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Abstract
In 1960, P.A. Smith raised an isomorphism problem. Is it truethat the tangential

G-modules at two fixed points of an arbitrary smoothG-action on a sphere with
exactly two fixed points are isomorphic to each other? Given afinite group, the
Smith set of the group means the subset of real representation ring consisting of
all differences of Smith equivalent representations. Many researchers have studied
the Smith equivalence for various finite groups. But the Smith sets for non-perfect
groups were rarely determined. In particular, the Smith setfor a non-gap group has
not been determined unless it is trivial. We determine the Smith set for the non-gap
group G D S5 � C2 � � � � � C2.

1. Introduction

Throughout this paper, letG be a finite group. In 1960, P.A. Smith [30] raised
the next problem.

SMITH ISOMORPHISM PROBLEM. Is it true that the tangentialG-modules at two
fixed points of an arbitrary smoothG-action on a sphere with exactly two fixed points
are isomorphic to each other?

Following [25], two realG-modulesV and W are calledSmith equivalentif there
exists a smooth action ofG on a homotopy sphereS such thatSG D fx, yg for two
points x and y at which Tx(S) � V and Ty(S) � W as realG-modules.

Let RO(G) denote the real representation ring ofG. Define theSmith setSm(G)
to be

Sm(G) WD f[V ] � [W] 2 RO(G) j V and W are Smith equivalentg.
In general, we don’t know whether Sm(G) is a subgroup of RO(G). The Smith iso-
morphism problem can be restated as follows.

SMITH ISOMORPHISM PROBLEM. Is it true that Sm(G) D 0?
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It is easy to show that the answer is affirmative ifG is a group such that each
element has the order 1, 2 or 4. Important breakthroughs on the problem came in the
following.
(1) M.F. Atiyah–R. Bott [1]: If G D Cp, a cyclic group of orderp, where p an odd
prime, then Sm(G) D 0.
(2) J. Milnor [11]: If G is a compact group and the action semi-free, thenTx(S)� Ty(S).
(3) C.U. Sanchez [28]: IfG is a group with odd-prime-power order orG is a group
with jGj D pq, where p and q are odd primes, then Sm(G) D 0.
(4) T. Petrie [24], [26]: If G is an odd order finite abelian group with at least four
non-cyclic Sylow subgroups, then Sm(G) ¤ 0.
(5) S.E. Cappell–J.L. Shaneson [2]: IfG is a cyclic group of order 4m such thatm� 2
then Sm(G) ¤ 0.
By the character theory, we have Sm(C6) D 0 and Sm(D6) D 0 whereD6 is a dihedral
group of order 6. So,C8 is the smallest group with Sm(G) ¤ 0. T. Petrie and his
collaborators found various pairs of non-isomorphic Smithequivalent realG-modules,
e.g. K.H. Dovermann–T. Petrie [3], K.H. Dovermann–D.Y. Suh[5].

In 1996, in the case whereG is an Oliver group, E. Laitinen [10, Appendix]
lighted the problem again with the next conjecture.

AG-Conjecture. If G is an Oliver group with aG � 2, then Sm(G) ¤ 0.

After E. Laitinen–M. Morimoto [8], a finite groupG is called anOliver group if
and only if G never admits a normal series

P E H E G

such thatjPj and [G W H ] are prime powers andH=P is a cyclic group. For an element
g 2 G, let (g) denote the conjugacy class ofg in G. The union (g)� D (g) [ (g�1)
is called thereal conjugacy classof g in G. Let aG denote the number of the real
conjugacy classes (g)� in G such that the order ofg is not a prime power.

We have affirmative answers for theAG-Conjecture in the following cases.
• E. Laitinen–K. Pawałowski [10]:G is a finite perfect group.
• E. Laitinen–K. Pawałowski [10]:G � An, SL(2, p) or PSL(2,q) where n is a
natural number, andp and q are primes.
• K. Pawałowski–R. Solomon [21]:G is a finite Oliver group of odd order.
• K. Pawałowski–R. Solomon [21]:G is a finite Oliver group with a cyclic quotient
of order pq for two distinct odd primesp and q.
• K. Pawałowski–R. Solomon [21]:G is a finite non-solvable gap group andG ©
P6L(2, 27), where P6L(2, 27) is the splitting extension of PSL(2, 27) by the group
Aut(F27).
• M. Morimoto [13]: G � P6L(2, 27).
In 2006, M. Morimoto gave a counterexample to theAG-Conjecture.
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• M. Morimoto [14]: If G D Aut(A6), then aG D 2 and Sm(G) D 0.
We refer to the articles [27], [4], [20], [6] for survey of related results. K. Pawałowski–
T. Sumi claim Sm(G) ¤ 0 for many Oliver groupsG such thataG � 2 andG is not a
gap group. Recent information of this topic is found in [22],[32] and [23].

For a prime p, let Gfpg denote the smallest normal subgroupH of G such that
[G W H ] is a power of p (possibly 1). LetGnil denote the smallest normal subgroupH
of G such thatG=H is nilpotent. It is known that

Gnil D\
p

Gfpg.
We introduce notation for several families consisting of subgroups ofG.

S(G) WD fH � Gg.
P(G) WD fP 2 S(G) j P is a p-subgroup

for some primep (possibly a trivial group)g.
L(G) WD fL 2 S(G) j Gfpg � L for some primepg.
G1(G) WD fH 2 S(G) j 9P E H and H=P is cyclic for someP 2 P(G)g.

Let X andY be families consisting of subgroups ofG. A real G-moduleV is said to
be X -free if V H D 0 for any H 2 X . If M is a subset of RO(G) then for the families
X , Y, we define

MX WD fx D V � W 2 M j ResGH V � ResGH W for all H 2 X g,
MY WD fx D V � W 2 M j V and W areY-freeg,
MY

X WD MX \ MY .

Let HP(G) denote the set of all pairs (H , P) consisting ofH 2 S(G) and P 2 P(H )
such thatP ¤ H . A real G-moduleV is called agap moduleif it satisfies dimV P >
2 dimV H for all pairs (H , P) 2 HP(G). A finite group G is called agap groupif G
admits aL(G)-free gap module. LetVDH denote the set consisting of all pointsx 2 V
with isotropy subgroupGx D H , and dimVDH as the maximum of the dimension of
all connected components ofVDH . A real G-moduleV is said to satisfy theweak gap
condition if it satisfies the following.
(WG1) dimV P � 2 dimV H for all pairs (H , P) 2 HP(G).
(WG2) If dim V P D 2 dimV H for a pair (H , P) 2 HP(G), then [H W P] D 2.
(WG3) If dim V P D 2 dimV H and dimV P D 2 dimV K for pairs (H , P), (K , P) 2
HP(G) respectively, thenhH , K i belongs toS(G) n L(G).
(WG4) dimV P � 5 for all P 2 P(G).
(WG5) dimVDH � 2 for all H 2 G1(G).
(WG6) If dim V P D 2 dim V H for a pair (H , P) 2 HP(G), then for all g 2 NG(P) \
NG(H ), the associated transformationsg W V H ! V H are orientation preserving.
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Throughout this paper letX2 be a finite group isomorphic to a direct product of
groups isomorphic toC2, namely X2 � C2 � � � � � C2 (n-fold) whereC2 is the cyclic
group of order 2. LetS5 be the symmetric group on the five letters, andA5 be the
alternating group on the five letters.

Many authors have studied the Smith equivalence for various finite groups. But
the Smith sets Sm(G) were rarely determined. In particular, whenG is a non-solvable,
non-perfect group, the Smith set Sm(G) was not determined except the case Sm(G) D
0. Most finite Oliver groups are gap group, while neitherS5 nor Aut(A6) is a gap
group. We have interested in the groupS5, because it is an Oliver group which is
not a gap group, but it’s subgroupA5 is an Oliver and gap group. In fact Sm(S5) D
Sm(A5) D 0 ([21, Example E4, E5]). But what about the caseS5 � X2 and A5 � X2?

Theorem A. If K D A5 � X2 then Sm(K ) D RO(K )L(K )
P(K ) � Z2(2n�1).

This theorem follows from the following 4 lemmas, and the rank of the Smith set
follows from Lemma 6.1 and Proposition 6.2.

Lemma 1.1 (K. Pawałowski–R. Solomon). If G is an Oliver, gap group, then

Sm(G) � RO(G)L(G)
P(G).

This result was given as [21, p. 850, Realization Theorem]. The next lemma is
well known (see [10, Lemma 2.6]).

Lemma 1.2. If G contains no elements of order8, then Sm(G) D Sm(G)P(G).

Lemma 1.3. If G=Gnil is isomorphic to a direct product of groups isomorphic to

C2, then Sm(G)P(G) � RO(G)L(G)
P(G).

This lemma immediately follows from [14, Proposition 2.2].

Lemma 1.4. If K D A5 � X2 then the following hold.
(1) K is an Oliver, gap group.
(2) K does not contain an element of order8.
(3) K nil D A5 and K=K nil � X2.

The purpose of this paper is to show the next.

Theorem B. If G D S5 � X2 then Sm(G) D RO(G)L(G)
P(G) � Z2n�1.

For G D S5 � X2, we can check the following.
(1) G is an Oliver, but not a gap group.
(2) G does not contain an element of order 8.
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(3) Gnil D A5 (� S5) and G=Gnil � C2 � X2.
To prove Theorem B, we need to obtain an extended result of Lemma 1.1. Thus we
will prove the next lemma.

Lemma 1.5. Let G be an Oliver group. For x D V0�W0 2 RO(G)L(G)
P(G) such that

V0 and W0 are L(G)-free real G-modules, if there exists a real G-module U such that
V0�U and W0�U are L(G)-free and satisfy the weak gap condition, then x2 Sm(G).

In addition, we will show

Lemma 1.6. Let G D S5 � X2. For each x 2 RO(G)L(G)
P(G), there exist real

G-modules U, V and W such that xD V �W, and V�U and W�U are L(G)-free
and satisfy the weak gap condition.

Hence Theorem B follows from Lemmas 1.2, 1.3, 1.5 and 1.6, andthe rank of the
Smith set follows from Lemma 6.1 and Proposition 6.2. A key toproving Lemma 1.6
is the next.

Lemma 1.7. If K D A5 � X2 and GD S5 � X2 then

IndG
K

�
RO(K )L(K )

P(K )

� D RO(G)L(G)
P(G).

The organization of the paper is as follows. Section 2 is devoted to describing lem-
mas which are useful to construct smoothG-actions on spheres with non-isomorphic
Smith equivalent tangential modules for a general Oliver group G, and we give a proof
of Lemma 1.5. In Section 3 we exhibit results on the groupsK D A5�C2 andG D S5�
C2 obtained by concrete computation and show that Sm(K ) and Sm(G) are isomorphic
to Z2 and Z, respectively. In Section 4 we observe the induction homomorphism
IndG

K W RO(K ) ! RO(G) and the restriction homomorphism ResG
K W RO(G) ! RO(K ),

and prove Lemma 1.7. In Section 5 we introduce the notion of orientation triviality.
Section 6 completes proofs of Theorems A and B.

2. Construction of non-isomorphic Smith equivalentG-modules

If G is not of prime power order, define a realG-module V(G) by

V(G) WD (R[G] � R) �M
p

(R[G=Gfpg] � R)

where p runs over the set of primes dividingjGj. Let kV(G) D V(G) � � � � � V(G)
(k-fold). We recall some properties ofV(G).
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Lemma 2.1 (E. Laitinen–M. Morimoto). For any finite group G, the module
V(G) satisfies the following properties.
(1) dimV(G)P � 2 dimV(G)H for all (H , P) 2 HP(G).
(2) Suppose(H , P) 2HP(G) and P2 S(G)nL(G). ThendimV(G)P D 2 dimV(G)H

holds if and only if[H W P] D 2, [hH , Gf2gi W hP, Gf2gi] D 2 and hP, Gfpgi D G for
all odd prime p.

This Lemma was given as [8, Theorem 2.3]. Reader can refer to [8] for funda-
mental properties ofV(G).

Lemma 2.2. Let G be an Oliver group, n an integer� 1, and V and W real
G-modules. Suppose the following(1)–(3):
(1) There exists a smooth G-action on a homotopy sphere61 with exactly one G-fixed
point, x1 say, such that the tangential G-module Tx1(61) at x1 of 61 is isomorphic to
V � nV(G).
(2) There exists a smooth G-action on a homotopy sphere62 with exactly one G-fixed
point, x2 say, such that Tx2(62) is isomorphic to W� nV(G).
(3) There exists a smooth G-action on a disk1 with exactly two G-fixed points, y1

and y2 say, such that Ty1(1) and Ty2(1) are isomorphic to V�nV(G) and W�nV(G)
respectively.
Then there exists a smooth G-action on a standard sphere6 with exactly two G-fixed
points, z1 and z2 say, such that Tz1(6) and Tz2(6) are isomorphic to V� nV(G) and
W� nV(G) respectively. Hence the element V� W of RO(G) belongs toSm(G).

Proof. Let61, 62 and1 be spheres and a disk appearing in (1)–(3) above. Let63 denote the sphere obtained as the double of1, namely63 D 1[10, where10 is
a copy of1. Then6G

3 consists ofy1, y2, y01 and y02 such thatTy1(63) D Ty01(63) �
V�nV(G) and Ty2(63)D Ty02(63)� W�nV(G). Let 64 denote theG-connected sum
of 63 with 61 and62 with respect to the pairs of points (y01, x1) and (y02, x2). Since
n � 1, dim6P

3 � 2 and63 contains (infinitely many) points of isotropy subgroupP
for each Sylow subgroup ofG. By the [9, Proposition 1.3], we can obtain the standard
sphere6 as the resulting manifold of iteratedG-connected sum of63 with copies of
G �P ResGP 63, where P runs over the set of all Sylow subgroups ofG.

Lemma 2.3 (M. Morimoto). Let G be an Oliver group and V anL(G)-free real
G-module satisfying the weak gap condition. Then there exists a smooth G-action on
a sphere61 with exactly one G-fixed point, x1 say, such that Tx1(61) is isomorphic
to V.

Proof. By [18], Oliver group has a smooth fixed-point-free action on a disk. Thus
we can construct a smooth action ofG on a diskD D D(V ) with exactly oneG-fixed
point x1. Taking the double ofD, we obtain a smooth action ofG on 61 D D [�D D
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with 6G
1 D fx1, x2g. Clearly 61 �G S(R � V). We can check that the action ofG

on 61 satisfies Conditions (1)–(5) of [16, Theorem 36]. Thereforewe can deletex2

from 6G
1 . Namely there exists a smooth action ofG on a sphere62 with exactly one

G-fixed point.

Lemma 2.4 (B. Oliver, M. Morimoto–K. Pawałowski).Let G be an Oliver group
and V1 and W1 L(G)-free real G-modules such thatResGP V1 is isomorphic toResGP W1

for all Sylow subgroups P. Then there exists an integer N such that for every n� N,
the m-dimensional disk1, where mD dimV1CndimV(G), admits a smooth G-action
with exactly two G-fixed points, y1 and y2 say, such that Ty1(1) and Ty2(1) are iso-
morphic to V1 � nV(G) and W1 � nV(G) respectively.

This lemma follows from [15, Theorem 0.3] but crucial part ofthe proof was due
to [19].

Proof of Lemma 1.5. SetV1 D V0 � U and W1 D W0 � U . Clearly, V1 and W1

areL(G)-free realG-modules such that ResG
P V1 � ResGP W1 for all Sylow subgroupsP.

Apply Lemma 2.4 toV1 and W1, for finding an integerN such that for eachk � N,
putting n D 2k, there exists a smoothG-action on a disk1 described in Lemma 2.4.
Set V D V1 � 2kV(G), and W D W1 � 2kV(G), where k � N. Apply Lemma 2.3
to V for obtaining a smoothG-action on a sphere61 described in Lemma 2.4. Then
V1 � 2kV(G) and W1 � 2kV(G) satisfy the weak gap condition. Obtain62 for W
similarly to 61 replacingV by W. Then by Lemma 2.2, we obtain a desired smooth
G-action on them-dimensional sphere6 for arbitrary k � N.

3. Computation of Sm(S5 � C2)

Proposition 3.1. The following equalities hold for GD S5�C2 and KD A5�C2.
(1) Sm(K ) � Z2 and Sm(G) � Z.
(2) IndG

K (Sm(K )) D Sm(G).
Here the mapIndG

K W RO(K ) ! RO(G) is the induction homomorphism:

[V ] 7! [R[G] 
R[K ] V ].

Proof. (1) By means of GAP [33], the irreducible complex characters ofK D
A5 � C2 are as in Table 1. The notation in the table reads that, for example in the
case “5b”, the first letter 5 of “5b” indicates the order of an element belonging to the
corresponding conjugacy class and the second letter b of “5b” is used to distinguish
conjugacy classes.

Since A5 is a simple group, it follows thatK f2g D A5 and K fpg D K (p ¤ 2).
Thus K nil D A5, and K=K nil � C2. Clearly K contains no elements of 8.

K is an Oliver group, becauseK is non-solvable. LetfÆi , 1� i � 8g be theZ-basis
of RO(K ) such that the complification ofÆi is ÆiC. In fact, 4Æ3 C 3Æ5 C Æ7 C 2Æ8 C
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Table 1. The complex characters ofK D A5 � C2 where A D�! � !4 D (1 � p5)=2, OA D �!2 � !3 D (1 C p
5)=2, ! D

exp(2�p�1)=5.

1a 2a 3a 6a 2b 2c 5a 10a 5b 10bÆ1C 1 1 1 1 1 1 1 1 1 1Æ2C 1 �1 1 �1 1 �1 1 �1 1 �1Æ3C 3 3 0 0 �1 �1 A A OA OAÆ4C 3 3 0 0 �1 �1 OA OA A AÆ5C 3 �3 0 0 �1 1 A �A OA � OAÆ6C 3 �3 0 0 �1 1 OA � OA A �AÆ7C 4 4 1 1 0 0 �1 �1 �1 �1Æ8C 4 �4 1 �1 0 0 �1 1 �1 1Æ9C 5 5 �1 �1 1 1 0 0 0 0Æ10C 5 �5 �1 1 1 �1 0 0 0 0

Æ9 C 3Æ10 is a L(K )-free gapK -module, soK is a gap group. (The fact thatK is a
gap group was theoretically proved by T. Sumi [31, Proposition 3.3].) By Lemmas 1.1,
1.2, and 1.3, we get Sm(K ) D RO(K )L(K )

P(K ).

By a straightforward computation [33], aZ-basis of RO(K )L(K )
P(K ) is fx1, x2g, where

x1 D Æ3 � Æ5 � 2Æ7 C 2Æ8 C Æ9 � Æ10, x2 D Æ4 � Æ6 � 2Æ7 C 2Æ8 C Æ9 � Æ10.
(2) By means of GAP [33], the irreducible complex charactersof G D S5 � C2

are as in Table 2.
Since A5 is a simple group, it follows thatGf2g D A5 and Gfpg D G (p¤ 2). Thus

Gnil D A5, andG=Gnil � C2�C2. Clearly G contains no elements of 8.G is an Oliver
group, becauseG is non-solvable. By Lemmas 1.2 and 1.3, Sm(G) � RO(G)L(G)

P(G).
Let f�i , 1 � i � 14g be theZ-basis of RO(G) such that the complification of�i

is �iC. By a straightforward computation [33], RO(G)L(G)
P(G) � Z. We take theZ-basis

elementy D V � W of RO(G)L(G)
P(G) such thatV D 2�5 C 2�7 C �10 C �12 C �14 and

W D 2�6C 2�8C �9C �11C �13. Let U D �5C 2�6C 2�8C 3�10C 3�12. We can check
that V � 2U and W� 2U satisfy the weak gap condition. By Lemma 1.5, we obtain
ny 2 Sm(G) for any n 2 Z, thus fyg is a Z-basis of Sm(G).

Since the equalities

IndG
K Æ1 D �1 C �4, IndG

K Æ2 D �2 C �3,

IndG
K Æ3 D �13, IndG

K Æ4 D �13,

IndG
K Æ5 D �14, IndG

K Æ6 D �14,

IndG
K Æ7 D �5 C �7, IndG

K Æ8 D �6 C �8,

IndG
K Æ9 D �9 C �11, IndG

K Æ10 D �10C �12
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Table 2. The complex characters ofG D S5 � C2.

1a 2a 2b 2c 3a 6a 2d 2e 4a 4b 6b 6c 5a 10a�1C 1 1 1 1 1 1 1 1 1 1 1 1 1 1�2C 1 �1 �1 1 1 �1 1 �1 �1 1 �1 1 1 �1�3C 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1 1 �1�4C 1 1 �1 �1 1 1 1 1 �1 �1 �1 �1 1 1�5C 4 4 �2 �2 1 1 0 0 0 0 1 1 �1 �1�6C 4 �4 �2 2 1 �1 0 0 0 0 1 �1 �1 1�7C 4 4 2 2 1 1 0 0 0 0 �1 �1 �1 �1�8C 4 �4 2 �2 1 �1 0 0 0 0 �1 1 �1 1�9C 5 5 1 1 �1 �1 1 1 �1 �1 1 1 0 0�10C 5 �5 1 �1 �1 1 1 �1 �1 1 1 �1 0 0�11C 5 5 �1 �1 �1 �1 1 1 1 1 �1 �1 0 0�12C 5 �5 �1 1 �1 1 1 �1 1 �1 �1 1 0 0�13C 6 6 0 0 0 0 �2 �2 0 0 0 0 1 1�14C 6 �6 0 0 0 0 �2 2 0 0 0 0 1 �1

hold, we obtain IndGK (x1) D IndG
K (x2) D �y, which determines the induction map

IndG
K W Sm(K ) ! Sm(G).

4. Induction and restriction

Let G be a finite group.

Lemma 4.1. If K � G, then

IndG
K

�
RO(K )L(K )

P(K )

� � RO(G)L(G)
P(G).

Proof. By definition,

RO(G)L(G)
P(G) D RO(G)P(G) \ RO(G)L(G).

So we will prove following (1) and (2).
(1) IndG

K (RO(K )P(K )) � RO(G)P(G).
(2) IndG

K (RO(K )L(K )) � RO(G)L(G).
(1) Let x D V�W 2 RO(K )P(K ) whereV and W are realK -modules. It suffices

to prove

ResGP
�
IndG

K V
� � ResGP

�
IndG

K W
�
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for all P 2 P(G). By the Mackey decomposition, we have

ResGP
�
IndG

K V
� D M

PgK2PnG=K

IndP
P\gKg�1

�
g� ResKK\g�1Pg V

�
,

ResGP
�
IndG

K W
� D M

PgK2PnG=K

IndP
P\gKg�1

�
g� ResKK\g�1Pg W

�
.

Since V � W 2 RO(K )P(K ), it follows that

ResKK\g�1Pg V � ResKK\g�1Pg W.

(2) Let x D V �W 2 RO(K )L(K ) whereV and W areL(K )-free realK -modules.
By definition, V K fpg D 0 D WK fpg

for all primes p. By the Mackey decomposition,
we have

ResGGfpg�IndG
K V

� D M
GfpggK2GfpgnG=K

IndGfpg
Gfpg\gKg�1

�
g� ResKK\g�1Gfpgg V

�
.

Clearly [K W (K \ Gfpg)] is a p-power. Thus we have

V K\Gfpg D (V K fpg
)(K\Gfpg)=K fpg

D 0(K\Gfpg)=K fpg
D 0.

Similarly, WK\Gfpg D 0. Thus
�
IndG

K V
�Gfpg D 0D �

IndG
K W

�Gfpg
.

Lemma 4.2. If K � G, then

ResGK (RO(G)P(G)) � RO(K )P(K ).

Moreover, if Gfpg D G (p ¤ 2) and K � Gf2g then

ResGK
�
RO(G)L(G)

P(G)

� � RO(K )L(K )
P(K ).

Proof. Let V � W 2 RO(G)P(G) where V and W are realG-modules. So

ResGP V � ResGP W

for all P 2 P(K ) � P(G). In general, ResKP
�
ResGK V

� D ResGP V . Therefore

ResKP
�
ResGK V

� � ResKP
�
ResGK W

�
.

Thus,

ResGK
�
RO(G)P(G)

� � RO(K )P(K ).
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SupposeGfpg D G (p ¤ 2) and K � Gf2g. SinceGf2g D K \ Gf2g E K , we have
K f2g � Gf2g. Since K f2g E K and Gf2g � K , we get K f2g E Gf2g. For all g 2 G, we
obtain

gK f2gg�1 � gGf2gg�1 D Gf2g.
Let a 2 Gf2g. Then

a(gK f2gg�1)a�1 D g(g�1ag)K f2g(g�1ag)�1g�1.

Since g�1ag 2 Gf2g and K f2g E Gf2g, we get (g�1ag)K f2g(g�1ag)�1 D K f2g. Thus

a(gK f2gg�1)a�1 D gK f2gg�1.

That is gK f2gg�1 E Gf2g. Set

SD \
g2G

gK f2gg�1.

Clearly, SE G. We know Gf2g=K f2g is a subgroup ofK=K f2g. Since K=K f2g is a
2-group, it follows thatGf2g=K f2g is a 2-group. It is easy to show thatGf2g=S is a
2-group. SinceG=Gf2g� (G=S)=(Gf2g=S), G=S is a 2-group. ThereforeSDGf2gD K f2g.

Let U1 � U2 2 RO(G)L(G) where U1 and U2 are L(G)-free real G-modules. We
obtain �

ResGK U1
�K f2g D U Gf2g

1 D 0

and �
ResGK U2

�K f2g D U Gf2g
2 D 0.

Let G D S5 � X2 and K D A5 � X2 where X2 D C2 � � � � � C2.

Proof of Lemma 1.7. The conjugacy classes of the maximal elementary subgroups
of G not belonging toK are represented byE1 D D8 � X2 and E2 D C6 � X2. As
E2 � H2 D D12� X2, by Brauer’s theorem [29, p. 78]

RO(G) D IndG
E1

RO(E1)C IndG
H2

RO(H2)C IndG
K RO(K ).

Thus we have

1R D IndG
E1

t C IndG
H2

uC IndG
K v

for some t 2 RO(E1), u 2 RO(H2) and v 2 RO(K ). Let x be an arbitrary element of
RO(G)L(G)

P(G). Then we have

x D IndG
E1

�
t � ResGE1

x
�C IndG

H2

�
u � ResGH2

x
�C IndG

K

�v � ResGK x
�
.
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Since E1 is a 2-group, ResGE1
x D 0 and hence

x D IndG
H2

�
u � ResGH2

x
�C IndG

K

�v � ResGK x
�
.

Let H � G anda 2 RO(H ). ThenP(H ) is a subset ofP(G). Thus for P 2 P(H ),
we have

ResHP
�
a � ResGH x

� D ResHP (a)
�
ResHP

�
ResGH x

��
D ResHP (a)

�
ResGP x

�
D ResHP (a) � 0
D 0.

Namely a � ResGH x 2 RO(H )P(H ).
SupposeA5 � H � G. Write a D U1 �U2 and x D V1 � V2 with real H -modules

U1 and U2 andL(G)-free realG-modulesV1 and V2. Then noteV A5
1 D V A5

2 D 0 and

a � ResGH x D ��
U1 
 ResGH V1

�� �
U2 
 ResGH V2

�	
� ��U1 
 ResGH V2

�� �
U2 
 ResGH V1

�	
.

Let W1 D �
U1
ResGH V1

���U2
ResGH V2
�

and W2 D �
U1
ResGH V2

���U2
ResGH V1
�
.

Since A5 does not have subgroups with index 2, we have

WA5
1 D �

U1 
 ResGH V1
�A5 � �

U2 
 ResGH V2
�A5

D �
U A5

1 
 �
ResGH V1

�A5
�� �

U A5
2 
 �

ResGH V2
�A5
�

D �
U A5

1 
 0
�� �

U A5
2 
 0

�
D 0.

Similarly, WA5
2 D 0. Therefore,a � ResGH x 2 RO(H )L(H )

P(H ). Consequently,

x D IndG
H2

�
u � ResGH2

x
�C IndG

K

�v � ResGK x
�

D IndG
H2

x1 C IndG
K x2

with x1 D u � ResGH2
x 2 RO(H2)P(H2) and x2 D v � ResGK x 2 RO(K )L(K )

P(K ).

In order to show IndGH2
x1 D 0, we regard

RO(H2) D RO(D12)
Z RO(X2)

in a canonical way. For eachT � X2 with [X2 W T ] � 2, there is a unique 1-dimensional
real X2-representation�T such that the kernel of�T is T . The set

f�T j T � X2, [X2 W T ] � 2g
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is a Z-basis of RO(X2). Thus we can regard

RO(H2) D RO(D12)�T1 � RO(D12)�T2 � � � � � RO(D12)�T2n .

We can writex1 above in the form

x1 D 2nX
iD1

uTi � �Ti

with uTi 2 RO(D12). Sincex 2 RO(G)L(G)
P(G) and IndGK x2 2 RO(G)L(G)

P(G), we get IndGH2
x1 2

RO(G)L(G)
P(G). Sincex1 2 RO(H2)P(H2), it must hold that

uTi 2 RO(D12)P2(D12)

for eachi and

2nX
iD1

uTi 2 RO(D12)P3(D12)

wherePp(H ) WD fP � H j P is a p-groupg.
RegardD12D ha,b,ci with aD (1, 2, 3), bD (1, 2), cD (4, 5). By a straightforward

computation [33], we can check thatfU1 � U2, U3 � U4g is a basis of RO(D12)P2(D12),
whereUi are realD12-modules of dimension 2 with action:

U1 W a 7! �
1 0
0 1

�
, b 7! �

1 0
0 �1

�
, c 7! �

1 0
0 1

�
,

U2 W a 7!
2
664

cos
2

3
� � sin

2

3
�

sin
2

3
� cos

2

3
�

3
775, b 7! �

1 0
0 �1

�
, c 7! �

1 0
0 1

�
,

U3 W a 7! �
1 0
0 1

�
, b 7! �

1 0
0 �1

�
, c 7! � �1 0

0 �1

�
,

U4 W a 7!
2
664

cos
2

3
� � sin

2

3
�

sin
2

3
� cos

2

3
�

3
775, b 7! �

1 0
0 �1

�
, c 7! � �1 0

0 �1

�
,

and �
IndS5

D12
(U1 �U2)

�S5 D R,
�
IndS5

D12
(U3 �U4)

�S5 D 0,�
IndS5

D12
(U1 �U2)

�A5 D R,
�
IndS5

D12
(U3 �U4)

�A5 D R.
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Then we can write IndGH2
x1 in the form

IndG
H2

x1 D 2nX
iD1

�
mTi IndS5

D12
(U1 �U2)C nTi IndS5

D12
(U3 �U4)

	 � �Ti .

Note �
IndG

H2
x1
�G D �

mX2

�
IndS5

D12
(U1 �U2)

�S5 C nX2

�
IndS5

D12
(U3 �U4)

�S5
	 � �X2

D mX2R � �X2

D 0.

This showsmX2 D 0. Next note�
IndG

H2
x1
�S5�Ti D �

mTi

�
IndS5

D12
(U1 �U2)

�S5 C nTi

�
IndS5

D12
(U3 �U4)

�S5
	 � �Ti

C nX2

�
IndS5

D12
(U3 �U4)

�S5 � �X2

D mTiR � �Ti

D 0.

This showsmTi D 0. Therefore we get the equality

IndG
H2

x1 D 2nX
iD1

nTi IndS5
D12

(U3 �U4) � �Ti .

The equalities �
IndG

H2
x1
�A5�X2 D nX2

�
IndS5

D12
(U3 �U4)

�A5 � �X2

D nX2R � �X2

D 0

conclude nX2 D 0. Similarly, we can shownTi D 0. Thus we have established
IndG

H2
x1 D 0.

5. Orientation triviality

We use the following notation.

HP(G, 2) WD f(H , P) 2 HP(G) j [H W P] D 2g,
HP(G, 2)0 WD f(H , P) 2 HP(G, 2) j [hH , Gf2gi W hP, Gf2gi] D 2

and hP, Gfqgi D G for any odd primeqg,
A(G) WD f(H , g) 2 S(G) � G j g 2 NG(H ), 9P G H satisfying (H , P) 2 HP(G, 2)g,
B(G) WD f(H , g) 2 S(G) � G j g 2 NG(H ), 9P G H satisfying (H , P) 2 HP(G, 2)0g.



THE SMITH SET OF S5 �C2 � � � � � C2 229

For each elementx D V � W 2 RO(G), we define a map

 W A(G) � RO(G) ! Z2

by

 ((H , g), x) D Ori(g, V H ) �Ori(g, WH )

where

Ori(g, V H ) D �
0 if g W V H ! V H is orientation preserving,
1 if g W V H ! V H is orientation reversing.

The value ((H , g), x) is also written as Ori(g, xH ).

Lemma 5.1. For a real G-module V and(H , g)2A(G), Ori(g, V H )DdimV hH ,g2i�
dim V hH ,gi (mod 2).

For a subsetC �A(G), x 2 RO(G) is calledorientation trivial onC if Ori(g, xH )D
0 for all (H , g) 2 C.

In the following, we always invoke the next hypothesis.

HYPOTHESIS 5.2. Let K be a gap subgroup ofG of index 2.

Let U be a K -module and setV D IndG
K U . If H � K then we have

ResGH V D M
HgK2HnG=K

IndH
H\g�1Kg g��ResKK\gHg�1 U

�
D �

ResKH U
�� g��ResKK\gHg�1 U

�
where g is an arbitrary element inG n K .

Lemma 5.3. Let U be a gap K-module. Then for VD IndG
K U and (H , P) 2

HP(K ), the inequalitydim V P > 2 dimV H holds.

Proof. By the formula above, we get dimV H DdimU HCdimU gHg�1
and dimV PD

dim U P C dim U gPg�1
. SinceU is a gapK -module, we have dimU P > 2 dimU H and

dim U gPg�1 >2 dimU gHg�1
. These imply dimV P >2 dimV H .

Lemma 5.4. Let V0�W0 2 RO(K )L(K )
P(K ) and U0 a gap K-module. Then V1 D V0�

(dimV0C1)U0 and W1 D W0� (dimV0C1)U0 are gap K-modules. For V D IndG
K V1,

WD IndG
K W1 and UD 2(dimV1C1)V (G), the real G-modules V�U and W�U fulfill

the gap condition for any(H , P) 2 HP(G) whenever H� K or (H , P) � HP(G, 2)0.
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Proof. Let (H , P) 2 HP(G). First observe the computation

dim V P
1 � 2 dimV H

1 D dim V P
0 � 2 dimV H

0 C (dim V0 C 1)(dimU P
0 � 2 dimU H

0 )

� dim V P
0 � 2 dimV H

0 C (dim V0 C 1)

� (dim V0 C 1)� dim V H
0

> 0.

Thus V1 is a gapK -module. Similarly,W1 is a gapK -module. By Lemma 5.3V and
W fulfill the gap condition for the pair (H , P) wheneverH � K .

Now assume (H , P) �HP(G, 2)0. By Lemma 2.1 (2), the inequality dimV(G)P >
2 dimV(G)H holds. Thus we get

dim(V �U )P � 2 dim(V �U )H D dim
�
IndG

K V1
�P � 2 dim

�
IndG

K V1
�H

C 2(dimV1 C 1)(dim V(G)P � 2 dimV(G)H )

� 2(dim V1 C 1)� dim
�
IndG

K V1
�H

� 2(dim V1 C 1)� dim IndG
K V1

> 0.

This shows thatV�U fulfills the gap condition for the pair (H , P). Similarly, W�U
fulfills the gap condition for the pair (H , P).

To apply Morimoto’s surgery result fory 2 IndG
K

�
RO(K )L(K )

P(K )

�
, we need to show

that y is orientation trivial on the set

AB(G)2 WD f(H , g) 2 B(G) j Ord(g) D 2l for somel 2 N and H � K g.
In Proposition 3.1, we checked the orientation triviality holds for the groupG D S5 �
C2. In order to show that the orientation triviality holds forG D S5 � X2 with X2 D
C2 � � � � � C2 (n-fold) such thatn � 2, we introduce the notation

AB(G)2even
WD f(H , g) 2AB(G)2 j jH j D 2k for somek 2 Ng

and

AB(G)2odd
WDAB(G)2 nAB(G)2even

.

We can prove the following two lemmas without difficulties.

Lemma 5.5. Let GD S5� X2 and aD (� , b) 2 G with � 2 S5 n A5 and b2 X2.
Then there exists an isomorphism' W G ! G such that
(1) '(� ) D a,
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(2) '(x) D x for all x 2 A5 [ X2, and
(3) ' Æ ' D idG.

Lemma 5.6. Let GD S5 � X2. Then the implication

AB(G)2even
� [

Y�G
YW 2-group

A(Y)

holds.

Then we have the next lemma.

Lemma 5.7. The implication

AB(G)2odd
� [

T�G
T�S5�C2

A(T)

holds.

Proof. Let (H , g) 2AB(G)2odd
. By definition, we getH � A5 D Gf2g as well as

H � K . It is easy to show the following.
(1) jH j D 2p for p D 3 or 5.
(2) H has a unique (normal) Sylowp-subgroupP D hui such that the order ofu is p.
(3) P is a unique (normal) Sylowp-subgroup ofL D hH , gi (� G).
(4) P � A5.

Since pD 3 or 5, H is isomorphic toC2p or D2p. Thus, we can takea 2 H n A5

of order 2. Write

a D (� , b)

and

g D (� , c)

with � , � 2 S5 andb, c 2 X2. SinceH � K , � � A5. In addition, since the order ofg
is a power of 2 by definition, the order is 2 or 4. There exists anisomorphism'W G!
G such that'(H ) � S5 and 'jX2 D idX2. Then'(L) D h'(H ), '(g)i is a subgroup of
S5 � hci. Thus (L, g) belongs toA(T) for someT � G such thatT � S5 � C2.

Lemma 5.8. Let GD S5 � X2 and K D A5 � X2. For an arbitrary element x2
RO(K )L(K )

P(K ), y D IndG
K x is orientation trivial onAB(G)2.
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Proof. By Lemmas 5.6 and 5.7, the implication

AB(G)2 � [
T�G

T�S5�C2

A(T) [ [
Y�G

YW 2-group

A(Y)

holds. Clearly, y is orientation trivial onA(Y) becauseY is a 2-group. In the proof
of Proposition 3.1, we saw that for the basis elementy D V �W of RO(T)L(T)

P(T), V �
2U and W � 2U satisfy the weak gap condition. Thus each element of RO(T)L(T)

P(T) is
orientation trivial onA(T).

6. Completion of proofs of Theorems A and B

In this section, we proceed as follows. Firstly, we give proofs of Lemmas 1.4
and 1.6. Secondly, forG D S5 � X2 and A5 � X2, we compute the rank of the Smith
set of G.

Proof of Lemma 1.4. LetK D A5 � X2. Since A5 is a simple group, it follows
that K f2g D A5 and K fpg D K (p¤ 2). ThusK nil D A5, and K=K nil � X2. Clearly K
contains no elements of 8.K is an Oliver group, becauseK is non-solvable. Clearly
P(K ) \ L(K ) D ;. Since A5 � C2 is a gap group (see the proof of Proposition 3.1),
by [17, Theorem 0.4], it follows thatK is a gap group.

Proof of Lemma 1.6. For arbitraryx 2 RO(G)L(G)
P(G), there exists an elementy 2

RO(K )L(K )
P(K ) such thatx D IndG

K y. Let y D V0�W0 such thatV0 and W0 areL(K )-free
real K -modules, andU0 L(K )-free gapK -module. ThenV1 D V0 � (dim V0 C 1)U0

and W1 D W0 � (dim V0 C 1)U0 are L(K )-free gap K -modules. SetV D IndG
K V1,

W D IndG
K W1 and U D maxf6, 2(dimV1 C 1)gV (G).

For subgroupsH , K of G and a realG-module X,

ResGH
�
IndG

K X
� D M

HgK2HnG=K

IndH
H\gKg�1

�
g� ResKK\g�1Hg X

�

D
(

ResKH X � g� ResKg�1Hg X if H � K (here g 2 S5 n A5),

IndH
H\K

�
ResKH\K X

�
if H � K .

Hence

dim
�
IndG

K X
�H D �

dim XH C dim Xg�1Hg if H � K (here g 2 S5 n A5),
dim XH\K if H � K .

Let (H , P) 2 HP(G, 2).
CASE H � K . By Lemma 5.4,V � U and W � U satisfy the gap condition

for (H , P).
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CASE P � K . We obtain

dim V P � 2 dimV H D dim V P\K
1 � 2 dimV H\K

1 .

Note [H \ K W P \ K ] D 2, because [P W P \ K ] D 2 and [H W H \ K ] D 2. Thus

dim V P\K
1 � 2 dimV H\K

1 > 0.

By Lemma 2.1 (1), dimU P � 2 dimU H . Thus V � U satisfies the gap condition for
(H , P). Similarly W�U satisfies the gap condition for (H , P).

CASE P � K , H � K . For an elementg 2 H n P, we obtain

dim V P � 2 dimV H D dim V P
1 C dim Vg�1Pg

1 � 2 dimV H\K
1 .

Since P G H and H \ K D P, it follows that

dim V P
1 C dim Vg�1Pg

1 � 2 dimV H\K
1 D 2 dimV P

1 � 2 dimV P
1

D 0.

By Lemma 5.8,V � W is orientation trivial onAB(G)2. Thus V � U satisfies (WG6).
By [8, Corollary 3.5], 6V(G) satisfies (WG1)–(WG6). HenceV �U satisfies (WG1),
(WG2), (WG4), (WG5). By [12, Theorem 2.5],V � U satisfies (WG3). Similarly
W�U satisfies the weak gap condition.

Let H be a normal subgroup ofG. We denote bybG,H the number of real con-
jugacy classes (gH)� in G=H of cosetsgH containing elements ofG not of prime
power order.

Lemma 6.1. If Gnil D Gfpg for some prime p, then

RankZ�RO(G)L(G)
P(G)

� D aG � bG,Gnil .

Proof. By [21, p. 858, Subgroup Lemma], we have

RO(G)fGnilg
P(G) � RO(G)L(G)

P(G) � RO(G)fGfpgg
P(G) .

Since Gnil D Gfpg, it follows RO(G)fGnilg
P(G) D RO(G)L(G)

P(G). By [21, p. 856, Second Rank
Lemma],

RankZ�RO(G)L(G)
P(G)

� D RankZ�RO(G)fGnilg
P(G)

�
D aG � bG,Gnil .
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Proposition 6.2. Let GD S5 � X2 and K D A5 � X2 where X2 D C2 � � � � � C2

(n-folds). Then the following hold.
(1) aG D 1C 3(2n � 1) and bG,Gnil D 2nC1 � 1.
(2) aK D 3(2n � 1) and bK ,K nil D 2n � 1.

The proof is straightforward.
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