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Abstract
Each closed oriented 3-manifold is naturally associated with a set of integers
D(M), the degrees of all self-maps o. D(M) is determined for each torus bundle
and semi-bundleM. The structure of torus semi-bundle is studied in detail.e Th
paper is a part of a project to determiiM) for all 3-manifolds in Thurston’s

picture.
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1. Introduction

1.1. Background. Each closed orientedi-manifold M is naturally associated
with a set of integers, the degrees of all self-mapsvbndenoted aD (M) = {deg(f) |
f: M—> M}

Indeed the calculation oD(M) is a classical topic appeared in many literatures.
The result is simple and well-known for dimensian= 1, 2, and for dimensiom > 3,
there are many interesting special results (see [2] andemates therein), but it is dif-
ficult to get general results, since there are no classificatesults for manifolds of
dimensionn > 3.
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The case of dimension 3 becomes attractive in the topic aigpbssible to cal-
culate D(M) for any closed oriented 3-manifoltl. Since Thurston’s geometrization
conjecture, which seems to be confirmed, implies that clasethted 3-manifolds can
be classified in reasonable sense.

Thurston’s geometrization conjecture claims that the edato—Shalen—Johanson
decomposition piece of a prime 3-manifold supports one efdalyht geometries which
are H3, PSL(2, R), H2 x EZ, Sol, Nil, E3, S* and $? x E! (for details see [11] and
[10]). Call a closed orientable 3-manifolsll is geometrizabldaf each prime factor of
M meets Thurston’s geometrization conjecture.

A known rather general fact abomi (M) for geometrizable 3-manifolds is the fol-
lowing:

Theorem 1.1 ([12], Corollary 4.3). Suppose M is a geometrizabBmanifold
Then M admits a self-map of degree larger thhif and only if M is either
(1) covered by a torus bundle over the circler
(2) covered by an B« S* for some compact surface F with(F) < 0, or
(3) each prime factor of M is covered by &r S x EZ.

The proof of the “only if” part in Theorem 1.1 is based on thedty of simpli-
cial volume, and various results on 3-manifold topology gndup theory. The proof
of “if” part in Theorem 1.1 is a sequence of elementary camdions, which were
essentially known before.

Hence for anyM not listed in Theorem 1.1D(M) is either{0, 1,—1} or {0, 1},
which depends on whethévl admits a self map of degreel or not. To determine
D(M) for geometrizable 3-manifolds listed in Theorem 1.1,sldtave a close look of
those 3-manifolds from geometric and topological aspects.

Among Thurston’s eight geometries, six of them belong toligtein Theorem 1.1.
3-manifolds in (1) are exactly those supporting eitliet, or Sol or Nil geometries.
E® 3-manifolds, Sol 3-manifolds, and some Nil 3-manifolds tmis bundles or semi-
bundles; Nil 3-manifolds which are not torus bundles or sbumdles are Seifert spaces
having Euclidean orbifolds with three singular points. arifiolds in (2) are exactly
those supportH? x E' geometry; 3-manifolds supporting® or S x E! geometries
form a proper subset of (3).

For 3-manifoldM with S*-geometry, D(M) has been presented recently in [1] in
term of the orders ofr;(M) and its elements (and determined earlier in [5] when the
maps induce automorphisms an). Note an algorithm is given to calculate the degree
set of maps betweeB*-manifolds in term of their Seifert invariants [8].

To determineD(M) for the remaining geometrizable 3-manifoltls, the main task
is to solve the question for the following three grouf3(§1) is rather easy to deter-
mine for Seifert manifoldM supportingH? x E* or S* x E* geometry):

() torus bundles and semi-bundles;
(b) Nil Seifert manifolds not in (a);
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(c) connected sums of 3-manifolds in (3) do not suppor®gr S* x E! geometries.
Indeed D(M) for M in (a) will be determined in this paper (hopefully all the re-
maining cases will be solved in a forthcoming paper by théanst and Hao Zheng).

1.2. Main result. In this paper we calculat®(M) for 3-manifold M which is
either a torus bundle or semi-bundle. To do this, we need firstoordinate torus
bundles and semi-bundles by integer matrices in Propasith3 and 1.5, then state
the results ofD(M) in term of those matrices in Theorems 1.6 and 1.7.

CONVENTION. (1) To simplify notions, for a diffeomorphism on torusT, we
also use¢ to present its isotopy class and its induced 2 by 2 matrixzefT) for a
given basis.

(2) Each 3-manifoldM is oriented, and each 3-submanifold bf and its boundary
have induced orientations.

(38) Supposes (resp.P) is a properly embedded surface (resp. an embedded 3-rtithnifo
in a 3-manifoldM. We useM \ S (resp.M \ P) to denote the resulting manifold obtained
by splitting M along S (resp. removing inP, the interior of P).

DEFINITION 1.2. Atorus bundleis My, =T x I /(X, 1) ~ (¢(x), 0) where¢ is a
self-diffeomorphism of the toru3 and | is the interval [0, 1].

For a torus bundleM,, we can isotopiap to be a linear diffeomorphism, which
meansg € GL,(Z) while not changingM,. Since we consider the orientable case only,
¢ must be in the special linear gro§ly(Z).

Proposition 1.3. (1) M, admits B geometry if and only ifp is periodical or

equivalently ¢ is conjugate to one of the following matric sé (1)> <_01 _01>

(_11 _01> ((1) _01), (2 _11) of finite order1, 2, 3, 4and 6 respectively
(2) My admits Nil geometry if and only i is reducible or equivalently¢ is conju-
gate toi((l) g) where n 0;

(3) My admits Sol geometry if and only ¢f is Anosov or equivalently is conjugate

ab —
to (c d) whereja+d| > 2, ad—bc=1.

Proof. See [4]. ]

DEFINITION 1.4. LetK be the Klein bottle andN = K x| be the twisted -bundle
over K. A torus semi-bundle N= N U, N is obtained by gluing two copies along their
torus boundaryN via a diffeomorphismp. Note N, is foliated by tori parallel todN
with a Klein bottle at the core of each copy bf.
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Fig. 1. Coordinates o' x St x 1.

Let (x, y, z) be the coordinate ot x St x I. ThenN = S' x St x | /7, where
T IS an orientation preserving involution such thdk, y, z) = (X + 7, -y, 1—2), and
we have the double covering: St x S' x | — N. Let C4 and Cy be the two circles
on St x S x {1} defined byy to be constant and to be constant, see Fig. 1. Denote
by lo = p(Cy) (0 slope) and,, = p(Cy) (oo slope) ondN. A canonical coordinatds
an orientation oflg Ul,,, hence there are four choices of canonical coordinaté®Mn
Once canonical coordinates on eagN are choseng is identified with an element

(g 3) of GLy(Z) given by ¢(lo, I) = (lo, '00)<2 3)

Proposition 1.5. With suitable choice of canonical coordinates afl, we have

(1) N, admits B geometry if and only ity = ((1) 8) or <(1) (1))

(2) Ny admits Nil geometry if and only i = (; g) <(1) ;) or (é i) where
z#0;

(3) Ny admits Sol geometry if and only ¢f = (2 3) where abcd# 0, ad—bc = 1.

Moreover a torus semi-bundleyNs also a torus bundle if and only i = (i 2)
under suitable choice of canonical coordinates

We will prove Proposition 1.5 in Section 2.

Theorem 1.6. Using matrix coordinates given roposition 1.3,D(M,) is listed
in Table 1for torus bundle N, whereé(3) = §(6) = 1, §(4) = 0.

Theorem 1.7. Using matrix coordinates given troposition 1.5,D(Ny) is listed
in Table 2for torus semi-bundle N wheres(a, d) = ad/gcd@, d)2.
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Table 1. Degrees of self maps of orientable torus bundles.

My ¢ D(My)

E3 | finite orderk =1, 2 Z

E® | finite orderk = 3, 4, 6| {(kt + 1)(p> — 8(K)pq+ %) | t, p, g € Z}
Nil i(ﬁ f),n;éo 121 e z)

(p?+ (d —a)pr/c—br?/c|
Sol (? 3) la+d|>2 | p,r ez, eitherbr/c, (d—a)/ceZ or
(p(d —a) —br)/ce 7}

Table 2. Degrees of self maps of torus semi-bundles.

Ny ¢ D(Ny)
10

a (59) -

E3 (gé) 2 +1|1ez)

Nil (ig),z;&o 121 e z)

Nil ((1’ g)or(é i),ueo (@ + 121 €z}
{2 +1) |1 €z}, if 8(a,d) is even or

Sol (f:‘ g),abcdyéo, ad—bc=1| {2 + 12|l € Z}U{@ +1)?-5(a,d) |l € Z},
if 5(a, d) is odd

1.3. Remark on orientation reversing homeomorphisms. SupposeM is a torus
bundle or semi-bundle. Then any non-zero degree map is lomiedio a covering ([12]
Corollary 0.4). Hence if-1 € D(M) (which is computable by Theorems 1.6 and 1.7),
then M admits an orientation reversing self homeomorphism.

If M is a torus semi-bundle, dvl supports the geometry of eith&® or Nil, then
when M admits an orientation reversing self homeomorphism isieitiyl presented in
the following:

Corollary 1.8. (1) A torus semi-bundle Nadmits an orientation reversing homeo-

morphism if and only i is either(cl) 2) or (2 é) or (2 —ba) where abc# 0.

(2) A torus bundle )\ supporting E geometry admits an orientation reversing homeo-

morphism if and only i is either(é 2) or (‘01 —01>'

(3) If M supports Nil geometrthen M admits no orientation reversing homeomorphism

For torus bundle with given Anosov monodromy, even we cacutale whether
—1 € D(My), but there seems no simple description as in Corollary [T8e referee
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informed us that there is a convenient description of whene D(M,), see Lem-
ma 1.7, [9].)

EXAMPLE 1.9. For the torus bundi®ly, ¢ = (i %) —1 e D(My). Indeed for

¢ = (2 g), if |a+d| =3, then—1 e D(M,). Since p?+(d—a)pr/c—br?/c = -1
has solutionp =1—d, r = c whena+d = 3, and solutionp = —-1—d, r = ¢ when
a+d=-3.

EXAMPLE 1.10. For the torus bundIbl,, ¢ = (1 g) —1¢ D(M,). Indeed for
¢ = (2 3) if a+d=+2 has prime decompositiop*- - - p& such thatp, = 4l +3 and
e = 2m+ 1 for somei, then—1 ¢ D(M,). Since if the equatiorp? + (d —a)pr/c—
br2/c = —1 has integer solution, @(+ d)?> — 4)r? — 4c?)/c? should be a square of
rational number. That is &+ d)?> — 42 — 4c? = s? for some integers. Therefore
(@+d+2)(@+d-2r?is a sum of two squares. By a fact in elementary number
theory, neithea+d + 2 nora+ d —2 has 4 + 3 type prime factor with odd power
(see p. 279, [7]).

ExamMPLE 1.11. Note if—1 € D(M), thenk € D(M) implies —k € D(M). For
the torus bundleMy, ¢ = (2 1

1 1), among the first 20 integers 0, exactly 1, 4, 5,
9, 11, 16, 19, 2@ D(My).

1.4. Organization of the paper. Theorems 1.6 and 1.7 will be proved in Sec-
tions 3 and 4 respectively. To prove these theorems, we naeel & careful look of
the structures of torus bundle and semi-bundles. This isechout in Section 2.

We explain more about Section 2. The most convenient andilusdérence for us is
“Notes on basic 3-manifold topology” by Hatcher [4], whichnot formally published,
but widely circulated (sedntt p://ww. mat h. cornel | . edu/ ~hat cher/). In
particular Chapter 2 of [4] is devoted to the study of torusidias and semi-bundles.
Theorems 2.3 and 2.4 about classifications of torus bundiésemi-bundles are quoted
from [4] directly. It seems that the proof of Theorem 2.4 ij pissed an existed
and rather complicated case, so we rewrite a proof for it {npasts still follow that
in [4]). Lemma 2.6 studies incompressible surfaces in taemmi-bundle, which relies
on the proof of Theorem 2.4. Then Proposition 1.5 is provedubiyng Theorem 2.4,
Lemma 2.6, and Lemma 2.8 which presents the relation betgkgmgy maps of a torus
semi-bundles and its torus bundle double covers. Finalieofem 2.9 studies lifting of
maps between torus semi-bundles to their torus bundle douders.

2. Structures of orientable torus bundles and semi-bundles

2.1. Some elementary facts. All facts in this sub-section are known, and one
can find them in [6], or more directly in [4].



SELF-MAPPING DEGREES OFTORUS BUNDLES 137
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(b)

Fig. 2. Coordinates ofN.

DEFINITION 2.1. Suppose an oriented 3-manifdd’ is a circle bundle with a
given sectionF, where F is a compact surface with boundary componecys. . .,
Cns - - -+ Cnyp With N > 0. On each boundary component Mf, orientc; and the circle
fiber I; so that the product of their orientations match with the ow®tl orientation
of M’. Now attachingn solid tori § to the firstn boundary tori ofM’ so that the
meridian of § is identified with slope; = a¢ +b;jl; with a > 0. Denote the resulting
manifold by M which has the Seifert fiber structure extended from the eilzindle
structure ofM’.

We will denote this Seifert fibering oM by M(=£g, b;ry, ..., rs) whereg is the
genus of the sectiofr of M, with the sign+ if F is orientable and- if F is non-
orientable, here ‘genus’ of nonorientable surfaces mela@siumber ofR P? connected
summands. Wheb = 0, calle(M) = Y Ir; the Euler number of the Seifert fiberation.

Another view of N described in Fig. 24): N is obtained fromS' x | x | by
identifying St x | x {0} with St x | x {1} via a diffeomorphismoe which reflects both
the St and | factors. Fig. 2 ) is a schematic picture dil which will be used in the
paper.

We list some properties dil as:

Lemma 2.2. (1) N has two types of Seifert fiber structures
I: M(0,L1/2,—1/2) in which |, on aN is a regular fiber andd, is the boundary
of the section defining the Seifert invariant
II: M(-1, 2 ) in which I, on N is a regular fiber andd is the boundary of
the section defining the Seifert invariant
(2) N has three types of essenti@rientable incompressible a-incompressiblg sur-
faces
I. A torus parallel tooN.
II.  An annulus whose boundary ig in 9N (Fig. 3 @)) which does not separate.N
Ill. An annulus whose boundary iginh 9N (Fig. 3 (b)) which separates N
(3) Suppose M is a torus bundle or semi-bundle and F is a closedmpeessible
surface in M then F is union of parallel tori
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(a) (b)

Fig. 3. Essential surface iN.

2.2. Classifications of torus bundles and semi-bundles.Orientable torus bun-
dles and semi-bundles are classified by two theorems below.

Theorem 2.3 ([3]; [4], Theorem 2.6). An orientable torus bundle Mis diffeo-
morphic to N, if and only if ¢ conjugates toy*! in GLy(Z).

Theorem 2.4 ([4], Theorem 2.8). The torus semi-bundle Nis diffeomorphic to

Ny if and only if ¢ = (iol iol)wil( iol i01> in GLy(Z), with independent choices

of signs understoad

Proof. (We start the proof as that in [4].) Suppo$e N, — Ny is a diffeo-
morphism andT, T’ are the torus fibers oNy, N, respectively.Ny, \ T" = Ny U N
where N;, N, are homeomorphic tiN.

Since f is a diffeomorphism, two components &, \ f(T) are both homeo-
morphic to N. We can isotopef, such that every component df(T) N N; is an es-
sential surface iNj, i =1,2. Sof(T)NN; is in the three types listed in Lemma 2.2
(2). Thus eitherf(T) is parallel toT’, or ¢ takeslg or I, t0 lg Or lo.

Supposef(T) is parallel toT’. We can assumd (T) = T’. Then ¢ must be
obtained fromys by composing on the left and right homeomorphismsddf which
extend to homeomorphisms ™. Such homeomorphisms must preserve bgttand
Il (may reverse the directions), sintgis the unique slopes of the boundaries of es-
sential separating annulus ahg is the unique slopes of the boundaries of essential
non-separating annulus iIN. Theorem 2.4 is proved in this situation.

Supposey takeslg or |, to lg or I. Then there are three cases as below:

CASE (1) v takesl,, to lg (if ¥ takesly to |, then we considety™).

CASE (2) v takesly to |.

CASE (3) v takeslg to lo.

(The proof in [4] claims that only Case (3) is possible, while show below that
only Case (2) is impossible.)

Case (1). Novmpz(i é) andNy, = M(-1,G61/2,-1/2,z), ande(M) = z. Note:
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J ~N
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| 1
[
(e

Fig. 5. CutN; through type (lll) surfaces.

(i) f(T)N Ny aren parallel annuliAy, ..., A, of type (ll) (see Fig. 4), which are
located in a cyclic order irN. SetdA; = g Ua/, then 4 circlesay,...,an, ay, ..., a,
are located in cyclic order ildNj.

(i) f(T)N N, are annuliBy, ..., B, of type (lll) (see Fig. 5), wherdB; 1 is next to
B,i=1,...,n—11in No. SetdB; =b; Ub then 2 circlesby,..., by by, ..., b
are located in cyclic order i N,.

If n =1, we can check thaty pastesA; and B; to a Klein bottle, which con-
tradicts the fact thatf (T) is torus. Whenn > 1, we can assumg pastesa; to b;
and pastes, to by, after reindexingA; if necessary. By the orders of sequences of
ar,...,an,a,...,a, andby,..., by, by,...,b] on 9Ny anddN,, we haveg; is pasted to
bi, anda pasted tay)_;, i =1,...,n. SOA;, A, Bi, Bn are pasted to one compo-
nent of f(T) in Ny, and f(T) has [f1 + 1)/2] components. Sincd (T) is connected,
we haven = 2.

Now N;\ f(T) can be presented as twebundles over annulud: x A; and | x Ay,
where f(T)N Ny = AU Ay, as in Fig. 4.N, \ f(T) can be presented as arbundle
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®)

Fig. 6.

over annulusl x B as in Fig. 6 & and two solid toriP; and P, with the core of
P, N aN, to be the (2, 1) curve 0P, as in Fig. 6 b).

If we glue those five pieces aloriN, we get two components dfl, \ f(T) which
areN; = PLUyn | x AqUyn P2 and Ny = | x Ay Uy | x B (re-index A if needed),
each of them is a copy oN. Moreover under the inherited Seifert structure N,
N; = M(0, 1, 1/2,-1/2) andN;, = M(-1, L, ).

If we consider thatM(—1, 0;1/2, —1/2, z) is obtained by identifyingN; and N,
along f(T), we get a new semi-bundle structure so tHigf) become a fiber torus.
Since the Euler number of the Seifert structurezjsthe new gluing map must be

+1
(i %) . This reduces us to the situation th&(T) is parallel toT’.

Case (2). Bothf(T) N N; are type (Il) surfaces, for = 1, 2 (Fig. 4). Hence
f(T) N Ny is exactly as that in Case (1) (i). Similarlyi(T) N N, are n parallel an-

nulus By, ..., B, located in a cyclic order irfN. SetdB; = by U b/, then 4 circles
bi,...,bn, by, ..., by are located in cyclic order i@ N,.

We can assumes pastea; to b; and pastea, to b, (re-index {B;} if needed).
Then we haves; is pasted tdy, anda pasted tob, i =1,...,n. So A and B; are

pasted to one component df(T) in Ny. Since f(T) is connectedn = 1. But here
f(T) does not separathly, it is impossible.

Case (3). (We copy the proof of [4] for this case.) NQW:(é i) and Ny, =
M, 0 1/2, 1/2,-1/2,-1/2, z), &(Ny) = z. (Both f(T) N N; are type (lll).)

We may assume that(T) has been isotoped to be either vertical or horizontal in
this Seifert fibering. Since a connected horizontal esakstirface is not separating,
f(T) must be vertical. Therf (T) must separaté(0, 0;1/2, 1/2,-1/2,—-1/2, 7) into
two copies ofN both having the inherited Seifert structux(0, 1;1/2,—1/2). We can
rechoose the semi-bundle structure so th@f) become a fiber torus. Then for the new
torus semi-bundle structure the gluing map must also(%ei). This reduces us to

the situation thatf (T) is parallel toT’. ]
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2.3. Incompressible surfaces.

Lemma 2.5 ([4], Lemma 2.7). For a torus bundle N, if ¢ is not conjugate to

:I:(i 2) then any essential closed surface ing N& isotopic to a union of torus

fibers

Lemma 2.6. If a torus semi-bundle N has no torus bundle structurghen any
essential closed surface inyNs isotopic to copies of torus fibers of a torus semi-
bundle structure on N which is isomorphic to p

Proof. LetF be an essential close surface Ny = N; U N,. By Lemma 2.2
(3), F is a union of parallel tori. For our purpose we may assume Ehas a torus.
Isotope F so thatF N N; is essential inN;. Then each component & N N; must be
in one of the three types listed in Lemma 2.2.

If FNN; is of type (I), then the proof is finished.

There are two cases remaining:

(@) BothF N N; are of type (Il) fori =1, 2 (Fig. 4). ThenN; \ F are I-bundles over
N; N F. Gluing those twol -bundles along®N will get an I-bundle overF and N, is
obtained from this I-bundle by identifying its top and battowhich provides a torus
bundle structure ofNy.

(b) SomeF N N; is of type (lll), sayi = 2 (Fig. 5). ThenF is the same ad (T)
either in Case (1) or Case (3) of the proof of Theorem 2.4, dégpe®nF N N; is of
type (lll) or type (lI).

As indicated in the proof of Theorem 2.4, we can rechoose twe torus semi-
bundle structureN, so thatF become a fiber torus; moreover if choosing suitable co-
ordinates, we can makg¢ to be ¢. ]

2.4. Coordinates of torus semi-bundles. Call a mapg: (M, oM) — (M’, aM’)
is proper if g71(aM’) C IM.

Lemma 2.7. If V =T x| with the two boundaries T, T"and g (V, T+, T7) —»

(N, aN) is a proper mapthen(g|t+)« = 7« - (d|1-)+, Wherer, = (é _Ol).

Proof. Letp: T x| — N be the double covering and be the deck transforma-
tion map.

Since g, (r1(V)) = (g]7+)+((TT)) € m(dN) C 71 (N), thusg can be lifted to a
mapg: vV - T x|.

(TxI,Tx{0}, T x{1}) — (T xI,Tx{1}, T x{0})

N

(V. T+, T7) ——— (N, dN)
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I
T/ L T
M1 M2
T T T
P1 l lpz
2,
Nl N2

Fig. 7. N, is double covered b, .41

From the commuted diagram above, we have:

{9|T = Plrxy o Gl7-,
glt+ = Plrx(y © Tlrx(o) © Gl7+.

We can choose coordinate of & |, T x {0}, T x {1}), such thatp|y; = id.
When considering fundamental group, we ha@r(). = (§|r+).. Thus by the
above equation:

@lt+)« = 7 - (Ql7-)

wherez, = (v|tx0)s = (é —01>' -

Lemma 2.8. A torus semi-bundle Nis doubly covered by a torus bundle M,
wherez(x, y) = (X + m, —y) with suitable choice of coordinaté, y) on the torus

Proof. LetNy = N3 Ug Ny with 9Ny = dN, =T. Let p: M — Ny be the double
cover, whereM is a torus bundlep=1(N;) = M; is homeomorphic taf x|, p~(T) =
T, UT,. Cut M along Ty, T, get M \ T; U To. The two boundaries oM; are denoted
by Ti and T/, T, is pasted toT, by v, T, is pasted toT; by ¥’. Let pi = p|wm,. All
of these are shown in Fig. 7.

We can choose coordinate dn, T, such that fi|r). =id. SinceT, is parallel
to T;, we can identifym1(T) with 71(Ti). By Lemma 2.7, we havep(|t). = 7. -
(PilT )
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From Fig. 7, we know that

{(p2|T2)* o W = ¢ o (pllTl)*Y
(P2ly)« o ¥" = ¢ o (Pal1))x-

Then we get
v =9,
Y =togpor.
Thus M has the torus bundle structub,, ., 1 = My 4-1. O

-1
By Theorem 2.4, and the fact the(t(l) i) = (12 é) with suitable choice

of canonical coordinates of N, we can setp is one of the four matrices(g i)

<(1J i) (i 2) a”d<2 3) whereabcd # 0, ad — be = 1.

When ¢ is in the first three matriced), is a Seifert manifold with Euler number
z. N, is E3 manifold if z= 0 and is Nil manifold ifz # 0. Now suppose = (i 3)
whereabcd# 0, ad—bc= 1. Then by Lemma 2.8N, is double covered b, 1.

Since

A . . N ad + be ~2ab
(TPTP )i = T -y - T - B, —< —2cd ad+bc )’

we have
|Trace(tpro 1).)| = 2|ad + be| = 2Jad — bc + 2bc| = 2|2bc+ 1] > 2.

By Proposition 1.3,M,.,+ admits Sol geometry, thubl, admits Sol geometry.
The first part of Proposition 1.5 is proved.

If N, also has torus bundle structure, it must have non-sepgratisential torus.
Recall the proof of Lemma 2.6, an essential torudNin can be non-separating only if

case (@) is happened, and in this cgse <i g) under suitable choice of canonical

coordinates, and, does have torus bundle structure. This finishes the “morépaet
of Proposition 1.5.

2.5. Lifting automorphism from semi-bundle to bundle.

Theorem 2.9. Suppose f N, — N, is a non-zero degree map and™*{(T’) is a
union of copies of Twhere T, T’ are the torus fiber of |\, N, respectively Then we
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have commute diagram

N¢—>N,/,

where M, M’ are the torus bundle which are double covers af, NN, respectively
and f: M — M’ is a lift of f.

Proof. We only have to check.(p.(w1(M))) C p.,(71(M’)).
Let T, T/ be one of the liting of T, T’ in M, M’ respectively. In torus bundle
M, we have the exact sequence:

1— m(T) » m(M) = m(SH) — 1.
In torus semi-bundleNy, we have another exact sequence:
1— m(T) = m1(Ng) = Zo % Zp — 1.

Since f~X(T’) is a union of copies off, we can assumd (T) = T’. Then we
have the commuted diagram (every row is exact):

1 m(T) (M) m(S") 1
(P« P« Ps

1 (T —s 1 (Ng) —2s Zy % Zy —— 1
(fD- 1 7.

1 mi(T") & HI(NW)LZZ*ZZ—>1
' D« i A

| —— () — 2 (M) — (51 —— 1

here p., p,, f. are the maps among the fundamental groups of the base spaces o
fiber bundles induced by the maps among the fundamental grofithe total spaces.

We present the groufd, * Z, by (a, b | @ = b?> = 1) and choose the generator
a, b such thatp,(1) = ab, p,(1) = ab (here 1 is the generator af;(S)).

Sincea? =b? =1, so f.(a)? = f.(b)?> =1, thenf,(a), f.(b) must be of the form
ab---ba or ba---ab, and f,(ab) = (ab)* or (ba)k = (ab) . So f.(p.(7(SH)) C
P (1(SH).
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For anya € my(M), let B = f.(p.(@)). Since j2(B) = f.(p.(J2(2))) € P.(m(SY),
and there isy € 71(M’) such thatp;(fz(y)) = j2(B), so

2(PL() - B7Y) = PL(ia() - j2087) = J2(B) - j2(B7Y) = 1.

Since @'|). is an isomorphism, there e 7;(T') such thatiz((p']).(8)) = p.(y)-
B~L. We have

PLI26) - y) = 120D« (671) - PL(y) = (PL(y) - B - PLly) = B
So f,(p.(1(M))) C p.(71(M")), thus f exists. ]

3. The degrees of self maps of torus bundles

We are going to prove Theorem 1.6 (ref. Proposition 1.3).r@lee two cases to
consider:

Case 1: ¢ is conjugated to:t(# 8) Now M, is a Seifert manifold whose
Euler number of Seifert fibering(My) is equal ton.

() 1fn=0, M,isT3or StxS'x St Hereg = i(é 2) any 2x 2 integer
matrix A commutes withy, so M, admits self maps of any degrees.

(1.1 If n#0, for a none zero degree mdp My — My, by [12, Corollary 0.4],
f is homotopic to a covering mag: M, — M,. We can choose a suitable Seifert
fibering of M, such thatg is a fiber preserving map. Denote the orbifold M by
O(My). By [10, Lemma 3.5], we have:

e(My) = e(My) - IE
deg@) =1 -m,

(3.1)

wherel is the covering degree dd(M,) — O(M,) andm is the fiber degree.
Sincee(My) # 0, from equation (3.1) we gdt=m. Thus degf) = deg@) is a
square number. Conversely, given a square nurifhet is easy to construct a covering
map f: My, — M, of degreel?.
. _(a b\ ; : 10
CASE2: ¢ = (c d) is not conjugated to.t(n 1).

Theorem 3.1. Supposep is not conjugated toﬂ:(ﬁ 2) M, admits a self map

of degree I 0 if and only if there exist @ x 2 nondegenerate integer matrix A and
a positive integer k such that= k - € - det(A) and A- ¢, = (¢)X - A wheree = £1.

Proof. For a torus fibell € My, T is incompressible. Suppose: M, — M,
is a self-map of degrek## 0. By [6, Lemma 6.5], f is homotopic tog: My — M,
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Fig. 8. Non-zero degree self-map M.

such thatg=%(T) is an incompressible surface ®,. Thus by Lemma 2.5g=%(T) is
isotopic to a union of torus fibers.

SupposeM,, \ g~}(T) has k component¥;, ..., V. EachV; is aT x|. Denote two
torus boundary components ®f by T;" and T,~, and the homeomorphism gluingy-
to T,*, by ¥ see Fig. 8. TheMy,....,, = My. By choosing suitable coordinate on the
torus fiber, we havejy o---o Yy = ¢¢, ¢ = £1 according to Theorem 2.3. Below we
assumey o---o o = ¢ (replaceg by ¢! if needed). Letg: My \ g }(T) > Mg\ T
be the map induced by. We have the following commuted diagram:

My \ g7N(T) M\ T

(3.2) U v/.l l(f

Denote the restriction ofj to V; by gi. From the commuted diagram in Fig. 8,
we have:

(3.3) G+ilr+, o¥i = ¢ o Gilt-,

i+1

wheree =+1,i =1,...,kand ifi =k theni +1 is 1.
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SinceT; is parallel toT;*, we can identifysr1(T;") with 71(T,*). Thus @ilr-). =
(gi |1+)* and @)« - - - (¥1)« = ¢, on fundamental group. The identity (3.3) deduces that:

(Galry)s - @s = (Galry ) - (W) - -+ (Y1)«
= (Gk+alrs )v - (s - (Yra)s
= ¢ - (Ot ) - (Yk1)w - - - (Y1)«
= @5 (Ol )s - (W) -+ (Ya)s

= (¢)s - (Galr; )

SetA = (91|T1+)* and get:

(3.4) A = (995 A

Clearly |deg@)| = k|det(A)|. The sign of dedf) is decided bye and the sign of
det(A). Thusl = deg(f) = deg@) = k - € - det(A).

Conversely, we sey; = -+ = Y1 = id, ¥ = ¢ and construct the mag@: My \
g7 T) — M\ T such thatf]y, = (¢<0"VYo A)xid: Tx| — T x| fori =1,...,k. This
construction fits the commuted diagram (3.2). Thus we getgtimientg: My — My
whose degree is equal to- € - det(A). ]

SupposeA = (f g) where p,q,r,s € Z. We use equation (3.4) to solyg q,r,s
and then can determirieby Theorem 3.1.

(2.) If ¢ is Anosov which means the absolute value of one eigenvalug isf
larger than 1 while the other is less than 1. In this case,ktlie the equation (3.4)

must be equal to 1. We have:

p a) (a b\ _(a b\ (pq
r s c d/ \c d r s/
Solve this matrix equation and get:

br
c
cp+ (d—ayr
A= C
p(d —a) — br
c (e=-1)
r —p

(e =1),

wherebr/c, (d —a)r/c, (p(d —a) — br)/c € Z.
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By Theorem 3.1, we have:

|=p1+m;m b

2
Spr——-re
Pr=c

(2.1 If ¢ is periodic, may assume is either (‘11 _01), or (2 _01), or
(17)

(A) If ¢ = <_11 _01> (¢ has order 3), the equation (3.4) means:

A-d.=13¢S-A (k=1mod3),

A (k = 0 mod 3),
[<¢>§E -A (k=2mod 3).

After solving all the above possible cases, we get:

<p q ) (k=1mod 3, = 1),

-9 p-q
< p
a-p

( p
a-p
(p
—q

If k=0 mod 3, we haveA=<8

9) k=1mod3,e=-1),

q

p)
p)
)
o)

B (k=2mod 3,6 = 1),

(k=2mod 3,¢ = —1).

q
pP—q
which induces degree 0 map.

By Theorem 3.1:

| = {k-(pz— pa+a?)  (k=1mod3),
k-(—=p?+ pg—g? (k=2mod 3).
It's easy to deduce that:
| =@t +1)(p?—pg+9?d), t pqgez.
The same method is applied to the other two cases and we get:

(B) If ¢ = (2 _01), then:

| = (4t +1)(p*+qg?, t, pqecZ.



SELF-MAPPING DEGREES OFTORUS BUNDLES 149

(C) If¢=<2 _11), then:

| = (6t + 1)(p*— pa+09?), t pqeZ.

4. The degrees of self maps of torus semi-bundles

We are going to prove Theorem 1.7 (ref. Proposition 1.5). W assume that
torus semi-bundleN, considered in this section has no torus bundle structuteerot
wise D(N,) is determined in Section 3.

Suppose the degree df: Ny — N, is| # 0 and T is a torus fiber ofN,. By
[6, Lemma 6.5], f is homotopic tog: N, — N4 such thatg=%(T) is incompressible
in Nyg. Thus by Lemma 2.6 and its proof (also ref. the proof of Theor24), we
have g~%(T) is isotopic to either a union of torus fibers, or a union ofutofibers of
another semi-bundle structure which is isomorphic to thgimal one. Also the later
case happen only iN, is a Nil manifold. Note by Theorem 2.9 and the proof in
Section 3 (1.11), Nil 3-manifolds admits no orientation eesing homeomorphism.

Suppose novg }(T) hask connected components, th&fy \ g~1(T) has two copies
of N, denoted by, andVy, andk —1 copies ofT x |, denoted by, i =1,...,k—1.
Denote the boundaries af, and Vi by T, and T, the boundaries o¥ by T,;" and
T ,i=1,...,k—1, and the gluing map frorl,” to T*, by ¢; (i =0,...,k—1) see
Fig. 9.

Then Ny, ooy = Ny, andyy_so---ovp = ¢, € = £1 by Theorem 2.4 (with a
suitable orientation of the canonical coordinate). Below assume/y_jo---o g = ¢
(replaceg by ¢! if needed). Let§: Ny \ g7}(T) — N, \ T be the map induced by
g, and we have commuted diagram:

Ny \ g '(T) —25 Ny\ T

@.1) U wl lw

SinceT," is parallel toT,~, we can identityr1(T,") with 71(T7) (i =0,...,k—1).
Thus @k-1)« - - - (¥o)« = ¢, on fundamental group. Denote the restriction§obn Vj
by gi. Theng: V; — Ny if i even, andg: Vi — Ny if i odd.

Lemma 4.1. Under the canonical basis(lo, l~), (Qolt;)« is of the form

<2m+1 0

0 n) where n# 0, m,n € Z, and so is(gk|r+)--

Proof. Letg: N — N be a proper map, we argue that under the bdgid.(),

(glan)« is of the form(zmoJr 1 r?) wheren #0, m,n € Z.
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AN TN\
7 W \. go /7 N \.
TO_ y4 N\ -_— y4 N\
Yo l l oM
T1+ ) < 7
Vl 81 \ N2 /
n____/
- Vi1
k- V-1 l
T~ 7
N,/
n____/

Fig. 9. Non-zero degree self-map bl;.

Choose a presentation (N) = (a, b | a = bab) with |y = a? andl,, = b. Suppose
g.(a) = amb, g.(b) = aPb". Sinceg.(a) = g.(h)g.(a)g.(b), we get:

a™b? = aPbha™blaPh” = am+2Ppl LT P aH-Dan,

Thus:

m =m +2p, p=0, or p=0,
q=CD)"P.n+(=1)P.-q+n, m’ odd, n=0.

Abandon the case thgd = n = 0 for gy is non-zero degree map and let =
2m+ 1, we get:g.(a) = a®™+1p9, g.(b) = b".
Sincer1(dN) = (a2, b|[a?, b] = 1) andg,(a?) = a®™+1p9a?™ 19 = a*™+2, we have

2m+1 O). .

(9lan)s = ( 0 n

Theorem 4.2. If N, has no torus bundle structurghen N, admits a self map

of degree I 0 if and only if there exist a positive integer k and two integeatrices
A;, A; of form (2m0+ 1 2) m, n € Z, n # 0, satisfying the following equation

(@5 - T« ‘¢i'f*)571‘¢;€'f* ¢ A (k= 2s),

A2'¢*:{(¢i-r*-¢;-r*)5-¢>:-A1 (k=2s+1)

such that 1=k - € - det(A;) wheree = +1.
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Proof. From Fig. 9, we know that:

4.2) Gitilrs oY =

i+1

€ ogilt- (i =0mod 2),
¢ “ogilt- (i =1mod?2),

wheree = +1,i =0,..., k — 1.
Thus if k = 2s is even, then:

(Ol ) - Dx = (Ol ) - (W) - - - (Y0)- by Fig. 9
= (b;e ' (gk—1|Tkjl)* ' (1//k—2)* T (lﬂo)* by (4-2)
(4.3) = ¢, T (Gk1lrs,)s - (Y 2)s -~ (Y0)« by Lemma 2.8

= (d)*_e T T d): : T*)s_l * ¢*_€ c Tyt d): : (go|Toi)*.
If k=2s+1is odd, then:

(gk|Tk*)* c Qi = (gk|Tk+)* . (wkfl)* toe (WO)*
= @5 (Gk1l7 ) - (Wk2)s - (Yo)s
(4.4) = @5 To - (G-alry Do - (Y2« - -+ (Vo)

= (¢ T 0, - T) - B (Qol7y )+

It is easy to see thadeg@)| = k|det@o|t,)«|- The sign of degf) is decided by
both € and the sign of detp|r,).. Thus| = deg(f) = deg@) = k - € - det@o|t; )--
Finally by applying Lemma 4.1, we finish the proof of one dif@e of Theorem 4.2.

Conversely, if giverk, A;, Az, then we can easily construct the mapsgk: N —
N such that [{Jo|'|'of)>,< = Ay, (gk|-|—k+)* = Ay Setyg=-- =Yy o=1d, Yy 1 = ¢ and
g:Txl—>N(@{=1,...,k=1) is a map such that:

Oilr+ = ¢ og-ilr-, (i =1mod2),
" T lecogiialr-, (i =0mod 2).

Then§ = | g fits the commutative diagram (4.1). Thus we get the quotieap m
g: N, — N, of degreek - € - det(A;). ]

Given ¢, = (2 g) € GLx(Z) and supposego|t, )« = <2m0+1 r?) (%) =

(2m’0+ 1 r?) wherem, n, m', n’ € Z.
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Case 1: abcd# 0, ad—bc = 1. (It should be noted that ¢t¢~1), is Anosov.)
Since g: N; — N, satisfiesg=}(T) is copies of torus fiber, by Theorem 2@
can be lift tog’: M 441 — M4 4-1. By the argument of Anosov monodromy case in
Section 3, the degree @ in the S direction is 1. So we havk = 1.

By equation (4.4), we have:

(gl|T1+)* P =P - (gO|T0’)*-

If e =1, then:

2m+1 0\ (a b)_(a b) (2m+1 O
0o n c d/ \c d 0 n)

Solving this matrix equation we have:

n=2m+1,
m = m,
n=2m-+1.

Thus @ol1; )« = (2m0+ 1 Zmi 1) which means:

deg@) = k- ¢ - det(@ol7;)«) = (2m + 1.

If e =-1, then:

2m+1 0) (a b)_(a b\ (2m+1 O
o n c d/ \c d 0o n)J

Solving this matrix equation we have:

n=—(2m + 1),
{(2m’+1)-a= (2m+1)-d,
n = —(2m + 1).

Suppose (& + 1) = u - a/gcd@, d), then bothu and a/gcd(@, d) must be odd.
Similarly, sincen =2m’' 4+ 1= —u-d/gcd@, d) is odd, thend/gcd@, d) is odd also.

- d@, d 0 : .
Thus @ol7, )« = (u a/gg @ d) _u-d/geda, d)) which means:

ad

degt) = k- ¢ - det(@nl, ).) = V¥ —_E5 .

This degree can be realized here if and onladf/gcd@, d)? is odd.
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CASE 2: abcd= 0. Then there are three subcases.

1
@) ¢.=(179)
In this caseNy is a torus bundle which has been discussed in Section 3.

@) ¢, = (2 %) or equivalently(i 1).

When z # 0, we discuss the following four possible cases:
(A) If e =1 andk = 2s is even, then by equation (4.3), we have the following
equation:

2m+1 0) (0 1 (-1 1 zk) (2m+1 O
0 n 1.z) 0 -1 0 n/)
This equation has no solution.
(B) If e =—1 andk = 2s is even, then by equation (4.3):

2m+1 0) (0 1 (1 1 0\ (2m+1 O
0 n 1z/) zk —1 0 n /)
This equation has no solution either.
(C) If e=1andk=2s+1is odd, then by equation (4.4):

2m'+1 0 (0 1) _ (0 1) (2m+1 0
( 0 n/)'<1 z)_(_)(l kz)'< 0 n)'

Solving this matrix equation:

n = (-1y2m + 1),
{n/ = (-1)%(2m + 1),
n = (—1)°kn.

So 2n+ 1 = kn, thusk is odd, if k exists.

Then Qklr+)« = <2m/0+ ! k(2m9+ 1)) which means:

deg@) = k- ¢ - det(@ol7;)-) = k- € - det(@klr,).) = K*- (2m' + 1),

This degree is an odd square number. In another hand, wkef, all odd square

. ) _(2m+1 0 )
number can be realized as a degregf(.|T£+)* = ( 0 om+1)

(D) If e =—-1andk =2s+ 1 is odd, then by equation (4.4):

2m+1 0) (0 1 _ 1y —zk 1\ (2m+1 0
0 n 1 z) Y 1 0 0 n/)

This equation has no solution.
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Whenz = 0, the same method will show that dgy(s odd, and all odd numbers
can be realized.

@l ¢, = (é i)
In this case, degf) can be determined as in case (2.11).
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