )�℄1C (2t2
3 C 2t2

4 )�℄2)Cp3V�1(t3t4).

The V�1(C)-component of this vector vanishes, and therefore we have either t3 D 0 or
t4 D 0. Also thea-component of that vector is a scalar multiple ofH , which together
with the fact that either oft3 and t4 is zero shows that in factt3 D t4 D 0 and hencev D 0 holds.

This completes the classification of the Lie triple systems in g2.

5.3. Totally geodesic submanifolds inG2. Once again, we describe totally geo-
desic isometric embeddings for the maximal Lie triple systems of G2 to determine the
global isometry type of the totally geodesic submanifolds of G2. We obtain the re-
sults of the following table, using the same notations for the isometry types as in Sec-
tion 3.3:

type of Lie triple system
corresponding
global isometry type properties

(Geo,' D t) R or S1

(S, ' D 0, l ) Sl
rD1

(S, ' D arctan(1=3p3), l ) Sl
rD(2=3)

p
21

l D 3: maximal

(S, ' D �=6, l ) Sl
rD1=p3

l D 3: Helgason sphere

(P , ' D �=6, (K, l ), �) KPl
κD3=4 (P , ' D �=6, (R, 3), max): maximal

(S � S, l , l 0) �Sl
rD1 � Sl 0

rD1=p3

�=f�idg l D l 0 D 3: meridian, maximal

(AI) SU(3)=SO(3)srrDp3
(A2) SU(3)srrDp3 maximal
(G) G2=SO(4)srrD1 polar, maximal

Type (G). The totally geodesic embedding corresponding to this type is the Cartan
embeddingf W G2=SO(4)! G2 of the Riemannian symmetric spaceG2=SO(4).

We describe the Cartan embedding for the general situation of a Riemannian sym-
metric spaceM D G=K . Let � W G! G be the involutive automorphism which describes
the symmetric structure ofM. Then the map

f W G=K ! G, g � K 7! � (g) � g�1

is called theCartan mapof M. Because of Fix(� )0 � K � Fix(� ), f is a well-defined
covering map onto its image; moreoverf turns out to be totally geodesic. IfM is a
“bottom space”, i.e. there exists no non-trivial symmetriccovering map with total space
M, we haveK D Fix(� ) and thereforef is a totally geodesic embedding in this case.
Then f is called theCartan embeddingof M.

Type (S�S, l, l0) and the types of rank 1 contained in that type. For the con-
struction of these types we consider the skew-field of quaternionsH and the division
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algebra of octonionsO. O can be realized asO D H � H, where the octonion multi-
plication is for anyx, y 2 O, say x D (x1, x2) and y D (y1, y2) with xi , yi 2 H, given
by the equation

x � y D (x1y1 � y2x2, x2y1C y2x1).

In this setting, the symplectic group Sp(1) is realized as the space of unit quaternions with
the quaternion multiplication as group action (hence Sp(1)is isometric to a 3-sphere), and
the Lie groupG2 is realized as the automorphism group ofO, i.e.

G2 D fg 2 GL(O) j 8x, y 2 O W g(x � y) D g(x) � g(y)g.
In this setting a group homomorphism8 W Sp(1)� Sp(1)! G2 has been described by
Yokota in [16], Section 1.3: For anyg1, g2 2 Sp(1),8(g1, g2) is given by

8x D (x1, x2) 2 OW 8(g1, g2)x D (g1x1g�1
1 , g2x2g�1

1 ).

8 is in particular a totally geodesic map; one easily sees thatker(8) D f�(1, 1)g holds,
and therefore8 is a two-fold covering map onto its image. The image is therefore
a 6-dimensional totally geodesic submanifold ofG2 of rank 2 which is isometric to
(Sp(1)� Sp(1))=f�(1, 1)g � �S3

rD1 � S3
rD1=p3

�=f�(1, 1)g, and which turns out to be of

type (S � S, 3, 3).
The totally geodesic submanifolds of type (S�S, l , l 0) correspond to the submanifolds�Sl

rD1 � Sl 0
rD1=p3

�=f�(1, 1)g in this product, the totally geodesic submanifolds of type

(S, ' D 0, l ) resp. (S, ' D �=6, l 0) correspond to the factorsSl
rD1 resp.Sl 0

rD1=p3
in that

product, and the totally geodesic submanifolds of type (P , ' D �=6, (R, l ), G) correspond
to the diagonalf(x, (1=p3)x) j x 2 Sl

rD1g=f�(1, 1)g in that product.
Types (A2) and (AI). We again realizeG2 as the automorphism group ofO. We

fix an imaginary unit octonioni ofO, and consider the subgroupH WD fg 2 G2 j g(i )D i g
of G2. H is isomorphic to SU(3); as totally geodesic submanifold ofG2, this subgroup is
of type (A2). Consider the splittingO D V �W of O with V WD spanRf1, i g � C and
W WD V?; V and W are complex subspaces of dimension 1 resp. 3 with respect to the
complex structure induced by the elementi 2 O. Then H � SU(3) acts trivially onV
and in the canonical way onW � C3.

Fixing a real formWR of W, we obtain the subgroupH 0 WD fg 2 H j g(WR)DWRg,
which is isomorphic to SO(3).H=H 0 is a Riemannian symmetric space isomorphic to
SU(3)=SO(3), and the image of the Cartan embeddingH=H 0 ! H � G2 is a totally
geodesic submanifold ofG2 of type (AI).

Type (S, ' D arctan(1=3
p

3), 3). Let m0 be a Lie triple system of type (S, ' D
arctan(1=3p3), 3). It is apparent from the part of the proof of Theorem 5.2which han-
dled the classification for the case rk(m0) D 1, '0 D arctan(1=3p3) that (with respect
to a suitable choice of the Cartan subalgebraa of g2 and of the positive root system1C corresponding to the root system1 of g2 with respect toa) the unit vectorH WD
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(1=p21)(9�℄1C 5�℄2) lies in m0, with respect to its Cartan subalgebraRH the Lie triple

systemm0 has only one positive root�, which is characterized by�(H ) D p21=14,
hence we havek�℄k2 D 3=28D 1=r 2 with r WD (2=3)

p
21.

It follows that the connected, complete totally geodesic submanifold M 0 � G2 cor-
responding tom0 is a symmetric space of constant curvature 1=r 2, and therefore iso-
metric either to the sphereS3

r , or to the real projective spaceRP3
κD1=r 2. To distinguish

between these two cases, we calculate the length of a closed geodesic inM 0.
To do so, we use the well-known fact (see [6], Theorem VII.8.5, p. 322) that the unit

lattice ae WD fv 2 a j exp(v) D eg is generated by the vectors 2X�, where we putX� WD
(2�=k�℄k2)�℄ 2 a, and� runs through all the roots ofG2. In this specific situation,ae

is generated by the vectors 2X�2 D (4�=3)�℄2 and 2X�5 D (4�=3)�℄5.
The length of the geodesic tangent toH equals the smallestt > 0 so thatt H 2 ae

holds, i.e. so that there existk, l 2 Z with t H D k � (4�=3)�℄2C l � (4�=3)�℄5. Because we

have H D (1=p21)(2�℄2C 3�℄5), that equation leads to the conditions

k D 2 � 3

4� � p21
t and l D 3 � 3

4� � p21
t .

Therefore, the smallestt > 0 such thatk, l 2 Z holds, ist D 4� � p21=3 D 2�r , and
hence the geodesic is closed and has the length 2�r . It follows that the totally geo-
desic submanifoldM 0 is isometric to the sphereS3

r .
Type (P , ' D �=6, (R, 3), max). By the analogous arguments as for the type

(S, ' D arctan(1=3p3), 3), we see that the totally geodesic submanifoldM 0 of G2 cor-
responding to a Lie triple system of type (P , ' D �=6, (R, 3), max) is a 3-dimensional
space of constant curvature 1=r 2 with r WD 2=p3, and that any geodesic ofG2

running in M 0 is closed with length�r . Hence M 0 is isometric to the real project-
ive spaceRP3

κD1=r 2D3=4.

5.4. Totally geodesic submanifolds inG2=SO(4). Finally we derive from the
classification of the Lie triple systems resp. totally geodesic submanifolds inG2 the
same classification in the totally geodesic submanifoldG2=SO(4) of G2.

For this purpose, we consider the Lie groupG2 as a Riemannian symmetric space
in the same way as in the Sections 5.1 and 5.2, and use the namesfor the types of
Lie triple systems ofg2 as introduced in Theorem 5.2.

Further, we letm1 be a Lie triple system ofg2 of type (G), i.e.m1 corresponds to
a totally geodesic submanifold which is isometric toG2=SO(4).

Theorem 5.4. Exactly the following types of Lie triple systems of G2 have rep-
resentatives which are contained inm1:
• (Geo,' D t) with t 2 [0, �=6],
• (S, ' D 0, 2),
• (S, ' D arctan(1=3p3), 2),
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• (S, ' D �=6, 2),
• (P , ' D �=6, (K, 2), G) with K 2 fR, Cg,
• (AI),
• (S � S, l , l 0) with l, l 0 � 2.
Among these, the Lie triple systems which are maximal inm1 are: (S, ' D
arctan(1=3p3), 2), (P , ' D �=6, (C, 2), G), (AI) and (S � S, 2, 2).

Proof. Again similar to the proofs of Theorems 3.8 and 3.10.

REMARK 5.5. The maximal totally geodesic submanifolds ofG2=SO(4) of type
(S, ' D arctan(1=3p3), 2), which are isometric to a 2-sphere of radius (2=3)

p
21, are

missing from the classification by Chen and Nagano in Table VIII of [5]. They are in a
similar “skew” position inG2=SO(4) as the 3-spheres of type (S,' D arctan(1=3p3), 3)
are in G2, compare Remark 5.3.

We can infer the isometry type of the totally geodesic submanifolds correspond-
ing to the Lie triple systems ofG2=SO(4) from the corresponding information on the
totally geodesic submanifolds ofG2, given in Section 5.3:

type of Lie triple system
corresponding
global isometry type

properties

(Geo,' D t) R or S1

(S, ' D 0, 2) S2
rD1

(S, ' D arctan(1=3p3), 2) S2
rD(2=3)

p
21

maximal

(S, ' D �=6, 2) S2
rD1=p3

Helgason sphere

(P , ' D �=6, (K, 2), G) KP2
κD3=4 K D C: maximal

(AI) SU(3)=SO(3)srrDp3 maximal

(S � S, l , l 0) �Sl
rD1 � Sl 0

rD1=p3

�=f�idg l D l 0 D 2:
polar, meridian, maximal

6. Summary

In the following table, we list the global isometry types of the maximal totally
geodesic submanifolds of all the irreducible, simply connected Riemannian symmetric
spacesM of rank 2, thereby combining information from the papers [7], [8] and [9]
(Section 6), as well as the present paper.

We once again use the notations from Section 3.3 for describing the scaling factor
of the invariant Riemannian metric on the symmetric spaces involved. For the three
infinite families of Grassmann manifoldsGC

2 (Rn), G2(Cn) and G2(Hn), we also use
the notationsrrD1� to denote the invariant Riemannian metric scaled in such a way that
the shortest root occurringfor large n has length 1, disregarding the fact that this root
might vanish for certain small values ofn.
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M maximal totally geodesic submanifolds

GC
2 (RnC2)srrD1�

Sn
rD1, GC

2 (RnC1)srrD1�, (Sl
rD1 � Sl 0

rD1)=Z2 with l C l 0 D n

for n � 4 even: CPn=2
κD1=2

for n D 2: CP1
κD1=2 � RP1

κD1=2
for n D 3: S2

rDp5

G2(CnC2)srrD1�
CPn

κD1, G2(RnC2)srrD1�, G2(CnC1)srrD1�CPl
κD1 � CPl 0

κD1 with l C l 0 D n

for n even: HPn=2
κD1=2

for n D 2: GC
2 (R5)srrDp2,

�S3
rD1=p2

� S1
rD1=p2

�=Z2

for n D 4: CP2
κD1=5

G2(HnC2)srrD1�
HPn

κD1, G2(HnC1)srrD1�, G2(CnC2)srrD1�HPl
κD1 �HPl 0

κD1 with l C l 0 D n
for n D 2:

�S5
rD1=p2

� S1
rD1=p2

�=Z2, Sp(2)srrDp2

for n D 4: S3
rD2

p
5

for n D 5: HP2
κD1=5

SU(3)=SO(3)srrD1 RP2
κD1=4,

�S2
rD1 � S1

rDp3

�=Z2

SU(6)=Sp(3)srrD1 HP2
κD1=4, CP3

κD1=4, SU(3)srrD1,
�S5

rD1 � S1
rDp3

�=Z2

SO(10)=U(5)srrD1
CP4

κD1, CP3
κD1 � CP1

κD1, GC
2 (R8)srrDp2, G2(C5)srrD1,

SO(5)srrD1

E6=(U(1) � Spin(10))srrD1
OP2

κD1=2, CP5
κD1 � CP1

κD1, GC
2 (R10)srrDp2,

G2(C6)srrD1, (G2(H4)=Z2)srrD1, SO(10)=U(5)srrD1

(E6=F4)srrD1

OP2
κD1=4, HP3

κD1=4, ((SU(6)=Sp(3))=Z3)srrD1,�S9
rD1 � S1

rDp3

�=Z4

G2=SO(4)srrD1

S2
rD(2=3)

p
21

, CP2
κD3=4, SU(3)=SO(3)srrDp3,�S2

rD1 � S2
rD1=p3

�=Z2

SU(3)srrD1 CP2
κD1=4, RP3

κD1=4, SU(3)=SO(3)srrD1,
�S3

rD1 � S1
rDp3

�=Z2

Sp(2)srrD1 S3
rDp5

, HP1
κD1=2, S3

rD1=p2
� S3

rD1=p2
, GC

2 (R5)srrD1

(G2)srrD1
S3

rD(2=3)
p

21
, RP3

κD3=4,
�S3

rD1 � S3
rD1=p3

�=Z2,

SU(3)srrDp3, G2=SO(4)srrD1
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