THE SMITH SET OF THE GROUP $S_{5} \times C_{2} \times \cdots \times C_{2}$

XianMeng JU

(Received July 2, 2008, revised October 24, 2008)

Abstract

In 1960, P.A. Smith raised an isomorphism problem. Is it true that the tangential G-modules at two fixed points of an arbitrary smooth G-action on a sphere with exactly two fixed points are isomorphic to each other? Given a finite group, the Smith set of the group means the subset of real representation ring consisting of all differences of Smith equivalent representations. Many researchers have studied the Smith equivalence for various finite groups. But the Smith sets for non-perfect groups were rarely determined. In particular, the Smith set for a non-gap group has not been determined unless it is trivial. We determine the Smith set for the non-gap group $G=S_{5} \times C_{2} \times \cdots \times C_{2}$.

1. Introduction

Throughout this paper, let G be a finite group. In 1960, P.A. Smith [30] raised the next problem.

Smith isomorphism problem. Is it true that the tangential G-modules at two fixed points of an arbitrary smooth G-action on a sphere with exactly two fixed points are isomorphic to each other?

Following [25], two real G-modules V and W are called Smith equivalent if there exists a smooth action of G on a homotopy sphere S such that $S^{G}=\{x, y\}$ for two points x and y at which $T_{x}(S) \cong V$ and $T_{y}(S) \cong W$ as real G-modules.

Let $\operatorname{RO}(G)$ denote the real representation ring of G. Define the Smith set $\operatorname{Sm}(G)$ to be

$$
\operatorname{Sm}(G):=\{[V]-[W] \in \operatorname{RO}(G) \mid V \text { and } W \text { are Smith equivalent }\} .
$$

In general, we don't know whether $\operatorname{Sm}(G)$ is a subgroup of $\mathrm{RO}(G)$. The Smith isomorphism problem can be restated as follows.

Smith isomorphism problem. Is it true that $\operatorname{Sm}(G)=0$?

It is easy to show that the answer is affirmative if G is a group such that each element has the order 1, 2 or 4 . Important breakthroughs on the problem came in the following.
(1) M.F. Atiyah-R. Bott [1]: If $G=C_{p}$, a cyclic group of order p, where p an odd prime, then $\operatorname{Sm}(G)=0$.
(2) J. Milnor [11]: If G is a compact group and the action semi-free, then $T_{x}(S) \cong T_{y}(S)$.
(3) C.U. Sanchez [28]: If G is a group with odd-prime-power order or G is a group with $|G|=p q$, where p and q are odd primes, then $\operatorname{Sm}(G)=0$.
(4) T. Petrie [24], [26]: If G is an odd order finite abelian group with at least four non-cyclic Sylow subgroups, then $\operatorname{Sm}(G) \neq 0$.
(5) S.E. Cappell-J.L. Shaneson [2]: If G is a cyclic group of order $4 m$ such that $m \geq 2$ then $\operatorname{Sm}(G) \neq 0$.
By the character theory, we have $\operatorname{Sm}\left(C_{6}\right)=0$ and $\operatorname{Sm}\left(D_{6}\right)=0$ where D_{6} is a dihedral group of order 6. So, C_{8} is the smallest group with $\operatorname{Sm}(G) \neq 0$. T. Petrie and his collaborators found various pairs of non-isomorphic Smith equivalent real G-modules, e.g. K.H. Dovermann-T. Petrie [3], K.H. Dovermann-D.Y. Suh [5].

In 1996, in the case where G is an Oliver group, E. Laitinen [10, Appendix] lighted the problem again with the next conjecture.
$\boldsymbol{A}_{\boldsymbol{G}}$-Conjecture. If G is an Oliver group with $a_{G} \geq 2$, then $\operatorname{Sm}(G) \neq 0$.
After E. Laitinen-M. Morimoto [8], a finite group G is called an Oliver group if and only if G never admits a normal series

$$
P \unlhd H \unlhd G
$$

such that $|P|$ and $[G: H]$ are prime powers and H / P is a cyclic group. For an element $g \in G$, let (g) denote the conjugacy class of g in G. The union $(g)^{ \pm}=(g) \cup\left(g^{-1}\right)$ is called the real conjugacy class of g in G. Let a_{G} denote the number of the real conjugacy classes $(g)^{ \pm}$in G such that the order of g is not a prime power.

We have affirmative answers for the A_{G}-Conjecture in the following cases.

- E. Laitinen-K. Pawałowski [10]: G is a finite perfect group.
- E. Laitinen-K. Pawałowski [10]: $G \cong A_{n}, \operatorname{SL}(2, p)$ or $\operatorname{PSL}(2, q)$ where n is a natural number, and p and q are primes.
- K. Pawałowski-R. Solomon [21]: G is a finite Oliver group of odd order.
- K. Pawałowski-R. Solomon [21]: G is a finite Oliver group with a cyclic quotient of order $p q$ for two distinct odd primes p and q.
- K. Pawałowski-R. Solomon [21]: G is a finite non-solvable gap group and $G \not \equiv$ $\operatorname{P} \Sigma \mathrm{L}(2,27)$, where $\operatorname{P} \Sigma \mathrm{L}(2,27)$ is the splitting extension of $\operatorname{PSL}(2,27)$ by the group $\operatorname{Aut}\left(\mathbb{F}_{27}\right)$.
- M. Morimoto [13]: $G \cong \mathrm{P} \Sigma \mathrm{L}(2,27)$.

In 2006, M. Morimoto gave a counterexample to the A_{G}-Conjecture.

- M. Morimoto [14]: If $G=\operatorname{Aut}\left(A_{6}\right)$, then $a_{G}=2$ and $\operatorname{Sm}(G)=0$.

We refer to the articles [27], [4], [20], [6] for survey of related results. K. PawałowskiT. Sumi claim $\operatorname{Sm}(G) \neq 0$ for many Oliver groups G such that $a_{G} \geq 2$ and G is not a gap group. Recent information of this topic is found in [22], [32] and [23].

For a prime p, let $G^{\{p\}}$ denote the smallest normal subgroup H of G such that [$G: H$] is a power of p (possibly 1). Let $G^{\text {nil }}$ denote the smallest normal subgroup H of G such that G / H is nilpotent. It is known that

$$
G^{\mathrm{nil}}=\bigcap_{p} G^{\{p\}}
$$

We introduce notation for several families consisting of subgroups of G.

$$
\begin{aligned}
& \mathcal{S}(G):=\{H \leq G\} . \\
& \mathcal{P}(G):=\{P \in \mathcal{S}(G) \mid P \text { is a } p \text {-subgroup } \\
&\quad \text { for some prime } p \text { (possibly a trivial group) }\} . \\
& \mathcal{L}(G):=\left\{L \in \mathcal{S}(G) \mid G^{\{p\}} \subseteq L \text { for some prime } p\right\} . \\
& \mathcal{G}^{1}(G):=\{H \in \mathcal{S}(G) \mid \exists P \unlhd H \text { and } H / P \text { is cyclic for some } P \in \mathcal{P}(G)\} .
\end{aligned}
$$

Let \mathcal{X} and \mathcal{Y} be families consisting of subgroups of G. A real G-module V is said to be \mathcal{X}-free if $V^{H}=0$ for any $H \in \mathcal{X}$. If M is a subset of $\operatorname{RO}(G)$ then for the families \mathcal{X}, \mathcal{Y}, we define

$$
\begin{aligned}
& M_{\mathcal{X}}:=\left\{x=V-W \in M \mid \operatorname{Res}_{H}^{G} V \cong \operatorname{Res}_{H}^{G} W \text { for all } H \in \mathcal{X}\right\}, \\
& M^{\mathcal{Y}}:=\{x=V-W \in M \mid V \text { and } W \text { are } \mathcal{Y} \text {-free }\}, \\
& M_{\mathcal{X}}^{\mathcal{Y}}:=M_{\mathcal{X}} \cap M^{\mathcal{Y}} .
\end{aligned}
$$

Let $\mathcal{H P}(G)$ denote the set of all pairs (H, P) consisting of $H \in \mathcal{S}(G)$ and $P \in \mathcal{P}(H)$ such that $P \neq H$. A real G-module V is called a gap module if it satisfies $\operatorname{dim} V^{P}>$ $2 \operatorname{dim} V^{H}$ for all pairs $(H, P) \in \mathcal{H} \mathcal{P}(G)$. A finite group G is called a gap group if G admits a $\mathcal{L}(G)$-free gap module. Let $V^{=H}$ denote the set consisting of all points $x \in V$ with isotropy subgroup $G_{x}=H$, and $\operatorname{dim} V^{=H}$ as the maximum of the dimension of all connected components of $V=H$. A real G-module V is said to satisfy the weak gap condition if it satisfies the following.
(WG1) $\operatorname{dim} V^{P} \geq 2 \operatorname{dim} V^{H}$ for all pairs $(H, P) \in \mathcal{H} \mathcal{P}(G)$.
(WG2) If $\operatorname{dim} V^{P}=2 \operatorname{dim} V^{H}$ for a pair $(H, P) \in \mathcal{H} \mathcal{P}(G)$, then $[H: P]=2$.
(WG3) If $\operatorname{dim} V^{P}=2 \operatorname{dim} V^{H}$ and $\operatorname{dim} V^{P}=2 \operatorname{dim} V^{K}$ for pairs $(H, P),(K, P) \in$ $\mathcal{H} \mathcal{P}(G)$ respectively, then $\langle H, K\rangle$ belongs to $\mathcal{S}(G) \backslash \mathcal{L}(G)$.
(WG4) $\operatorname{dim} V^{P} \geq 5$ for all $P \in \mathcal{P}(G)$.
(WG5) $\operatorname{dim} V^{=H} \geq 2$ for all $H \in \mathcal{G}^{1}(G)$.
(WG6) If $\operatorname{dim} V^{P}=2 \operatorname{dim} V^{H}$ for a pair $(H, P) \in \mathcal{H} \mathcal{P}(G)$, then for all $g \in N_{G}(P) \cap$ $N_{G}(H)$, the associated transformations $g: V^{H} \rightarrow V^{H}$ are orientation preserving.

Throughout this paper let X_{2} be a finite group isomorphic to a direct product of groups isomorphic to C_{2}, namely $X_{2} \cong C_{2} \times \cdots \times C_{2}$ (n-fold) where C_{2} is the cyclic group of order 2. Let S_{5} be the symmetric group on the five letters, and A_{5} be the alternating group on the five letters.

Many authors have studied the Smith equivalence for various finite groups. But the Smith sets $\operatorname{Sm}(G)$ were rarely determined. In particular, when G is a non-solvable, non-perfect group, the $\operatorname{Smith} \operatorname{set} \operatorname{Sm}(G)$ was not determined except the case $\operatorname{Sm}(G)=$ 0 . Most finite Oliver groups are gap group, while neither $S_{5} \operatorname{nor} \operatorname{Aut}\left(A_{6}\right)$ is a gap group. We have interested in the group S_{5}, because it is an Oliver group which is not a gap group, but it's subgroup A_{5} is an Oliver and gap group. In fact $\operatorname{Sm}\left(S_{5}\right)=$ $\operatorname{Sm}\left(A_{5}\right)=0\left(\left[21\right.\right.$, Example E4, E5]). But what about the case $S_{5} \times X_{2}$ and $A_{5} \times X_{2}$?

Theorem A. If $K=A_{5} \times X_{2}$ then $\operatorname{Sm}(K)=\operatorname{RO}(K)_{\mathcal{P}(K)}^{\mathcal{L}(K)} \cong \mathbb{Z}^{2\left(2^{n}-1\right)}$.
This theorem follows from the following 4 lemmas, and the rank of the Smith set follows from Lemma 6.1 and Proposition 6.2.

Lemma 1.1 (K. Pawałowski-R. Solomon). If G is an Oliver, gap group, then $\operatorname{Sm}(G) \supseteq \operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$.

This result was given as [21, p. 850, Realization Theorem]. The next lemma is well known (see [10, Lemma 2.6]).

Lemma 1.2. If G contains no elements of order 8 , then $\operatorname{Sm}(G)=\operatorname{Sm}(G)_{\mathcal{P}(G)}$.
Lemma 1.3. If $G / G^{\text {nil }}$ is isomorphic to a direct product of groups isomorphic to C_{2}, then $\operatorname{Sm}(G)_{\mathcal{P}(G)} \subseteq \operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$.

This lemma immediately follows from [14, Proposition 2.2].
Lemma 1.4. If $K=A_{5} \times X_{2}$ then the following hold.
(1) K is an Oliver, gap group.
(2) K does not contain an element of order 8 .
(3) $K^{\text {nil }}=A_{5}$ and $K / K^{\text {nil }} \cong X_{2}$.

The purpose of this paper is to show the next.
Theorem B. If $G=S_{5} \times X_{2}$ then $\operatorname{Sm}(G)=\operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)} \cong \mathbb{Z}^{2^{n}-1}$.
For $G=S_{5} \times X_{2}$, we can check the following.
(1) G is an Oliver, but not a gap group.
(2) G does not contain an element of order 8 .
(3) $G^{\mathrm{nil}}=A_{5}\left(\subseteq S_{5}\right)$ and $G / G^{\mathrm{nil}} \cong C_{2} \times X_{2}$.

To prove Theorem B, we need to obtain an extended result of Lemma 1.1. Thus we will prove the next lemma.

Lemma 1.5. Let G be an Oliver group. For $x=V_{0}-W_{0} \in \operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$ such that V_{0} and W_{0} are $\mathcal{L}(G)$-free real G-modules, if there exists a real G-module U such that $V_{0} \oplus U$ and $W_{0} \oplus U$ are $\mathcal{L}(G)$-free and satisfy the weak gap condition, then $x \in \operatorname{Sm}(G)$.

In addition, we will show
Lemma 1.6. Let $G=S_{5} \times X_{2}$. For each $x \in \operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$, there exist real G-modules U, V and W such that $x=V-W$, and $V \oplus U$ and $W \oplus U$ are $\mathcal{L}(G)$-free and satisfy the weak gap condition.

Hence Theorem B follows from Lemmas 1.2, 1.3, 1.5 and 1.6, and the rank of the Smith set follows from Lemma 6.1 and Proposition 6.2. A key to proving Lemma 1.6 is the next.

Lemma 1.7. If $K=A_{5} \times X_{2}$ and $G=S_{5} \times X_{2}$ then

$$
\operatorname{Ind}_{K}^{G}\left(\operatorname{RO}(K)_{\mathcal{P}(K)}^{\mathcal{L}(K)}\right)=\operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}
$$

The organization of the paper is as follows. Section 2 is devoted to describing lemmas which are useful to construct smooth G-actions on spheres with non-isomorphic Smith equivalent tangential modules for a general Oliver group G, and we give a proof of Lemma 1.5. In Section 3 we exhibit results on the groups $K=A_{5} \times C_{2}$ and $G=S_{5} \times$ C_{2} obtained by concrete computation and show that $\operatorname{Sm}(K)$ and $\operatorname{Sm}(G)$ are isomorphic to \mathbb{Z}^{2} and \mathbb{Z}, respectively. In Section 4 we observe the induction homomorphism $\operatorname{Ind}_{K}^{G}: \mathrm{RO}(K) \rightarrow \mathrm{RO}(G)$ and the restriction homomorphism $\operatorname{Res}_{K}^{G}: \mathrm{RO}(G) \rightarrow \mathrm{RO}(K)$, and prove Lemma 1.7. In Section 5 we introduce the notion of orientation triviality. Section 6 completes proofs of Theorems A and B.

2. Construction of non-isomorphic Smith equivalent \boldsymbol{G}-modules

If G is not of prime power order, define a real G-module $V(G)$ by

$$
V(G):=(\mathbb{R}[G]-\mathbb{R})-\bigoplus_{p}\left(\mathbb{R}\left[G / G^{\{p\}}\right]-\mathbb{R}\right)
$$

where p runs over the set of primes dividing $|G|$. Let $k V(G)=V(G) \oplus \cdots \oplus V(G)$ (k-fold). We recall some properties of $V(G)$.

Lemma 2.1 (E. Laitinen-M. Morimoto). For any finite group G, the module $V(G)$ satisfies the following properties.
(1) $\operatorname{dim} V(G)^{P} \geq 2 \operatorname{dim} V(G)^{H}$ for all $(H, P) \in \mathcal{H} \mathcal{P}(G)$.
(2) Suppose $(H, P) \in \mathcal{H} \mathcal{P}(G)$ and $P \in \mathcal{S}(G) \backslash \mathcal{L}(G)$. Then $\operatorname{dim} V(G)^{P}=2 \operatorname{dim} V(G)^{H}$ holds if and only if $[H: P]=2,\left[\left\langle H, G^{\{2\}}\right\rangle:\left\langle P, G^{\{2\}}\right\rangle\right]=2$ and $\left\langle P, G^{\{p\}}\right\rangle=G$ for all odd prime p.

This Lemma was given as [8, Theorem 2.3]. Reader can refer to [8] for fundamental properties of $V(G)$.

Lemma 2.2. Let G be an Oliver group, n an integer ≥ 1, and V and W real G-modules. Suppose the following (1)-(3):
(1) There exists a smooth G-action on a homotopy sphere Σ_{1} with exactly one G-fixed point, x_{1} say, such that the tangential G-module $T_{x_{1}}\left(\Sigma_{1}\right)$ at x_{1} of Σ_{1} is isomorphic to $V \oplus n V(G)$.
(2) There exists a smooth G-action on a homotopy sphere Σ_{2} with exactly one G-fixed point, x_{2} say, such that $T_{x_{2}}\left(\Sigma_{2}\right)$ is isomorphic to $W \oplus n V(G)$.
(3) There exists a smooth G-action on a disk Δ with exactly two G-fixed points, y_{1} and y_{2} say, such that $T_{y_{1}}(\Delta)$ and $T_{y_{2}}(\Delta)$ are isomorphic to $V \oplus n V(G)$ and $W \oplus n V(G)$ respectively.
Then there exists a smooth G-action on a standard sphere Σ with exactly two G-fixed points, z_{1} and z_{2} say, such that $T_{z_{1}}(\Sigma)$ and $T_{z_{2}}(\Sigma)$ are isomorphic to $V \oplus n V(G)$ and $W \oplus n V(G)$ respectively. Hence the element $V-W$ of $\mathrm{RO}(G)$ belongs to $\operatorname{Sm}(G)$.

Proof. Let Σ_{1}, Σ_{2} and Δ be spheres and a disk appearing in (1)-(3) above. Let Σ_{3} denote the sphere obtained as the double of Δ, namely $\Sigma_{3}=\Delta \cup \Delta^{\prime}$, where Δ^{\prime} is a copy of Δ. Then Σ_{3}^{G} consists of $y_{1}, y_{2}, y_{1}^{\prime}$ and y_{2}^{\prime} such that $T_{y_{1}}\left(\Sigma_{3}\right)=T_{y_{1}^{\prime}}\left(\Sigma_{3}\right) \cong$ $V \oplus n V(G)$ and $T_{y_{2}}\left(\Sigma_{3}\right)=T_{y_{2}^{\prime}}\left(\Sigma_{3}\right) \cong W \oplus n V(G)$. Let Σ_{4} denote the G-connected sum of Σ_{3} with Σ_{1} and Σ_{2} with respect to the pairs of points $\left(y_{1}^{\prime}, x_{1}\right)$ and $\left(y_{2}^{\prime}, x_{2}\right)$. Since $n \geq 1$, $\operatorname{dim} \Sigma_{3}^{P} \geq 2$ and Σ_{3} contains (infinitely many) points of isotropy subgroup P for each Sylow subgroup of G. By the [9, Proposition 1.3], we can obtain the standard sphere Σ as the resulting manifold of iterated G-connected sum of Σ_{3} with copies of $G \times{ }_{P} \operatorname{Res}_{P}^{G} \Sigma_{3}$, where P runs over the set of all Sylow subgroups of G.

Lemma 2.3 (M. Morimoto). Let G be an Oliver group and V an $\mathcal{L}(G)$-free real G-module satisfying the weak gap condition. Then there exists a smooth G-action on a sphere Σ_{1} with exactly one G-fixed point, x_{1} say, such that $T_{x_{1}}\left(\Sigma_{1}\right)$ is isomorphic to V.

Proof. By [18], Oliver group has a smooth fixed-point-free action on a disk. Thus we can construct a smooth action of G on a disk $D=D(V)$ with exactly one G-fixed point x_{1}. Taking the double of D, we obtain a smooth action of G on $\Sigma_{1}=D \cup_{\partial D} D$
with $\Sigma_{1}^{G}=\left\{x_{1}, x_{2}\right\}$. Clearly $\Sigma_{1} \cong_{G} S(\mathbb{R} \oplus V)$. We can check that the action of G on Σ_{1} satisfies Conditions (1)-(5) of [16, Theorem 36]. Therefore we can delete x_{2} from Σ_{1}^{G}. Namely there exists a smooth action of G on a sphere Σ_{2} with exactly one G-fixed point.

Lemma 2.4 (B. Oliver, M. Morimoto-K. Pawałowski). Let G be an Oliver group and V_{1} and $W_{1} \mathcal{L}(G)$-free real G-modules such that $\operatorname{Res}_{P}^{G} V_{1}$ is isomorphic to $\operatorname{Res}_{P}^{G} W_{1}$ for all Sylow subgroups P. Then there exists an integer N such that for every $n \geq N$, the m-dimensional disk Δ, where $m=\operatorname{dim} V_{1}+n \operatorname{dim} V(G)$, admits a smooth G-action with exactly two G-fixed points, y_{1} and y_{2} say, such that $T_{y_{1}}(\Delta)$ and $T_{y_{2}}(\Delta)$ are isomorphic to $V_{1} \oplus n V(G)$ and $W_{1} \oplus n V(G)$ respectively.

This lemma follows from [15, Theorem 0.3] but crucial part of the proof was due to [19].

Proof of Lemma 1.5. Set $V_{1}=V_{0} \oplus U$ and $W_{1}=W_{0} \oplus U$. Clearly, V_{1} and W_{1} are $\mathcal{L}(G)$-free real G-modules such that $\operatorname{Res}_{P}^{G} V_{1} \cong \operatorname{Res}_{P}^{G} W_{1}$ for all Sylow subgroups P. Apply Lemma 2.4 to V_{1} and W_{1}, for finding an integer N such that for each $k \geq N$, putting $n=2 k$, there exists a smooth G-action on a disk Δ described in Lemma 2.4. Set $V=V_{1} \oplus 2 k V(G)$, and $W=W_{1} \oplus 2 k V(G)$, where $k \geq N$. Apply Lemma 2.3 to V for obtaining a smooth G-action on a sphere Σ_{1} described in Lemma 2.4. Then $V_{1} \oplus 2 k V(G)$ and $W_{1} \oplus 2 k V(G)$ satisfy the weak gap condition. Obtain Σ_{2} for W similarly to Σ_{1} replacing V by W. Then by Lemma 2.2 , we obtain a desired smooth G-action on the m-dimensional sphere Σ for arbitrary $k \geq N$.

3. Computation of $\operatorname{Sm}\left(S_{5} \times C_{2}\right)$

Proposition 3.1. The following equalities hold for $G=S_{5} \times C_{2}$ and $K=A_{5} \times C_{2}$. (1) $\operatorname{Sm}(K) \cong \mathbb{Z}^{2}$ and $\operatorname{Sm}(G) \cong \mathbb{Z}$.
(2) $\operatorname{Ind}_{K}^{G}(\operatorname{Sm}(K))=\operatorname{Sm}(G)$.

Here the map $\operatorname{Ind}_{K}^{G}: \operatorname{RO}(K) \rightarrow \mathrm{RO}(G)$ is the induction homomorphism:

$$
[V] \mapsto\left[\mathbb{R}[G] \otimes_{\mathbb{R}[K]} V\right]
$$

Proof. (1) By means of GAP [33], the irreducible complex characters of $K=$ $A_{5} \times C_{2}$ are as in Table 1. The notation in the table reads that, for example in the case " 5 b ", the first letter 5 of " 5 b " indicates the order of an element belonging to the corresponding conjugacy class and the second letter b of " 5 b " is used to distinguish conjugacy classes.

Since A_{5} is a simple group, it follows that $K^{\{2\}}=A_{5}$ and $K^{\{p\}}=K(p \neq 2)$. Thus $K^{\text {nil }}=A_{5}$, and $K / K^{\text {nil }} \cong C_{2}$. Clearly K contains no elements of 8 .
K is an Oliver group, because K is non-solvable. Let $\left\{\delta_{i}, 1 \leq i \leq 8\right\}$ be the \mathbb{Z}-basis of $\operatorname{RO}(K)$ such that the complification of δ_{i} is $\delta_{i \mathrm{C}}$. In fact, $4 \delta_{3}+3 \delta_{5}+\delta_{7}+2 \delta_{8}+$

Table 1. The complex characters of $K=A_{5} \times C_{2}$ where $A=$ $-\omega-\omega^{4}=(1-\sqrt{5}) / 2, \hat{A}=-\omega^{2}-\omega^{3}=(1+\sqrt{5}) / 2, \omega=$ $\exp (2 \pi \sqrt{-1}) / 5$.

	1 a	2 a	3 a	6 a	2 b	2 c	5 a	10 a	5 b	10 b
$\delta_{1 \mathbb{C}}$	1	1	1	1	1	1	1	1	1	1
$\delta_{2 \mathbb{C}}$	1	-1	1	-1	1	-1	1	-1	1	-1
$\delta_{3 \mathbb{C}}$	3	3	0	0	-1	-1	A	A	\hat{A}	\hat{A}
$\delta_{4 \mathbb{C}}$	3	3	0	0	-1	-1	\hat{A}	\hat{A}	A	A
$\delta_{5 \mathbb{C}}$	3	-3	0	0	-1	1	A	$-A$	\hat{A}	$-\hat{A}$
$\delta_{6 \mathbb{C}}$	3	-3	0	0	-1	1	\hat{A}	$-\hat{A}$	A	$-A$
$\delta_{7 \mathbb{C}}$	4	4	1	1	0	0	-1	-1	-1	-1
$\delta_{8 \mathbb{C}}$	4	-4	1	-1	0	0	-1	1	-1	1
$\delta_{9 \mathbb{C}}$	5	5	-1	-1	1	1	0	0	0	0
$\delta_{10 \mathbb{C}}$	5	-5	-1	1	1	-1	0	0	0	0

$\delta_{9}+3 \delta_{10}$ is a $\mathcal{L}(K)$-free gap K-module, so K is a gap group. (The fact that K is a gap group was theoretically proved by T. Sumi [31, Proposition 3.3].) By Lemmas 1.1, 1.2, and 1.3, we get $\operatorname{Sm}(K)=\operatorname{RO}(K)_{\mathcal{P}(K)}^{\mathcal{L}(K)}$.

By a straightforward computation [33], a \mathbb{Z}-basis of $\operatorname{RO}(K)_{\mathcal{P}(K)}^{\mathcal{L}(K)}$ is $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right\}$, where $\boldsymbol{x}_{1}=\delta_{3}-\delta_{5}-2 \delta_{7}+2 \delta_{8}+\delta_{9}-\delta_{10}, \boldsymbol{x}_{2}=\delta_{4}-\delta_{6}-2 \delta_{7}+2 \delta_{8}+\delta_{9}-\delta_{10}$.
(2) By means of GAP [33], the irreducible complex characters of $G=S_{5} \times C_{2}$ are as in Table 2.

Since A_{5} is a simple group, it follows that $G^{\{2\}}=A_{5}$ and $G^{\{p\}}=G(p \neq 2)$. Thus $G^{\text {nil }}=A_{5}$, and $G / G^{\text {nil }} \cong C_{2} \times C_{2}$. Clearly G contains no elements of $8 . G$ is an Oliver group, because G is non-solvable. By Lemmas 1.2 and 1.3, $\operatorname{Sm}(G) \subseteq \operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$.

Let $\left\{\xi_{i}, 1 \leq i \leq 14\right\}$ be the \mathbb{Z}-basis of $\mathrm{RO}(G)$ such that the complification of ξ_{i} is $\xi_{i \mathbb{C}}$. By a straightforward computation [33], $\operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)} \cong \mathbb{Z}$. We take the \mathbb{Z}-basis element $\boldsymbol{y}=V-W$ of $\operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$ such that $V=2 \xi_{5}+2 \xi_{7}+\xi_{10}+\xi_{12}+\xi_{14}$ and $W=2 \xi_{6}+2 \xi_{8}+\xi_{9}+\xi_{11}+\xi_{13}$. Let $U=\xi_{5}+2 \xi_{6}+2 \xi_{8}+3 \xi_{10}+3 \xi_{12}$. We can check that $V \oplus 2 U$ and $W \oplus 2 U$ satisfy the weak gap condition. By Lemma 1.5 , we obtain $n \boldsymbol{y} \in \operatorname{Sm}(G)$ for any $n \in \mathbb{Z}$, thus $\{\boldsymbol{y}\}$ is a \mathbb{Z}-basis of $\operatorname{Sm}(G)$.

Since the equalities

$$
\begin{array}{ll}
\operatorname{Ind}_{K}^{G} \delta_{1}=\xi_{1}+\xi_{4}, & \operatorname{Ind}_{K}^{G} \delta_{2}=\xi_{2}+\xi_{3}, \\
\operatorname{Ind}_{K}^{G} \delta_{3}=\xi_{13}, & \operatorname{Ind}_{K}^{G} \delta_{4}=\xi_{13}, \\
\operatorname{Ind}_{K}^{G} \delta_{5}=\xi_{14}, & \\
\operatorname{Ind}_{K}^{G} \delta_{6}=\xi_{14}, \\
\operatorname{Ind}_{K}^{G} \delta_{7}=\xi_{5}+\xi_{7}, & \operatorname{Ind}_{K}^{G} \delta_{8}=\xi_{6}+\xi_{8}, \\
\operatorname{Ind}_{K}^{G} \delta_{9}=\xi_{9}+\xi_{11}, & \operatorname{Ind}_{K}^{G} \delta_{10}=\xi_{10}+\xi_{12}
\end{array}
$$

Table 2. The complex characters of $G=S_{5} \times C_{2}$.

	1 a	2 a	2 b	2 c	3 a	6 a	2 d	2 e	4 a	4 b	6 b	6 c	5 a	10 a
$\xi_{1 \mathrm{C}}$	1	1	1	1	1	1	1	1	1	1	1	1	1	1
$\xi_{2 \mathrm{C}}$	1	-1	-1	1	1	-1	1	-1	-1	1	-1	1	1	-1
$\xi_{3 \mathrm{C}}$	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
$\xi_{4 \mathrm{C}}$	1	1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1
$\xi_{5 \mathbb{C}}$	4	4	-2	-2	1	1	0	0	0	0	1	1	-1	-1
$\xi_{6 \mathrm{C}}$	4	-4	-2	2	1	-1	0	0	0	0	1	-1	-1	1
$\xi_{7 \mathbb{C}}$	4	4	2	2	1	1	0	0	0	0	-1	-1	-1	-1
$\xi_{8 \mathbb{C}}$	4	-4	2	-2	1	-1	0	0	0	0	-1	1	-1	1
$\xi_{9 \mathrm{C}}$	5	5	1	1	-1	-1	1	1	-1	-1	1	1	0	0
$\xi_{10 \mathrm{C}}$	5	-5	1	-1	-1	1	1	-1	-1	1	1	-1	0	0
$\xi_{11 \mathrm{C}}$	5	5	-1	-1	-1	-1	1	1	1	1	-1	-1	0	0
$\xi_{12 \mathrm{C}}$	5	-5	-1	1	-1	1	1	-1	1	-1	-1	1	0	0
$\xi_{13 \mathbb{C}}$	6	6	0	0	0	0	-2	-2	0	0	0	0	1	1
$\xi_{14 \mathbb{C}}$	6	-6	0	0	0	0	-2	2	0	0	0	0	1	-1

hold, we obtain $\operatorname{Ind}_{K}^{G}\left(\boldsymbol{x}_{1}\right)=\operatorname{Ind}_{K}^{G}\left(\boldsymbol{x}_{2}\right)=-\boldsymbol{y}$, which determines the induction map $\operatorname{Ind}_{K}^{G}: \operatorname{Sm}(K) \rightarrow \operatorname{Sm}(G)$.

4. Induction and restriction

Let G be a finite group.
Lemma 4.1. If $K \leq G$, then

$$
\operatorname{Ind}_{K}^{G}\left(\operatorname{RO}(K)_{\mathcal{P}(K)}^{\mathcal{L}(K)}\right) \subseteq \operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}
$$

Proof. By definition,

$$
\operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}=\operatorname{RO}(G)_{\mathcal{P}(G)} \cap \operatorname{RO}(G)^{\mathcal{L}(G)}
$$

So we will prove following (1) and (2).
(1) $\operatorname{Ind}_{K}^{G}\left(\operatorname{RO}(K)_{\mathcal{P}(K)}\right) \subseteq \operatorname{RO}(G)_{\mathcal{P}(G)}$.
(2) $\operatorname{Ind}_{K}^{G}\left(\operatorname{RO}(K)^{\mathcal{L}(K)}\right) \subseteq \operatorname{RO}(G)^{\mathcal{L}(G)}$.
(1) Let $x=V-W \in \operatorname{RO}(K)_{\mathcal{P}(K)}$ where V and W are real K-modules. It suffices to prove

$$
\operatorname{Res}_{P}^{G}\left(\operatorname{Ind}_{K}^{G} V\right) \cong \operatorname{Res}_{P}^{G}\left(\operatorname{Ind}_{K}^{G} W\right)
$$

for all $P \in \mathcal{P}(G)$. By the Mackey decomposition, we have

$$
\begin{aligned}
\operatorname{Res}_{P}^{G}\left(\operatorname{Ind}_{K}^{G} V\right) & =\bigoplus_{P g K \in P \backslash G / K} \operatorname{Ind}_{P \cap g K g^{-1}}^{P}\left(g_{*} \operatorname{Res}_{K \cap g^{-1} P g}^{K} V\right), \\
\operatorname{Res}_{P}^{G}\left(\operatorname{Ind}_{K}^{G} W\right) & =\bigoplus_{P g K \in P \backslash G / K} \operatorname{Ind}_{P \cap g K g^{-1}}^{P}\left(g_{*} \operatorname{Res}_{K \cap g^{-1} P g}^{K} W\right) .
\end{aligned}
$$

Since $V-W \in \operatorname{RO}(K)_{\mathcal{P}(K)}$, it follows that

$$
\operatorname{Res}_{K \cap g^{-1} P g}^{K} V \cong \operatorname{Res}_{K \cap g^{-1} P g}^{K} W .
$$

(2) Let $x=V-W \in \operatorname{RO}(K)^{\mathcal{L}(K)}$ where V and W are $\mathcal{L}(K)$-free real K-modules. By definition, $V^{K^{p p}}=0=W^{K^{[p]}}$ for all primes p. By the Mackey decomposition, we have

$$
\operatorname{Res}_{G^{p p}}^{G}\left(\operatorname{Ind}_{K}^{G} V\right)=\bigoplus_{G^{|p|} g K \in G^{(p)} \backslash G / K} \operatorname{Ind}_{G^{(p)} \backslash g K g^{-1}}^{G^{(p)}}\left(g_{*} \operatorname{Res}_{K \cap g^{-1} G^{(p)} g}^{K} V\right) .
$$

Clearly [$K:\left(K \cap G^{\{p\}}\right)$] is a p-power. Thus we have

$$
\begin{aligned}
V^{K \cap G^{(p)}} & =\left(V^{K^{(p)}}\right)^{\left(K \cap G^{(p)}\right) / K^{(p)}} \\
& =0^{\left(K \cap G^{(p)}\right) / K^{(p)}} \\
& =0 .
\end{aligned}
$$

Similarly, $W^{K \cap G^{p p}}=0$. Thus $\left(\operatorname{Ind}_{K}^{G} V\right)^{G^{[p]}}=0=\left(\operatorname{Ind}_{K}^{G} W\right)^{G^{[p]}}$.
Lemma 4.2. If $K \leq G$, then

$$
\operatorname{Res}_{K}^{G}\left(\operatorname{RO}(G)_{\mathcal{P}(G)}\right) \subseteq \operatorname{RO}(K)_{\mathcal{P}(K)}
$$

Moreover, if $G^{\{p\}}=G(p \neq 2)$ and $K \supseteq G^{\{2\}}$ then

$$
\operatorname{Res}_{K}^{G}\left(\operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}\right) \subseteq \operatorname{RO}(K)_{\mathcal{P}(K)}^{\mathcal{L}(K)} .
$$

Proof. Let $V-W \in \operatorname{RO}(G)_{\mathcal{P}(G)}$ where V and W are real G-modules. So

$$
\operatorname{Res}_{P}^{G} V \cong \operatorname{Res}_{P}^{G} W
$$

for all $P \in \mathcal{P}(K) \subseteq \mathcal{P}(G)$. In general, $\operatorname{Res}_{P}^{K}\left(\operatorname{Res}_{K}^{G} V\right)=\operatorname{Res}_{P}^{G} V$. Therefore

$$
\operatorname{Res}_{P}^{K}\left(\operatorname{Res}_{K}^{G} V\right) \cong \operatorname{Res}_{P}^{K}\left(\operatorname{Res}_{K}^{G} W\right)
$$

Thus,

$$
\operatorname{Res}_{K}^{G}\left(\operatorname{RO}(G)_{\mathcal{P}(G)}\right) \subseteq \operatorname{RO}(K)_{\mathcal{P}(K)} .
$$

Suppose $G^{\{p\}}=G(p \neq 2)$ and $K \supseteq G^{\{2\}}$. Since $G^{\{2\}}=K \cap G^{\{2\}} \unlhd K$, we have $K^{\{2\}} \subseteq G^{\{2\}}$. Since $K^{\{2\}} \unlhd K$ and $G^{\{2\}} \subseteq K$, we get $K^{\{2\}} \unlhd G^{\{2\}}$. For all $g \in G$, we obtain

$$
g K^{\{2\}} g^{-1} \subseteq g G^{\{2\}} g^{-1}=G^{\{2\}}
$$

Let $a \in G^{\{2\}}$. Then

$$
a\left(g K^{\{2\}} g^{-1}\right) a^{-1}=g\left(g^{-1} a g\right) K^{\{2\}}\left(g^{-1} a g\right)^{-1} g^{-1}
$$

Since $g^{-1} a g \in G^{\{2\}}$ and $K^{\{2\}} \unlhd G^{\{2\}}$, we get $\left(g^{-1} a g\right) K^{\{2\}}\left(g^{-1} a g\right)^{-1}=K^{\{2\}}$. Thus

$$
a\left(g K^{\{2\}} g^{-1}\right) a^{-1}=g K^{\{2\}} g^{-1}
$$

That is $g K^{\{2\}} g^{-1} \unlhd G^{\{2\}}$. Set

$$
S=\bigcap_{g \in G} g K^{\{2\}} g^{-1}
$$

Clearly, $S \unlhd G$. We know $G^{\{2\}} / K^{\{2\}}$ is a subgroup of $K / K^{\{2\}}$. Since $K / K^{\{2\}}$ is a 2-group, it follows that $G^{\{2\}} / K^{\{2\}}$ is a 2-group. It is easy to show that $G^{\{2\}} / S$ is a 2-group. Since $G / G^{\{2\}} \cong(G / S) /\left(G^{\{2\}} / S\right), G / S$ is a 2-group. Therefore $S=G^{\{2\}}=K^{\{2\}}$.

Let $U_{1}-U_{2} \in \operatorname{RO}(G)^{\mathcal{L}(G)}$ where U_{1} and U_{2} are $\mathcal{L}(G)$-free real G-modules. We obtain

$$
\left(\operatorname{Res}_{K}^{G} U_{1}\right)^{K^{[2]}}=U_{1}^{G^{[2]}}=0
$$

and

$$
\left(\operatorname{Res}_{K}^{G} U_{2}\right)^{K^{[2]}}=U_{2}^{G^{[2]}}=0
$$

Let $G=S_{5} \times X_{2}$ and $K=A_{5} \times X_{2}$ where $X_{2}=C_{2} \times \cdots \times C_{2}$.
Proof of Lemma 1.7. The conjugacy classes of the maximal elementary subgroups of G not belonging to K are represented by $E_{1}=D_{8} \times X_{2}$ and $E_{2}=C_{6} \times X_{2}$. As $E_{2} \subset H_{2}=D_{12} \times X_{2}$, by Brauer's theorem [29, p. 78]

$$
\mathrm{RO}(G)=\operatorname{Ind}_{E_{1}}^{G} \mathrm{RO}\left(E_{1}\right)+\operatorname{Ind}_{H_{2}}^{G} \mathrm{RO}\left(H_{2}\right)+\operatorname{Ind}_{K}^{G} \mathrm{RO}(K) .
$$

Thus we have

$$
1_{\mathbb{R}}=\operatorname{Ind}_{E_{1}}^{G} t+\operatorname{Ind}_{H_{2}}^{G} u+\operatorname{Ind}_{K}^{G} v
$$

for some $t \in \operatorname{RO}\left(E_{1}\right), u \in \operatorname{RO}\left(H_{2}\right)$ and $v \in \operatorname{RO}(K)$. Let x be an arbitrary element of $\operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$. Then we have

$$
x=\operatorname{Ind}_{E_{1}}^{G}\left(t \cdot \operatorname{Res}_{E_{1}}^{G} x\right)+\operatorname{Ind}_{H_{2}}^{G}\left(u \cdot \operatorname{Res}_{H_{2}}^{G} x\right)+\operatorname{Ind}_{K}^{G}\left(v \cdot \operatorname{Res}_{K}^{G} x\right) .
$$

Since E_{1} is a 2-group, $\operatorname{Res}_{E_{1}}^{G} x=0$ and hence

$$
x=\operatorname{Ind}_{H_{2}}^{G}\left(u \cdot \operatorname{Res}_{H_{2}}^{G} x\right)+\operatorname{Ind}_{K}^{G}\left(v \cdot \operatorname{Res}_{K}^{G} x\right) .
$$

Let $H \leq G$ and $a \in \operatorname{RO}(H)$. Then $\mathcal{P}(H)$ is a subset of $\mathcal{P}(G)$. Thus for $P \in \mathcal{P}(H)$, we have

$$
\begin{aligned}
\operatorname{Res}_{P}^{H}\left(a \cdot \operatorname{Res}_{H}^{G} x\right) & =\operatorname{Res}_{P}^{H}(a)\left(\operatorname{Res}_{P}^{H}\left(\operatorname{Res}_{H}^{G} x\right)\right) \\
& =\operatorname{Res}_{P}^{H}(a)\left(\operatorname{Res}_{P}^{G} x\right) \\
& =\operatorname{Res}_{P}^{H}(a) \cdot 0 \\
& =0 .
\end{aligned}
$$

Namely $a \cdot \operatorname{Res}_{H}^{G} x \in \operatorname{RO}(H)_{\mathcal{P}(H)}$.
Suppose $A_{5} \leq H \leq G$. Write $a=U_{1}-U_{2}$ and $x=V_{1}-V_{2}$ with real H-modules U_{1} and U_{2} and $\mathcal{L}(G)$-free real G-modules V_{1} and V_{2}. Then note $V_{1}^{A_{5}}=V_{2}^{A_{5}}=0$ and

$$
\begin{aligned}
a \cdot \operatorname{Res}_{H}^{G} x= & \left\{\left(U_{1} \otimes \operatorname{Res}_{H}^{G} V_{1}\right) \oplus\left(U_{2} \otimes \operatorname{Res}_{H}^{G} V_{2}\right)\right\} \\
& -\left\{\left(U_{1} \otimes \operatorname{Res}_{H}^{G} V_{2}\right) \oplus\left(U_{2} \otimes \operatorname{Res}_{H}^{G} V_{1}\right)\right\} .
\end{aligned}
$$

Let $W_{1}=\left(U_{1} \otimes \operatorname{Res}_{H}^{G} V_{1}\right) \oplus\left(U_{2} \otimes \operatorname{Res}_{H}^{G} V_{2}\right)$ and $W_{2}=\left(U_{1} \otimes \operatorname{Res}_{H}^{G} V_{2}\right) \oplus\left(U_{2} \otimes \operatorname{Res}_{H}^{G} V_{1}\right)$. Since A_{5} does not have subgroups with index 2 , we have

$$
\begin{aligned}
W_{1}^{A_{5}} & =\left(U_{1} \otimes \operatorname{Res}_{H}^{G} V_{1}\right)^{A_{5}} \oplus\left(U_{2} \otimes \operatorname{Res}_{H}^{G} V_{2}\right)^{A_{5}} \\
& =\left(U_{1}^{A_{5}} \otimes\left(\operatorname{Res}_{H}^{G} V_{1}\right)^{A_{5}}\right) \oplus\left(U_{2}^{A_{5}} \otimes\left(\operatorname{Res}_{H}^{G} V_{2}\right)^{A_{5}}\right) \\
& =\left(U_{1}^{A_{5}} \otimes 0\right) \oplus\left(U_{2}^{A_{5}} \otimes 0\right) \\
& =0 .
\end{aligned}
$$

Similarly, $W_{2}^{A_{5}}=0$. Therefore, $a \cdot \operatorname{Res}_{H}^{G} x \in \operatorname{RO}(H)_{\mathcal{P}(H)}^{\mathcal{L}(H)}$. Consequently,

$$
\begin{aligned}
x & =\operatorname{Ind}_{H_{2}}^{G}\left(u \cdot \operatorname{Res}_{H_{2}}^{G} x\right)+\operatorname{Ind}_{K}^{G}\left(v \cdot \operatorname{Res}_{K}^{G} x\right) \\
& =\operatorname{Ind}_{H_{2}}^{G} x_{1}+\operatorname{Ind}_{K}^{G} x_{2}
\end{aligned}
$$

with $x_{1}=u \cdot \operatorname{Res}_{H_{2}}^{G} x \in \operatorname{RO}\left(H_{2}\right)_{\mathcal{P}\left(H_{2}\right)}$ and $x_{2}=v \cdot \operatorname{Res}_{K}^{G} x \in \operatorname{RO}(K)_{\mathcal{P}(K)}^{\mathcal{L}(K)}$.
In order to show $\operatorname{Ind}_{H_{2}}^{G} x_{1}=0$, we regard

$$
\operatorname{RO}\left(H_{2}\right)=\operatorname{RO}\left(D_{12}\right) \otimes_{\mathbb{Z}} \operatorname{RO}\left(X_{2}\right)
$$

in a canonical way. For each $T \leq X_{2}$ with $\left[X_{2}: T\right] \leq 2$, there is a unique 1-dimensional real X_{2}-representation ξ_{T} such that the kernel of ξ_{T} is T. The set

$$
\left\{\xi_{T} \mid T \leq X_{2},\left[X_{2}: T\right] \leq 2\right\}
$$

is a \mathbb{Z}-basis of $\mathrm{RO}\left(X_{2}\right)$. Thus we can regard

$$
\operatorname{RO}\left(H_{2}\right)=\operatorname{RO}\left(D_{12}\right) \xi_{T_{1}} \oplus \operatorname{RO}\left(D_{12}\right) \xi_{T_{2}} \oplus \cdots \oplus \operatorname{RO}\left(D_{12}\right) \xi_{T_{2^{n}}}
$$

We can write x_{1} above in the form

$$
x_{1}=\sum_{i=1}^{2^{n}} u_{T_{i}} \cdot \xi_{T_{i}}
$$

with $u_{T_{i}} \in \operatorname{RO}\left(D_{12}\right)$. Since $x \in \operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$ and $\operatorname{Ind}_{K}^{G} x_{2} \in \operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$, we get $\operatorname{Ind}_{H_{2}}^{G} x_{1} \in$ $\operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$. Since $x_{1} \in \operatorname{RO}\left(H_{2}\right)_{\mathcal{P}\left(H_{2}\right)}$, it must hold that

$$
u_{T_{i}} \in \operatorname{RO}\left(D_{12}\right)_{\mathcal{P}_{2}\left(D_{12}\right)}
$$

for each i and

$$
\sum_{i=1}^{2^{n}} u_{T_{i}} \in \operatorname{RO}\left(D_{12}\right)_{\mathcal{P}_{3}\left(D_{12}\right)}
$$

where $\mathcal{P}_{p}(H):=\{P \leq H \mid P$ is a p-group $\}$.
Regard $D_{12}=\langle a, b, c\rangle$ with $a=(1,2,3), b=(1,2), c=(4,5)$. By a straightforward computation [33], we can check that $\left\{U_{1}-U_{2}, U_{3}-U_{4}\right\}$ is a basis of $\operatorname{RO}\left(D_{12}\right)_{\mathcal{P}_{2}\left(D_{12}\right)}$, where U_{i} are real D_{12}-modules of dimension 2 with action:

$$
\begin{array}{lll}
U_{1}: a \mapsto\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], & b \mapsto\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], & c \mapsto\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \\
U_{2}: a \mapsto\left[\begin{array}{cc}
\cos \frac{2}{3} \pi & -\sin \frac{2}{3} \pi \\
\sin \frac{2}{3} \pi & \cos \frac{2}{3} \pi
\end{array}\right], & b \mapsto\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], & c \mapsto\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \\
U_{3}: a \mapsto\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], & b \mapsto\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], & c \mapsto\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], \\
U_{4}: a \mapsto\left[\begin{array}{cc}
\cos \frac{2}{3} \pi & -\sin \frac{2}{3} \pi \\
\sin \frac{2}{3} \pi & \cos \frac{2}{3} \pi
\end{array}\right], & b \mapsto\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], & c \mapsto\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right],
\end{array}
$$

and

$$
\begin{aligned}
& \left(\operatorname{Ind}_{D_{12}}^{S_{5}}\left(U_{1}-U_{2}\right)\right)^{S_{5}}=\mathbb{R}, \quad\left(\operatorname{Ind}_{D_{12}}^{S_{5}}\left(U_{3}-U_{4}\right)\right)^{S_{5}}=0, \\
& \left(\operatorname{Ind}_{D_{12}}^{S_{5}}\left(U_{1}-U_{2}\right)\right)^{A_{5}}=\mathbb{R}, \quad\left(\operatorname{Ind}_{D_{12}}^{S_{5}}\left(U_{3}-U_{4}\right)\right)^{A_{5}}=\mathbb{R}
\end{aligned}
$$

Then we can write $\operatorname{Ind}_{H_{2}}^{G} x_{1}$ in the form

$$
\operatorname{Ind}_{H_{2}}^{G} x_{1}=\sum_{i=1}^{2^{n}}\left\{m_{T_{i}} \operatorname{Ind}_{D_{12}}^{S_{5}}\left(U_{1}-U_{2}\right)+n_{T_{i}} \operatorname{Ind}_{D_{12}}^{S_{5}}\left(U_{3}-U_{4}\right)\right\} \cdot \xi_{T_{i}} .
$$

Note

$$
\begin{aligned}
\left(\operatorname{Ind}_{H_{2}}^{G} x_{1}\right)^{G} & =\left\{m_{X_{2}}\left(\operatorname{Ind}_{D_{12}}^{S_{5}}\left(U_{1}-U_{2}\right)\right)^{S_{5}}+n_{X_{2}}\left(\operatorname{Ind}_{D_{12}}^{S_{5}}\left(U_{3}-U_{4}\right)\right)^{S_{5}}\right\} \cdot \xi_{X_{2}} \\
& =m_{X_{2}} \mathbb{R} \cdot \xi_{X_{2}} \\
& =0 .
\end{aligned}
$$

This shows $m_{X_{2}}=0$. Next note

$$
\begin{aligned}
\left(\operatorname{Ind}_{H_{2}}^{G} x_{1}\right)^{S_{5} \times T_{i}}= & \left\{m_{T_{i}}\left(\operatorname{Ind}_{D_{12}}^{S_{5}}\left(U_{1}-U_{2}\right)\right)^{S_{5}}+n_{T_{i}}\left(\operatorname{Ind}_{D_{12}}^{S_{5}}\left(U_{3}-U_{4}\right)\right)^{S_{5}}\right\} \cdot \xi_{T_{i}} \\
& +n_{X_{2}}\left(\operatorname{Ind}_{D_{12}}^{S_{5}}\left(U_{3}-U_{4}\right)\right)^{S_{5}} \cdot \xi_{X_{2}} \\
= & m_{T_{i}} \mathbb{R} \cdot \xi_{T_{i}} \\
= & 0 .
\end{aligned}
$$

This shows $m_{T_{i}}=0$. Therefore we get the equality

$$
\operatorname{Ind}_{H_{2}}^{G} x_{1}=\sum_{i=1}^{2^{n}} n_{T_{i}} \operatorname{Ind}_{D_{12}}^{S_{5}}\left(U_{3}-U_{4}\right) \cdot \xi_{T_{i}} .
$$

The equalities

$$
\begin{aligned}
\left(\operatorname{Ind}_{H_{2}}^{G} x_{1}\right)^{A_{5} \times X_{2}} & =n_{X_{2}}\left(\operatorname{Ind}_{D_{12}}^{S_{5}}\left(U_{3}-U_{4}\right)\right)^{A_{5}} \cdot \xi_{X_{2}} \\
& =n_{X_{2}} \mathbb{R} \cdot \xi_{X_{2}} \\
& =0
\end{aligned}
$$

conclude $n_{X_{2}}=0$. Similarly, we can show $n_{T_{i}}=0$. Thus we have established $\operatorname{Ind}_{H_{2}}^{G} x_{1}=0$.

5. Orientation triviality

We use the following notation.

$$
\mathcal{H} \mathcal{P}(G, 2):=\{(H, P) \in \mathcal{H} \mathcal{P}(G) \mid[H: P]=2\},
$$

$$
\mathcal{H P} \mathcal{P}(G, 2)_{0}:=\left\{(H, P) \in \mathcal{H} \mathcal{P}(G, 2) \mid\left[\left\langle H, G^{\{2\}}\right\rangle:\left\langle P, G^{\{2\}}\right\rangle\right]=2\right.
$$ and $\left\langle P, G^{\{q\}}\right\rangle=G$ for any odd prime $\left.q\right\}$,

$\mathcal{A}(G):=\left\{(H, g) \in \mathcal{S}(G) \times G \mid g \in N_{G}(H), \exists P \triangleleft H\right.$ satisfying $\left.(H, P) \in \mathcal{H} \mathcal{P}(G, 2)\right\}$,
$\mathcal{B}(G):=\left\{(H, g) \in \mathcal{S}(G) \times G \mid g \in N_{G}(H), \exists P \triangleleft H\right.$ satisfying $\left.(H, P) \in \mathcal{H} \mathcal{P}(G, 2)_{0}\right\}$.

For each element $x=V-W \in \operatorname{RO}(G)$, we define a map

$$
\psi: \mathcal{A}(G) \times \mathrm{RO}(G) \rightarrow \mathbb{Z}_{2}
$$

by

$$
\psi((H, g), x)=\operatorname{Ori}\left(g, V^{H}\right)-\operatorname{Ori}\left(g, W^{H}\right)
$$

where

$$
\operatorname{Ori}\left(g, V^{H}\right)=\left\{\begin{array}{lll}
0 & \text { if } & g: V^{H} \rightarrow V^{H} \\
1 & \text { if } & g: V^{H} \rightarrow V^{H}
\end{array} \quad \text { is orientation preserving, }, ~\right.
$$

The value $\psi((H, g), x)$ is also written as $\operatorname{Ori}\left(g, x^{H}\right)$.
Lemma 5.1. For a real G-module V and $(H, g) \in \mathcal{A}(G)$, $\operatorname{Ori}\left(g, V^{H}\right)=\operatorname{dim} V^{\left\langle H, g^{2}\right\rangle}$ $\operatorname{dim} V^{\langle H, g\rangle}(\bmod 2)$.

For a subset $\mathcal{C} \subset \mathcal{A}(G), x \in \operatorname{RO}(G)$ is called orientation trivial on \mathcal{C} if $\operatorname{Ori}\left(g, x^{H}\right)=$ 0 for all $(H, g) \in \mathcal{C}$.

In the following, we always invoke the next hypothesis.
Hypothesis 5.2. Let K be a gap subgroup of G of index 2 .
Let U be a K-module and set $V=\operatorname{Ind}_{K}^{G} U$. If $H \subseteq K$ then we have

$$
\begin{aligned}
\operatorname{Res}_{H}^{G} V & =\bigoplus_{H g K \in H \backslash G / K} \operatorname{Ind}_{H \cap g^{-1} K g}^{H} g_{*}\left(\operatorname{Res}_{K \cap g H g^{-1}}^{K} U\right) \\
& =\left(\operatorname{Res}_{H}^{K} U\right) \oplus g_{*}\left(\operatorname{Res}_{K \cap g H g^{-1}}^{K} U\right)
\end{aligned}
$$

where g is an arbitrary element in $G \backslash K$.
Lemma 5.3. Let U be a gap K-module. Then for $V=\operatorname{Ind}_{K}^{G} U$ and $(H, P) \in$ $\mathcal{H} \mathcal{P}(K)$, the inequality $\operatorname{dim} V^{P}>2 \operatorname{dim} V^{H}$ holds.

Proof. By the formula above, we get $\operatorname{dim} V^{H}=\operatorname{dim} U^{H}+\operatorname{dim} U^{g H g^{-1}}$ and $\operatorname{dim} V^{P}=$ $\operatorname{dim} U^{P}+\operatorname{dim} U^{g P g^{-1}}$. Since U is a gap K-module, we have $\operatorname{dim} U^{P}>2 \operatorname{dim} U^{H}$ and $\operatorname{dim} U^{g P g^{-1}}>2 \operatorname{dim} U^{g H g^{-1}}$. These imply $\operatorname{dim} V^{P}>2 \operatorname{dim} V^{H}$.

Lemma 5.4. Let $V_{0}-W_{0} \in \operatorname{RO}(K)_{\mathcal{P}(K)}^{\mathcal{L}(K)}$ and U_{0} a gap K-module. Then $V_{1}=V_{0} \oplus$ $\left(\operatorname{dim} V_{0}+1\right) U_{0}$ and $W_{1}=W_{0} \oplus\left(\operatorname{dim} V_{0}+1\right) U_{0}$ are gap K-modules. For $V=\operatorname{Ind}_{K}^{G} V_{1}$, $W=\operatorname{Ind}_{K}^{G} W_{1}$ and $U=2\left(\operatorname{dim} V_{1}+1\right) V(G)$, the real G-modules $V \oplus U$ and $W \oplus U$ fulfill the gap condition for any $(H, P) \in \mathcal{H} \mathcal{P}(G)$ whenever $H \leq K$ or $(H, P) \notin \mathcal{H} \mathcal{P}(G, 2)_{0}$.

Proof. Let $(H, P) \in \mathcal{H} \mathcal{P}(G)$. First observe the computation

$$
\begin{aligned}
\operatorname{dim} V_{1}^{P}-2 \operatorname{dim} V_{1}^{H} & =\operatorname{dim} V_{0}^{P}-2 \operatorname{dim} V_{0}^{H}+\left(\operatorname{dim} V_{0}+1\right)\left(\operatorname{dim} U_{0}^{P}-2 \operatorname{dim} U_{0}^{H}\right) \\
& \geq \operatorname{dim} V_{0}^{P}-2 \operatorname{dim} V_{0}^{H}+\left(\operatorname{dim} V_{0}+1\right) \\
& \geq\left(\operatorname{dim} V_{0}+1\right)-\operatorname{dim} V_{0}^{H} \\
& >0 .
\end{aligned}
$$

Thus V_{1} is a gap K-module. Similarly, W_{1} is a gap K-module. By Lemma $5.3 V$ and W fulfill the gap condition for the pair (H, P) whenever $H \leq K$.

Now assume $(H, P) \notin \mathcal{H} \mathcal{P}(G, 2)_{0}$. By Lemma 2.1 (2), the inequality $\operatorname{dim} V(G)^{P}>$ $2 \operatorname{dim} V(G)^{H}$ holds. Thus we get

$$
\begin{aligned}
\operatorname{dim}(V \oplus U)^{P}-2 \operatorname{dim}(V \oplus U)^{H}= & \operatorname{dim}\left(\operatorname{Ind}_{K}^{G} V_{1}\right)^{P}-2 \operatorname{dim}\left(\operatorname{Ind}_{K}^{G} V_{1}\right)^{H} \\
& +2\left(\operatorname{dim} V_{1}+1\right)\left(\operatorname{dim} V(G)^{P}-2 \operatorname{dim} V(G)^{H}\right) \\
\geq \geq & 2\left(\operatorname{dim} V_{1}+1\right)-\operatorname{dim}\left(\operatorname{Ind}_{K}^{G} V_{1}\right)^{H} \\
\geq & 2\left(\operatorname{dim} V_{1}+1\right)-\operatorname{dim} \operatorname{Ind}_{K}^{G} V_{1} \\
> & 0 .
\end{aligned}
$$

This shows that $V \oplus U$ fulfills the gap condition for the pair (H, P). Similarly, $W \oplus U$ fulfills the gap condition for the pair (H, P).

To apply Morimoto's surgery result for $y \in \operatorname{Ind}_{K}^{G}\left(\operatorname{RO}(K)_{\mathcal{P}(K)}^{\mathcal{L}(K)}\right)$, we need to show that y is orientation trivial on the set

$$
\widetilde{\mathcal{B}(G)_{2}}:=\left\{(H, g) \in \mathcal{B}(G) \mid \operatorname{Ord}(g)=2^{l} \text { for some } l \in \mathbb{N} \text { and } H \nsubseteq K\right\} .
$$

In Proposition 3.1, we checked the orientation triviality holds for the group $G=S_{5} \times$ C_{2}. In order to show that the orientation triviality holds for $G=S_{5} \times X_{2}$ with $X_{2}=$ $C_{2} \times \cdots \times C_{2}$ (n-fold) such that $n \geq 2$, we introduce the notation

$$
\widetilde{\mathcal{B}(G)_{2 \text { even }}}:=\left\{(H, g) \in \widetilde{\mathcal{B}(G)_{2}}| | H \mid=2^{k} \text { for some } k \in \mathbb{N}\right\}
$$

and

$$
\widetilde{\mathcal{B}(G)}_{2_{\text {odd }}}:={\widetilde{\mathcal{B}(G)})_{2}}_{\backslash \widetilde{\mathcal{B}}(G)_{2_{\text {even }}}}
$$

We can prove the following two lemmas without difficulties.
Lemma 5.5. Let $G=S_{5} \times X_{2}$ and $a=(\sigma, b) \in G$ with $\sigma \in S_{5} \backslash A_{5}$ and $b \in X_{2}$. Then there exists an isomorphism $\varphi: G \rightarrow G$ such that
(1) $\varphi(\sigma)=a$,
(2) $\varphi(x)=x$ for all $x \in A_{5} \cup X_{2}$, and
(3) $\varphi \circ \varphi=\operatorname{id}_{G}$.

Lemma 5.6. Let $G=S_{5} \times X_{2}$. Then the implication

$$
\widetilde{\mathcal{B}(G)}_{2 \text { even }} \subset \bigcup_{\substack{Y \leq G \\ Y: 2-g r o u p}} \mathcal{A}(Y)
$$

holds.

Then we have the next lemma.

Lemma 5.7. The implication

$$
\widetilde{\mathcal{B}(G)}_{2_{\text {odd }}} \subset \bigcup_{\substack{T \leq G \\ T \cong \bar{S}_{5} \times C_{2}}} \mathcal{A}(T)
$$

holds.
Proof. Let $(H, g) \in \widetilde{\mathcal{B}(G)} 2_{\text {odd }}$. By definition, we get $H \nsubseteq A_{5}=G^{\{2\}}$ as well as $H \nsubseteq K$. It is easy to show the following.
(1) $|H|=2 p$ for $p=3$ or 5 .
(2) H has a unique (normal) Sylow p-subgroup $P=\langle u\rangle$ such that the order of u is p.
(3) P is a unique (normal) Sylow p-subgroup of $L=\langle H, g\rangle(\subset G)$.
(4) $P \subset A_{5}$.

Since $p=3$ or $5, H$ is isomorphic to $C_{2 p}$ or $D_{2 p}$. Thus, we can take $a \in H \backslash A_{5}$ of order 2. Write

$$
a=(\sigma, b)
$$

and

$$
g=(\tau, c)
$$

with $\sigma, \tau \in S_{5}$ and $b, c \in X_{2}$. Since $H \nsubseteq K, \sigma \notin A_{5}$. In addition, since the order of g is a power of 2 by definition, the order is 2 or 4 . There exists an isomorphism $\varphi: G \rightarrow$ G such that $\varphi(H) \subset S_{5}$ and $\left.\varphi\right|_{X_{2}}=\operatorname{id}_{X_{2}}$. Then $\varphi(L)=\langle\varphi(H), \varphi(g)\rangle$ is a subgroup of $S_{5} \times\langle c\rangle$. Thus (L, g) belongs to $\mathcal{A}(T)$ for some $T \leq G$ such that $T \cong S_{5} \times C_{2}$.

Lemma 5.8. Let $G=S_{5} \times X_{2}$ and $K=A_{5} \times X_{2}$. For an arbitrary element $x \in$ $\mathrm{RO}(K)_{\mathcal{P}(K)}^{\mathcal{L}(K)}, y=\operatorname{Ind}_{K}^{G} x$ is orientation trivial on $\widetilde{\mathcal{B}(G)_{2}}$.

Proof. By Lemmas 5.6 and 5.7, the implication

$$
\widetilde{\mathcal{B}(G)_{2}} \subset \bigcup_{\substack{T \leq G \\ T \cong S_{5} \times C_{2}}} \mathcal{A}(T) \cup \bigcup_{\substack{Y \leq G \\ Y: 2 \text {-group }}} \mathcal{A}(Y)
$$

holds. Clearly, y is orientation trivial on $\mathcal{A}(Y)$ because Y is a 2-group. In the proof of Proposition 3.1, we saw that for the basis element $y=V-W$ of $\operatorname{RO}(T)_{\mathcal{P}(T)}^{\mathcal{L}(T)}, V \oplus$ $2 U$ and $W \oplus 2 U$ satisfy the weak gap condition. Thus each element of $\operatorname{RO}(T)_{\mathcal{P}(T)}^{\mathcal{L}(T)}$ is orientation trivial on $\mathcal{A}(T)$.

6. Completion of proofs of Theorems A and B

In this section, we proceed as follows. Firstly, we give proofs of Lemmas 1.4 and 1.6. Secondly, for $G=S_{5} \times X_{2}$ and $A_{5} \times X_{2}$, we compute the rank of the Smith set of G.

Proof of Lemma 1.4. Let $K=A_{5} \times X_{2}$. Since A_{5} is a simple group, it follows that $K^{\{2\}}=A_{5}$ and $K^{\{p\}}=K(p \neq 2)$. Thus $K^{\text {nil }}=A_{5}$, and $K / K^{\text {nil }} \cong X_{2}$. Clearly K contains no elements of $8 . K$ is an Oliver group, because K is non-solvable. Clearly $\mathcal{P}(K) \cap \mathcal{L}(K)=\emptyset$. Since $A_{5} \times C_{2}$ is a gap group (see the proof of Proposition 3.1), by [17, Theorem 0.4], it follows that K is a gap group.

Proof of Lemma 1.6. For arbitrary $x \in \operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$, there exists an element $y \in$ $\operatorname{RO}(K)_{\mathcal{P}(K)}^{\mathcal{L}(K)}$ such that $x=\operatorname{Ind}_{K}^{G} y$. Let $y=V_{0}-W_{0}$ such that V_{0} and W_{0} are $\mathcal{L}(K)$-free real K-modules, and $U_{0} \mathcal{L}(K)$-free gap K-module. Then $V_{1}=V_{0} \oplus\left(\operatorname{dim} V_{0}+1\right) U_{0}$ and $W_{1}=W_{0} \oplus\left(\operatorname{dim} V_{0}+1\right) U_{0}$ are $\mathcal{L}(K)$-free gap K-modules. Set $V=\operatorname{Ind}_{K}^{G} V_{1}$, $W=\operatorname{Ind}_{K}^{G} W_{1}$ and $U=\max \left\{6,2\left(\operatorname{dim} V_{1}+1\right)\right\} V(G)$.

For subgroups H, K of G and a real G-module X,

$$
\begin{aligned}
\operatorname{Res}_{H}^{G}\left(\operatorname{Ind}_{K}^{G} X\right) & =\bigoplus_{H g K \in H \backslash G / K} \operatorname{Ind}_{H \cap g K g^{-1}}^{H}\left(g_{*} \operatorname{Res}_{K \cap g^{-1} H g}^{K} X\right) \\
& =\left\{\begin{array}{ll}
\operatorname{Res}_{H}^{K} X \oplus g_{*} \operatorname{Res}_{g^{-1} H g}^{K} X & \text { if } \quad H \leq K \\
\operatorname{Ind}_{H \cap K}^{H}\left(\operatorname{Res}_{H \cap K}^{K} X\right) & \text { if } \quad H \not 又 K .
\end{array} \text { (here } g \in S_{5} \backslash A_{5}\right),
\end{aligned}
$$

Hence

$$
\operatorname{dim}\left(\operatorname{Ind}_{K}^{G} X\right)^{H}=\left\{\begin{array}{lll}
\operatorname{dim} X^{H}+\operatorname{dim} X^{g^{-1} H g} & \text { if } \quad H \leq K \quad\left(\text { here } g \in S_{5} \backslash A_{5}\right), \\
\operatorname{dim} X^{H \cap K} & \text { if } \quad H \not \equiv K .
\end{array}\right.
$$

Let $(H, P) \in \mathcal{H P}(G, 2)$.
CASE $H \leq K$. By Lemma 5.4, $V \oplus U$ and $W \oplus U$ satisfy the gap condition for (H, P).

Case $P \not \leq K$. We obtain

$$
\operatorname{dim} V^{P}-2 \operatorname{dim} V^{H}=\operatorname{dim} V_{1}^{P \cap K}-2 \operatorname{dim} V_{1}^{H \cap K} .
$$

Note $[H \cap K: P \cap K]=2$, because $[P: P \cap K]=2$ and $[H: H \cap K]=2$. Thus

$$
\operatorname{dim} V_{1}^{P \cap K}-2 \operatorname{dim} V_{1}^{H \cap K}>0 .
$$

By Lemma 2.1 (1), $\operatorname{dim} U^{P} \geq 2 \operatorname{dim} U^{H}$. Thus $V \oplus U$ satisfies the gap condition for (H, P). Similarly $W \oplus U$ satisfies the gap condition for (H, P).

Case $P \leq K, H \not \leq K$. For an element $g \in H \backslash P$, we obtain

$$
\operatorname{dim} V^{P}-2 \operatorname{dim} V^{H}=\operatorname{dim} V_{1}^{P}+\operatorname{dim} V_{1}^{g^{-1} P g}-2 \operatorname{dim} V_{1}^{H \cap K} .
$$

Since $P \triangleleft H$ and $H \cap K=P$, it follows that

$$
\begin{aligned}
\operatorname{dim} V_{1}^{P}+\operatorname{dim} V_{1}^{g^{-1} P g}-2 \operatorname{dim} V_{1}^{H \cap K} & =2 \operatorname{dim} V_{1}^{P}-2 \operatorname{dim} V_{1}^{P} \\
& =0 .
\end{aligned}
$$

By Lemma 5.8, $V-W$ is orientation trivial on $\widetilde{\mathcal{B}(G)_{2}}$. Thus $V \oplus U$ satisfies (WG6). By [8, Corollary 3.5], $6 V(G)$ satisfies (WG1)-(WG6). Hence $V \oplus U$ satisfies (WG1), (WG2), (WG4), (WG5). By [12, Theorem 2.5], $V \oplus U$ satisfies (WG3). Similarly $W \oplus U$ satisfies the weak gap condition.

Let H be a normal subgroup of G. We denote by $b_{G, H}$ the number of real conjugacy classes $(g H)^{ \pm}$in G / H of cosets $g H$ containing elements of G not of prime power order.

Lemma 6.1. If $G^{\text {nil }}=G^{\{p\}}$ for some prime p, then

$$
\operatorname{Rank}_{\mathbb{Z}}\left(\operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}\right)=a_{G}-b_{G, G^{\mathrm{nil}}}
$$

Proof. By [21, p. 858, Subgroup Lemma], we have

$$
\mathrm{RO}(G)_{\mathcal{P}(G)}^{\left\{\mathrm{Gn}^{\mathrm{nin}}\right\}} \subseteq \operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)} \subseteq \operatorname{RO}(G)_{\mathcal{P}(G)}^{\left\{G^{[p]}\right\}}
$$

Since $G^{\text {nil }}=G^{\{p\}}$, it follows $\operatorname{RO}(G)_{\mathcal{P}(G)}^{\left\{G^{\text {nil }}\right\}}=\operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}$. By [21, p. 856, Second Rank Lemma],

$$
\begin{aligned}
\operatorname{Rank}_{\mathbb{Z}}\left(\operatorname{RO}(G)_{\mathcal{P}(G)}^{\mathcal{L}(G)}\right) & =\operatorname{Rank}_{\mathbb{Z}}\left(\operatorname{RO}(G)_{\mathcal{P}(G)}^{\left\{G^{\mathrm{nil}}\right\}}\right) \\
& =a_{G}-b_{G, G^{\mathrm{nil}}}
\end{aligned}
$$

Proposition 6.2. Let $G=S_{5} \times X_{2}$ and $K=A_{5} \times X_{2}$ where $X_{2}=C_{2} \times \cdots \times C_{2}$ (n-folds). Then the following hold.
(1) $a_{G}=1+3\left(2^{n}-1\right)$ and $b_{G, G^{\mathrm{nil}}}=2^{n+1}-1$.
(2) $a_{K}=3\left(2^{n}-1\right)$ and $b_{K, K^{\text {nil }}}=2^{n}-1$.

The proof is straightforward.
Acknowledgment. I would like to express my deep and sincere gratitude to my supervisor, Professor M. Morimoto, for his detailed and constructive comments, and for his important support throughout this paper.

References

[1] M.F. Atiyah and R. Bott: A Lefschetz fixed point formula for elliptic complexes, II, applications, Ann. of Math. (2) 88 (1968), 451-491.
[2] S.E. Cappell and J.L. Shaneson: Fixed points of periodic differentiable maps, Invent. Math. 68 (1982), 1-19.
[3] K.H. Dovermann and T. Petrie: Smith equivalence of representations for odd order cyclic groups, Topology 24 (1985), 283-305.
[4] K.H. Dovermann, T. Petrie, and R. Schultz: Transformation groups and fixed point data; in Group Actions on Manifolds (Boulder, Colo., 1983), Contemp. Math., 36, Amer. Math. Soc., Providence, RI, 1985, 159-189.
[5] K.H. Dovermann and D.Y. Suh: Smith equivalence for finite abelian groups, Pacific J. Math. 152 (1992), 41-78.
[6] X.M. Ju: The smith isomorphism question: A review and new results; in The Theory of Transformation Groups and Its Applications, RIMS Kokyuroku 1569, Res. Inst. Math. Sci., Kyoto Univ., 2007, 43-51.
[7] A. Koto, M. Morimoto, and Y. Qi: The Smith sets of finite groups with normal Sylow 2-subgroups and small nilquotients, J. Math. Kyoto Univ. 48 (2008), 219-227.
[8] E. Laitinen and M. Morimoto: Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479-520.
[9] E. Laitinen, M. Morimoto, and K. Pawałowski: Deleting-inserting theorem for smooth actions of finite nonsolvable groups on spheres, Comment. Math. Helv. 70 (1995), 10-38.
[10] E. Laitinen and K. Pawałowski: Smith equivalence of representations for finite perfect groups, Proc. Amer. Math. Soc. 127 (1999), 297-307.
[11] J. Milnor: Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.
[12] M. Morimoto: The Burnside ring revisited; in Current Trends in Transformation Groups, K-Monogr. Math. 7, Kluwer Acad. Publ., Dordrecht, 2002, 129-145.
[13] M. Morimoto: Construction of smooth actions on spheres for smith equivalent representations; in The Theory of Transformation Groups and Its Applications, RIMS Kokyuroku 1569, Res. Inst. Math. Sci., Kyoto Univ., 2007, 52-58.
[14] M. Morimoto: Smith equivalent $\operatorname{Aut}\left(A_{6}\right)$-representations are isomorphic, Proc. Amer. Math. Soc. 136 (2008), 3683-3688.
[15] M. Morimoto and K. Pawałowski: The equivariant bundle subtraction theorem and its applications, Fund. Math. 161 (1999), 279-303.
[16] M. Morimoto and K. Pawałowski: Smooth actions of finite Oliver groups on spheres, Topology 42 (2003), 395-421.
[17] M. Morimoto, T. Sumi, and M. Yanagihara: Finite groups possessing gap modules; in Geometry and Topology: Aarhus (1998), Contemp. Math. 258, Amer. Math. Soc., Providence, RI, 2000, 329-342.
[18] B. Oliver: Fixed-point sets of group actions on finite acyclic complexes, Comment. Math. Helv. 50 (1975), 155-177.
[19] B. Oliver: Fixed point sets and tangent bundles of actions on disks and Euclidean spaces, Topology 35 (1996), 583-615.
[20] K. Pawałowski: Smith equivalence of group modules and the Laitinen conjecture. A survey; in Geometry and Topology: Aarhus (1998), Contemp. Math. 258, Amer. Math. Soc., Providence, RI, 2000, 343-350.
[21] K. Pawałowski and R. Solomon: Smith equivalence and finite Oliver groups with Laitinen number 0 or 1, Algebr. Geom. Topol. 2 (2002), 843-895 (electronic).
[22] K. Pawałowski and T. Sumi: Finite groups with Smith equivalent, nonisomorphic representations; in Proceedings of 34th Symposium on Transformation Groups, Wing Co., Wakayama, 2007, 68-76.
[23] K. Pawałowski and T. Sumi: Smith equivalent group modules; in Proceedings of 33th Symposium on Transformation Groups, Wing Co., Wakayama, 2007, 68-75.
[24] T. Petrie: Three theorems in transformation groups; in Algebraic Topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), Lecture Notes in Math. 763, Springer, Berlin, 1979, 549-572.
[25] T. Petrie: The equivariant J homomorphism and Smith equivalence of representations; in Current Trends in Algebraic Topology, Part 2 (London, Ont., 1981), CMS Conf. Proc. 2, Amer. Math. Soc., Providence, R.I., 1982, 223-233.
[26] T. Petrie and J. Randall: Spherical isotropy representations, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 221-256.
[27] T. Petrie and J. Randall: Transformation Groups on Manifolds, Monographs and Textbooks in Pure and Applied Mathematics 82, Marcel Dekker, Inc., New York, 1984.
[28] C.U. Sanchez: Actions of groups of odd order on compact, orientable manifolds, Proc. Amer. Math. Soc. 54 (1976), 445-448.
[29] J.-P. Serre: Linear Representations of Finite Groups, Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics 42, Springer-Verlag, New YorkHeidelberg, 1977.
[30] P.A. Smith: New results and old problems in finite transformation groups, Bull. Amer. Math. Soc. 66 (1960), 401-415.
[31] T. Sumi: Gap modules for direct product groups, J. Math. Soc. Japan 53 (2001), 975-990.
[32] T. Sumi: Finite groups possessing smith equivalent, nonisomorphic representations; in The Theory of Transformation Groups and Its Applications, RIMS Kokyuroku 1569, Res. Inst. Math. Sci., Kyoto Univ., 2007, 170-179.
[33] The GAP Group: GAP-Groups, Algorithms, and Programming. Version 4.4.10, 2007, (http://www.gap-system.org/).

Department of Mathematics
Graduate School of Natural Science and Technology Okayama University
Okayama, 700-8530
Japan
e-mail: juxianmeng@gmail.com
Current address:
Department of Mathematics
College of Sciences
Shanghai University
99 Shangda Rood, Baoshan District, Shanghai 200444
China

