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Abstract
The aim of this paper is to develop a theory of decomposition in the weighted

modulation spacesMs,W
p,q with 0 < p, q � 1, s 2 R and W 2 A1, where W be-

longs to the class ofA1 defined by Muckenhoupt. For this purpose we shall define
molecules for the modulation spaces. As an application we give a simple proof of
the boundedness of the pseudo-differential operators withsymbols in M01,min(1,p,q).
We shall deal with dual spaces as well.

1. Introduction

The modulation spaces, introduced by Feichtinger in 1983 (see [6]), are one of
the function spaces to investigate growth, decay and regularity of functions or dis-
tributions in a way other than the Besov spaces. Several important properties of the
modulation spaces such as duality, interpolation theory and atomic decomposition were
well investigated by Feichtinger and Gröchenig [6, 7, 8, 9, 10]. Now they are recog-
nized as appropriate function spaces and they are applied totime-frequency analysis
and pseudo-differential calculus. For example, by using the theory of the modulation
spaces, Sjöstrand and Tachizawa generalized the theory of Calderón–Vaillancourt [4, 25]
(see also the work due to Gröchenig–Heil [16]). In recent years, they are also applied
to study the global well-posedness of solutions for the Cauchy problem such as KdV
and NLS equations [2, 3].

Based on the standard notation of signal analysis, we adopt the following notations.

Ta f (x) WD f (x � a), Mb f (x) WD eib �x f (x), a, b 2 Rn, f 2 S 0,
f � g(x) WD ZRn

f (x � y)g(y) dy,

F f (� ) WD 1

(2�)n=2
Z
Rn

f (x) exp(�i x � � ) dx,

F�1 f (x) WD 1

(2�)n=2
Z
Rn

f (� ) exp(i x � � ) d� .
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To denote cubes inRn, we use

Q(r ) WD fx 2 Rn W max(jx1j, : : : , jxnj) � r g,
Ql WD [l1, l1C 1] � [l2, l2C 1] � � � � � [ln, ln C 1]

for r > 0 and l 2 Zn. It will be helpful to use the notation from [28]. Letf 2 S 0 and� 2 S. Then we write

(1) � (D) f WD F�1(� � F f ) D (2�)�n=2F�1� � f .

As for the Fourier multipliers and the multiplication operators we prefer to avoid super-
fluous brackets. We shall list some typical examples in this paper: Leta, b 2 Rn. Then
we write Ta�(D) f WD [Ta�](D) f , Mb�(D) f WD [Mb�](D) f , Mb � f WD [Mb ] � f .
If possible confusion can occur, we bind the function on which the operator acts.

Fix g 2 S n f0g. Then define

k f W Ms
p,qk WD

�Z
Rn

�Z
Rn

jh f , MyTxgijp dx

�q=p

(1C jyj)sq dy

�1=q

for s 2 R and 1� p, q � 1. Denote byMs
p,q the set of all tempered distributions

f 2 S 0 for which the norm is finite. An important observation is thatthe function space
Ms

p,q does not depend on the specific choices ofg 2 S(Rn) n f0g. For more details we
refer to [12].

In the present paper we consider the weighted modulation spaces. In general by a
weighted modulation norm we mean the following norm given by

k f W Mv
p,qk WD

�Z
Rn

�Z
Rn

jh f , MyTxgijpv(x, y) dx

�q=p

dy

�1=q
.

Note thatMs
p,q is recovered by settingv(x, y) D (1Cjyj)sq. There are many important

classes of weights.
1. A weight v W R2n ! [0,1) is said to be a submultiplicative, if there exists a con-
stantC > 0 such thatv(x C y) � Cv(x)v(y) for all x, y 2 R2n.
2. Fix a submultiplicative weightv. A weight m is said to bev-moderate, if there
exists a constantC > 0 such thatm(x C y) � Cv(x)m(y) for all x, y 2 R2n.
3. A weight is said to be subconvolutive, ifv�1 2 L1(R2n) and v�1 � v�1 � cv�1 for
some constantc > 0.
4. A weight v is said to satisfy the Gelfand–Raikov–Shilov condition (respectively
the Beurling–Domar condition, the logarithmic integral condition), if

lim
n!1 v(nx)1=n D 1 (resp.

P1
jD1 log v(nx)=n <1,

Rjxj�1 log v(x)=jxjnC1 dx <1).

It is shown in [15] that the Beurling–Domar condition implies the Gelfand–Raikov–
Shilov condition. We refer to [8] for more details of the submultiplicative, moderate
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and subconvolutive weights not only onRn but also on locally compact abelian groups.
In the present paper, we consider weights of the form

v(x, y) D W(x)(1C jyj)s,

wheres2 R and W belongs to the classA1 of Muckenhoupt. As the exampleW(x)Djxj�, � > �n shows, it can happen thatv fails the submultiplicative condition or the
subconvolutive condition. Another similar example shows that v does not necessarily
satisfy the Beurling–Domar condition.

Before we go further, we recall the definition ofAp-weights. In the sequel by a
“weight”, we mean a non-negative measurable functionW 2 L1

loc satisfying 0< W <1 for a.e. and we define the maximal operatorM by

M f (x) WD sup
x2Q

Q W cube

1jQj
Z

Q
j f (y)j dy.

Let 1� p <1. Then we define

Ap(W) D
8���<
���:

ess. sup
x2Rn

MW(x)

W(x)
if p D 1,

sup
Q W cube

�
1jQj
Z

Q
W(x) dx

� �� 1jQj
Z

Q
W(x)1=(1�p) dx

�p�1

if 1 < p <1.

The quantity Ap(W) is called theAp-norm of W, although Ap(W) is not actually a
norm (see [20, 21]). Then it is easy to see that

Ap(W) � Aq(W), 1� q � p <1.

The classAp of weights is the set of all weightsW for which the normAp(W) is
finite. We also define

A1 WD [
1�p<1 Ap.

We remark thatjxj�nC" 2 A1 for all 0< " < n. If W 2 A1, then we have

(2)
Z

Q(l )
W(x) dx � chl iM , l 2 Zn

for someM > 0 andc > 0.
Let W be a weight. Then we define

k f W LW
p k WD

�Z
Rn

j f (x)jpW(x) dx

�1=p

, 1� p <1.
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Let 1< p < 1. Muckenhoupt showed that the maximal operatorM is bounded on
LW

p if and only if W 2 Ap. Muckenhoupt also proved that the weak-(1, 1) estimate,
that is, Z

fM f>�g W(x) dx � C�
Z j f (x)jW(x) dx

holds if and only if W 2 A1. We refer to [20, 21] for more details.
Having set down the elementary facts on the weights, let us describe the weighted

function spaceMs,W
p,q . Let 0< p, q � 1 and s 2 R. The first author of the present

paper noticed that the definition of the unweighted modulation spaces can be described
as follows: Pick a function� 2 S so that supp(�) � Q(2),

P
m2Zn Tm�(x) � 1 and

write hxi WDp1C jxj2. In [18] we have defined

(3) k f W Ms
p,qk WD

 X
m2Zn

hmiqsk[F�1Tm�] � f W L pkq
!1=q

for f 2 S 0. It is still possible to establish that different choices of� will give us an
equivalent norm.

The main results of this paper can be summarized as follows: Most of the theory
of the modulation spacesMs

p,q carries over to theA1-weighted cases with 0< p, q �1 and s 2 R.
Let W 2 A1 throughout. Then definek fm W lq(LW

p )k WD �Pm2Znk fm W LW
p kq�1=q for

a family of measurable functionsf fmgm2Zn . Let 0< p, q � 1 and s 2 R. Then the
modulation norm is given by

(4)

k f W Ms,W
p,q k WD khmisTm�(D) f W lq(LW

p )k
D
 X

m2Zn

hmiqsk[F�1Tm�] � f W LW
p kq

!1=q
.

Here and below we assume thatW 2 AP with 1 � P <1 for the sake of defin-
iteness.

A fundamental technique in harmonic analysis is to represent a function or dis-
tribution as a linear combination of functions of an elementary form. We shall inves-
tigate the structure of weighted modulation spaces and discuss several applications of
this technique. For example, the “Gabor expansion” for the modulation spaces is dis-
cussed in Gröchenig [12] and Galperin–Samarah [11]. The heart of the matter of this
expansion is to decompose a function into a linear combination of elements of the fam-
ily fTl MmggmI l2Zn which is created by just one “atomic” functiong. However, such
atomic decomposition has some disadvantages in analyzing the pseudo-differential op-
erators. In general, it is not the case that the pseudo-differential operators map the
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family fTl MmggmI l2Zn to another one created by an atomic function again. To over-
come this disadvantage, we introduce the “molecular” decomposition. Molecules are
mapped to molecules again by pseudo-differential operators (Lemma 3.2). We refer to
[1, 17] for the definition of the molecules for different modulation spaces.

DEFINITION 1.1 (Molecule). Lets2 R. Suppose thatK , N 2 N are large enough
and fixed. ACK -function � W Rn ! C is said to be an (sIm, l )-molecule, if it satisfies

j��(e�im�x� (x))j � hmi�shx � l i�N , x 2 Rn

for j�j � K . Also set

Ms WD
(

M D fmolsmlgm,l2Zn �CK W there existsc>0 such that

c �molsml is an (sIm, l )-molecule for everym, l 2Zn

)
.

The integersK and N are taken sufficiently large, say,K , N � 10[n=min(1, p=P,
q)]CMC10, where [a] denotes the integer part ofa 2 R and M is a positive number
appearing in (2).

Next, we introduce a sequence spacemW
p,q to describe the condition of the co-

efficients of the molecular decomposition.

DEFINITION 1.2 (Sequence spacemW
p,q). Let 0< p, q�1. Given�D f�mlgm,l2Zn ,

define

k� W mW
p,qk WD


(X

l2Zn

�ml�Ql

)
m

W lq(LW
p )

.

Here a natural modification is made whenp and/orq is infinite. The sequencemW
p,q is

the set of doubly indexed sequences�D f�mlgm,l2Zn for which the quasi-normk� WmW
p,qk

is finite.

With these definitions in mind, we shall present our main theorem in this paper.

Theorem 1.3. Let 0< p, q � 1 and s2 R. Let � 2 S be taken so that�Q(3) �� � �Q(3C1=100).
1. Set molsml WD hmi�sTl Mm[F�1�]. The decomposition, called Gabor decomposition,
holds for Ms,W

p,q . More precisely, we havefmolsmlgm,l2Zn 2Ms and the mapping

f 2 Ms,W
p,q 7! � D fhmisTm�(D) f (l )gm,l2Zn 2 mW

p,q

is bounded. Furthermore, any f 2 Ms,W
p,q admits the following Gabor decomposition

(5) f D X
m,l2Zn

�ml �molsml , � D f�mlgm,l2Zn D fhmisTm�(D) f (l )gm,l2Zn 2 mW
p,q.
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2. Suppose we are given MD fmolsmlgm,l2Zn 2Ms and � D f�mlgm,l2Zn 2 mW
p,q. Then

(6) f WD X
m,l2Zn

�ml �molsml

converges unconditionally in the topology ofS 0. Furthermore f belongs to Ms,W
p,q and

satisfies the quasi-norm estimatek f W Ms,W
p,q k � Ck� WmW

p,qk. In particular if 0< p,q <1, then the convergence of(6) takes place in Ms,W
p,q .

In [11] Galperin and Samarah obtained the following result.

Theorem 1.4. Let 0 < p, q � 1 and f 2 S 0. Assume that� W R2n � R2n ! R
is submultiplicative. Assume in addition that mW R2n � R2n ! R is �-moderate. Fix
g 2 S(Rn) n f0g and let �, � > 0 be sufficiently small.

Then f satisfies

�Z
Rn

�Z
Rn

jh f , MxT!gijpm(x, !)p dx

�q=p

d!�1=q <1
if and only if f satisfies

 X
m2Zn

 X
k2Zn

jh f , Mm�Tk�gijpm(�m, �k)p

!q=p!1=q
<1.

If this is the case, f admits the decomposition(5) in Theorem 1.3.

We remark that the part 1 of Theorem 1.3 is contained in Theorem 1.4 in the
framework of the weighted setting ifw � 1 and m � 1. Note that the result in The-
orem 1.4 does not cover our result whenw(x) D jxj�nC" for 0< " < n. But the main
contribution of this paper is the part 2 of Theorem 1.3, whichhas never explicitly ap-
peared in any literature at least for our class of weight functions. This result is im-
portant because pseudo-differential operators do not mapmolsml D hmi�sTl MmF� to a
function of the same form. All we can say is that the mapped onebelongs toMs

(Lemma 3.2). In other words, pseudo-differential operators map the functionf with
the decomposition (5) to another one with the decomposition(6). We can, however,
recover the norm of the mapped function by virtue of Theorem 1.3 2. Actually we
take this advantage to show some boundedness result of pseudodifferential operators
(Theorem 3.4).

Finally we describe the organization of this paper. In the next section, which is
the heart of this paper, we investigate the molecular decomposition of the modulation
spaces. In Section 2, we prove our main result Theorem 1.3. Although the proof of the
decomposition result part 1 is just a suitable modification of the argument in [11], we
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include it for reader’s convenience. Our main concern is, however, the proof of the syn-
thesis result part 2. In Section 3 we investigate the pseudo-differential operators whose
symbol belongs toS0

0,0. Recall that a symbol classSm�,Æ with m 2 R and 0� �, Æ � 1

is the set ofC1(Rn�Rn)-functionsa satisfyingj��x ��� a(x, � )j � C�,�h�im��j�jCÆj�j. We

remark thatM0
p,q-boundedness of the pseudo-differential operators with symbols in the

Hörmander classSm�,Æ was obtained in [11, 16, 25] with 1� p, q � 1. As an applica-

tion of Ms,W
p,q -boundedness of this result and the decomposition result inSection 2 we

shall prove that the pseudo-differential operator with symbols in M01,min(1,p,q)(Rn�Rn)

is bounded onM0,W
p,q . We remark that in [12, 16] Gröchenig and Heil proved this re-

sult in the case when 1� p, q � 1. Recently there are many literatures proving the
boundedness on the modulation spaces of the pseudo-differential operators with sym-
bols in the Sjöstrand class (see [12, 17, 22]). In particularGröchenig established this
type of boundedness by using the almost-diagonization. Here we shall use our decom-
position results directly. What is new about this result is the fact that we have proved
the counterpart for general parameters 0< p, q �1 and theA1-weighted setting, and
the point that we do not have to rely on the dual argument. We refer to [23, 24] for
non-negative results on the boundedness of the pseudo-differential operators. In Sec-
tion 4 we exhibit another application of the results in Section 2. In [19] the first author
investigated the dual space ofM0

p,q with 0< p, q <1. However, the definitive result
when 0< p� 1� q <1 was missing. We exploit the molecular decomposition along
with the method used in [5]. In the present paper we shall supplement this missing
part. The proof is again based on the molecular decomposition obtained in Section 2.

2. Molecular decomposition in Ms,W
p,q

In this section we deal with the molecular decomposition, inparticular, the syn-
thesis property. We assume that� 2 S is a positive function satisfying

(7) supp(�) � Q(2),
X
m2Zn

Tm�(x) � 1.

As preliminaries we collect two important results on the band-limited distributions.

Lemma 2.1 ([27, Chapter 1]). Let 0< � <1. Then there exists c> 0 such that

sup
y2Rn
hyi�n=�j f (x � y)j � cM(�) f (x)

for all f 2 S 0 with diam(supp(F f )) � 10, where M(�) is a powered maximal operator:

(8) M (�) f (x) WD sup
x2Q

Q W cube

�
1jQj
Z

Q
j f (y)j� dy

�1=�
.
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We note that under our notation the well-known maximal inequality reads

(9) kM (�) f W LW
p k � ck f W LW

p k, 0< � < p � 1.

Let M 2 N. Denote byWM
2 the Sobolev space consisting off 2 L2 satisfying

k f W WM
2 k WD kh�iM � F f W L2k <1.

The following is a slight modification of the result in [27, Chapter 1].

Lemma 2.2 ([27, Chapter 1]). Let W 2 AP with 1 � P < 1. Let 0 < p � 1
and M 2 N with M > n=min(1, p=P) � n=2. Set

H (D) f (x) WD (2�)�n=2 ZRn

H (� )F f (� )ei x �� d�
for H 2 S and f 2 S 0. Then there exists a constant c> 0 independent of R> 0 so that

kH (D) f W LW
p k � ckH (R � ) W WM

2 k � k f W LW
p k,

whenever H2 WM
2 and f 2 LW

p \ S 0 with diam(supp(F f )) � R.

From this lemma we can easily deduce that the definition of thefunction space
Ms,W

p,q does not depend on the choice of� 2 S satisfying (7).
The following well-known lemma is used to prove the decomposition results. For

example, we refer for the proof to the paper [5] due to M. Frazier and B. Jawerth, who
took originally a full advantage of this equality.

Lemma 2.3 ([5]). Let f 2 S 0 with frequency support contained in Q(2), where
we have defined

Q(2)D fx 2 Rn W max(jx1j, jx2j, : : : , jxnj) � 2g.
Assume in addition that� 2 S is supported on Q(2) and thatX

l2S Tl� D 1.

Then we have

(10) f D (2�)�n=2 X
l2Zn

f (l ) � Tl [F
�1�].

This result is well-known. However for the sake of convenience for readers we
supply the proof.
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Proof. First we take a test function� 2 S arbitrarily. Then the support condition
on f gives us

(11) hF f , � i D hF f , � � � � � i.
We consider

��(x) WDX
l2Zn

�(x � 2� l )� (x � 2� l ),

which is 2�Z-periodic. Expand�� to the Fourier series. Then we obtain

(12) ��(x) D X
m2Zn

am exp(� �mi),

where the coefficient is given by

am D 1

(2�)n

Z
Q(�)

��(x) exp(x �mi) dx

D 1

(2�)n

Z
Q(�)

 X
l2Zn

�(x � 2� l )� (x � 2� l )

!
exp(x �mi) dx

D 1

(2�)n

Z
Rn
�(x)� (x) exp(x �mi) dx.

Here, Q(�) D fx 2 Rn W max(jx1j, jx2j, : : : , jxnj) � �g. Taking into account the support
condition of the functions, we obtain

(13) �(x)� (x) D �(x)��(x) D X
m2Zn

am�(x) exp(� �mi).

We write out (11) in full by using (12) and (13).

hF f , � i D X
m2Zn

amhF f , � exp(� �mi)i
D X

m2Zn

1

(2�)n
h� exp(�� �mi), � i � hF f , � exp(� �mi)i

D
*(X

m2Zn

1

(2�)n
hF f , � exp(� �mi)i � � exp(�� �mi)

)
, �
+
.

Finally observe thathF f , � � exp(� � mi)i D (2�)n=2 f (m) from the definition of f (x).
Since� is arbitrary, we finally obtain

F f (x) D (2�)n=2 X
m2Zn

1

(2�)n
f (m) � � exp(�x �mi).
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By taking the inverse Fourier transform to both sides, we have the desired result.

It is convenient to transform (10) to the form in which we use in the present paper:

(14) f D X
m2Zn

Tm�(D) f D (2�)�n=2 X
m2Zn

 X
l2Zn

Tm�(D) f (l ) � Tl Mm[F�1�]

!
.

Finally we need a lemma, which is of use for analysis of the modulation spaces.

Lemma 2.4. Let 0< p, q �1. Let fFmgm2Zn be a sequence of positive measur-
able functions. Set

Gm WDX
l2Zn

hl �mi�N Fm

for m 2 Zn. Then we have

kGm W lq(LW
p )k � ckFm W lq(LW

p )k
for some constant c> 0 as long as N> 2n max(1, 1=p) max(1=q, (q � 1)=q).

Before the proof, we remark that the following fundamental inequality holds.

(15) (aC b)v � av C bv, 0< v � 1, a, b > 0.

Proof. Let us set� D min(1, p). Then we have

k f C g W LW
p k� � k f W LW

p k� C kg W LW
p k�

for all functions f and g. Using this inequality, we have

kGm W lq(LW
p )k� D

 X
m2Zn

(kGm W LW
p k�)q=�!�=q

�
 X

m2Zn

 X
l2Zn

hl �mi�N�kFl W LW
p k�

!q=�!�=q
.

If q < �, then we have

 X
l2Zn

hl �mi�N�kFl W LW
p k�

!q=�
�X

l2Zn

hl �mi�NqkFl W LW
p kq

by virtue of (15).
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If q � �, then we instead use the Hölder inequality to obtain X
l2Zn

hl �mi�N�kFl W LW
p k�

!q=�

�
 X

l2Zn

hl �mi�N�q0=2!1=q0
�X

l2Zn

hl �mi�Nq=2kFl W LW
p kq

� c
X
l2Zn

hl �mi�Nq=2kFl W LW
p kq.

As a result, we obtain X
l2Zn

hl �mi�N�kFl W LW
p k�

!q=�
� c

X
l2Zn

hl �mi�Nq=2kFl W LW
p kq

for all 0< q <1. Inserting this estimate, we obtain

kGm W lq(LW
p )k� � c

 X
m2Zn

X
l2Zn

hl �mi�Nq=2kFl W LW
p kq

!�=q
D ckFm W lq(LW

p )k�.
This is the desired result.

2.1. Proof of (5). The proof will be based on the boundedness of the Hardy–
Littlewood maximal operator, which is natural in our framework using the band-limited
distributions, while the proof given by Galperin and Samarah relies on the precise es-
timate for the convolution.

As for the first assertion of Theorem 1.3,fmolsmlgm,l2Zn 2Ms is clear, once we fix
K sufficiently large in the definition of molecules (Definition1.1).

Let f 2 Ms,W
p,q . Then we expandf according to (14):

f D (2�)�n=2 X
m2Zn

 X
l2Zn

Tm�(D) f (l ) � Tl Mm[F�1�]

!
.

Thus, if we set�ml WD (2�)�n=2hmisTm�(D) f (l ), molsml WD hmi�sTl Mm[F�1�] then we
obtain a decomposition off

(16) f D X
m,l2Zn

�ml �molsml .

Let us check that this decomposition fulfills the desired property in Theorem 1.3. Be-
cause we are going to utilize the maximal inequality (9), theexpression in the right-
hand side is agreeable.
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Lemma 2.1 gives us
��P

l2Zn �ml�Ql (x)
�� � cM(�)[hmisTm�(D) f ](x) with � slightly

less than min(1,p=P). Now that� is less than min(1,p=P), we can remove the max-
imal operator to obtain

(17) k� W mW
p,qk � ckM (�)[hmisTm�(D) f ] W lq(LW

p )k � ck f W Ms,W
p,q k.

(17) together with (16) concludes the proof of the decomposition part of Theorem 1.3.

2.2. An equivalent quasi-norm. Having obtained a decomposition result, we
are now going to be oriented to the synthesis part. To do this we need an equiva-
lent quasi-norm. Feichtinger [6] defined the modulation spaces in the way described
in the following theorem when 1� p, q � 1. In [18], the first author extended the
definition to the case 0< p < 1 or 0< q < 1 under the unweighted situationW � 1
although we have to restrict the class for . Such generalization was carried out by a
simple modification of the argument in [12]. But the following theorem is a non-trivial
extension of the result in [18] to the weighted case.

Theorem 2.5. Let 0< p, q �1, s 2 R and 2 S be a positive function satisfy-
ing a non-degenerate condition: F ¤ 0 on Q(2). Then there exists a constant c> 0
such that, for all f 2 Ms,W

p,q ,

c�1k f W Ms,W
p,q k � khkisMk � f W lq(LW

p )k � ck f W Ms,W
p,q k.

To prove the theorem we need one more calculation.

Lemma 2.6. Let � , � 2 S. Suppose that� is compactly supported. Then for all
M 2 N there exists cM,� depending only on� , � , � and M such that

(18) j��(Tl � � Tm� )(x)j � cM,�hl �mi�M for all x , l , m 2 Rn.

Proof. By the Leibnitz rule and the Peetre inequalityhaCbi � p2hai � hbi, we have

j��(Tl � � Tm� )(x)j � cM,�hx � l i�M � hx �mi�M � cM,�hl �mi�M ,

proving (18).

With Lemmas 2.1, 2.2 and 2.6 in mind, let us complete the proofof Theorem 2.5.

Proof of Theorem 2.5. We shall first prove

(19) khkisMk � f W lq(LW
p )k � ck f W Ms,W

p,q k
and then

(20) k f W Ms,W
p,q k � ckhkisMk � f W lq(LW

p )k.
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We can assume by replacing�, if necessary, even that

(21)
X
l2Zn

Tl� � 1.

For the proof of (19) we decomposeMk � f by using (21)

(22) Mk � f DX
l2Zn

Mk � [Tl�(D) f ].

Mk � f having been decomposed in (22), we are to estimate each summand. To
do this, we rewrite the summand as

Mk � [Tl�(D) f ](x) D cnF
�1(Tk[F ] � F (Tl�(D) f ))(x)

D cnTk[F ](D)Tl�(D) f (x)

D cn[Tk[F ] � Tl Q�](D)Tl�(D) f (x)

D cn

Z
Rn

F�1[Tk[F ] � Tl Q�](y)Tl�(D) f (x � y) dy,

where Q� 2 S is an auxiliary compactly supported function that equals 1 on supp(�).
By virtue of Lemma 2.6 we have

(23) jF�1[Tk[F ] � Tl Q�](y)j � cNhl � ki�N � hyi�N ,

where N is taken arbitrarily large. Let� WD min(1, p)=2. From Lemma 2.1 we have

(24) jTl�(D) f (x � y)j � cM(�)[Tl�(D) f ](x) � hyin=�.
Recall thatN is still at our disposal. Thus, if we takeN large enough and combine
(23) and (24), we obtain

jMk � Tl�(D) f (x)j � chl � ki�2N � M (�)[Tl�(D) f ](x).

Therefore, inserting this estimate and using the boundedness of M (�), we have

khkisMk � f W LW
p kmin(1,p=P)

�X
l2Zn

khkisMk � Tl�(D) f W LW
p kmin(1,p=P)

� c
X
l2Zn

hl � ki�(2N�s) min(1,p=P) � khl isM (�)[Tl�(D) f ] W LW
p kmin(1,p=P)

� c
X
l2Zn

hl � ki�(2N�s) min(1,p=P) � khl isTl�(D) f W LW
p kmin(1,p=P).

Here we have usedhaC bi � p2hai � hbi again.
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By Lemma 2.4 and the fact thatN is sufficiently large we obtain

khkisMk � f W LW
p kmin(1,p) � c

 X
l2Zn

hl � ki�Nq � khl isTl�(D) f W LW
p kq

!1=u
.

Therefore, if we arrange this inequality, we are led to

(25) khkisMk � f W LW
p kq � c

X
l2Zn

hl � ki�Nq � khl isTl�(D) f W LW
p kq.

If we add (25) overk 2 Zn, then we obtain (19).
Now we prove (20). For this purpose we pick a smooth bump function �0W R! R

so that�(�1,1) � �0 � �(�2,2). Set�(x) WD �K (x) WD �0(K�1x1)�0(K�1x2) � � � �0(K�1xn)
with K large. We let�℄ WD �(2�1�) and M WD [n=min(1, p)�n=2]C1. Then we have,
taking into account the size of the supports of functions, that

k f W Ms,W
p,q k D

 X
k2Zn

khkisTk�℄(D)Tk�(D)Tk�(D) f W LW
p kq

!1=q
.

SinceF never vanishes on supp(�), the function8 WD �=F is well-defined.
Note that

Tk�(D) f D Tk8(D)[Mk � f ].

Thus, using this decomposition and the translation invariance of WM
2 , we obtain

k f W Ms,W
p,q k D

 X
k2Zn

khkisTk�℄(D)Tk8(D)Tk�(D)[Mk � f ] W LW
p kq

!1=q

� c

 X
k2Zn

k�℄ �8 W WM
2 kq � khkisTk�(D)[Mk � f ] W LW

p kq
!1=q

.

(26)

Here for (26) we have invoked Lemma 2.2. Now by using

Mk � Tk�(D) f D Mk � f � (Mk � f � Mk � Tk�(D) f )

we obtain

k f W Ms,W
p,q k � cK MCn

 X
k2Zn

khkisTk�(D)[Mk � f ] W LW
p kq

!1=q

� cK MCn

 X
k2Zn

khkisMk � f W LW
p kq

!1=q

C cK MCn

 X
k2Zn

khkisMk � [(1 � Tk�(D)) f ] W LW
p kq

!1=q
.

(27)
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Our strategy for the proof is to establish that the second term of (27) can be made
small enough, if we takeK sufficiently large. Recall that we have proved (25), that is,
for every g 2 S 0

khkisMk � g W LW
p kq � c

X
m2Zn

hk �mi�Nq � khmisTm�(D)g W LW
p kq.

If we apply the above inequality withg D (1� Tk�(D)) f , then we obtain

khkisMk � (1� Tk�(D)) f W LW
p kq

� c
X
m2Zn

hk �mi�Nq � khmisTm�(D)(1� Tk�(D)) f W LW
p kq.

Taking into account the support condition of� again, we are led to

khkisMk � (1� Tk�(D)) f W LW
p kq

� c
X
m2Znjk�mj�K�2

hk �mi�Nq � khmisTm�(D) f W LW
p kq.

This inequality is summable overk 2 Zn to cK�NqCnk f W Ms
p,qkq. If we insert this

estimate to (27), then we obtain

(28) k f W Ms,W
p,q k � cK MCnkhkisMk � f W lq(LW

p )k C cK MCnCn=q�Nk f W Ms,W
p,q k.

By assumption, we havef 2 Ms,W
p,q . Consequently, if we fixN so large thatN >

M C nC n=q and then chooseK large enough, then we can bring the second term of
the right-hand side in (28) to the left-hand side. The resultis

k f W Ms,W
p,q k � ckhkisMk � f W lq(LW

p )k,
proving (20).

2.3. Proof of Theorem 1.3. First we verify that the sum converges inS 0.
Lemma 2.7. Let s2 R. Assume3 D f�mlgm,l2Zn 2 mW1,1 D m1,1 and that a

family of functions MD fmolsmlgm,l2Zn belongs toMs. Then the seriesX
m,l2Zn

�ml �molsml

is convergent unconditionally inS 0.
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Proof. Fix a test function� 2 S and set8ml(x) WD e�im�x molsml(x), m, l 2 Zn for
the sake of brevity. Thenf8mlgm,l2Zn � CK fulfills the following differential inequality

sup
x2Rn
hx � l iN j��8ml(x)j � chmi�s

for all m, l 2 Zd and � 2 Nd
0 with j�j � K , where c is independent ofm, l and �.

Therefore we haveZ
Rn

�(x) molsml(x) dx D ZRn

�(x)8ml(x) exp(im � x) dx

D hmi�2K0

Z
Rn

[(1 �1)K0(�(x)8ml(x))] exp(im � x) dx.

Here K0 WD [K=2]. Therefore it follows that����
Z
Rn

�(x) molsml(x) dx

���� � 1hmi2K0

Z
Rn

j[(1 �1)K0(�(x)8ml(x))]j dx � chmi�2K0�s

hl i2K0
.

From this and (2) we can readily deduce the desired convergence.

Lemma 2.8. Suppose that0 < p, q � 1 and s2 R. Any (sIm, l )-molecule be-
longs to Ms,W

p,q , provided K and N inDefinition 1.1 are large enough.

Proof. Let M be an (sIm, l )-molecule. Then we have

[F�1Tm�] � M(x) D eim�x ZRn

e�im�yF�(x � y)M(y) dy

D eim�x
(1C jmj2)K0

Z
Rn

[(1 �1)K0=2e�im�y]F�(x � y)M(y) dy

D eim�x
(1C jkj2)K0

Z
Rn

e�im�y(1�1)K0=2[F�(x � y)M(y)] dy

D eim�x
(1C jkj2)K0

Z
Rn

e�im�(x�y)(1�1)K0=2[F�(y)M(x � y)] dy,

where K0 D [K=2]. Note that

j(1�1)K0=2[F�(y)M(x � y)]j � chyi�N�n�1hx � yi�N � chyi�n�1hxi�N .

Hence, it follows that

j[F�1Tm�] � M(x)j � c

(1C jmj2)K0
hxi�N .

As a result, we obtain

k[F�1Tm�] � M W LW
p k � c

(1C jmj2)K0
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becauseW is an AP-weight. This inequality is summable and we obtain

kM W Ms,W
p,q k <1.

Thus, the proof is complete.

With these lemmas in mind, we prove the remaining part of Theorem 1.3.

Proof of Theorem 1.3. Let� D f�mlgm,l2Zn . We define f D P
ml2Zn �ml molsml.

Then Lemmas 2.7 and 2.8 together with Fatou’s lemma reduce the matters to show-
ing

(29) khkisMk � f W lq(LW
p )k � ck� W mW

p,qk,
where is a smooth function supported on a small ballB(r ) and the elements in�
are zero with finite exceptions. Letk, l , m 2 Zn be fixed. We estimate

Mk �molsml(x) D eik�x ZRn

ei (m�k)�y (x � y) � (e�im�y molsml(y)) dy.

First insert (1� 1)K0ei (m�k)�y D hm � ki2K0ei (m�k)�y and carry out the integration by
parts. HereK0 WD [K=2]. Then we obtain

Mk �molsml(x) D eik�x
hm� ki2K0

Z
Rn

(1�1y)K0f (x � y)(e�im�y molsml(y))g
ei (k�m)�y dy.

Thus, sincefmolsmlgm,l2Zn 2Ms and  is a function supported on a small ballB(r ),
we are led to

jMk �molsml(x)j � chmi�s

hm� ki2K0

Z
B(x,r )
hy � l i�2K0 dy� chmi�s

(hm� ki � hx � l i)2K0
.

Inserting this estimate, we obtain

X
k2Zn

(Z
Rn

 
hkis X

m,l2Zn

j�ml � Mk �molsml(x)j
!p

W(x) dx

)q=p

� c
X
k2Zn

(Z
Rn

 
hkis X

m,l2Zn

hmi�sj�mlj � (hm� ki � hx � l i)�2K0

!p

W(x) dx

)q=p

.

(30)

To estimate (30), we proceed as follows:

X
l2Zn

j�mljhx � l i2K0
D X

j2N,l2Zn

2 j�1�hx�l i�2 j

j�mljhx � l i2K0
� c

X
j2N

1

22 j K0

X
l2Zn,hx�l i�2 j

j�mlj.
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Now that 0< � < 1, we have

X
l2Zn

j�mljhx � l i2K0
� c

X
j2N

1

22 j K0

 X
l2Zn, hx�l i�2 j

k�mlk�
!1=�

.

Since K0 is sufficiently large, we obtain

X
l2Zn

j�mlj � hx � l i�2K0 � c
X
j2N

1

22 j K0� jn=�
 

1

2 jn

X
l2Zn, hx�l i�2 j

j�mlj�
!1=�

� c
X
j2N

1

22 j K0� jn=� M (�)

"X
l2Zn

�ml�Ql

#
(x)

� cM(�)

"X
l2Zn

�ml�Ql

#
(x).

If we insert this to (30), then we obtain

X
k2Zn

(Z
Rn

 
hkis X

m,l2Zn

j�ml � Mk �molsml(x)j
!p

W(x) dx

)q=p

� c
X
k2Zn

(Z
Rn

 X
m2Zn

M (�)

"X
l2Zn

�ml�Ql

#
(x) � hm� ki�2K0Cjsj!p

W(x) dx

)q=p

.

AssumingK0 sufficiently large, we are in the position of using Lemma 2.4 with

Fm(x) D M (�)

"X
l2Zn

�ml�Ql

#
(x)

and N D 2K0 � jsj. Using Lemma 2.4 and the maximal inequality, we obtain

khkisMk � f W lq(LW
p )k

�X
k2Zn

(Z
Rn

 
hkis X

m,l2Zn

j�ml � Mk �molsml(x)j
!p

W(x) dx

)q=p

� c

(Z
Rn

X
m2Zn

M (�)

"X
l2Zn

�ml�Ql

#
(x)pW(x) dx

)q=p

� c

(Z
Rn

X
m2Zn

�����
X
l2Zn

�ml�Ql (x)

�����
p

W(x) dx

)q=p

D ck� W mW
p,qkq,
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which is exactly the result (29) we wish to prove.

3. Pseudo-differential operators

In this section, as an application of Theorem 1.3, we prove the boundedness of the
pseudo-differential operators.

Given a 2 Sm�,Æ, m 2 R, 0� Æ, � � 1, we define

(31) a(x, D) f (x) WD (2�)�n=2 ZRn

a(x, � )F f (� ) exp(i x � � ) d� ,

for f 2 S. Following [28], we denoteN0 WD f0, 1, 2,: : : g. As is easily seen by carrying
out the integration by parts,a(x, D) is a continuous linear operator onS. If we define
a℄(x, D), the adjoint operator ofa(x, D) by

(32) a℄(x, D)g(x) WD (2�)�n
Z Z

Rn�Rn

a(y, � )g(y)ei (y���x�� ) dy d�
in the sense of oscillatory integral, then we see thata℄(x, D) is also a continuous linear
operator onS. Therefore, we can extenda(x, D) to a continuous linear operator onS 0
by defining, for f 2 S 0
(33) ha(x, D) f , �i WD h f , a℄(x, D)�i, � 2 S.

3.1. Symbol classS0
0,0. In this section we shall proveMs,W

p,q -boundedness by

means of molecular decomposition of pseudo-differential operators with symbols inS0
0,0.

Theorem 3.1. Suppose that0 < p, q � 1 and s2 R. Let a2 S0
0,0, namely, as-

sume that a2 C1(Rn � Rn) satisfies the differential inequalities

sup
x,�2Rn

j��x ��� a(x, � )j <1
for all �, � 2 N0

n. Then, the operator a(x, D), defined initially onS by (31), can be
extended continuously to a bounded linear operator on Ms,W

p,q .

By Theorem 1.3, Theorem 3.1 essentially is reduced to establishing the following.

Lemma 3.2. Suppose that s2 R. Let � 2 S be a compactly supported function.
We define mols

ml 2 S for m, l 2 Zn by setting molsml(x) WD hmi�sTl Mm[F�1�](x). As-
sume in addition that a2 S0

0,0. Then we havefa(x, D) molsmlgm,l2Zn 2Ms.
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Proof. To prove this, we writea(x, D) molsml out in full. As is easily verified, we
haveF molsml D hmi�sM�l Tm� and hence

a(x, D) molsml(x) D (2�)�n=2hmi�s
Z
Rn

a(x, � )e�i l ���(� �m)ei � �x d�
D (2�)�n=2hmi�s

Z
Rn

a(x, � Cm)ei (�Cm)�(x�l )�(� ) d� .

Therefore, what we have to estimate is the following function:

(34) e�im�xa(x, D) molsml(x) D (2�)�n=2hmi�se�im�l ZRn

a(x, � Cm)ei � �(x�l )�(� ) d� .

By using (1�1� )Nei � �(x�l ) D hx � l i2Nei � �(x�l ), it is not so hard to see

je�im�xa(x, D) molsml(x)j � chmi�shx � l i�2N .

Since a similar argument works for any partial derivative ofe�im�xa(x, D) molsml(x) in
view of (34), the proof of this lemma is now complete.

Having proved Lemma 3.2, we turn to the proof of Theorem 3.1.
Proof. Given f 2 Ms,W

p,q � Ms,W1,1, we expand it again according to (14) along
with the coefficient condition:

f D (2�)�n=2 X
m2Zn

 X
l2Zn

Tm (D) f (l ) � Tl Mm[F�1�]

!
,

kfhmisTm (D) f (l )gm,l2Zn W mW
p,qk � ck f W Ms,W

p,q k.(35)

With this formula in mind, we define

(36) a(x, D) f WD (2�)�n=2 X
m2Zn

 X
l2Zn

Tm (D) f (l ) � a(x, D)[Tl Mm[F�1�]]

!
.

Since (35) is valid for f 2 S, (36) is an extension ofa(x, D) from S to Ms,W
p,q . By

virtue of (33) and the convergence of (35) and (36) inMs,W
p,q , we see that the extension

is unique. Now we are in the position of using the synthesis part of Theorem 1.3. As
we have verified in Lemma 3.2, we havefa(x, D)[Tl Mm[F�1�]]gm,l2Zn 2Ms. Thus, the
estimate of the coefficients yields thatf 7! a(x, D) f is a continuous operator onMs,W

p,q .

REMARK 3.3. It is worth pointing out that we can say more. Let 0< p, q �1. Then there is a large integerN0, which depends onp and q, so that the pseudo-
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differential operatora(x, D) is bounded onMs,W
p,q whenevera is aCN0-function satisfying

kjajkN0 WD sup
x,�2Rn�,�2N0

nj�j,j�j�N0

j��x ��� a(x, � )j <1.

Reexamine Definition 1.2 and the proof of Theorem 3.1 together with Lemma 3.2.
Then we seeka(x, D)kMs,W

p,q
WD supf 2Ms,W

p,q nf0gka(x, D) f W Ms,W
p,q k=k f W Ms,W

p,q k � ckjajkN0,
if N0 is large enough.

3.2. Symbol classM01,min(1,p,q). In this section we deal with the symbol class

M01,min(1,p,q), which containsS0
0,0 strictly. The crux of the proof is the decomposition

result we have obtained in Section 2. As is easily shown,M01,min(1,p,q) can be embed-
ded into L1. In general we have

M0
p,min(p, p0) � L p � M0

p,max(p, p0), 1� p � 1.

Meanwhile M01,1 is known to contain non-smooth functions. Thus, we can say The-
orem 3.1 can be widely extended to the theorem below.

Theorem 3.4. Suppose that0< p, q �1. Let a2 M01,min(1,p,q)(Rn �Rn). Then,
the operator a(x, D), defined initially onS by (31), can be extended continuously to
M0,W

p,q . Furthermore, we have

ka(x, D)kM0,W
p,q !M0,W

p,q
� cka W M01,min(1,p,q)(Rn � Rn)k.

Proof. Leta 2 M01,min(1,p,q)(Rn �Rn). As we have discussed in Theorem 1.3, we
take an auxiliary function� W Rn ! R satisfying�Q(3) � � � �Q(3C1=100). In order to
apply Theorem 1.3, we shall adopt an auxiliary function�� of tensored type. Speaking
precisely, we replace� with �� given by��(x, � ) WD �(x)�(� )W Rn�Rn! R. The fact
that � is of tensored type gives us

(37) a(x, � ) D X
�,�,m,l2Zn

��,�,m,l � T�M�[F�1�](x)Tl Mm[F�1�](� )

with the coefficient condition

(38)

 X
m,�2Zn

�
sup

l ,�2Zn
j��,�,m,l j

�min(1,p,q)
!1=min(1,p,q)

� cka W M01,min(1,p,q)(Rn � Rn)k.
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Keeping (37) and (38) in mind, we define

am,�(x, � ) WD X
�,l2Zn

��,�,m,l � T�M�[F�1�](x)Tl Mm[F�1�](� ).

Then we have

am,�(x, � ) D ei��x X
�,l2Zn

e�i (l �mC���) � ��,�,m,l � T� [F�1�](x)Tl [F
�1�](� )

!
eim�� .

Thus, if we set

a(1)
m,�(x, � ) WD ei��x,

a(2)
m,�(x, � ) WD X

�,l2Zn

e�i (l �mC���) � ��,�,m,l � T� [F�1�](x)Tl [F
�1�](� ),

a(3)
m,�(x, � ) WD eim�� ,

then the pseudo-differential operator is factorized into three pseudo-differential operators:

am,�(x, D) D a(1)
m,�(x, D) Æ a(2)

m,�(x, D) Æ a(3)
m,�(x, D).

It is easy to see thata(1)
m,� is a multiplication operator which is actually an isomorphism

on M0,W
p,q and thata(3)

m,� is a translation operator which is also an isomorphism onM0,W
p,q .

Note that the operator norm is uniformly bounded overm and�. Thus, the matters are
reduced to investigating the operator norm ofa(2)

m,�.
Now it is high time to apply Remark 3.3. Assuming supl ,�2Zn j��,�,m,l j < 1, we

can easily obtain

kja(2)
m,�jkN0 � c sup

l ,�2Zn
j��,�,m,l j,

provided N0 is an integer as in Remark 3.3. Thus, we have obtained

(39) kam,�(x, D)kM0,W
p,q !M0,W

p,q
� c sup

l ,�2Zn
j��,�,m,l j.

By k f C g W M0,W
p,q kmin(1,p,q) � k f W M0,W

p,q kmin(1,p,q) C kg W M0,W
p,q kmin(1,p,q), we obtain

ka(x, D)kM0,W
p,q !M0,W

p,q
�
 X

m,�kam,�(x, D)kM0
p,q

min(1,p,q)

!1=min(1,p,q)

.

Adding (39) overm and � and using (38), we see thata(x, D) is bounded onM0,W
p,q .
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4. Dual space

We will apply our decomposition results to specify the dual space ofMs
p,q D Ms,1

p,q.
We remark that in [19] we have obtained some results even for 0< p, q <1 and sD
0. Our approach here is taking full advantage of Theorem 1.3 to prove the following.
Given a p 2 (0,1], we define p0 WD p=(p� 1) if p > 1 and p0 WD 1 if p � 1.

Theorem 4.1. Let 0< p, q <1 and s2 R.
1. Let f 2 M�s

p0,q0 . Then the functional g2 S 7! h f , gi 2 C can be extended to a
continuous linear functional on Msp,q.
2. Conversely any continuous linear functional on Ms

p,q can be realized with f2 M�s
p0,q0 .

Proof. The proof of 1 is straightforward and we omit the detail. We shall prove
2 only in the case when 0< p � 1 � q < 1, the rest being covered in [19] when
sD 0. An argument similar to the one below works for the remaining case. Let� be
a continuous functional onMs

p,q. Then we can define the continuous operatorR from
mp,q to Ms

p,q as follows: Let

R(�)(x) WD X
m,l2Zn

�ml � hmi�sTl Mm[F�1�](x),

where � is a function appearing in Theorem 1.3. Set WD � Æ RW mp,q ! C. Then is a continuous functional onmp,q. As is well-known, any continuous functional on
mp,q can be realized with a coupling, that is, (�) can be expressed as

 (�) D X
m,l2Zn

�ml � �ml, � D f�mlgm,l2Zn with k� W m1,q0k � ck� Æ Rk�,
where� D f�mlgm,l2Zn 2 m1,q0 and k � k� denotes the operator norm. Be reminded that� is a function satisfying (7) to define the normk f W Ms

p,qk. Setting

S(g) WD fhmisTm�(D)g(l )gl ,m2Zn , g 2 Ms
p,q,

we obtain a linear mappingSW Ms
p,q ! mp,q satisfying

kS(g) W mp,qk � ckg W Ms
p,qk, � D � Æ R Æ SD  Æ S.

Thus, we have� (g) D  (fhmisTm�(D)g(l )gl ,m2Zn) DP
m,l2Znhmis�ml � Tm�(D)g(l ) for

all g 2 Ms
p,q. Now we set f WD (2�)�n=2 P

m,l2Znhmis�ml � Tl M�m[F�]. Then The-
orem 1.3 gives us

f 2 M�s1,q0 , k f W M�s1,q0k � ck� W m1,q0k � ck� Æ Rk� � ck�k�.



1052 M. KOBAYASHI AND Y. SAWANO

A simple calculation yields

h f , gi D (2�)�n=2 X
m,l2Zn

hmis�ml � hTl M�m[F�], gi
D (2�)�n=2 X

m,l2Zn

hmis�ml � hF�1[Tm�](l � �), gi
D � (g)

for all g 2 S. Therefore, 2 is proved.
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