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Abstract
Each closed oriented 3-manifoldM is naturally associated with a set of integers

D(M), the degrees of all self-maps onM . D(M) is determined for each torus bundle
and semi-bundleM . The structure of torus semi-bundle is studied in detail. The
paper is a part of a project to determineD(M) for all 3-manifolds in Thurston’s
picture.
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1. Introduction

1.1. Background. Each closed orientedn-manifold M is naturally associated
with a set of integers, the degrees of all self-maps onM, denoted asD(M)D fdeg(f ) j
f W M ! Mg.

Indeed the calculation ofD(M) is a classical topic appeared in many literatures.
The result is simple and well-known for dimensionnD 1, 2, and for dimensionn > 3,
there are many interesting special results (see [2] and references therein), but it is dif-
ficult to get general results, since there are no classification results for manifolds of
dimensionn > 3.
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The case of dimension 3 becomes attractive in the topic and itis possible to cal-
culate D(M) for any closed oriented 3-manifoldM. Since Thurston’s geometrization
conjecture, which seems to be confirmed, implies that closedoriented 3-manifolds can
be classified in reasonable sense.

Thurston’s geometrization conjecture claims that the eachJaco–Shalen–Johanson
decomposition piece of a prime 3-manifold supports one of the eight geometries which

are H3, ePSL(2, R), H2 � E1, Sol, Nil, E3, S3 and S2 � E1 (for details see [11] and
[10]). Call a closed orientable 3-manifoldM is geometrizableif each prime factor of
M meets Thurston’s geometrization conjecture.

A known rather general fact aboutD(M) for geometrizable 3-manifolds is the fol-
lowing:

Theorem 1.1 ([12], Corollary 4.3). Suppose M is a geometrizable3-manifold.
Then M admits a self-map of degree larger than1 if and only if M is either
(1) covered by a torus bundle over the circle, or
(2) covered by an F� S1 for some compact surface F with�(F) < 0, or
(3) each prime factor of M is covered by S3 or S2 � E1.

The proof of the “only if” part in Theorem 1.1 is based on the theory of simpli-
cial volume, and various results on 3-manifold topology andgroup theory. The proof
of “if” part in Theorem 1.1 is a sequence of elementary constructions, which were
essentially known before.

Hence for anyM not listed in Theorem 1.1,D(M) is either f0, 1,�1g or f0, 1g,
which depends on whetherM admits a self map of degree�1 or not. To determine
D(M) for geometrizable 3-manifolds listed in Theorem 1.1, let’s have a close look of
those 3-manifolds from geometric and topological aspects.

Among Thurston’s eight geometries, six of them belong to thelist in Theorem 1.1.
3-manifolds in (1) are exactly those supporting eitherE3, or Sol or Nil geometries.
E3 3-manifolds, Sol 3-manifolds, and some Nil 3-manifolds aretorus bundles or semi-
bundles; Nil 3-manifolds which are not torus bundles or semi-bundles are Seifert spaces
having Euclidean orbifolds with three singular points. 3-manifolds in (2) are exactly
those supportH2 � E1 geometry; 3-manifolds supportingS3 or S2 � E1 geometries
form a proper subset of (3).

For 3-manifold M with S3-geometry, D(M) has been presented recently in [1] in
term of the orders of�1(M) and its elements (and determined earlier in [5] when the
maps induce automorphisms on�1). Note an algorithm is given to calculate the degree
set of maps betweenS3-manifolds in term of their Seifert invariants [8].

To determineD(M) for the remaining geometrizable 3-manifoldsM, the main task
is to solve the question for the following three groups (D(M) is rather easy to deter-
mine for Seifert manifoldM supportingH2 � E1 or S2 � E1 geometry):
(a) torus bundles and semi-bundles;
(b) Nil Seifert manifolds not in (a);
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(c) connected sums of 3-manifolds in (3) do not supportingS3 or S2� E1 geometries.
Indeed D(M) for M in (a) will be determined in this paper (hopefully all the re-

maining cases will be solved in a forthcoming paper by the authors and Hao Zheng).

1.2. Main result. In this paper we calculateD(M) for 3-manifold M which is
either a torus bundle or semi-bundle. To do this, we need firstto coordinate torus
bundles and semi-bundles by integer matrices in Propositions 1.3 and 1.5, then state
the results ofD(M) in term of those matrices in Theorems 1.6 and 1.7.

CONVENTION. (1) To simplify notions, for a diffeomorphism� on torusT , we
also use� to present its isotopy class and its induced 2 by 2 matrix on�1(T) for a
given basis.
(2) Each 3-manifoldM is oriented, and each 3-submanifold ofM and its boundary
have induced orientations.
(3) SupposeS (resp.P) is a properly embedded surface (resp. an embedded 3-manifold)
in a 3-manifoldM. We useM nS (resp.M nP) to denote the resulting manifold obtained
by splitting M along S (resp. removing intP, the interior ofP).

DEFINITION 1.2. A torus bundleis M� D T � I =(x, 1)� (�(x), 0) where� is a
self-diffeomorphism of the torusT and I is the interval [0, 1].

For a torus bundleM� , we can isotopic� to be a linear diffeomorphism, which
means� 2 GL2(Z) while not changingM� . Since we consider the orientable case only,� must be in the special linear groupSL2(Z).

Proposition 1.3. (1) M� admits E3 geometry if and only if� is periodical, or

equivalently � is conjugate to one of the following matrices
�

1 0
0 1

�
,
� �1 0

0 �1

�
,� �1 �1

1 0

�
,
�

0 �1
1 0

�
,
�

0 �1
1 1

�
of finite order1, 2, 3, 4and 6 respectively;

(2) M� admits Nil geometry if and only if� is reducible, or equivalently� is conju-

gate to�� 1 n
0 1

�
where n¤ 0;

(3) M� admits Sol geometry if and only if� is Anosov or equivalently� is conjugate

to
�

a b
c d

�
where jaC dj > 2, ad� bcD 1.

Proof. See [4].

DEFINITION 1.4. LetK be the Klein bottle andN D K Q� I be the twistedI -bundle
over K . A torus semi-bundle N� D N [� N is obtained by gluing two copies along their
torus boundary�N via a diffeomorphism�. Note N� is foliated by tori parallel to�N
with a Klein bottle at the core of each copy ofN.
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Fig. 1. Coordinates ofS1 � S1 � I .

Let (x, y, z) be the coordinate ofS1 � S1 � I . Then N D S1 � S1 � I =� , where� is an orientation preserving involution such that� (x, y, z) D (xC � , �y, 1� z), and
we have the double coveringp W S1 � S1 � I ! N. Let Cx and Cy be the two circles
on S1 � S1 � f1g defined byy to be constant andx to be constant, see Fig. 1. Denote
by l0 D p(Cx) (0 slope) andl1 D p(Cy) (1 slope) on�N. A canonical coordinateis
an orientation ofl0[ l1, hence there are four choices of canonical coordinate on�N.
Once canonical coordinates on each�N are chosen,� is identified with an element�

a b
c d

�
of GL2(Z) given by �(l0, l1) D (l0, l1)

�
a b
c d

�
.

Proposition 1.5. With suitable choice of canonical coordinates of�N, we have:

(1) N� admits E3 geometry if and only if� D �
1 0
0 1

�
or
�

0 1
1 0

�
;

(2) N� admits Nil geometry if and only if� D �
1 0
z 1

�
,
�

0 1
1 z

�
or

�
1 z
0 1

�
where

z¤ 0;

(3) N� admits Sol geometry if and only if� D �
a b
c d

�
where abcd¤ 0, ad�bcD 1.

Moreover a torus semi-bundle N� is also a torus bundle if and only if� D �
1 0
z 1

�
under suitable choice of canonical coordinates.

We will prove Proposition 1.5 in Section 2.

Theorem 1.6. Using matrix coordinates given byProposition 1.3,D(M�) is listed
in Table 1for torus bundle M� , whereÆ(3)D Æ(6)D 1, Æ(4)D 0.

Theorem 1.7. Using matrix coordinates given byProposition 1.5,D(N�) is listed
in Table 2 for torus semi-bundle N� , whereÆ(a, d) D ad=gcd(a, d)2.
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Table 1. Degrees of self maps of orientable torus bundles.

M� � D(M�)
E3 finite orderk D 1, 2 Z
E3 finite orderk D 3, 4, 6 f(kt C 1)(p2 � Æ(k)pqC q2) j t , p, q 2 Zg
Nil �� 1 0

n 1

�
, n ¤ 0 fl 2 j l 2 Zg

Sol
�

a b
c d

�
, jaC dj > 2

fp2 C (d � a)pr=c� br2=c j
p, r 2 Z, either br=c, (d � a)r =c 2 Z or
(p(d � a) � br )=c 2 Zg

Table 2. Degrees of self maps of torus semi-bundles.

N� � D(N�)

E3
�

1 0
0 1

� Z
E3

�
0 1
1 0

� f2l C 1 j l 2 Zg
Nil

�
1 0
z 1

�
, z¤ 0 fl 2 j l 2 Zg

Nil
�

0 1
1 z

�
or
�

1 z
0 1

�
, z¤ 0 f(2l C 1)2 j l 2 Zg

Sol
�

a b
c d

�
, abcd¤ 0, ad�bcD 1

f(2l C1)2 j l 2 Zg, if Æ(a, d) is even orf(2l C1)2 j l 2 Zg[ f(2l C1)2 � Æ(a, d) j l 2 Zg,
if Æ(a, d) is odd

1.3. Remark on orientation reversing homeomorphisms. SupposeM is a torus
bundle or semi-bundle. Then any non-zero degree map is homotopic to a covering ([12]
Corollary 0.4). Hence if�1 2 D(M) (which is computable by Theorems 1.6 and 1.7),
then M admits an orientation reversing self homeomorphism.

If M is a torus semi-bundle, orM supports the geometry of eitherE3 or Nil, then
when M admits an orientation reversing self homeomorphism is explicitly presented in
the following:

Corollary 1.8. (1) A torus semi-bundle N� admits an orientation reversing homeo-

morphism if and only if� is either
�

1 0
0 1

�
, or

�
0 1
1 0

�
, or

�
a b
c �a

�
where abc¤ 0.

(2) A torus bundle M� supporting E3 geometry admits an orientation reversing homeo-

morphism if and only if� is either
�

1 0
0 1

�
, or

� �1 0
0 �1

�
.

(3) If M supports Nil geometry, then M admits no orientation reversing homeomorphism.

For torus bundle with given Anosov monodromy, even we can calculate whether�1 2 D(M�), but there seems no simple description as in Corollary 1.8.(The referee
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informed us that there is a convenient description of when�1 2 D(M�), see Lem-
ma 1.7, [9].)

EXAMPLE 1.9. For the torus bundleM� , � D �
2 1
1 1

�
, �1 2 D(M�). Indeed for

� D �
a b
c d

�
, if jaC dj D 3, then�1 2 D(M�). Since p2C (d� a)pr=c� br2=cD �1

has solutionpD 1� d, r D c when aC d D 3, and solutionpD �1� d, r D c when
aC d D �3.

EXAMPLE 1.10. For the torus bundleM� , � D �
2 3
1 2

�
, �1� D(M�). Indeed for

� D �
a b
c d

�
, if aCd�2 has prime decompositionpe1

1 � � � pen
n such thatpi D 4lC3 and

ei D 2mC 1 for somei , then�1 � D(M�). Since if the equationp2C (d � a)pr=c�
br2=c D �1 has integer solution, (((a C d)2 � 4)r 2 � 4c2)=c2 should be a square of
rational number. That is ((a C d)2 � 4)r 2 � 4c2 D s2 for some integers. Therefore
(a C d C 2)(a C d � 2)r 2 is a sum of two squares. By a fact in elementary number
theory, neitheraC dC 2 nor aC d � 2 has 4kC 3 type prime factor with odd power
(see p. 279, [7]).

EXAMPLE 1.11. Note if�1 2 D(M), then k 2 D(M) implies �k 2 D(M). For

the torus bundleM� , � D �
2 1
1 1

�
, among the first 20 integers> 0, exactly 1, 4, 5,

9, 11, 16, 19, 202 D(M�).

1.4. Organization of the paper. Theorems 1.6 and 1.7 will be proved in Sec-
tions 3 and 4 respectively. To prove these theorems, we need have a careful look of
the structures of torus bundle and semi-bundles. This is carried out in Section 2.

We explain more about Section 2. The most convenient and useful reference for us is
“Notes on basic 3-manifold topology” by Hatcher [4], which is not formally published,
but widely circulated (seehttp://www.math.cornell.edu/~hatcher/). In
particular Chapter 2 of [4] is devoted to the study of torus bundles and semi-bundles.
Theorems 2.3 and 2.4 about classifications of torus bundles and semi-bundles are quoted
from [4] directly. It seems that the proof of Theorem 2.4 in [4] missed an existed
and rather complicated case, so we rewrite a proof for it (most parts still follow that
in [4]). Lemma 2.6 studies incompressible surfaces in torussemi-bundle, which relies
on the proof of Theorem 2.4. Then Proposition 1.5 is proved byusing Theorem 2.4,
Lemma 2.6, and Lemma 2.8 which presents the relation betweengluing maps of a torus
semi-bundles and its torus bundle double covers. Finally, Theorem 2.9 studies lifting of
maps between torus semi-bundles to their torus bundle double covers.

2. Structures of orientable torus bundles and semi-bundles

2.1. Some elementary facts. All facts in this sub-section are known, and one
can find them in [6], or more directly in [4].
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Fig. 2. Coordinates of�N.

DEFINITION 2.1. Suppose an oriented 3-manifoldM 0 is a circle bundle with a
given sectionF , where F is a compact surface with boundary componentsc1, : : : ,
cn, : : : , cnCb with n > 0. On each boundary component ofM 0, orient ci and the circle
fiber l i so that the product of their orientations match with the induced orientation
of M 0. Now attachingn solid tori Si to the first n boundary tori of M 0 so that the
meridian ofSi is identified with sloper i D ai ci Cbi l i with ai > 0. Denote the resulting
manifold by M which has the Seifert fiber structure extended from the circle bundle
structure ofM 0.

We will denote this Seifert fibering ofM by M(�g, bI r1, : : : , rs) where g is the
genus of the sectionF of M, with the signC if F is orientable and� if F is non-
orientable, here ‘genus’ of nonorientable surfaces means the number ofRP2 connected
summands. WhenbD 0, call e(M) DPs

1 r i the Euler number of the Seifert fiberation.

Another view of N described in Fig. 2 (a): N is obtained fromS1 � I � I by
identifying S1 � I � f0g with S1 � I � f1g via a diffeomorphism� which reflects both
the S1 and I factors. Fig. 2 (b) is a schematic picture ofN which will be used in the
paper.

We list some properties ofN as:

Lemma 2.2. (1) N has two types of Seifert fiber structures:
I: M(0, 1I1=2,�1=2) in which l0 on �N is a regular fiber and l1 is the boundary
of the section defining the Seifert invariant.
II: M(�1, 1I ) in which l1 on �N is a regular fiber and l0 is the boundary of
the section defining the Seifert invariant.

(2) N has three types of essential(orientable, incompressible, �-incompressible) sur-
faces:

I. A torus parallel to�N.
II. An annulus whose boundary is l1 in �N (Fig. 3 (a)) which does not separate N.
III. An annulus whose boundary is l0 in �N (Fig. 3 (b)) which separates N.

(3) Suppose M is a torus bundle or semi-bundle and F is a closed incompressible
surface in M, then F is union of parallel tori.
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Fig. 3. Essential surface inN.

2.2. Classifications of torus bundles and semi-bundles.Orientable torus bun-
dles and semi-bundles are classified by two theorems below.

Theorem 2.3 ([3]; [4], Theorem 2.6). An orientable torus bundle M� is diffeo-
morphic to M if and only if� conjugates to �1 in GL2(Z).

Theorem 2.4 ([4], Theorem 2.8). The torus semi-bundle N� is diffeomorphic to

N if and only if � D ��1 0
0 �1

� �1
��1 0

0 �1

�
in GL2(Z), with independent choices

of signs understood.

Proof. (We start the proof as that in [4].) Supposef W N� ! N is a diffeo-
morphism andT , T 0 are the torus fibers ofN� , N respectively.N n T 0 D N1 [ N2

where N1, N2 are homeomorphic toN.
Since f is a diffeomorphism, two components ofN n f (T) are both homeo-

morphic to N. We can isotopef , such that every component off (T) \ Ni is an es-
sential surface inNi , i D 1, 2. So f (T)\ Ni is in the three types listed in Lemma 2.2
(2). Thus either f (T) is parallel toT 0, or  takesl0 or l1 to l0 or l1.

Suppose f (T) is parallel to T 0. We can assumef (T) D T 0. Then � must be
obtained from by composing on the left and right homeomorphisms of�N which
extend to homeomorphisms ofN. Such homeomorphisms must preserve bothl0 and
l1 (may reverse the directions), sincel0 is the unique slopes of the boundaries of es-
sential separating annulus andl1 is the unique slopes of the boundaries of essential
non-separating annulus inN. Theorem 2.4 is proved in this situation.

Suppose takesl0 or l1 to l0 or l1. Then there are three cases as below:
CASE (1)  takesl1 to l0 (if  takesl0 to l1, then we consider �1).
CASE (2)  takesl1 to l1.
CASE (3)  takesl0 to l0.
(The proof in [4] claims that only Case (3) is possible, whilewe show below that

only Case (2) is impossible.)

Case (1). Now =
�

z 1
1 0

�
, and N D M(�1, 0I1=2,�1=2,z), ande(M)D z. Note:
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Fig. 4. Cut Ni through type (II) surfaces.

Fig. 5. Cut Ni through type (III) surfaces.

(i) f (T) \ N1 are n parallel annuli A1, : : : , An of type (II) (see Fig. 4), which are
located in a cyclic order inN. Set�Ai D ai [a0i , then 2n circles a1, : : : , an, a01, : : : , a0n
are located in cyclic order in�N1.
(ii) f (T)\ N2 are annuliB1, : : : , Bn of type (III) (see Fig. 5), whereBiC1 is next to
Bi , i D 1, : : : , n � 1 in N2. Set �Bi D bi [ b0i then 2n circles b1, : : : , bn, b0n, : : : , b01
are located in cyclic order in�N2.

If n D 1, we can check that pastesA1 and B1 to a Klein bottle, which con-
tradicts the fact thatf (T) is torus. Whenn > 1, we can assume pastesa1 to b1

and pastesa2 to b2, after reindexingAi if necessary. By the orders of sequences of
a1, : : : , an, a01, : : : , a0n andb1, : : : , bn, b0n, : : : , b01 on �N1 and�N2, we haveai is pasted to
bi , anda0i pasted tob0n�i , i D 1,: : : , n. So Ai , An�i , Bi , Bn�i are pasted to one compo-
nent of f (T) in N , and f (T) has [(nC 1)=2] components. Sincef (T) is connected,
we haven D 2.

Now N1n f (T) can be presented as twoI -bundles over annulus:I �A1 and I �A2,
where f (T)\ N1 D A1[ A2, as in Fig. 4.N2 n f (T) can be presented as anI -bundle
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Fig. 6.

over annulusI � B as in Fig. 6 (a) and two solid tori P1 and P2 with the core of
Pi \ �N2 to be the (2, 1) curve of�Pi as in Fig. 6 (b).

If we glue those five pieces along�N, we get two components ofN n f (T) which
are N 0

1 D P1 [�N I � A1 [�N P2 and N 0
2 D I � A2 [�N I � B (re-index Ai if needed),

each of them is a copy ofN. Moreover under the inherited Seifert structure ofN ,
N 0

1 D M(0, 1I 1=2, �1=2) and N 0
2 D M(�1, 1I ).

If we consider thatM(�1, 0I 1=2, �1=2, z) is obtained by identifyingN 0
1 and N 0

2

along f (T), we get a new semi-bundle structure so thatf (T) become a fiber torus.
Since the Euler number of the Seifert structure isz, the new gluing map must be�

z 1
1 0

��1
. This reduces us to the situation thatf (T) is parallel toT 0.

Case (2). Both f (T) \ Ni are type (II) surfaces, fori D 1, 2 (Fig. 4). Hence
f (T) \ N1 is exactly as that in Case (1) (i). Similarly,f (T) \ N2 are n parallel an-
nulus B1, : : : , Bn located in a cyclic order inN. Set �Bi D bi [ b0i , then 2n circles
b1, : : : , bn, b01, : : : , b0n are located in cyclic order in�N2.

We can assume pastea1 to b1 and pastea2 to b2 (re-index fBi g if needed).
Then we haveai is pasted tobi , and a0i pasted tob0i , i D 1, : : : , n. So Ai and Bi are
pasted to one component off (T) in N . Since f (T) is connected,n D 1. But here
f (T) does not separateN , it is impossible.

Case (3). (We copy the proof of [4] for this case.) Now =
�

1 z
0 1

�
, and N D

M(0, 0I 1=2, 1=2, �1=2, �1=2, z), e(N ) D z. (Both f (T) \ Ni are type (III).)
We may assume thatf (T) has been isotoped to be either vertical or horizontal in

this Seifert fibering. Since a connected horizontal essential surface is not separating,
f (T) must be vertical. Thenf (T) must separateM(0, 0I 1=2, 1=2,�1=2,�1=2, z) into
two copies ofN both having the inherited Seifert structureM(0, 1I1=2,�1=2). We can
rechoose the semi-bundle structure so thatf (T) become a fiber torus. Then for the new

torus semi-bundle structure the gluing map must also be
�

1 z
0 1

�
. This reduces us to

the situation thatf (T) is parallel toT 0.
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2.3. Incompressible surfaces.

Lemma 2.5 ([4], Lemma 2.7). For a torus bundle M� , if � is not conjugate to

�� 1 0
n 1

�
, then any essential closed surface in M� is isotopic to a union of torus

fibers.

Lemma 2.6. If a torus semi-bundle N� has no torus bundle structure, then any
essential closed surface in N� is isotopic to copies of torus fibers of a torus semi-
bundle structure on N� , which is isomorphic to N� .

Proof. Let F be an essential close surface inN� D N1 [ N2. By Lemma 2.2
(3), F is a union of parallel tori. For our purpose we may assume thatF is a torus.
IsotopeF so thatF \ Ni is essential inNi . Then each component ofF \ Ni must be
in one of the three types listed in Lemma 2.2.

If F \ Ni is of type (I), then the proof is finished.
There are two cases remaining:

(a) Both F \ Ni are of type (II) for i D 1, 2 (Fig. 4). ThenNi n F are I-bundles over
Ni \ F . Gluing those twoI -bundles along�N will get an I-bundle overF and N� is
obtained from this I-bundle by identifying its top and bottom, which provides a torus
bundle structure ofN� .
(b) SomeF \ Ni is of type (III), say i D 2 (Fig. 5). ThenF is the same asf (T)
either in Case (1) or Case (3) of the proof of Theorem 2.4, depends on F \ N1 is of
type (III) or type (II).

As indicated in the proof of Theorem 2.4, we can rechoose the new torus semi-
bundle structureN so thatF become a fiber torus; moreover if choosing suitable co-
ordinates, we can make to be �.

2.4. Coordinates of torus semi-bundles. Call a mapgW (M, �M) ! (M 0, �M 0)
is proper if g�1(�M 0) � �M.

Lemma 2.7. If V D T� I with the two boundaries TC, T� and gW (V , TC, T�)!
(N, �N) is a proper map, then (gjTC)� D �� � (gjT�)�, where�� D �

1 0
0 �1

�
.

Proof. Let pW T � I ! N be the double covering and� be the deck transforma-
tion map.

Since g�(�1(V)) D (gjTC )�(�1(TC)) � �1(�N) � �1(N), thus g can be lifted to a
map Qg W V ! T � I .
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Fig. 7. N� is double covered byM�����1.

From the commuted diagram above, we have:

�
gjT� D pjT�f1g Æ QgjT� ,
gjTC D pjT�f1g Æ � jT�f0g Æ QgjTC .

We can choose coordinate on (T � I , T � f0g, T � f1g), such thatpjT�f1g D id.
When considering fundamental group, we have (QgjT�)� D ( QgjTC )�. Thus by the

above equation:

(gjTC )� D �� � (gjT�)�
where�� D ( jT�f0g)� D �

1 0
0 �1

�
.

Lemma 2.8. A torus semi-bundle N� is doubly covered by a torus bundle M�����1

where� (x, y) D (x C � , �y) with suitable choice of coordinate(x, y) on the torus.

Proof. Let N� D N1[� N2 with �N1 D �N2 D T . Let pW M ! N� be the double
cover, whereM is a torus bundle,p�1(Ni )D Mi is homeomorphic toT� I , p�1(T)D
T1[ T2. Cut M along T1, T2, get M n T1[ T2. The two boundaries ofMi are denoted
by Ti and T 0

i , T1 is pasted toT2 by  , T 0
1 is pasted toT 0

2 by  0. Let pi D pjMi . All
of these are shown in Fig. 7.

We can choose coordinate onT1, T2, such that (pi jTi )� D id. SinceT 0
i is parallel

to Ti , we can identify�1(T 0
i ) with �1(Ti ). By Lemma 2.7, we have (pi jT 0

i
)� D �� �

(pi jTi )�.



SELF-MAPPING DEGREES OFTORUS BUNDLES 143

From Fig. 7, we know that

�
(p2jT2)� Æ  D � Æ (p1jT1)�,
(p2jT 0

2
)� Æ  0 D � Æ (p1jT 0

1
)�.

Then we get

� D �, 0 D � Æ � Æ � .

Thus M has the torus bundle structureM 0 �1 D M�����1.

By Theorem 2.4, and the fact that
�

0 1
1 z

��1 D � �z 1
1 0

�
, with suitable choice

of canonical coordinates of�N, we can set� is one of the four matrices:
�

0 1
1 z

�
,�

1 z
0 1

�
,
�

1 0
z 1

�
and

�
a b
c d

�
whereabcd¤ 0, ad� bcD 1.

When� is in the first three matrices,N� is a Seifert manifold with Euler number

z. N� is E3 manifold if zD 0 and is Nil manifold ifz¤ 0. Now suppose� D �
a b
c d

�
whereabcd¤ 0, ad�bcD 1. Then by Lemma 2.8,N� is double covered byM�����1.
Since

(�����1)� D �� � �� � �� � ��1� D �
adC bc �2ab�2cd adC bc

�
,

we have

jTrace((�����1)�)j D 2jadC bcj D 2jad� bcC 2bcj D 2j2bcC 1j > 2.

By Proposition 1.3,M�����1 admits Sol geometry, thusN� admits Sol geometry.
The first part of Proposition 1.5 is proved.

If N� also has torus bundle structure, it must have non-separating essential torus.
Recall the proof of Lemma 2.6, an essential torus inN� can be non-separating only if

case (a) is happened, and in this case� D �
1 0
z 1

�
under suitable choice of canonical

coordinates, andN� does have torus bundle structure. This finishes the “moreover” part
of Proposition 1.5.

2.5. Lifting automorphism from semi-bundle to bundle.

Theorem 2.9. Suppose fW N� ! N is a non-zero degree map and f�1(T 0) is a
union of copies of T, where T, T 0 are the torus fiber of N� , N respectively. Then we
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have commute diagram

where M, M 0 are the torus bundle which are double covers of N� , N respectively

and Qf W M ! M 0 is a lift of f .

Proof. We only have to checkf�(p�(�1(M))) � p0�(�1(M 0)).
Let QT , QT 0 be one of the lifting ofT , T 0 in M, M 0 respectively. In torus bundle

M, we have the exact sequence:

1! �1( QT) ! �1(M) ! �1(S1) ! 1.

In torus semi-bundleN� , we have another exact sequence:

1! �1(T) ! �1(N�) ! Z2 � Z2 ! 1.

Since f �1(T 0) is a union of copies ofT , we can assumef (T) D T 0. Then we
have the commuted diagram (every row is exact):

here Np�, Np0�, Nf � are the maps among the fundamental groups of the base spaces of
fiber bundles induced by the maps among the fundamental groups of the total spaces.

We present the groupZ2 � Z2 by ha, b j a2 D b2 D 1i and choose the generator
a, b such that Np�(1)D ab, Np0�(1)D ab (here 1 is the generator of�1(S1)).

Sincea2 D b2 D 1, so Nf �(a)2 D Nf �(b)2 D 1, then Nf �(a), Nf �(b) must be of the form
ab � � � ba or ba � � � ab, and Nf �(ab) D (ab)k or (ba)k D (ab)�k. So Nf �( Np�(�1(S1))) �Np0�(�1(S1)).
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For any� 2 �1(M), let � D f�(p�(�)). Since j2(�) D Nf �( Np�( Qj 1(�))) 2 Np0�(�1(S1)),
and there is 2 �1(M 0) such that Np0�( Qj 2( )) D j2(�), so

j2(p0�( ) � ��1) D Np0�( Qj 2( )) � j2(��1) D j2(�) � j2(��1) D 1.

Since (p0j)� is an isomorphism, there isÆ 2 �1( QT 0) such thati2((p0j)�(Æ))D p0�( ) ���1. We have

p0�(Qi 2(Æ�1) �  ) D i2((p0j)�(Æ�1)) � p0�( ) D (p0�( ) � ��1)�1 � p0�( ) D �.

So f�(p�(�1(M))) � p0�(�1(M 0)), thus Qf exists.

3. The degrees of self maps of torus bundles

We are going to prove Theorem 1.6 (ref. Proposition 1.3). There are two cases to
consider:

CASE 1: � is conjugated to�� 1 0
n 1

�
. Now M� is a Seifert manifold whose

Euler number of Seifert fiberinge(M�) is equal ton.

(1.I) If n D 0, M� is T3 or S1 Q� S1 Q� S1. Here� D �� 1 0
0 1

�
, any 2� 2 integer

matrix A commutes with�, so M� admits self maps of any degrees.
(1.II) If n¤ 0, for a none zero degree mapf W M� ! M� , by [12, Corollary 0.4],

f is homotopic to a covering mapg W M� ! M� . We can choose a suitable Seifert
fibering of M� such thatg is a fiber preserving map. Denote the orbifold ofM� by
O(M�). By [10, Lemma 3.5], we have:8<

:e(M�) D e(M�) � l

m
,

deg(g) D l �m,
(3.1)

where l is the covering degree ofO(M�) ! O(M�) and m is the fiber degree.
Since e(M�) ¤ 0, from equation (3.1) we getl D m. Thus deg(f ) D deg(g) is a

square number. Conversely, given a square numberl 2, it is easy to construct a covering
map f W M� ! M� of degreel 2.

CASE 2: � D �
a b
c d

�
is not conjugated to�� 1 0

n 1

�
.

Theorem 3.1. Suppose� is not conjugated to�� 1 0
n 1

�
M� admits a self map

of degree l¤ 0 if and only if there exist a2� 2 nondegenerate integer matrix A and
a positive integer k such that lD k � � � det(A) and A� �� D (��)k� � A where� D �1.

Proof. For a torus fiberT 2 M� , T is incompressible. Supposef W M� ! M�
is a self-map of degreel ¤ 0. By [6, Lemma 6.5], f is homotopic tog W M� ! M�
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Fig. 8. Non-zero degree self-map ofM� .

such thatg�1(T) is an incompressible surface ofM� . Thus by Lemma 2.5,g�1(T) is
isotopic to a union of torus fibers.

SupposeM� ng�1(T) has k componentsV1, : : : , Vk. EachVi is a T� I . Denote two
torus boundary components ofVi by TC

i and T�
i , and the homeomorphism gluingT�

i

to TC
iC1 by  i see Fig. 8. ThenM kÆ���Æ 1 D M� . By choosing suitable coordinate on the

torus fiber, we have k Æ � � � Æ 0 D �� , � D �1 according to Theorem 2.3. Below we
assume k Æ � � � Æ 0 D � (replace� by ��1 if needed). LetQgW M� n g�1(T) ! M� n T
be the map induced byg. We have the following commuted diagram:

(3.2)

Denote the restriction ofQg to Vi by gi . From the commuted diagram in Fig. 8,
we have:

(3.3) giC1jTC
iC1
Æ  i D �� Æ gi jT�

i
,

where� D �1, i D 1, : : : , k and if i D k then i C 1 is 1.
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SinceT�
i is parallel toTC

i , we can identify�1(T�
i ) with �1(TC

i ). Thus (gi jT�
i

)� D
(gi jTC

i
)� and ( k)� � � � ( 1)� D �� on fundamental group. The identity (3.3) deduces that:

(g1jTC
1

)� � �� D (g1jTC
1

)� � ( k)� � � � ( 1)�
D (gkC1jTC

kC1
)� � ( k)� � � � ( 1)�

D ��� � (gkjT�
k

)� � ( k�1)� � � � ( 1)�
D ��� � (gkjTC

k
)� � ( k�1)� � � � ( 1)�

D � � �
D (��)k� � (g1jTC

1
)�.

Set AD (g1jTC
1

)� and get:

(3.4) A � �� D (��)k� � A.

Clearly jdeg(g)j D kjdet(A)j. The sign of deg(g) is decided by� and the sign of
det(A). Thus l D deg(f ) D deg(g) D k � � � det(A).

Conversely, we set 1 D � � � D  k�1 D id,  k D � and construct the mapQgW M� n
g�1(T)! M� nT such thatQgjVi D (���(i�1)ÆA)� idW T� I ! T� I for i D 1,: : : , k. This
construction fits the commuted diagram (3.2). Thus we get thequotient g W M� ! M�
whose degree is equal tok � � � det(A).

SupposeAD �
p q
r s

�
where p, q, r , s 2 Z. We use equation (3.4) to solvep, q, r , s

and then can determinel by Theorem 3.1.
(2.I) If � is Anosov which means the absolute value of one eigenvalue of� is

larger than 1 while the other is less than 1. In this case, thek in the equation (3.4)
must be equal to 1. We have:

�
p q
r s

� � � a b
c d

� D �
a b
c d

�� � � p q
r s

�
.

Solve this matrix equation and get:

AD

8>>>>>>>>><
>>>>>>>>>:

0
BB�

p
br

c

r
cpC (d � a)r

c

1
CCA (� D 1),

0
� p

p(d � a) � br

c
r �p

1
A (� D �1)

wherebr=c, (d � a)r =c, (p(d � a) � br )=c 2 Z.
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By Theorem 3.1, we have:

l D p2 C (d � a)

c
� pr � b

c
� r 2.

(2.II) If � is periodic, may assume� is either
� �1 �1

1 0

�
, or

�
0 �1
1 0

�
, or�

0 �1
1 1

�
.

(A) If � D � �1 �1
1 0

�
(� has order 3), the equation (3.4) means:

A � �� D
8<
:

A (k � 0 mod 3),��� � A (k � 1 mod 3),�2�� � A (k � 2 mod 3).

After solving all the above possible cases, we get:

AD

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�
p q�q p� q

�
(k � 1 mod 3, � D 1),�

p q
q � p �p

�
(k � 1 mod 3, � D �1),�

p q
q � p �p

�
(k � 2 mod 3, � D 1),�

p q�q p� q

�
(k � 2 mod 3, � D �1).

If k � 0 mod 3, we haveAD �
0 0
0 0

�
, which induces degree 0 map.

By Theorem 3.1:

l D �
k � (p2 � pqC q2) (k � 1 mod 3),
k � (�p2 C pq� q2) (k � 2 mod 3).

It’s easy to deduce that:

l D (3t C 1)(p2 � pqC q2), t , p, q 2 Z.

The same method is applied to the other two cases and we get:

(B) If � D �
0 �1
1 0

�
, then:

l D (4t C 1)(p2 C q2), t , p, q 2 Z.
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(C) If � D �
0 �1
1 1

�
, then:

l D (6t C 1)(p2 � pqC q2), t , p, q 2 Z.

4. The degrees of self maps of torus semi-bundles

We are going to prove Theorem 1.7 (ref. Proposition 1.5). We will assume that
torus semi-bundleN� considered in this section has no torus bundle structure, other-
wise D(N�) is determined in Section 3.

Suppose the degree off W N� ! N� is l ¤ 0 and T is a torus fiber ofN� . By
[6, Lemma 6.5], f is homotopic tog W N� ! N� such thatg�1(T) is incompressible
in N� . Thus by Lemma 2.6 and its proof (also ref. the proof of Theorem 2.4), we
have g�1(T) is isotopic to either a union of torus fibers, or a union of torus fibers of
another semi-bundle structure which is isomorphic to the original one. Also the later
case happen only ifN is a Nil manifold. Note by Theorem 2.9 and the proof in
Section 3 (1.II), Nil 3-manifolds admits no orientation reversing homeomorphism.

Suppose nowg�1(T) hask connected components, thenN� ng�1(T) has two copies
of N, denoted byV0 andVk, andk�1 copies ofT � I , denoted byVi , i D 1,: : : , k�1.
Denote the boundaries ofV0 and Vk by T�

0 and TC
k , the boundaries ofVi by TC

i and
T�

i , i D 1, : : : , k� 1, and the gluing map fromT�
i to TC

iC1 by  i (i D 0, : : : , k� 1) see
Fig. 9.

Then N k�1Æ���Æ 0 D N� , and k�1 Æ � � � Æ 0 D �� , � D �1 by Theorem 2.4 (with a
suitable orientation of the canonical coordinate). Below we assume k�1 Æ � � � Æ 0 D �
(replace� by ��1 if needed). Let Qg W N� n g�1(T) ! N� n T be the map induced by
g, and we have commuted diagram:

(4.1)

SinceTC
i is parallel toT�

i , we can identity�1(TC
i ) with �1(T�

i ) (i D 0,: : : , k�1).
Thus ( k�1)� � � � ( 0)� D �� on fundamental group. Denote the restriction ofQg on Vi

by gi . Then g W Vi ! N1 if i even, andg W Vi ! N2 if i odd.

Lemma 4.1. Under the canonical basis(l0, l1), (g0jT�
0

)� is of the form�
2mC 1 0

0 n

�
where n¤ 0, m, n 2 Z, and so is(gkjTC

k
)�.

Proof. Let g W N ! N be a proper map, we argue that under the basis (l0, l1),

(gj�N)� is of the form
�

2mC 1 0
0 n

�
wheren ¤ 0, m, n 2 Z.
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Fig. 9. Non-zero degree self-map ofN� .

Choose a presentation�1(N)D ha, b j aD babi with l0 D a2 and l1 D b. Suppose
g�(a) D am0

bq, g�(b) D apbn. Sinceg�(a) D g�(b)g�(a)g�(b), we get:

am0
bq D apbnam0

bqapbn D am0C2pb(�1)m
0Cp�nC(�1)p�qCn.

Thus:�
m0 D m0 C 2p,
q D (�1)m

0Cp � nC (�1)p � qC n,
H) �

p D 0,
m0 odd,

or

�
p D 0,
n D 0.

Abandon the case thatp D n D 0 for g0 is non-zero degree map and letm0 D
2mC 1, we get:g�(a) D a2mC1bq, g�(b) D bn.

Since�1(�N)Dha2, b j [a2, b]D1i andg�(a2)Da2mC1bqa2mC1bqDa4mC2, we have

(gj�N)� D
�

2mC 1 0
0 n

�
.

Theorem 4.2. If N� has no torus bundle structure, then N� admits a self map
of degree l¤ 0 if and only if there exist a positive integer k and two integermatrices

A1, A2 of form
�

2mC 1 0
0 n

�
, m, n 2 Z, n ¤ 0, satisfying the following equation:

A2 � �� D
�

(���� � �� � ��� � ��)s�1 � ���� � �� � ��� � A1 (k D 2s),
(��� � �� � ���� � ��)s � ��� � A1 (k D 2sC 1),

such that lD k � � � det(A1) where� D �1.
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Proof. From Fig. 9, we know that:

(4.2) giC1jTC
iC1
Æ  i D

��� Æ gi jT�
i

(i � 0 mod 2),��� Æ gi jT�
i

(i � 1 mod 2),

where� D �1, i D 0, : : : , k � 1.
Thus if k D 2s is even, then:

(gkjTC
k

)� � �� D (gkjTC
k

)� � ( k�1)� � � � ( 0)� by Fig. 9

D ���� � (gk�1jT�
k�1

)� � ( k�2)� � � � ( 0)� by (4.2)

D ���� � �� � (gk�1jTC
k�1

)� � ( k�2)� � � � ( 0)� by Lemma 2.8

D � � �
D (���� � �� � ��� � ��)s�1 � ���� � �� � ��� � (g0jT�

0
)�.

(4.3)

If k D 2sC 1 is odd, then:

(4.4)

(gkjTC
k

)� � �� D (gkjTC
k

)� � ( k�1)� � � � ( 0)�
D ��� � (gk�1jT�

k�1
)� � ( k�2)� � � � ( 0)�

D ��� � �� � (gk�1jTC
k�1

)� � ( k�2)� � � � ( 0)�
D � � �
D (��� � �� � ���� � ��)s � ��� � (g0jT�

0
)�.

It is easy to see thatjdeg(g)j D kjdet(g0jT�
0

)�j. The sign of deg(g) is decided by
both � and the sign of det(g0jT�

0
)�. Thus l D deg(f ) D deg(g) D k � � � det(g0jT�

0
)�.

Finally by applying Lemma 4.1, we finish the proof of one direction of Theorem 4.2.
Conversely, if givenk, A1, A2, then we can easily construct the mapsg0, gk W N !

N such that (g0jT�
0

)� D A1, (gkjTC
k

)� D A2. Set 0 D � � � D  k�2 D id,  k�1 D � and
gi W T � I ! N (i D 1, : : : , k � 1) is a map such that:

gi jTC
i
D ��� Æ gi�1jT�

i�1
(i � 1 mod 2),��� Æ gi�1jT�

i�1
(i � 0 mod 2).

Then Qg DS
gi fits the commutative diagram (4.1). Thus we get the quotient map

g W N� ! N� of degreek � � � det(A1).

Given �� D �
a b
c d

� 2 GL2(Z) and suppose (g0jT�
0

)� D �
2mC 1 0

0 n

�
, (gkjTC

k
)� D�

2m0 C 1 0
0 n0

�
wherem, n, m0, n0 2 Z.
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CASE 1: abcd¤ 0, ad�bcD 1. (It should be noted that (�����1)� is Anosov.)
Since g W N� ! N� satisfiesg�1(T) is copies of torus fiber, by Theorem 2.9g

can be lift tog0 W M�����1 ! M�����1. By the argument of Anosov monodromy case in
Section 3, the degree ofg0 in the S1 direction is 1. So we havek D 1.

By equation (4.4), we have:

(g1jTC
1

)� � �� D ��� � (g0jT�
0

)�.

If � D 1, then:

�
2m0 C 1 0

0 n0
� � � a b

c d

� D �
a b
c d

� � � 2mC 1 0
0 n

�
.

Solving this matrix equation we have:

8<
:

n D 2mC 1,
m0 D m,
n0 D 2mC 1.

Thus (g0jT�
0

)� D �
2mC 1 0

0 2mC 1

�
which means:

deg(g) D k � � � det((g0jT�
0

)�) D (2mC 1)2.

If � D �1, then:

�
2m0 C 1 0

0 n0
� � � a b

c d

� D �
a b
c d

��1 � � 2mC 1 0
0 n

�
.

Solving this matrix equation we have:

8<
:

n D �(2m0 C 1),
(2m0 C 1) � a D (2mC 1) � d,
n0 D �(2mC 1).

Suppose (2mC 1) D u � a=gcd(a, d), then bothu and a=gcd(a, d) must be odd.
Similarly, sincen D 2m0 C 1D �u � d=gcd(a, d) is odd, thend=gcd(a, d) is odd also.

Thus (g0jT�
0

)� D �
u � a=gcd(a, d) 0

0 �u � d=gcd(a, d)

�
which means:

deg(g) D k � � � det((g0jT�
0

)�) D u2 � ad

gcd(a, d)2
.

This degree can be realized here if and only ifad=gcd(a, d)2 is odd.
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CASE 2: abcdD 0. Then there are three subcases.
(2.I) �� D �

1 0
z 1

�
.

In this caseN� is a torus bundle which has been discussed in Section 3.

(2.II) �� D �
0 1
1 z

�
, or equivalently

�
z 1
1 0

�
.

When z¤ 0, we discuss the following four possible cases:
(A) If � D 1 andk D 2s is even, then by equation (4.3), we have the following

equation:

�
2m0 C 1 0

0 n0
� � � 0 1

1 z

� D (�1)s
�

1 zk
0 �1

� � � 2mC 1 0
0 n

�
.

This equation has no solution.
(B) If � D �1 andk D 2s is even, then by equation (4.3):

�
2m0 C 1 0

0 n0
� � � 0 1

1 z

� D (�1)s
�

1 0
zk �1

� � � 2mC 1 0
0 n

�
.

This equation has no solution either.
(C) If � D 1 andk D 2sC 1 is odd, then by equation (4.4):

�
2m0 C 1 0

0 n0
� � � 0 1

1 z

� D (�1)s
�

0 1
1 kz

� � � 2mC 1 0
0 n

�
.

Solving this matrix equation:

8<
:

n D (�1)s(2m0 C 1),
n0 D (�1)s(2mC 1),
n0 D (�1)skn.

So 2mC 1D kn, thus k is odd, if k exists.

Then (gkjTC
k

)� D �
2m0 C 1 0

0 k(2m0 C 1)

�
which means:

deg(g) D k � � � det((g0jT�
0

)�) D k � � � det((gkjTC
k

)�) D k2 � (2m0 C 1)2.

This degree is an odd square number. In another hand, whenkD 1, all odd square

number can be realized as a degree: (gkjTC
k

)� D �
2m0 C 1 0

0 2m0 C 1

�
.

(D) If � D �1 andk D 2sC 1 is odd, then by equation (4.4):

�
2m0 C 1 0

0 n0
� � � 0 1

1 z

� D (�1)s
� �zk 1

1 0

� � � 2mC 1 0
0 n

�
.

This equation has no solution.
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When zD 0, the same method will show that deg(g) is odd, and all odd numbers
can be realized.

(2.III) �� D �
1 z
0 1

�
.

In this case, deg(g) can be determined as in case (2.II).
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