SELF-MAPPING DEGREES OF TORUS BUNDLES AND TORUS SEMI-BUNDLES

Hongbin SUN, Shicheng WANG and Jianchun WU

(Received March 4, 2008, revised September 24, 2008)

Abstract

Each closed oriented 3-manifold M is naturally associated with a set of integers $D(M)$, the degrees of all self-maps on $M . D(M)$ is determined for each torus bundle and semi-bundle M. The structure of torus semi-bundle is studied in detail. The paper is a part of a project to determine $D(M)$ for all 3-manifolds in Thurston's picture.

\section*{Contents} 1.2. Main result. ... 133 1.3. Remark on orientation reversing homeomorphisms. 135 1.4. Organization of the paper. ... 136 2. Structures of orientable torus bundles and semi-bundles 136 2.1. Some elementary facts. .. 136 2.2. Classifications of torus bundles and semi-bundles. 138 2.4. Coordinates of torus semi-bundles. 141 2.5. Lifting automorphism from semi-bundle to bundle. 143 3. The degrees of self maps of torus bundles 145 4. The degrees of self maps of torus semi-bundles 149

References .. 154

1. Introduction

1.1. Background. Each closed oriented n-manifold M is naturally associated with a set of integers, the degrees of all self-maps on M, denoted as $D(M)=\{\operatorname{deg}(f) \mid$ $f: M \rightarrow M\}$.

Indeed the calculation of $D(M)$ is a classical topic appeared in many literatures. The result is simple and well-known for dimension $n=1,2$, and for dimension $n>3$, there are many interesting special results (see [2] and references therein), but it is difficult to get general results, since there are no classification results for manifolds of dimension $n>3$.

2000 Mathematics Subject Classification. 57M10, 55M25.

The case of dimension 3 becomes attractive in the topic and it is possible to calculate $D(M)$ for any closed oriented 3-manifold M. Since Thurston's geometrization conjecture, which seems to be confirmed, implies that closed oriented 3-manifolds can be classified in reasonable sense.

Thurston's geometrization conjecture claims that the each Jaco-Shalen-Johanson decomposition piece of a prime 3-manifold supports one of the eight geometries which are $H^{3}, \widetilde{P S L}(2, R), H^{2} \times E^{1}$, Sol, Nil, E^{3}, S^{3} and $S^{2} \times E^{1}$ (for details see [11] and [10]). Call a closed orientable 3-manifold M is geometrizable if each prime factor of M meets Thurston's geometrization conjecture.

A known rather general fact about $D(M)$ for geometrizable 3-manifolds is the following:

Theorem 1.1 ([12], Corollary 4.3). Suppose M is a geometrizable 3-manifold. Then M admits a self-map of degree larger than 1 if and only if M is either
(1) covered by a torus bundle over the circle, or
(2) covered by an $F \times S^{1}$ for some compact surface F with $\chi(F)<0$, or
(3) each prime factor of M is covered by S^{3} or $S^{2} \times E^{1}$.

The proof of the "only if" part in Theorem 1.1 is based on the theory of simplicial volume, and various results on 3-manifold topology and group theory. The proof of "if" part in Theorem 1.1 is a sequence of elementary constructions, which were essentially known before.

Hence for any M not listed in Theorem 1.1, $D(M)$ is either $\{0,1,-1\}$ or $\{0,1\}$, which depends on whether M admits a self map of degree -1 or not. To determine $D(M)$ for geometrizable 3-manifolds listed in Theorem 1.1, let's have a close look of those 3-manifolds from geometric and topological aspects.

Among Thurston's eight geometries, six of them belong to the list in Theorem 1.1. 3-manifolds in (1) are exactly those supporting either E^{3}, or Sol or Nil geometries. E^{3} 3-manifolds, Sol 3-manifolds, and some Nil 3-manifolds are torus bundles or semibundles; Nil 3-manifolds which are not torus bundles or semi-bundles are Seifert spaces having Euclidean orbifolds with three singular points. 3-manifolds in (2) are exactly those support $H^{2} \times E^{1}$ geometry; 3-manifolds supporting S^{3} or $S^{2} \times E^{1}$ geometries form a proper subset of (3).

For 3-manifold M with S^{3}-geometry, $D(M)$ has been presented recently in [1] in term of the orders of $\pi_{1}(M)$ and its elements (and determined earlier in [5] when the maps induce automorphisms on π_{1}). Note an algorithm is given to calculate the degree set of maps between S^{3}-manifolds in term of their Seifert invariants [8].

To determine $D(M)$ for the remaining geometrizable 3-manifolds M, the main task is to solve the question for the following three groups $(D(M)$ is rather easy to determine for Seifert manifold M supporting $H^{2} \times E^{1}$ or $S^{2} \times E^{1}$ geometry):
(a) torus bundles and semi-bundles;
(b) Nil Seifert manifolds not in (a);
(c) connected sums of 3-manifolds in (3) do not supporting S^{3} or $S^{2} \times E^{1}$ geometries. Indeed $D(M)$ for M in (a) will be determined in this paper (hopefully all the remaining cases will be solved in a forthcoming paper by the authors and Hao Zheng).
1.2. Main result. In this paper we calculate $D(M)$ for 3-manifold M which is either a torus bundle or semi-bundle. To do this, we need first to coordinate torus bundles and semi-bundles by integer matrices in Propositions 1.3 and 1.5, then state the results of $D(M)$ in term of those matrices in Theorems 1.6 and 1.7.

CONVENTION. (1) To simplify notions, for a diffeomorphism ϕ on torus T, we also use ϕ to present its isotopy class and its induced 2 by 2 matrix on $\pi_{1}(T)$ for a given basis.
(2) Each 3-manifold M is oriented, and each 3-submanifold of M and its boundary have induced orientations.
(3) Suppose S (resp. P) is a properly embedded surface (resp. an embedded 3-manifold) in a 3-manifold M. We use $M \backslash S$ (resp. $M \backslash P$) to denote the resulting manifold obtained by splitting M along S (resp. removing int P, the interior of P).

Definition 1.2. A torus bundle is $M_{\phi}=T \times I /(x, 1) \sim(\phi(x), 0)$ where ϕ is a self-diffeomorphism of the torus T and I is the interval $[0,1]$.

For a torus bundle M_{ϕ}, we can isotopic ϕ to be a linear diffeomorphism, which means $\phi \in G L_{2}(\mathbb{Z})$ while not changing M_{ϕ}. Since we consider the orientable case only, ϕ must be in the special linear group $S L_{2}(\mathbb{Z})$.

Proposition 1.3. (1) M_{ϕ} admits E^{3} geometry if and only if ϕ is periodical, or equivalently ϕ is conjugate to one of the following matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$, $\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$ of finite order 1, 2, 3, 4 and 6 respectively;
(2) M_{ϕ} admits Nil geometry if and only if ϕ is reducible, or equivalently ϕ is conjugate to $\pm\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)$ where $n \neq 0$;
(3) M_{ϕ} admits Sol geometry if and only if ϕ is Anosov or equivalently ϕ is conjugate to $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $|a+d|>2, a d-b c=1$.

Proof. See [4].
Definition 1.4. Let K be the Klein bottle and $N=K \tilde{x} I$ be the twisted I-bundle over K. A torus semi-bundle $N_{\phi}=N \cup_{\phi} N$ is obtained by gluing two copies along their torus boundary ∂N via a diffeomorphism ϕ. Note N_{ϕ} is foliated by tori parallel to ∂N with a Klein bottle at the core of each copy of N.

Fig. 1. Coordinates of $S^{1} \times S^{1} \times I$.
Let (x, y, z) be the coordinate of $S^{1} \times S^{1} \times I$. Then $N=S^{1} \times S^{1} \times I / \tau$, where τ is an orientation preserving involution such that $\tau(x, y, z)=(x+\pi,-y, 1-z)$, and we have the double covering $p: S^{1} \times S^{1} \times I \rightarrow N$. Let C_{x} and C_{y} be the two circles on $S^{1} \times S^{1} \times\{1\}$ defined by y to be constant and x to be constant, see Fig. 1. Denote by $l_{0}=p\left(C_{x}\right)\left(0\right.$ slope) and $l_{\infty}=p\left(C_{y}\right)(\infty$ slope $)$ on ∂N. A canonical coordinate is an orientation of $l_{0} \cup l_{\infty}$, hence there are four choices of canonical coordinate on ∂N. Once canonical coordinates on each ∂N are chosen, ϕ is identified with an element $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of $G L_{2}(\mathbb{Z})$ given by $\phi\left(l_{0}, l_{\infty}\right)=\left(l_{0}, l_{\infty}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

Proposition 1.5. With suitable choice of canonical coordinates of ∂N, we have:
(1) N_{ϕ} admits E^{3} geometry if and only if $\phi=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ or $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$;
(2) N_{ϕ} admits Nil geometry if and only if $\phi=\left(\begin{array}{ll}1 & 0 \\ z & 1\end{array}\right)$, $\left(\begin{array}{ll}0 & 1 \\ 1 & z\end{array}\right)$ or $\left(\begin{array}{ll}1 & z \\ 0 & 1\end{array}\right)$ where $z \neq 0$;
(3) N_{ϕ} admits Sol geometry if and only if $\phi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $a b c d \neq 0$, $a d-b c=1$.

Moreover a torus semi-bundle N_{ϕ} is also a torus bundle if and only if $\phi=\left(\begin{array}{ll}1 & 0 \\ z & 1\end{array}\right)$ under suitable choice of canonical coordinates.

We will prove Proposition 1.5 in Section 2.

Theorem 1.6. Using matrix coordinates given by Proposition 1.3, $D\left(M_{\phi}\right)$ is listed in Table 1 for torus bundle M_{ϕ}, where $\delta(3)=\delta(6)=1, \delta(4)=0$.

Theorem 1.7. Using matrix coordinates given by Proposition 1.5, $D\left(N_{\phi}\right)$ is listed in Table 2 for torus semi-bundle N_{ϕ}, where $\delta(a, d)=a d / \operatorname{gcd}(a, d)^{2}$.

Table 1. Degrees of self maps of orientable torus bundles.

M_{ϕ}	ϕ	$D\left(M_{\phi}\right)$
E^{3}	finite order $k=1,2$	\mathbb{Z}
E^{3}	finite order $k=3,4,6$	$\left\{(k t+1)\left(p^{2}-\delta(k) p q+q^{2}\right) \mid t, p, q \in \mathbb{Z}\right\}$
Nil	$\pm\left(\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right), n \neq 0$	$l^{2} \mid l \in \mathbb{Z}$
Sol	$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right),\|a+d\|>2$	$\left\{p^{2}+(d-a) p r / c-b r^{2} / c \mid\right.$ $p, r \in \mathbb{Z}$, either $b r / c,(d-a) r / c \in \mathbb{Z}$ or $(p(d-a)-b r) / c \in \mathbb{Z}\}$

Table 2. Degrees of self maps of torus semi-bundles.

N_{ϕ}	ϕ	$D\left(N_{\phi}\right)$
E^{3}	$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	\mathbb{Z}
E^{3}	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	$\{2 l+1 \mid l \in \mathbb{Z}\}$
Nil	$\left(\begin{array}{ll}1 & 0 \\ z & 1\end{array}\right), z \neq 0$	$\left\{l^{2} \mid l \in \mathbb{Z}\right\}$
Nil	$\left(\begin{array}{ll}0 & 1 \\ 1 & z\end{array}\right)$ or $\left(\begin{array}{ll}1 & z \\ 0 & 1\end{array}\right), z \neq 0$	$\left\{(2 l+1)^{2} \mid l \in \mathbb{Z}\right\}$
Sol	$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), a b c d \neq 0, a d-b c=1$	$\left\{(2 l+1)^{2} \mid l \in \mathbb{Z}\right\}$, if $\delta(a, d)$ is even or $\left\{(2 l+1)^{2} \mid l \in \mathbb{Z}\right\} \cup\left\{(2 l+1)^{2} \cdot \delta(a, d) \mid l \in \mathbb{Z}\right\}$, if $\delta(a, d)$ is odd

1.3. Remark on orientation reversing homeomorphisms. Suppose M is a torus bundle or semi-bundle. Then any non-zero degree map is homotopic to a covering ([12] Corollary 0.4). Hence if $-1 \in D(M)$ (which is computable by Theorems 1.6 and 1.7), then M admits an orientation reversing self homeomorphism.

If M is a torus semi-bundle, or M supports the geometry of either E^{3} or Nil, then when M admits an orientation reversing self homeomorphism is explicitly presented in the following:

Corollary 1.8. (1) A torus semi-bundle N_{ϕ} admits an orientation reversing homeomorphism if and only if ϕ is either $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, or $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, or $\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)$ where $a b c \neq 0$.
(2) A torus bundle M_{ϕ} supporting E^{3} geometry admits an orientation reversing homeomorphism if and only if ϕ is either $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, or $\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$.
(3) If M supports Nil geometry, then M admits no orientation reversing homeomorphism.

For torus bundle with given Anosov monodromy, even we can calculate whether $-1 \in D\left(M_{\phi}\right)$, but there seems no simple description as in Corollary 1.8. (The referee
informed us that there is a convenient description of when $-1 \in D\left(M_{\phi}\right)$, see Lemma 1.7, [9].)

Example 1.9. For the torus bundle $M_{\phi}, \phi=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right),-1 \in D\left(M_{\phi}\right)$. Indeed for $\phi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, if $|a+d|=3$, then $-1 \in D\left(M_{\phi}\right)$. Since $p^{2}+(d-a) p r / c-b r^{2} / c=-1$ has solution $p=1-d, r=c$ when $a+d=3$, and solution $p=-1-d, r=c$ when $a+d=-3$.

Example 1.10. For the torus bundle $M_{\phi}, \phi=\left(\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right),-1 \notin D\left(M_{\phi}\right)$. Indeed for $\phi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, if $a+d \pm 2$ has prime decomposition $p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}$ such that $p_{i}=4 l+3$ and $e_{i}=2 m+1$ for some i, then $-1 \notin D\left(M_{\phi}\right)$. Since if the equation $p^{2}+(d-a) p r / c-$ $b r^{2} / c=-1$ has integer solution, $\left(\left((a+d)^{2}-4\right) r^{2}-4 c^{2}\right) / c^{2}$ should be a square of rational number. That is $\left((a+d)^{2}-4\right) r^{2}-4 c^{2}=s^{2}$ for some integer s. Therefore $(a+d+2)(a+d-2) r^{2}$ is a sum of two squares. By a fact in elementary number theory, neither $a+d+2$ nor $a+d-2$ has $4 k+3$ type prime factor with odd power (see p. 279, [7]).

Example 1.11. Note if $-1 \in D(M)$, then $k \in D(M)$ implies $-k \in D(M)$. For the torus bundle $M_{\phi}, \phi=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$, among the first 20 integers >0, exactly $1,4,5$, $9,11,16,19,20 \in D\left(M_{\phi}\right)$.
1.4. Organization of the paper. Theorems 1.6 and 1.7 will be proved in Sections 3 and 4 respectively. To prove these theorems, we need have a careful look of the structures of torus bundle and semi-bundles. This is carried out in Section 2.

We explain more about Section 2. The most convenient and useful reference for us is "Notes on basic 3-manifold topology" by Hatcher [4], which is not formally published, but widely circulated (see http://www.math.cornell.edu/~hatcher/). In particular Chapter 2 of [4] is devoted to the study of torus bundles and semi-bundles. Theorems 2.3 and 2.4 about classifications of torus bundles and semi-bundles are quoted from [4] directly. It seems that the proof of Theorem 2.4 in [4] missed an existed and rather complicated case, so we rewrite a proof for it (most parts still follow that in [4]). Lemma 2.6 studies incompressible surfaces in torus semi-bundle, which relies on the proof of Theorem 2.4. Then Proposition 1.5 is proved by using Theorem 2.4, Lemma 2.6, and Lemma 2.8 which presents the relation between gluing maps of a torus semi-bundles and its torus bundle double covers. Finally, Theorem 2.9 studies lifting of maps between torus semi-bundles to their torus bundle double covers.

2. Structures of orientable torus bundles and semi-bundles

2.1. Some elementary facts. All facts in this sub-section are known, and one can find them in [6], or more directly in [4].

Fig. 2. Coordinates of ∂N.
Definition 2.1. Suppose an oriented 3-manifold M^{\prime} is a circle bundle with a given section F, where F is a compact surface with boundary components c_{1}, \ldots, c_{n}, \ldots, c_{n+b} with $n>0$. On each boundary component of M^{\prime}, orient c_{i} and the circle fiber l_{i} so that the product of their orientations match with the induced orientation of M^{\prime}. Now attaching n solid tori S_{i} to the first n boundary tori of M^{\prime} so that the meridian of S_{i} is identified with slope $r_{i}=a_{i} c_{i}+b_{i} l_{i}$ with $a_{i}>0$. Denote the resulting manifold by M which has the Seifert fiber structure extended from the circle bundle structure of M^{\prime}.

We will denote this Seifert fibering of M by $M\left(\pm g, b ; r_{1}, \ldots, r_{s}\right)$ where g is the genus of the section F of M, with the sign + if F is orientable and - if F is nonorientable, here 'genus' of nonorientable surfaces means the number of $R P^{2}$ connected summands. When $b=0$, call $e(M)=\sum_{1}^{s} r_{i}$ the Euler number of the Seifert fiberation.

Another view of N described in Fig. 2 (a): N is obtained from $S^{1} \times I \times I$ by identifying $S^{1} \times I \times\{0\}$ with $S^{1} \times I \times\{1\}$ via a diffeomorphism ρ which reflects both the S^{1} and I factors. Fig. $2(b)$ is a schematic picture of N which will be used in the paper.

We list some properties of N as:
Lemma 2.2. (1) N has two types of Seifert fiber structures:
I: $\quad M(0,1 ; 1 / 2,-1 / 2)$ in which l_{0} on ∂N is a regular fiber and l_{∞} is the boundary of the section defining the Seifert invariant.
II: $\quad M(-1,1 ;)$ in which l_{∞} on ∂N is a regular fiber and l_{0} is the boundary of the section defining the Seifert invariant.
(2) N has three types of essential (orientable, incompressible, ∂-incompressible) surfaces:
I. A torus parallel to ∂N.
II. An annulus whose boundary is l_{∞} in ∂N (Fig. 3 (a)) which does not separate N.
III. An annulus whose boundary is l_{0} in ∂N (Fig. 3 (b)) which separates N.
(3) Suppose M is a torus bundle or semi-bundle and F is a closed incompressible surface in M, then F is union of parallel tori.

Fig. 3. Essential surface in N.
2.2. Classifications of torus bundles and semi-bundles. Orientable torus bundles and semi-bundles are classified by two theorems below.

Theorem 2.3 ([3]; [4], Theorem 2.6). An orientable torus bundle M_{ϕ} is diffeomorphic to M_{ψ} if and only if ϕ conjugates to $\psi^{ \pm 1}$ in $G L_{2}(\mathbb{Z})$.

Theorem 2.4 ([4], Theorem 2.8). The torus semi-bundle N_{ϕ} is diffeomorphic to N_{ψ} if and only if $\phi=\left(\begin{array}{cc} \pm 1 & 0 \\ 0 & \pm 1\end{array}\right) \psi^{ \pm 1}\left(\begin{array}{cc} \pm 1 & 0 \\ 0 & \pm 1\end{array}\right)$ in $G L_{2}(\mathbb{Z})$, with independent choices of signs understood.

Proof. (We start the proof as that in [4].) Suppose $f: N_{\phi} \rightarrow N_{\psi}$ is a diffeomorphism and T, T^{\prime} are the torus fibers of N_{ϕ}, N_{ψ} respectively. $N_{\psi} \backslash T^{\prime}=N_{1} \cup N_{2}$ where N_{1}, N_{2} are homeomorphic to N.

Since f is a diffeomorphism, two components of $N_{\psi} \backslash f(T)$ are both homeomorphic to N. We can isotope f, such that every component of $f(T) \cap N_{i}$ is an essential surface in $N_{i}, i=1,2$. So $f(T) \cap N_{i}$ is in the three types listed in Lemma 2.2 (2). Thus either $f(T)$ is parallel to T^{\prime}, or ψ takes l_{0} or l_{∞} to l_{0} or l_{∞}.

Suppose $f(T)$ is parallel to T^{\prime}. We can assume $f(T)=T^{\prime}$. Then ϕ must be obtained from ψ by composing on the left and right homeomorphisms of ∂N which extend to homeomorphisms of N. Such homeomorphisms must preserve both l_{0} and l_{∞} (may reverse the directions), since l_{0} is the unique slopes of the boundaries of essential separating annulus and l_{∞} is the unique slopes of the boundaries of essential non-separating annulus in N. Theorem 2.4 is proved in this situation.

Suppose ψ takes l_{0} or l_{∞} to l_{0} or l_{∞}. Then there are three cases as below:
CASE (1) ψ takes l_{∞} to l_{0} (if ψ takes l_{0} to l_{∞}, then we consider ψ^{-1}).
CASE (2) ψ takes l_{∞} to l_{∞}.
CASE (3) ψ takes l_{0} to l_{0}.
(The proof in [4] claims that only Case (3) is possible, while we show below that only Case (2) is impossible.)

Case (1). Now $\psi=\left(\begin{array}{cc}z & 1 \\ 1 & 0\end{array}\right)$, and $N_{\psi}=M(-1,0 ; 1 / 2,-1 / 2, z)$, and $e(M)=z$. Note:

Fig. 4. Cut N_{i} through type (II) surfaces.

Fig. 5. Cut N_{i} through type (III) surfaces.
(i) $f(T) \cap N_{1}$ are n parallel annuli A_{1}, \ldots, A_{n} of type (II) (see Fig. 4), which are located in a cyclic order in N. Set $\partial A_{i}=a_{i} \cup a_{i}^{\prime}$, then $2 n$ circles $a_{1}, \ldots, a_{n}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}$ are located in cyclic order in ∂N_{1}.
(ii) $f(T) \cap N_{2}$ are annuli B_{1}, \ldots, B_{n} of type (III) (see Fig. 5), where B_{i+1} is next to $B_{i}, i=1, \ldots, n-1$ in N_{2}. Set $\partial B_{i}=b_{i} \cup b_{i}^{\prime}$ then $2 n$ circles $b_{1}, \ldots, b_{n}, b_{n}^{\prime}, \ldots, b_{1}^{\prime}$ are located in cyclic order in ∂N_{2}.

If $n=1$, we can check that ψ pastes A_{1} and B_{1} to a Klein bottle, which contradicts the fact that $f(T)$ is torus. When $n>1$, we can assume ψ pastes a_{1} to b_{1} and pastes a_{2} to b_{2}, after reindexing A_{i} if necessary. By the orders of sequences of $a_{1}, \ldots, a_{n}, a_{1}^{\prime}, \ldots, a_{n}^{\prime}$ and $b_{1}, \ldots, b_{n}, b_{n}^{\prime}, \ldots, b_{1}^{\prime}$ on ∂N_{1} and ∂N_{2}, we have a_{i} is pasted to b_{i}, and a_{i}^{\prime} pasted to $b_{n-i}^{\prime}, i=1, \ldots, n$. So $A_{i}, A_{n-i}, B_{i}, B_{n-i}$ are pasted to one component of $f(T)$ in N_{ψ}, and $f(T)$ has $[(n+1) / 2]$ components. Since $f(T)$ is connected, we have $n=2$.

Now $N_{1} \backslash f(T)$ can be presented as two I-bundles over annulus: $I \times A_{1}$ and $I \times A_{2}$, where $f(T) \cap N_{1}=A_{1} \cup A_{2}$, as in Fig. 4. $N_{2} \backslash f(T)$ can be presented as an I-bundle

Fig. 6.
over annulus $I \times B$ as in Fig. 6 (a) and two solid tori P_{1} and P_{2} with the core of $P_{i} \cap \partial N_{2}$ to be the $(2,1)$ curve of ∂P_{i} as in Fig. 6 (b).

If we glue those five pieces along ∂N, we get two components of $N_{\psi} \backslash f(T)$ which are $N_{1}^{\prime}=P_{1} \cup_{\partial N} I \times A_{1} \cup_{\partial N} P_{2}$ and $N_{2}^{\prime}=I \times A_{2} \cup_{\partial N} I \times B$ (re-index A_{i} if needed), each of them is a copy of N. Moreover under the inherited Seifert structure of N_{ψ}, $N_{1}^{\prime}=M(0,1 ; 1 / 2,-1 / 2)$ and $N_{2}^{\prime}=M(-1,1 ;)$.

If we consider that $M(-1,0 ; 1 / 2,-1 / 2, z)$ is obtained by identifying N_{1}^{\prime} and N_{2}^{\prime} along $f(T)$, we get a new semi-bundle structure so that $f(T)$ become a fiber torus. Since the Euler number of the Seifert structure is z, the new gluing map must be $\left(\begin{array}{ll}z & 1 \\ 1 & 0\end{array}\right)^{ \pm 1}$. This reduces us to the situation that $f(T)$ is parallel to T^{\prime}.

Case (2). Both $f(T) \cap N_{i}$ are type (II) surfaces, for $i=1,2$ (Fig. 4). Hence $f(T) \cap N_{1}$ is exactly as that in Case (1) (i). Similarly, $f(T) \cap N_{2}$ are n parallel annulus B_{1}, \ldots, B_{n} located in a cyclic order in N. Set $\partial B_{i}=b_{i} \cup b_{i}^{\prime}$, then $2 n$ circles $b_{1}, \ldots, b_{n}, b_{1}^{\prime}, \ldots, b_{n}^{\prime}$ are located in cyclic order in ∂N_{2}.

We can assume ψ paste a_{1} to b_{1} and paste a_{2} to b_{2} (re-index $\left\{B_{i}\right\}$ if needed). Then we have a_{i} is pasted to b_{i}, and a_{i}^{\prime} pasted to $b_{i}^{\prime}, i=1, \ldots, n$. So A_{i} and B_{i} are pasted to one component of $f(T)$ in N_{ψ}. Since $f(T)$ is connected, $n=1$. But here $f(T)$ does not separate N_{ψ}, it is impossible.

Case (3). (We copy the proof of [4] for this case.) Now $\psi=\left(\begin{array}{ll}1 & z \\ 0 & 1\end{array}\right)$, and $N_{\psi}=$ $M(0,0 ; 1 / 2,1 / 2,-1 / 2,-1 / 2, z), e\left(N_{\psi}\right)=z$. (Both $f(T) \cap N_{i}$ are type (III).)

We may assume that $f(T)$ has been isotoped to be either vertical or horizontal in this Seifert fibering. Since a connected horizontal essential surface is not separating, $f(T)$ must be vertical. Then $f(T)$ must separate $M(0,0 ; 1 / 2,1 / 2,-1 / 2,-1 / 2, z)$ into two copies of N both having the inherited Seifert structure $M(0,1 ; 1 / 2,-1 / 2)$. We can rechoose the semi-bundle structure so that $f(T)$ become a fiber torus. Then for the new torus semi-bundle structure the gluing map must also be $\left(\begin{array}{ll}1 & z \\ 0 & 1\end{array}\right)$. This reduces us to the situation that $f(T)$ is parallel to T^{\prime}.

2.3. Incompressible surfaces.

Lemma 2.5 ([4], Lemma 2.7). For a torus bundle M_{ϕ}, if ϕ is not conjugate to $\pm\left(\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right)$, then any essential closed surface in M_{ϕ} is isotopic to a union of torus fibers.

Lemma 2.6. If a torus semi-bundle N_{ϕ} has no torus bundle structure, then any essential closed surface in N_{ϕ} is isotopic to copies of torus fibers of a torus semibundle structure on N_{ϕ}, which is isomorphic to N_{ϕ}.

Proof. Let F be an essential close surface in $N_{\phi}=N_{1} \cup N_{2}$. By Lemma 2.2 (3), F is a union of parallel tori. For our purpose we may assume that F is a torus. Isotope F so that $F \cap N_{i}$ is essential in N_{i}. Then each component of $F \cap N_{i}$ must be in one of the three types listed in Lemma 2.2.

If $F \cap N_{i}$ is of type (I), then the proof is finished.
There are two cases remaining:
(a) Both $F \cap N_{i}$ are of type (II) for $i=1,2$ (Fig. 4). Then $N_{i} \backslash F$ are I-bundles over $N_{i} \cap F$. Gluing those two I-bundles along ∂N will get an I-bundle over F and N_{ϕ} is obtained from this I-bundle by identifying its top and bottom, which provides a torus bundle structure of N_{ϕ}.
(b) Some $F \cap N_{i}$ is of type (III), say $i=2$ (Fig. 5). Then F is the same as $f(T)$ either in Case (1) or Case (3) of the proof of Theorem 2.4, depends on $F \cap N_{1}$ is of type (III) or type (II).

As indicated in the proof of Theorem 2.4, we can rechoose the new torus semibundle structure N_{ψ} so that F become a fiber torus; moreover if choosing suitable coordinates, we can make ψ to be ϕ.
2.4. Coordinates of torus semi-bundles. Call a map $g:(M, \partial M) \rightarrow\left(M^{\prime}, \partial M^{\prime}\right)$ is proper if $g^{-1}\left(\partial M^{\prime}\right) \subset \partial M$.

Lemma 2.7. If $V=T \times I$ with the two boundaries T^{+}, T^{-}and $g:\left(V, T^{+}, T^{-}\right) \rightarrow$ $(N, \partial N)$ is a proper map, then $\left(\left.g\right|_{T^{+}}\right)_{*}=\tau_{*} \cdot\left(\left.g\right|_{T^{-}}\right)_{*}$, where $\tau_{*}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

Proof. Let $p: T \times I \rightarrow N$ be the double covering and τ be the deck transformation map.

Since $g_{*}\left(\pi_{1}(V)\right)=\left(\left.g\right|_{T^{+}}\right)_{*}\left(\pi_{1}\left(T^{+}\right)\right) \subset \pi_{1}(\partial N) \subset \pi_{1}(N)$, thus g can be lifted to a map $\tilde{g}: V \rightarrow T \times I$.

Fig. 7. N_{ϕ} is double covered by $M_{\tau \phi \tau \phi^{-1}}$.
From the commuted diagram above, we have:

$$
\left\{\begin{array}{l}
\left.g\right|_{T^{-}}=\left.\left.p\right|_{T \times\{1\}} \circ \tilde{g}\right|_{T^{-}}, \\
\left.g\right|_{T^{+}}=\left.\left.\left.p\right|_{T \times\{1\}} \circ \tau\right|_{T \times\{0\}} \circ \tilde{g}\right|_{T^{+}}
\end{array}\right.
$$

We can choose coordinate on $(T \times I, T \times\{0\}, T \times\{1\})$, such that $\left.p\right|_{T \times\{1\}}=i d$.
When considering fundamental group, we have $\left(\left.\tilde{g}\right|_{T^{-}}\right)_{*}=\left(\left.\tilde{g}\right|_{T^{+}}\right)_{*}$. Thus by the above equation:

$$
\left(\left.g\right|_{T^{+}}\right)_{*}=\tau_{*} \cdot\left(\left.g\right|_{T^{-}}\right)_{*}
$$

where $\tau_{*}=\left(\left.\gamma\right|_{T \times\{0\}}\right)_{*}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
Lemma 2.8. A torus semi-bundle N_{ϕ} is doubly covered by a torus bundle $M_{\tau \phi \tau \phi^{-1}}$ where $\tau(x, y)=(x+\pi,-y)$ with suitable choice of coordinate (x, y) on the torus.

Proof. Let $N_{\phi}=N_{1} \cup_{\phi} N_{2}$ with $\partial N_{1}=\partial N_{2}=T$. Let $p: M \rightarrow N_{\phi}$ be the double cover, where M is a torus bundle, $p^{-1}\left(N_{i}\right)=M_{i}$ is homeomorphic to $T \times I, p^{-1}(T)=$ $T_{1} \cup T_{2}$. Cut M along T_{1}, T_{2}, get $M \backslash T_{1} \cup T_{2}$. The two boundaries of M_{i} are denoted by T_{i} and T_{i}^{\prime}, T_{1} is pasted to T_{2} by ψ, T_{1}^{\prime} is pasted to T_{2}^{\prime} by ψ^{\prime}. Let $p_{i}=\left.p\right|_{M_{i}}$. All of these are shown in Fig. 7.

We can choose coordinate on T_{1}, T_{2}, such that $\left(\left.p_{i}\right|_{T_{i}}\right)_{*}=i d$. Since T_{i}^{\prime} is parallel to T_{i}, we can identify $\pi_{1}\left(T_{i}^{\prime}\right)$ with $\pi_{1}\left(T_{i}\right)$. By Lemma 2.7 , we have $\left(\left.p_{i}\right|_{T_{i}^{\prime}}\right)_{*}=\tau_{*}$. $\left(\left.p_{i}\right|_{T_{i}}\right)_{*}$.

From Fig. 7, we know that

$$
\left\{\begin{array}{l}
\left(\left.p_{2}\right|_{T_{2}}\right)_{*} \circ \psi=\phi \circ\left(p_{1} \mid T_{T_{1}}\right)_{*}, \\
\left(\left.p_{2}\right|_{T_{2}^{\prime}}\right)_{*} \circ \psi^{\prime}=\phi \circ\left(p_{1} \mid T_{1}^{\prime}\right)_{*}
\end{array}\right.
$$

Then we get

$$
\left\{\begin{array}{l}
\psi=\phi \\
\psi^{\prime}=\tau \circ \phi \circ \tau .
\end{array}\right.
$$

Thus M has the torus bundle structure $M_{\psi^{\prime} \psi^{-1}}=M_{\tau \phi \tau \phi^{-1}}$.
By Theorem 2.4, and the fact that $\left(\begin{array}{ll}0 & 1 \\ 1 & z\end{array}\right)^{-1}=\left(\begin{array}{cc}-z & 1 \\ 1 & 0\end{array}\right)$, with suitable choice of canonical coordinates of ∂N, we can set ϕ is one of the four matrices: $\left(\begin{array}{ll}0 & 1 \\ 1 & z\end{array}\right)$, $\left(\begin{array}{ll}1 & z \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ z & 1\end{array}\right)$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $a b c d \neq 0, a d-b c=1$.

When ϕ is in the first three matrices, N_{ϕ} is a Seifert manifold with Euler number z. N_{ϕ} is E^{3} manifold if $z=0$ and is Nil manifold if $z \neq 0$. Now suppose $\phi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where $a b c d \neq 0, a d-b c=1$. Then by Lemma 2.8, N_{ϕ} is double covered by $M_{\tau \phi \tau \phi^{-1}}$. Since

$$
\left(\tau \phi \tau \phi^{-1}\right)_{*}=\tau_{*} \cdot \phi_{*} \cdot \tau_{*} \cdot \phi_{*}^{-1}=\left(\begin{array}{cc}
a d+b c & -2 a b \\
-2 c d & a d+b c
\end{array}\right)
$$

we have

$$
\left|\operatorname{Trace}\left(\left(\tau \phi \tau \phi^{-1}\right)_{*}\right)\right|=2|a d+b c|=2|a d-b c+2 b c|=2|2 b c+1|>2
$$

By Proposition 1.3, $M_{\tau \phi \tau \phi^{-1}}$ admits Sol geometry, thus N_{ϕ} admits Sol geometry. The first part of Proposition 1.5 is proved.

If N_{ϕ} also has torus bundle structure, it must have non-separating essential torus. Recall the proof of Lemma 2.6, an essential torus in N_{ϕ} can be non-separating only if case (a) is happened, and in this case $\phi=\left(\begin{array}{ll}1 & 0 \\ z & 1\end{array}\right)$ under suitable choice of canonical coordinates, and N_{ϕ} does have torus bundle structure. This finishes the "moreover" part of Proposition 1.5.

2.5. Lifting automorphism from semi-bundle to bundle.

Theorem 2.9. Suppose $f: N_{\phi} \rightarrow N_{\psi}$ is a non-zero degree map and $f^{-1}\left(T^{\prime}\right)$ is a union of copies of T, where T, T^{\prime} are the torus fiber of N_{ϕ}, N_{ψ} respectively. Then we
have commute diagram

where M, M^{\prime} are the torus bundle which are double covers of N_{ϕ}, N_{ψ} respectively and $\tilde{f}: M \rightarrow M^{\prime}$ is a lift of f.

Proof. We only have to check $f_{*}\left(p_{*}\left(\pi_{1}(M)\right)\right) \subset p_{*}^{\prime}\left(\pi_{1}\left(M^{\prime}\right)\right)$.
Let $\tilde{T}, \tilde{T}^{\prime}$ be one of the lifting of T, T^{\prime} in M, M^{\prime} respectively. In torus bundle M, we have the exact sequence:

$$
1 \rightarrow \pi_{1}(\tilde{T}) \rightarrow \pi_{1}(M) \rightarrow \pi_{1}\left(S^{1}\right) \rightarrow 1 .
$$

In torus semi-bundle N_{ϕ}, we have another exact sequence:

$$
1 \rightarrow \pi_{1}(T) \rightarrow \pi_{1}\left(N_{\phi}\right) \rightarrow \mathbb{Z}_{2} * \mathbb{Z}_{2} \rightarrow 1
$$

Since $f^{-1}\left(T^{\prime}\right)$ is a union of copies of T, we can assume $f(T)=T^{\prime}$. Then we have the commuted diagram (every row is exact):

here $\bar{p}_{*}, \bar{p}_{*}^{\prime}, \bar{f}_{*}$ are the maps among the fundamental groups of the base spaces of fiber bundles induced by the maps among the fundamental groups of the total spaces.

We present the group $\mathbb{Z}_{2} * \mathbb{Z}_{2}$ by $\left\langle a, b \mid a^{2}=b^{2}=1\right\rangle$ and choose the generator a, b such that $\bar{p}_{*}(1)=a b, \bar{p}_{*}^{\prime}(1)=a b$ (here 1 is the generator of $\pi_{1}\left(S^{1}\right)$).

Since $a^{2}=b^{2}=1$, so $\bar{f}_{*}(a)^{2}=\bar{f}_{*}(b)^{2}=1$, then $\bar{f}_{*}(a), \bar{f}_{*}(b)$ must be of the form $a b \cdots b a$ or $b a \cdots a b$, and $\bar{f}_{*}(a b)=(a b)^{k}$ or $(b a)^{k}=(a b)^{-k}$. So $\bar{f}_{*}\left(\bar{p}_{*}\left(\pi_{1}\left(S^{1}\right)\right)\right) \subset$ $\bar{p}_{*}^{\prime}\left(\pi_{1}\left(S^{1}\right)\right)$.

For any $\alpha \in \pi_{1}(M)$, let $\beta=f_{*}\left(p_{*}(\alpha)\right)$. Since $j_{2}(\beta)=\bar{f}_{*}\left(\bar{p}_{*}\left(\tilde{j}_{1}(\alpha)\right)\right) \in \bar{p}_{*}^{\prime}\left(\pi_{1}\left(S^{1}\right)\right)$, and there is $\gamma \in \pi_{1}\left(M^{\prime}\right)$ such that $\bar{p}_{*}^{\prime}\left(\tilde{j}_{2}(\gamma)\right)=j_{2}(\beta)$, so

$$
j_{2}\left(p_{*}^{\prime}(\gamma) \cdot \beta^{-1}\right)=\bar{p}_{*}^{\prime}\left(\tilde{j}_{2}(\gamma)\right) \cdot j_{2}\left(\beta^{-1}\right)=j_{2}(\beta) \cdot j_{2}\left(\beta^{-1}\right)=1 .
$$

Since $\left(p^{\prime} \mid\right)_{*}$ is an isomorphism, there is $\delta \in \pi_{1}\left(\tilde{T}^{\prime}\right)$ such that $i_{2}\left(\left(p^{\prime} \mid\right)_{*}(\delta)\right)=p_{*}^{\prime}(\gamma)$. β^{-1}. We have

$$
p_{*}^{\prime}\left(\tilde{i}_{2}\left(\delta^{-1}\right) \cdot \gamma\right)=i_{2}\left(\left(p^{\prime} \mid\right)_{*}\left(\delta^{-1}\right)\right) \cdot p_{*}^{\prime}(\gamma)=\left(p_{*}^{\prime}(\gamma) \cdot \beta^{-1}\right)^{-1} \cdot p_{*}^{\prime}(\gamma)=\beta .
$$

So $f_{*}\left(p_{*}\left(\pi_{1}(M)\right)\right) \subset p_{*}^{\prime}\left(\pi_{1}\left(M^{\prime}\right)\right)$, thus \tilde{f} exists.

3. The degrees of self maps of torus bundles

We are going to prove Theorem 1.6 (ref. Proposition 1.3). There are two cases to consider:

CASE 1: $\quad \phi$ is conjugated to $\pm\left(\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right)$. Now M_{ϕ} is a Seifert manifold whose Euler number of Seifert fibering $e\left(M_{\phi}\right)$ is equal to n.
(1.I) If $n=0, M_{\phi}$ is T^{3} or $S^{1} \tilde{\times} S^{1} \tilde{\times} S^{1}$. Here $\phi= \pm\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, any 2×2 integer matrix A commutes with ϕ, so M_{ϕ} admits self maps of any degrees.
(1.II) If $n \neq 0$, for a none zero degree map $f: M_{\phi} \rightarrow M_{\phi}$, by [12, Corollary 0.4], f is homotopic to a covering map $g: M_{\phi} \rightarrow M_{\phi}$. We can choose a suitable Seifert fibering of M_{ϕ} such that g is a fiber preserving map. Denote the orbifold of M_{ϕ} by $O\left(M_{\phi}\right)$. By [10, Lemma 3.5], we have:

$$
\left\{\begin{array}{l}
e\left(M_{\phi}\right)=e\left(M_{\phi}\right) \cdot \frac{l}{m} \tag{3.1}\\
\operatorname{deg}(g)=l \cdot m
\end{array}\right.
$$

where l is the covering degree of $O\left(M_{\phi}\right) \rightarrow O\left(M_{\phi}\right)$ and m is the fiber degree.
Since $e\left(M_{\phi}\right) \neq 0$, from equation (3.1) we get $l=m$. Thus $\operatorname{deg}(f)=\operatorname{deg}(g)$ is a square number. Conversely, given a square number l^{2}, it is easy to construct a covering map $f: M_{\phi} \rightarrow M_{\phi}$ of degree l^{2}.

CASE 2: $\quad \phi=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is not conjugated to $\pm\left(\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right)$.
Theorem 3.1. Suppose ϕ is not conjugated to $\pm\left(\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right) M_{\phi}$ admits a self map of degree $l \neq 0$ if and only if there exist a 2×2 nondegenerate integer matrix A and a positive integer k such that $l=k \cdot \epsilon \cdot \operatorname{det}(A)$ and $A \cdot \phi_{*}=\left(\phi^{\epsilon}\right)_{*}^{k} \cdot A$ where $\epsilon= \pm 1$.

Proof. For a torus fiber $T \in M_{\phi}, T$ is incompressible. Suppose $f: M_{\phi} \rightarrow M_{\phi}$ is a self-map of degree $l \neq 0$. By [6, Lemma 6.5], f is homotopic to $g: M_{\phi} \rightarrow M_{\phi}$

Fig. 8. Non-zero degree self-map of M_{ϕ}.
such that $g^{-1}(T)$ is an incompressible surface of M_{ϕ}. Thus by Lemma $2.5, g^{-1}(T)$ is isotopic to a union of torus fibers.

Suppose $M_{\phi} \backslash g^{-1}(T)$ has k components V_{1}, \ldots, V_{k}. Each V_{i} is a $T \times I$. Denote two torus boundary components of V_{i} by T_{i}^{+}and T_{i}^{-}, and the homeomorphism gluing T_{i}^{-} to T_{i+1}^{+}by ψ_{i} see Fig. 8. Then $M_{\psi_{k} \cdots \cdots o \psi_{1}}=M_{\phi}$. By choosing suitable coordinate on the torus fiber, we have $\psi_{k} \circ \cdots \circ \psi_{0}=\phi^{\epsilon}, \epsilon= \pm 1$ according to Theorem 2.3. Below we assume $\psi_{k} \circ \cdots \circ \psi_{0}=\phi$ (replace ϕ by ϕ^{-1} if needed). Let $\tilde{g}: M_{\phi} \backslash g^{-1}(T) \rightarrow M_{\phi} \backslash T$ be the map induced by g. We have the following commuted diagram:

Denote the restriction of \tilde{g} to V_{i} by g_{i}. From the commuted diagram in Fig. 8, we have:

$$
\begin{equation*}
\left.g_{i+1}\right|_{T_{i+1}^{+}} \circ \psi_{i}=\left.\phi^{\epsilon} \circ g_{i}\right|_{T_{i}^{-}}, \tag{3.3}
\end{equation*}
$$

where $\epsilon= \pm 1, i=1, \ldots, k$ and if $i=k$ then $i+1$ is 1 .

Since T_{i}^{-}is parallel to T_{i}^{+}, we can identify $\pi_{1}\left(T_{i}^{-}\right)$with $\pi_{1}\left(T_{i}^{+}\right)$. Thus $\left(\left.g_{i}\right|_{T_{i}^{-}}\right)_{*}=$ $\left(\left.g_{i}\right|_{T_{i}^{+}}\right)_{*}$ and $\left(\psi_{k}\right)_{*} \cdots\left(\psi_{1}\right)_{*}=\phi_{*}$ on fundamental group. The identity (3.3) deduces that:

$$
\begin{aligned}
\left(\left.g_{1}\right|_{T_{1}^{+}}\right)_{*} \cdot \phi_{*} & =\left(\left.g_{1}\right|_{T_{1}^{+}}\right)_{*} \cdot\left(\psi_{k}\right)_{*} \cdots\left(\psi_{1}\right)_{*} \\
& =\left(\left.g_{k+1}\right|_{T_{k+1}^{+}}\right)_{*} \cdot\left(\psi_{k}\right)_{*} \cdots\left(\psi_{1}\right)_{*} \\
& =\phi_{*}^{\epsilon} \cdot\left(\left.g_{k}\right|_{T_{k}^{-}}\right)_{*} \cdot\left(\psi_{k-1}\right)_{*} \cdots\left(\psi_{1}\right)_{*} \\
& =\phi_{*}^{\epsilon} \cdot\left(\left.g_{k}\right|_{T_{k}^{+}}\right)_{*} \cdot\left(\psi_{k-1}\right)_{*} \cdots\left(\psi_{1}\right)_{*} \\
& =\cdots \\
& =\left(\phi^{\epsilon}\right)_{*}^{k} \cdot\left(\left.g_{1}\right|_{T_{1}^{+}}\right)_{*} .
\end{aligned}
$$

Set $A=\left(\left.g_{1}\right|_{T_{1}^{+}}\right)_{*}$ and get:

$$
\begin{equation*}
A \cdot \phi_{*}=\left(\phi^{\epsilon}\right)_{*}^{k} \cdot A . \tag{3.4}
\end{equation*}
$$

Clearly $|\operatorname{deg}(g)|=k|\operatorname{det}(A)|$. The sign of $\operatorname{deg}(g)$ is decided by ϵ and the sign of $\operatorname{det}(A)$. Thus $l=\operatorname{deg}(f)=\operatorname{deg}(g)=k \cdot \epsilon \cdot \operatorname{det}(A)$.

Conversely, we set $\psi_{1}=\cdots=\psi_{k-1}=i d, \psi_{k}=\phi$ and construct the map $\tilde{g}: M_{\phi} \backslash$ $g^{-1}(T) \rightarrow M_{\phi} \backslash T$ such that $\left.\tilde{g}\right|_{V_{i}}=\left(\phi^{\epsilon \cdot(i-1)} \circ A\right) \times i d: T \times I \rightarrow T \times I$ for $i=1, \ldots, k$. This construction fits the commuted diagram (3.2). Thus we get the quotient $g: M_{\phi} \rightarrow M_{\phi}$ whose degree is equal to $k \cdot \epsilon \cdot \operatorname{det}(A)$.

Suppose $A=\left(\begin{array}{cc}p & q \\ r & s\end{array}\right)$ where $p, q, r, s \in \mathbb{Z}$. We use equation (3.4) to solve p, q, r, s and then can determine l by Theorem 3.1.
(2.I) If ϕ is Anosov which means the absolute value of one eigenvalue of ϕ is larger than 1 while the other is less than 1 . In this case, the k in the equation (3.4) must be equal to 1 . We have:

$$
\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{\epsilon} \cdot\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)
$$

Solve this matrix equation and get:

$$
A=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
p & \frac{b r}{c} \\
r & \frac{c p+(d-a) r}{c}
\end{array}\right) & (\epsilon=1), \\
\left(\begin{array}{cc}
p & \frac{p(d-a)-b r}{c} \\
r & -p
\end{array}\right) & (\epsilon=-1)
\end{array}\right.
$$

where $b r / c,(d-a) r / c,(p(d-a)-b r) / c \in \mathbb{Z}$.

By Theorem 3.1, we have:

$$
l=p^{2}+\frac{(d-a)}{c} \cdot p r-\frac{b}{c} \cdot r^{2}
$$

(2.II) If ϕ is periodic, may assume ϕ is either $\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right)$, or $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, or $\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$.
(A) If $\phi=\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right)$ (ϕ has order 3), the equation (3.4) means:

$$
A \cdot \phi_{*}= \begin{cases}A & (k \equiv 0 \bmod 3) \\ \phi_{*}^{\epsilon} \cdot A & (k \equiv 1 \bmod 3) \\ \phi_{*}^{2 \epsilon} \cdot A & (k \equiv 2 \bmod 3)\end{cases}
$$

After solving all the above possible cases, we get:

$$
A= \begin{cases}\left(\begin{array}{cc}
p & q \\
-q & p-q
\end{array}\right) & (k \equiv 1 \bmod 3, \epsilon=1) \\
\left(\begin{array}{cc}
p & q \\
q-p & -p
\end{array}\right) & (k \equiv 1 \bmod 3, \epsilon=-1) \\
\left(\begin{array}{cc}
p & q \\
q-p & -p
\end{array}\right) & (k \equiv 2 \bmod 3, \epsilon=1) \\
\left(\begin{array}{cc}
p & q \\
-q & p-q
\end{array}\right) & (k \equiv 2 \bmod 3, \epsilon=-1)\end{cases}
$$

If $k \equiv 0 \bmod 3$, we have $A=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, which induces degree 0 map.
By Theorem 3.1:

$$
l= \begin{cases}k \cdot\left(p^{2}-p q+q^{2}\right) & (k \equiv 1 \bmod 3) \\ k \cdot\left(-p^{2}+p q-q^{2}\right) & (k \equiv 2 \bmod 3)\end{cases}
$$

It's easy to deduce that:

$$
l=(3 t+1)\left(p^{2}-p q+q^{2}\right), \quad t, p, q \in \mathbb{Z}
$$

The same method is applied to the other two cases and we get:
(B) If $\phi=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, then:

$$
l=(4 t+1)\left(p^{2}+q^{2}\right), \quad t, p, q \in \mathbb{Z}
$$

(C) If $\phi=\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$, then:

$$
l=(6 t+1)\left(p^{2}-p q+q^{2}\right), \quad t, p, q \in \mathbb{Z}
$$

4. The degrees of self maps of torus semi-bundles

We are going to prove Theorem 1.7 (ref. Proposition 1.5). We will assume that torus semi-bundle N_{ϕ} considered in this section has no torus bundle structure, otherwise $D\left(N_{\phi}\right)$ is determined in Section 3.

Suppose the degree of $f: N_{\phi} \rightarrow N_{\phi}$ is $l \neq 0$ and T is a torus fiber of N_{ϕ}. By [6, Lemma 6.5], f is homotopic to $g: N_{\phi} \rightarrow N_{\phi}$ such that $g^{-1}(T)$ is incompressible in N_{ϕ}. Thus by Lemma 2.6 and its proof (also ref. the proof of Theorem 2.4), we have $g^{-1}(T)$ is isotopic to either a union of torus fibers, or a union of torus fibers of another semi-bundle structure which is isomorphic to the original one. Also the later case happen only if N_{ψ} is a Nil manifold. Note by Theorem 2.9 and the proof in Section 3 (1.II), Nil 3-manifolds admits no orientation reversing homeomorphism.

Suppose now $g^{-1}(T)$ has k connected components, then $N_{\phi} \backslash g^{-1}(T)$ has two copies of N, denoted by V_{0} and V_{k}, and $k-1$ copies of $T \times I$, denoted by $V_{i}, i=1, \ldots, k-1$. Denote the boundaries of V_{0} and V_{k} by T_{0}^{-}and T_{k}^{+}, the boundaries of V_{i} by T_{i}^{+}and $T_{i}^{-}, i=1, \ldots, k-1$, and the gluing map from T_{i}^{-}to T_{i+1}^{+}by $\psi_{i}(i=0, \ldots, k-1)$ see Fig. 9.

Then $N_{\psi_{k-1} \circ \cdots \circ \psi_{0}}=N_{\phi}$, and $\psi_{k-1} \circ \cdots \circ \psi_{0}=\phi^{\epsilon}, \epsilon= \pm 1$ by Theorem 2.4 (with a suitable orientation of the canonical coordinate). Below we assume $\psi_{k-1} \circ \cdots \circ \psi_{0}=\phi$ (replace ϕ by ϕ^{-1} if needed). Let $\tilde{g}: N_{\phi} \backslash g^{-1}(T) \rightarrow N_{\phi} \backslash T$ be the map induced by g, and we have commuted diagram:

Since T_{i}^{+}is parallel to T_{i}^{-}, we can identity $\pi_{1}\left(T_{i}^{+}\right)$with $\pi_{1}\left(T_{i}^{-}\right)(i=0, \ldots, k-1)$. Thus $\left(\psi_{k-1}\right)_{*} \cdots\left(\psi_{0}\right)_{*}=\phi_{*}$ on fundamental group. Denote the restriction of \tilde{g} on V_{i} by g_{i}. Then $g: V_{i} \rightarrow N_{1}$ if i even, and $g: V_{i} \rightarrow N_{2}$ if i odd.

Lemma 4.1. Under the canonical basis $\left(l_{0}, l_{\infty}\right),\left(g_{0} \mid T_{0}^{-}\right)_{*}$ is of the form $\left(\begin{array}{cc}2 m+1 & 0 \\ 0 & n\end{array}\right)$ where $n \neq 0, m, n \in \mathbb{Z}$, and so is $\left(\left.g_{k}\right|_{T_{k}^{+}}\right)_{*}$.

Proof. Let $g: N \rightarrow N$ be a proper map, we argue that under the basis $\left(l_{0}, l_{\infty}\right)$, $\left(\left.g\right|_{\partial N}\right)_{*}$ is of the form $\left(\begin{array}{cc}2 m+1 & 0 \\ 0 & n\end{array}\right)$ where $n \neq 0, m, n \in \mathbb{Z}$.

Fig. 9. Non-zero degree self-map of N_{ϕ}.
Choose a presentation $\pi_{1}(N)=\langle a, b \mid a=b a b\rangle$ with $l_{0}=a^{2}$ and $l_{\infty}=b$. Suppose $g_{*}(a)=a^{m^{\prime}} b^{q}, g_{*}(b)=a^{p} b^{n}$. Since $g_{*}(a)=g_{*}(b) g_{*}(a) g_{*}(b)$, we get:

$$
a^{m^{\prime}} b^{q}=a^{p} b^{n} a^{m^{\prime}} b^{q} a^{p} b^{n}=a^{m^{\prime}+2 p} b^{(-1)^{m^{\prime}+p} \cdot n+(-1)^{p} \cdot q+n} .
$$

Thus:

$$
\left\{\begin{array} { l }
{ m ^ { \prime } = m ^ { \prime } + 2 p , } \\
{ q = (- 1) ^ { m ^ { \prime } + p } \cdot n + (- 1) ^ { p } \cdot q + n , }
\end{array} \Longrightarrow \left\{\begin{array} { l }
{ p = 0 , } \\
{ m ^ { \prime } \text { odd } , }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
p=0, \\
n=0 .
\end{array}\right.\right.\right.
$$

Abandon the case that $p=n=0$ for g_{0} is non-zero degree map and let $m^{\prime}=$ $2 m+1$, we get: $g_{*}(a)=a^{2 m+1} b^{q}, g_{*}(b)=b^{n}$.

Since $\pi_{1}(\partial N)=\left\langle a^{2}, b \mid\left[a^{2}, b\right]=1\right\rangle$ and $g_{*}\left(a^{2}\right)=a^{2 m+1} b^{q} a^{2 m+1} b^{q}=a^{4 m+2}$, we have

$$
\left(\left.g\right|_{\partial N}\right)_{*}=\left(\begin{array}{cc}
2 m+1 & 0 \\
0 & n
\end{array}\right) .
$$

Theorem 4.2. If N_{ϕ} has no torus bundle structure, then N_{ϕ} admits a self map of degree $l \neq 0$ if and only if there exist a positive integer k and two integer matrices A_{1}, A_{2} of form $\left(\begin{array}{cc}2 m+1 & 0 \\ 0 & n\end{array}\right), m, n \in \mathbb{Z}, n \neq 0$, satisfying the following equation:

$$
A_{2} \cdot \phi_{*}= \begin{cases}\left(\phi_{*}^{-\epsilon} \cdot \tau_{*} \cdot \phi_{*}^{\epsilon} \cdot \tau_{*}\right)^{s-1} \cdot \phi_{*}^{-\epsilon} \cdot \tau_{*} \cdot \phi_{*}^{\epsilon} \cdot A_{1} & (k=2 s), \\ \left(\phi_{*}^{\epsilon} \cdot \tau_{*} \cdot \phi_{*}^{-\epsilon} \cdot \tau_{*}\right)^{s} \cdot \phi_{*}^{\epsilon} \cdot A_{1} & (k=2 s+1),\end{cases}
$$

such that $l=k \cdot \epsilon \cdot \operatorname{det}\left(A_{1}\right)$ where $\epsilon= \pm 1$.

Proof. From Fig. 9, we know that:

$$
\left.g_{i+1}\right|_{T_{i+1}^{+}} \circ \psi_{i}= \begin{cases}\left.\phi^{\epsilon} \circ g_{i}\right|_{T_{i}^{-}} & (i \equiv 0 \bmod 2), \tag{4.2}\\ \left.\phi^{-\epsilon} \circ g_{i}\right|_{T_{i}^{-}} & (i \equiv 1 \bmod 2),\end{cases}
$$

where $\epsilon= \pm 1, i=0, \ldots, k-1$.
Thus if $k=2 s$ is even, then:

$$
\begin{array}{rlrl}
\left(\left.g_{k}\right|_{T_{k}^{+}}\right)_{*} \cdot \phi_{*} & =\left(\left.g_{k}\right|_{T_{k}^{+}}\right)_{*} \cdot\left(\psi_{k-1}\right)_{*} \cdots\left(\psi_{0}\right)_{*} & & \text { by Fig. } 9 \\
& =\phi_{*}^{-\epsilon} \cdot\left(g_{k-1} \mid T_{k-1}^{-}\right)_{*} \cdot\left(\psi_{k-2}\right)_{*} \cdots\left(\psi_{0}\right)_{*} & & \text { by (4.2) } \\
& =\phi_{*}^{-\epsilon} \cdot \tau_{*} \cdot\left(\left.g_{k-1}\right|_{T_{k-1}} ^{+}\right)_{*} \cdot\left(\psi_{k-2}\right)_{*} \cdots\left(\psi_{0}\right)_{*} & & \text { by Lemma } 2.8 \tag{4.3}\\
& =\cdots & \\
& =\left(\phi_{*}^{-\epsilon} \cdot \tau_{*} \cdot \phi_{*}^{\epsilon} \cdot \tau_{*}\right)^{s-1} \cdot \phi_{*}^{-\epsilon} \cdot \tau_{*} \cdot \phi_{*}^{\epsilon} \cdot\left(\left.g_{0}\right|_{T_{0}^{-}}\right)_{*} .
\end{array}
$$

If $k=2 s+1$ is odd, then:

$$
\begin{align*}
\left(\left.g_{k}\right|_{T_{k}^{+}}\right)_{*} \cdot \phi_{*} & =\left(\left.g_{k}\right|_{T_{k}^{+}}\right)_{*} \cdot\left(\psi_{k-1}\right)_{*} \cdots\left(\psi_{0}\right)_{*} \\
& =\phi_{*}^{\epsilon} \cdot\left(\left.g_{k-1}\right|_{T_{k-1}^{-}}\right)_{*} \cdot\left(\psi_{k-2}\right)_{*} \cdots\left(\psi_{0}\right)_{*} \\
& \left.=\phi_{*}^{\epsilon} \cdot \tau_{*} \cdot\left(\left.g_{k-1}\right|_{T_{k-1}}\right)\right)_{*} \cdot\left(\psi_{k-2}\right)_{*} \cdots\left(\psi_{0}\right)_{*} \tag{4.4}\\
& =\cdots \\
& =\left(\phi_{*}^{\epsilon} \cdot \tau_{*} \cdot \phi_{*}^{-\epsilon} \cdot \tau_{*}\right)^{s} \cdot \phi_{*}^{\epsilon} \cdot\left(\left.g_{0}\right|_{T_{0}^{-}}\right)_{*} .
\end{align*}
$$

It is easy to see that $|\operatorname{deg}(g)|=k\left|\operatorname{det}\left(\left.g_{0}\right|_{T_{0}^{-}}\right)_{*}\right|$. The sign of $\operatorname{deg}(g)$ is decided by both ϵ and the sign of $\operatorname{det}\left(\left.g_{0}\right|_{T_{0}^{-}}\right)_{*}$. Thus $l=\operatorname{deg}(f)=\operatorname{deg}(g)=k \cdot \epsilon \cdot \operatorname{det}\left(\left.g_{0}\right|_{T_{0}^{-}}\right)_{*}$. Finally by applying Lemma 4.1, we finish the proof of one direction of Theorem 4.2.

Conversely, if given k, A_{1}, A_{2}, then we can easily construct the maps $g_{0}, g_{k}: N \rightarrow$ N such that $\left(\left.g_{0}\right|_{T_{0}^{-}}\right)_{*}=A_{1},\left(\left.g_{k}\right|_{T_{k}^{+}}\right)_{*}=A_{2}$. Set $\psi_{0}=\cdots=\psi_{k-2}=i d, \psi_{k-1}=\phi$ and $g_{i}: T \times I \rightarrow N(i=1, \ldots, k-1)$ is a map such that:

$$
\left.g_{i}\right|_{T_{i}^{+}}= \begin{cases}\left.\phi^{\epsilon} \circ g_{i-1}\right|_{T_{i-1}^{-}} & (i \equiv 1 \bmod 2), \\ \phi^{-\epsilon} \circ g_{i-1} \mid T_{i-1}^{-} & (i \equiv 0 \bmod 2) .\end{cases}
$$

Then $\tilde{g}=\bigcup g_{i}$ fits the commutative diagram (4.1). Thus we get the quotient map $g: N_{\phi} \rightarrow N_{\phi}$ of degree $k \cdot \epsilon \cdot \operatorname{det}\left(A_{1}\right)$.

Given $\phi_{*}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L_{2}(\mathbb{Z})$ and suppose $\left(\left.g_{0}\right|_{T_{0}^{-}}\right)_{*}=\left(\begin{array}{cc}2 m+1 & 0 \\ 0 & n\end{array}\right),\left(\left.g_{k}\right|_{T_{k}^{+}}\right)_{*}=$ $\left(\begin{array}{cc}2 m^{\prime}+1 & 0 \\ 0 & n^{\prime}\end{array}\right)$ where $m, n, m^{\prime}, n^{\prime} \in \mathbb{Z}$.

CASE 1: $a b c d \neq 0, a d-b c=1$. (It should be noted that $\left(\tau \phi \tau \phi^{-1}\right)_{*}$ is Anosov.)
Since $g: N_{\phi} \rightarrow N_{\phi}$ satisfies $g^{-1}(T)$ is copies of torus fiber, by Theorem $2.9 g$ can be lift to $g^{\prime}: M_{\tau \phi \tau \phi^{-1}} \rightarrow M_{\tau \phi \tau \phi^{-1}}$. By the argument of Anosov monodromy case in Section 3, the degree of g^{\prime} in the S^{1} direction is 1 . So we have $k=1$.

By equation (4.4), we have:

$$
\left(\left.g_{1}\right|_{T_{1}^{+}}\right)_{*} \cdot \phi_{*}=\phi_{*}^{\epsilon} \cdot\left(\left.g_{0}\right|_{T_{0}^{-}}\right)_{*}
$$

If $\epsilon=1$, then:

$$
\left(\begin{array}{cc}
2 m^{\prime}+1 & 0 \\
0 & n^{\prime}
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot\left(\begin{array}{cc}
2 m+1 & 0 \\
0 & n
\end{array}\right)
$$

Solving this matrix equation we have:

$$
\left\{\begin{array}{l}
n=2 m+1 \\
m^{\prime}=m \\
n^{\prime}=2 m+1
\end{array}\right.
$$

Thus $\left(\left.g_{0}\right|_{T_{0}^{-}}\right)_{*}=\left(\begin{array}{cc}2 m+1 & 0 \\ 0 & 2 m+1\end{array}\right)$ which means:

$$
\operatorname{deg}(g)=k \cdot \epsilon \cdot \operatorname{det}\left(\left(\left.g_{0}\right|_{T_{0}^{-}}\right)_{*}\right)=(2 m+1)^{2}
$$

If $\epsilon=-1$, then:

$$
\left(\begin{array}{cc}
2 m^{\prime}+1 & 0 \\
0 & n^{\prime}
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1} \cdot\left(\begin{array}{cc}
2 m+1 & 0 \\
0 & n
\end{array}\right)
$$

Solving this matrix equation we have:

$$
\left\{\begin{array}{l}
n=-\left(2 m^{\prime}+1\right) \\
\left(2 m^{\prime}+1\right) \cdot a=(2 m+1) \cdot d \\
n^{\prime}=-(2 m+1)
\end{array}\right.
$$

Suppose $(2 m+1)=u \cdot a / \operatorname{gcd}(a, d)$, then both u and $a / \operatorname{gcd}(a, d)$ must be odd. Similarly, since $n=2 m^{\prime}+1=-u \cdot d / \operatorname{gcd}(a, d)$ is odd, then $d / \operatorname{gcd}(a, d)$ is odd also.

Thus $\left(\left.g_{0}\right|_{T_{0}^{-}}\right)_{*}=\left(\begin{array}{cc}u \cdot a / \operatorname{gcd}(a, d) & 0 \\ 0 & -u \cdot d / \operatorname{gcd}(a, d)\end{array}\right)$ which means:

$$
\operatorname{deg}(g)=k \cdot \epsilon \cdot \operatorname{det}\left(\left(\left.g_{0}\right|_{T_{0}^{-}}\right)_{*}\right)=u^{2} \cdot \frac{a d}{\operatorname{gcd}(a, d)^{2}}
$$

This degree can be realized here if and only if $a d / \operatorname{gcd}(a, d)^{2}$ is odd.

CASE 2: $a b c d=0$. Then there are three subcases.
(2.I) $\quad \phi_{*}=\left(\begin{array}{ll}1 & 0 \\ z & 1\end{array}\right)$.

In this case N_{ϕ} is a torus bundle which has been discussed in Section 3.
(2.II) $\quad \phi_{*}=\left(\begin{array}{ll}0 & 1 \\ 1 & z\end{array}\right)$, or equivalently $\left(\begin{array}{cc}z & 1 \\ 1 & 0\end{array}\right)$.

When $z \neq 0$, we discuss the following four possible cases:
(A) If $\epsilon=1$ and $k=2 s$ is even, then by equation (4.3), we have the following equation:

$$
\left(\begin{array}{cc}
2 m^{\prime}+1 & 0 \\
0 & n^{\prime}
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 1 \\
1 & z
\end{array}\right)=(-1)^{s}\left(\begin{array}{cc}
1 & z k \\
0 & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
2 m+1 & 0 \\
0 & n
\end{array}\right)
$$

This equation has no solution.
(B) If $\epsilon=-1$ and $k=2 s$ is even, then by equation (4.3):

$$
\left(\begin{array}{cc}
2 m^{\prime}+1 & 0 \\
0 & n^{\prime}
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 1 \\
1 & z
\end{array}\right)=(-1)^{s}\left(\begin{array}{cc}
1 & 0 \\
z k & -1
\end{array}\right) \cdot\left(\begin{array}{cc}
2 m+1 & 0 \\
0 & n
\end{array}\right)
$$

This equation has no solution either.
(C) If $\epsilon=1$ and $k=2 s+1$ is odd, then by equation (4.4):

$$
\left(\begin{array}{cc}
2 m^{\prime}+1 & 0 \\
0 & n^{\prime}
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 1 \\
1 & z
\end{array}\right)=(-1)^{s}\left(\begin{array}{cc}
0 & 1 \\
1 & k z
\end{array}\right) \cdot\left(\begin{array}{cc}
2 m+1 & 0 \\
0 & n
\end{array}\right)
$$

Solving this matrix equation:

$$
\left\{\begin{array}{l}
n=(-1)^{s}\left(2 m^{\prime}+1\right) \\
n^{\prime}=(-1)^{s}(2 m+1) \\
n^{\prime}=(-1)^{s} k n
\end{array}\right.
$$

So $2 m+1=k n$, thus k is odd, if k exists.
Then $\left(\left.g_{k}\right|_{T_{k}^{+}}\right)_{*}=\left(\begin{array}{cc}2 m^{\prime}+1 & 0 \\ 0 & k\left(2 m^{\prime}+1\right)\end{array}\right)$ which means:

$$
\operatorname{deg}(g)=k \cdot \epsilon \cdot \operatorname{det}\left(\left(\left.g_{0}\right|_{T_{0}^{-}}\right)_{*}\right)=k \cdot \epsilon \cdot \operatorname{det}\left(\left(\left.g_{k}\right|_{T_{k}^{+}}\right)_{*}\right)=k^{2} \cdot\left(2 m^{\prime}+1\right)^{2}
$$

This degree is an odd square number. In another hand, when $k=1$, all odd square number can be realized as a degree: $\left(\left.g_{k}\right|_{T_{k}}\right)_{*}=\left(\begin{array}{cc}2 m^{\prime}+1 & 0 \\ 0 & 2 m^{\prime}+1\end{array}\right)$.
(D) If $\epsilon=-1$ and $k=2 s+1$ is odd, then by equation (4.4):

$$
\left(\begin{array}{cc}
2 m^{\prime}+1 & 0 \\
0 & n^{\prime}
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & 1 \\
1 & z
\end{array}\right)=(-1)^{s}\left(\begin{array}{cc}
-z k & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
2 m+1 & 0 \\
0 & n
\end{array}\right)
$$

This equation has no solution.

When $z=0$, the same method will show that $\operatorname{deg}(g)$ is odd, and all odd numbers can be realized.
(2.III) $\quad \phi_{*}=\left(\begin{array}{ll}1 & z \\ 0 & 1\end{array}\right)$.

In this case, $\operatorname{deg}(g)$ can be determined as in case (2.II).
Acknowledgements. The paper is enhanced by the referee's comments. The authors are supported by grant No. 10631060 of the National Natural Science Foundation of China.

References

[1] X.M. Du: On self-mapping degrees of S^{3}-geometry 3-manifolds, to appear in Acta Math. Sin. (Engl. Ser.).
[2] H. Duan and S. Wang: The degrees of maps between manifolds, Math. Z. 244 (2003), 67-89.
[3] E. Ghys and V. Sergiescu: Stabilité et conjugaison différentiable pour certains feuilletages, Topology 19 (1980), 179-197.
[4] A. Hatcher: Notes on basic 3-manifold topology, http://www.math.cornell.edu/ ~hatcher/.
[5] C. Hayat-Legrand, E. Kudryavtseva, S.C. Wang and H. Zieschang: Degrees of self-mappings of Seifert manifolds with finite fundamental groups, Rend. Istit. Mat. Univ. Trieste 32 (2001), 131-147.
[6] J. Hempel: 3-Manifolds, Princeton Univ. Press, Princeton, N.J., 1976.
[7] K. Ireland and M. Rosen: A Classical Introduction to Modern Number Theory, second edition, Graduate Texts in Mathematics 84, Springer, New York, 1990.
[8] S.V. Matveev and A.A. Perfil'ev: Periodicity of degrees of mappings between Seifert manifolds, Dokl. Akad. Nauk 395 (2004), 449-451.
[9] M. Sakuma: Involutions on torus bundles over S^{1}, Osaka J. Math. 22 (1985), 163-185.
[10] P. Scott: The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.
[11] W.P. Thurston: Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), 357-381.
[12] S.C. Wang: The π_{1}-injectivity of self-maps of nonzero degree on 3-manifolds, Math. Ann. 297 (1993), 171-189.

Hongbin Sun
School of Mathematical Sciences
Peking University
Beijing 100871
China
e-mail: hongbin.sun2331@gmail.com
Shicheng Wang
School of Mathematical Sciences
Peking University
Beijing 100871
China
e-mail: wangsc@math.pku.edu.cn
Jianchun Wu
School of Mathematical Sciences
Peking University
Beijing 100871
China
e-mail: wujianchun@math.pku.edu.cn

