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Abstract
We show that any lexsegment ideal with linear resolution haslinear quotients

with respect to a suitable ordering of its minimal monomial generators. For com-
pletely lexsegment ideals with linear resolution we show that the decomposition func-
tion is regular. For arbitrary lexsegment ideals we computethe depth and the dimen-
sion. As application we characterize the Cohen–Macaulay lexsegment ideals.

Introduction

Let SD k[x1, : : : , xn] be the polynomial ring inn variables over a fieldk. We
order lexicographically the monomials ofS such thatx1 > x2 > � � � > xn. Let d � 2 be
an integer andMd the set of monomials of degreed. For two monomialsu, v 2Md,
with u �lex v, the set

L(u, v) D fw 2Md j u �lex w �lex vg
is called a lexsegment. A lexsegment ideal inS is a monomial ideal ofS which is gen-
erated by a lexsegment. Lexsegment ideals have been introduced by Hulett and Martin
[10]. Arbitrary lexsegment ideals have been studied by A. Aramova, E. De Negri, and
J. Herzog in [1] and [4]. They characterized the lexsegment ideals which have a linear
resolution.

Let I � S be a monomial ideal andG(I ) its minimal monomial set of generators.
I has linear quotients if there exists an orderingu1, : : : , um of the elements ofG(I )
such that for all 2� j � m, the colon ideals (u1, : : : , u j�1) W u j are generated by a
subset offx1, : : : , xng.

Ideals with linear quotients have a linear resolution, but,in general, the converse is
not true. Therefore it is natural to ask whether lexsegment ideals with linear resolution
have linear quotients. We positively answer this question.In Section 1 we show that
any completely lexsegment ideal with linear resolution haslinear quotients with respect
to the following order of the generators. Given two monomials of degreed in S, w D
x�1

1 � � � x�n
n andw0 D x�1

1 � � � x�n
n , we setw � w0 if �1 < �1 or �1 D �1 andw >lex w0.
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Let u, v 2 Md which define the completely lexsegment idealI D (L(u, v)) with
linear resolution. IfL(u, v)D fw1, : : : ,wr g, wherew1 � w2 � � � � � wr , we show thatI
has linear quotients with respect to this ordering of the generators. The non-completely
lexsegment ideal will be separately studied in Section 2.

For the monomial ideals with linear quotients one may consider the associated de-
composition function defined in [9]. When this function has an additional property,
namely it is regular, then one may apply the iterated mappingcone procedure devel-
oped in [9] (see also [5]) to get the explicit resolution of the ideal.

For the completely lexsegment ideals with linear resolution it will turn out that
their decomposition function with respect to the ordering� is regular. Therefore, we
get the explicit resolutions for this class of ideals.

In the last section of our paper we study the depth and the dimension of lexseg-
ment ideals. Our results show that one may compute these invariants just looking at
the ends of the lexsegment. As an application, we characterize the Cohen–Macaulay
lexsegment ideals.

We acknowledge the support provided by the computer algebrasystems CoCoA
[3] and Singular [7] for the extensive experiments which helped us to obtain some of
the results of this work.

1. Completely lexsegment ideals with linear resolutions

In the theory of Hilbert functions or in extremal combinatorics usually one consid-
ers initial lexsegment ideals, that is ideals generated by an initial lexsegmentLi (v) Dfw 2Md j w �lex vg. Initial lexsegment ideals are stable in the sense of Eliahou and
Kervaire ([6], [2]) and they have linear quotients with respect to lexicographical order
[11, Proposition 2.1].

One may also define the final lexsegmentL f (u) D fw 2 Md j u �lex wg. Final
lexsegment ideals are generated by final lexsegments. They are also stable in the sense
of Eliahou and Kervaire with respect toxn > xn�1 > � � � > x1. Therefore they have
linear quotients.

Throughout this paper we use the following notations. IfmD x�1
1 � � �x�n

n is a mono-
mial of S, we denote by�i (m) the exponent of the variablexi in m, that is�i (m)D �i ,
i D 1, : : : , n. Also, we will denote max(m) D maxfi j xi jmg.

Hulett and Martin call a lexsegmentL completely lexsegmentif all the iterated
shadows ofL are again lexsegments. We recall that the shadow of a setT of mono-
mials is the set Shad(T) D fvxi j v 2 T , 1 � i � ng. The i -th shadow is recursively
defined as Shadi (T)D Shad(Shadi�1(T)). The initial lexsegments have the property that
their shadow is again an initial lexsegment, a fact which is not true for arbitrary lexseg-
ments. An ideal spanned by a completely lexsegment is calleda completely lexsegment
ideal. All the completely lexsegment ideals with linear resolution are determined in [1]:
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Theorem 1.1 ([1]). Let uD xa1
1 � � � xan

n , v D xb1
1 � � � xbn

n be monomials of degree
d with u�lex v, and let ID (L(u, v)) be a completely lexsegment ideal. Then I has a
linear resolution if and only if one of the following conditions holds:
(a) u D xa

1 xd�a
2 , v D xa

1 xd�a
n for some a, 0< a � d;

(b) b1 < a1 � 1;
(c) b1 D a1 � 1 and for the largestw <lex v, w monomial of degree d, one has
x1w=xmax(w) �lex u.

Theorem 1.2. Let uD xa1
1 � � � xan

n , with a1 > 0, and v D xb1
1 � � � xbn

n be monomials
of degree d with u�lex v, and let ID (L(u, v)) be a completely lexsegment ideal. Then
I has a linear resolution if and only if I has linear quotients.

Proof. We have to prove that ifI has a linear resolution thenI has linear quo-
tients, since the other implication is known [8]. By Theorem1.1, sinceI has a linear
resolution, one of the conditions (a), (b), (c) holds.

We define on the set of the monomials of degreed from S the following total
order: for

w D x�1
1 � � � x�n

n , w0 D x�1
1 � � � x�n

n ,

we set

w � w0 if �1 < �1 or �1 D �1 and w >lex w0.
Let

L(u, v) D fw1, : : : , wr g, where w1 � w2 � � � � � wr .

We will prove that I D (L(u, v)) has linear quotients with respect to this ordering of
the generators.

Assume thatu, v satisfy the condition (a) anda < d (the casea D d is trivial).
Then I is isomorphic asS-module to the ideal generated by the final lexsegment
L f (xd�a

2 ) � S and the ordering� of its minimal generators coincides with the lexi-
cographical ordering>lex. The ideal (L f (xd�a

2 ))\ k[x2, : : : , xn] is the initial lexseg-
ment ideal ink[x2, : : : , xn] defined by xd�a

n , which has linear quotients with respect
to >lex. Hence I has linear quotients with respect to� since it is the extension in
the ring k[x1, : : : , xn] of a monomial ideal with linear quotients ink[x2, : : : , xn].

Next we assume thatu, v satisfy the condition (b) or (c).
By definition, I has linear quotients with respect to the monomial generatorsw1,:::,wr if the colon ideals (w1, : : : , wi�1) W wi are generated by variables for alli � 2,

that is for all j < i there exists an integer 1� k < i and an integerl 2 [n] such thatwk=gcd(wk, wi ) D xl and xl dividesw j =gcd(w j , wi ).
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In other words, for anyw j � wi , w j , wi 2 L(u, v), we have to find a monomialw0 2 L(u, v) such that

w0 � wi ,
w0

gcd(w0, wi )
D xl , for some l 2 [n], and xl divides

w j

gcd(w j , wi )
.

(�)

Let us fixwi D x�1
1 � � � x�n

n andw j D x�1
1 � � � x�n

n , wi , w j 2 L(u, v), such thatw j �wi . By the definition of the ordering�, we must have

�1 < �1 or �1 D �1 and w j >lex wi .

CASE 1: Let �1 < �1. One may find an integerl , 2� l � n, such that�s � �s

for all s< l and�l < �l since, otherwise, deg(wi ) > deg(w j ) D d which is impossible.
We obviously have max(w j ) � l . If l � max(wi ), one may takeNw D xlwi =x1 which
satisfies the condition (�) since the inequalitiesNw � wi , Nw �lex wi �lex u hold, and we
will show that Nw �lex w j . This will imply that Nw �lex v, hence Nw 2 L(u, v).

The inequality Nw �lex w j is obviously fulfilled if �1 � 1 > �1 or if �1 � 1 D �1

and at least one of the inequalities�s � �s for 2� s< l , is strict. If �1� 1D �1 and�s D �s for all s < l , comparing the degrees ofwi andw j it results d D �1 C � � � C�l D �1 C 1C �2 C � � � C �l�1 C �l < (�1 C 1)C �2 C � � � C �l . It follows that d ��1C�2C� � �C�l > d�1, that is�1C�2C� � �C�l D d. This implies thatl Dmax(w j )

and �l D �l C 1, that is Nw D xlwi =x1 D x�1�1
1 x�2

2 � � � x�lC1
l D x�1

1 � � � x�l
l D w j .

From now on, in Case 1, we may assume thatl < max(wi ). We will show that at
least one of the following monomials:

w0 D xlwi

xmax(wi )
, w00 D xlwi

x1

belongs toL(u, v). It is clear that both monomials are strictly less thanwi with re-
spect to the ordering�. Therefore one of the monomialsw0, w00 will satisfy the con-
dition (�).

The following inequalities are fulfilled:

w0 >lex wi �lex v,

and

w00 <lex wi �lex u.

Let us assume, by contradiction, thatw0 >lex u and w00 <lex v. Comparing the
exponents of the variablex1, we obtaina1�1� �1�1� b1. Since the ideal generated
by L(u, v) has a linear resolution, we must haveb1 D a1 � 1. Let z be the largest
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monomial of degreed such thatz <lex v. Then, by our assumption onw00, we also
have the inequalityw00 �lex z.

Now we need the following

Lemma 1.3. Let mD xa1
1 � � � xan

n , m0 D xb1
1 � � � xbn

n be two monomials of degree d.
If m �lex m0 then m=xmax(m) �lex m0=xmax(m0).

Proof. The proof is immediate.

Going back to the proof of our theorem, we apply the above lemma for the monomialsw00 andz and we obtainw00=xmax(w00) �lex z=xmax(z), which implies thatx1w00=xmax(w00) �lex

x1z=xmax(z). By using condition (c) in Theorem 1.1 it follows thatx1w00=xmax(w00) �lex u.
On the other hand,x1w00=xmax(w00) D x1xlwi =(x1xmax(wi ))D xlwi =xmax(wi ) D w0. Therefore,
it resultsw0 �lex u, which contradicts our assumption onw0.

Consequently, we havew0 �lex u or w00 �lex v, which proves that at least one of
the monomialsw0, w00 belongs toL(u, v).

CASE 2: Let �1 D �1 andw j >lex wi . Then there existsl , 2� l � n, such that�s D �s, for all s< l and�l < �l . If max(wi ) � l , then, looking at the degrees ofwi

andw j , we getd D �1C�2C� � �C�l < �1C�2C� � �C�l , contradiction. Therefore,l <
max(wi ). We proceed in a similar way as in the previous case. Namely,exactly as in
Case 1, it results that at least one of the following two monomials w0 D xlwi =xmax(wi ),w00 D xlwi =x1 belongs toL(u, v). It is clear that both monomials are strictly less thanwi with respect to the order�.

EXAMPLE 1.4. Let SD k[x1, x2, x3]. We consider the monomials:u D x1x2x3

and v D x2x2
3, u >lex v, and let I be the monomial ideal generated byL(u, v). The

minimal system of generators of the idealI is

G(I ) D L(u, v) D fx1x2x3, x1x2
3, x3

2, x2
2x3, x2x2

3g.
Since I verifies the condition (c) in Theorem 1.1, it follows thatI is a com-

pletely lexsegment ideal with linear resolution. We denotethe monomials fromG(I )
as follows: u1 D x1x2x3, u2 D x1x2

3, u3 D x3
2, u4 D x2

2x3, u5 D x2x2
3, so u1 >lex

u2 >lex � � � >lex u5. The colon ideal (u1, u2) W u3 D (x1x3) is not generated by a subset
of fx1, x2, x3g. This shows thatI is not with linear quotients with respect to lexico-
graphical order.

We consider now the order� and check by direct computation thatI has lin-
ear quotients. We label the monomials fromG(I ) as follows: u1 D x3

2, u2 D x2
2x3,

u3 D x2x2
3, u4 D x1x2x3, u5 D x1x2

3, so u1 � u2 � � � � � u5. Then (u1) W u2 D (x2),
(u1, u2) W u3 D (x2), (u1, u2, u3) W u4 D (x2, x3), (u1, u2, u3, u4) W u5 D (x2).
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We further study the decomposition function of a completelylexsegment ideal with
linear resolution. The decomposition function of a monomial ideal was introduced by
J. Herzog and Y. Takayama in [9].

We recall the following notation. IfI � S is a monomial ideal with linear quo-
tients with respect to the orderingu1, : : : , um of its minimal generators, then we denote

set(u j ) D fk 2 [n] j xk 2 (u1, : : : , u j�1) W u j g
for j D 1, : : : , m.

DEFINITION 1.5 ([9]). Let I � Sbe a monomial ideal with linear quotients with re-
spect to the sequence of minimal monomial generatorsu1, : : : , um and setI j D (u1, : : : , u j ),
for j D 1, : : : , m. Let M(I ) be the set of all monomials inI . The mapg W M(I ) ! G(I )
defined as:g(u) D u j , where j is the smallest number such thatu 2 I j , is calledthe de-
composition functionof I .

We say that the decomposition functiongW M(I ) ! G(I ) is regular if set(g(xsu)) �
set(u) for all s 2 set(u) andu 2 G(I ).

We show in the sequel that completely lexsegment ideals which have linear quo-
tients with respect to� have also regular decomposition functions.

In order to do this, we need some preparatory notations and results.
For an arbitrary lexsegmentL(u, v) with the elements ordered by�, we denote

by I�w, the ideal generated by all the monomialsz 2 L(u, v) with z � w. I�w will
be the ideal generated by all the monomialsz 2 L(u, v) with z� w.

Lemma 1.6. Let I D (L(u, v)) be a lexsegment ideal which has linear quotients
with respect to the order� of the generators. Then, for any w 2 L(u, v), 1 � set(w).

Proof. Let us assume that 12 set(w), that is x1w 2 I�w. It follows that there
existsw0 2 L(u, v), w0 � w, and a variablex j such thatx1w D x jw0. Obviously, we
have j � 2. But this equality shows that�1(w0) > �1(w), which is impossible sincew0 � w.

Lemma 1.7. Let I D (L(u, v)) be a completely lexsegment ideal which has linear
quotients with respect to the ordering� of the generators and let gW M(I ) ! G(I )
the decomposition function of I with respect to the ordering�. If w 2 L(u, v) and
s 2 set(w), then

g(xsw) D
8>><
>>:

xsw
x1

, if xsw �lex x1v,

xsw
xmax(w)

, if xsw <lex x1v.
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Proof. Let u D xa1
1 � � � xan

n , v D xb1
1 � � � xbn

n , a1 > 0, andw D x�1
1 � � � x�n

n .
In the first place we consider

xsw �lex x1v.

Since, by Lemma 1.6, we haves� 2, the above inequality shows that�1(w) � 1. We
have to show thatg(xsw)D xsw=x1, that isxsw=x1 D min�fw0 2 L(u, v) j xsw 2 I�w0g.
It is clear thatv �lex xsw=x1 <lex w �lex u, hencexsw=x1 2 L(u, v). Let w0 2 L(u, v)
such thatxsw 2 I�w0 . We have to show thatxsw=x1 � w0. Let w00 2 L(u, v), w00 � w0
such thatxsw D w00x j , for some variablex j . Then w00 D xsw=x j � xsw=x1 by the
definition of our ordering�. This implies thatw0 � xsw=x1.

Now we have to consider the second inequality,

(1.1) xsw <lex x1v.

Since s 2 set(w), we havexsw 2 I�w, that is there existsw0 2 L(u, v), w0 � w,
and a variablex j , j ¤ s, such that

(1.2) xsw D x jw0.
If j D 1, then xsw D x1w0 �lex x1v, contradiction. Hencej � 2. We also note

that x j j w since j ¤ s, thus j � max(w). The following inequalities hold:

(1.3)
xsw

xmax(w)
�lex

xsw
x j

D w0 �lex v.

If �1(w) < a1, we obviously getxsw=xmax(w) �lex u. Let �1(w) D a1. From the
inequality (1.1) we obtaina1 � b1 C 1.

If a1 D b1 then u D xa1
1 xd�a1

2 and v D xa1
1 xd�a1

n by Theorem 1.1. Sincew �lex u,
by using Lemma 1.3, we havexsw=xmax(w) �lex xsu=xmax(u) D xsu=x2 �lex u, the last
inequality being true by Lemma 1.6. Therefore,xsw=xmax(w) 2 L(u, v).

If a1 D b1 C 1 then the condition (c) in Theorem 1.1 holds. Letz be the
largest monomial with respect to the lexicographical ordersuch thatz <lex v. Since
xsw=x1 <lex v by hypothesis, we also havexsw=x1 �lex z. By Lemma 1.3 we obtain
xsw=(x1xmax(xsw=x1)) �lex z=xmax(z). Next we apply the condition (c) from Theorem 1.1
and get the following inequalities:

(1.4) x1
xsw

x1xmax(xsw=x1)
�lex x1

z

xmax(z)
�lex u.

From the equality (1.1) we havew0 D xsw=x j . As j ¤ 1, �1(w0) D �1(w), and the
inequalityw0 � w givesw0 >lex w, that isxsw=x j >lex w, which implies thatxs >lex x j .
This shows thats< j � max(w). Now looking at the inequalities (1.4), we have

xsw
xmax(w)

�lex u.(1.5)
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From (1.5) and (1.3) we obtainxsw=xmax(w) 2 L(u, v).
It remains to show thatxsw=xmax(w) D min�fw0 2 L(u, v) j xsw 2 I�w0g. Let Qw D

min�fw0 2 L(u, v) j xsw 2 I�w0g. We obviously haveQw � xsw=xmax(w) � w. By the
choice of Qw we have

xsw D xt Qw
for some variablext .

If t D s we getw D Qw which is impossible sinceQw � w. Therefore,t ¤ s. Then
xt j w, so t � max(w). It follows that Qw D xsw=xt �lex xsw=xmax(w). If t D 1 we have
x1 Qw D xsw <lex x1v, which implies that Qw <lex v, contradiction. Thereforet ¤ 1 and,
moreover, Qw � xsw=xmax(w), the inequality being true by the definition of the ordering�. This yields Qw D xsw=xmax(w). Therefore we have proved thatxsw=xmax(w) D g(xsw).

After this preparation, we prove the following

Theorem 1.8. Let uD xa1
1 � � � xan

n , v D xb1
1 � � � xbn

n , u, v 2Md, with u�lex v, and
I D (L(u, v)) be a completely lexsegment ideal which has a linear resolution. Then the
decomposition function gW M(I )! G(I ) associated to the ordering� of the generators
from G(I ) is regular.

Proof. Let w 2 L(u, v) and s 2 set(w). We have to show that set(g(xsw)) �
set(w).

Let t 2 set(g(xsw)). In order to prove thatt 2 set(w), that is xtw 2 I�w, we will
consider the following two cases:

CASE 1: Let xsw�lex x1v. By Lemma 1.7,g(xsw)D xsw=x1. Sincet 2 set(g(xsw)),
we have

xt xsw
x1

2 I�xsw=x1,

so there existsw0 � xsw=x1, w0 2 L(u, v), and a variablex j , such thatxt xsw=x1 D
x jw0, that is

(1.6) xt xsw D x1x jw0.
By Lemma 1.6,s, t ¤ 1 and, sincew0 � xsw=x1, we have j ¤ t . Note also thatw0 � w
since�1(w0) < �1(w). If j D s then xtw D x1w0 2 I�w and t 2 set(w).

Now let j ¤ s. If j D 1, we havext xsw D x2
1w0, which implies that�1(w0) D�1(w) � 2. The following inequalities hold:v <lex x1w0=xs <lex w �lex u, the first one

being true sincev �lex w0, so �1(v) � �1(w0). These inequalities show thatx1w0=xs 2
L(u, v). But we also havex1w0=xs � w, hencex1w0=xs 2 I�w.
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To finish this case we only need to treat the casej ¤ 1, j ¤ s. We are going to
show that at least one of the monomialsx1w0=xs or x jw0=xs belongs toI�w. In any
case this will lead to the conclusion thatxtw 2 I�w by using (1.6).

From the equality (1.6), we havex j j w, hencej �max(w), and�1(w0)D �1(w)�1.
Sincew0 � xsw=x1 and �1(w0) D �1(w) � 1D �1(xsw=x1), we get

(1.7) w0 >lex
xsw
x1

,

which gives

x1w0
xs

>lex v.

If the inequality

x1w0
xs

�lex u(1.8)

holds, then we getx1w0=xs 2 L(u, v). We also note that�1(x1w0=xs) D �1(w) and
x1w0=xs>lexw (by (1.7)). Thereforex1w0=xs�w and we may writextwD x j (x1w0=xs)2
I�w. This implies thatt 2 set(w).

Now we look at the monomialx jw0=xs for which we have�1(x jw0=xs)D �1(w0) <�1(w), so x jw0=xs <lex w �lex u. If the inequality

x jw0
xs

�lex v(1.9)

holds, we obtainx jw0=xs 2 L(u, v). Obviously we havex jw0=xs � w. By using (1.6),
we may writextw D x1(x jw0=xs) 2 I�w, which shows thatt 2 set(w).

To finish the proof in Case 1 we need to consider the situation when both inequal-
ities (1.8) and (1.9) fail. Hence, let

x1w0
xs

>lex u

and

x jw0
xs

<lex v.

We will show that this inequalities cannot hold simultaneously. Comparing the expo-
nents ofx1 in the monomials involved in the above inequalities, we obtain �1(w0) D
b1 � a1 � 1. Since, by hypothesis,xsw >lex x1v, we have�1(w) > b1. On the other
hand,w �lex u implies that�1(w) � a1. So b1 D a1 � 1 andL(u, v) satisfies the con-
dition (c) in Theorem 1.1. Let, as usually,z be the largest monomial with respect to
the lexicographical order such thatz<lex v.
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Since x jw0=xs <lex v, we havex jw0=xs �lex z. By Lemma 1.3 and using the con-
dition x1z=xmax(z) �lex u, we obtain:x1x jw0=(xsxmax(x jw0=xs)) �lex u. But our assumption
was thatu <lex x1w0=xs. Therefore, combining the last two inequalities, after cancel-
lation, one obtains thatx j <lex xmax(x jw0=xs) D xmax(xtw=x1) D xmax(xtw). This leads to the
inequality j > max(xtw) and, sincej � max(w), we get max(w) > max(xtw), which
is impossible.

CASE 2: Let xsw <lex x1v. Then g(xsw) D xsw=xmax(w). In particular we have
xsw=xmax(w) � w. Indeed, sinces 2 set(w), we havexsw 2 I�w, that is there existsw0 2 L(u, v), w0 � w, such thatxsw 2 I�w0 . By the definition of the decomposition
function we haveg(xsw) � w0 and next we getg(xsw) � w. Since�1(xsw=xmax(w)) D�1(w), the above inequality implies thatxsw=xmax(w) >lex w, that is xs >lex xmax(w)

which means thats< max(w).
As t 2 set(g(xsw)), there existsw0 � xsw=xmax(w), w0 2 L(u, v), and a variablex j ,

such that

xt xsw
xmax(w)

D x jw0,
that is

(1.10) xt xsw D x j xmax(w)w0.
As in the previous case, we would like to show that one of the monomialsxmax(w)w0=xs

or x jw0=xs belongs toL(u, v) and it is strictly less thanw with respect to�. In this
way we obtainxtw 2 I�w and t 2 set(w).

We begin our proof noticing thats, t ¤ 1, by Lemma 1.6. The equalityj D t
is impossible sincew0 ¤ xsw=xmax(w). If j D s, then xtw D w0xmax(w) 2 I�w0 . Butw0 � xsw=xmax(w) � w, hencextw 2 I�w.

Let j ¤ s, t . From the equality (1.10) we havex j j w, so j � max(w). We firstly
consider j D 1. Then the equality (1.10) becomes

(1.11) xt xsw D x1xmax(w)w0.
Sinces< max(w), we havexmax(w)w0=xs <lex w0 �lex u. If the inequalityxmax(w)w0=xs�lex v holds too, thenxmax(w)w0=xs 2 L(u, v) and, as�1(w0) < �1(w), it follows that
xmax(w)w0=xs � w. From (1.11), we havextw D x1(xmax(w)w0=xs) 2 I�w, hencet 2
set(w).

From the inequalityxsw <lex x1v, we get

xsw <lex x1w0,
so

x1w0
xs

>lex w.
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Let us assume thatx1w0=xs �lex u. Since�1(x1w0=xs)D �1(w), by using the definition of
the ordering� we getx1w0=xs 2 I�w. Then we may writextw D xmax(w)(x1w0=xs) 2 I�w.

It remains to consider thatxmax(w)w0=xs <lex v and x1w0=xs >lex u. Proceeding as
in Case 1 we show that we reach a contradiction and this ends the proof for j D 1.
We only need to notice that we have to considerb1 � a1�1. Indeed, we can not have
b1 D a1 since one may find inL(u, v) at least two monomials, namelyw andw0, with�1(w0) < �1(w).

Finally, let j ¤ 1. Recall that in the equality (1.10) we havej ¤ 1, t , s and s <
max(w). From (1.10) we obtain�1(w) D �1(w0). Sincew0 � xsw=xmax(w), we havew0 >lex xsw=xmax(w), that is

(1.12) w0xmax(w) >lex xsw.

Replacingw0xmax(w) by xt xsw=x j in (1.12), we getxt >lex x j , which meanst < j .
It follows that: xmax(w)w0=xs D xtw=x j >lex w �lex v. Sinces<max(w), as in the proof
for j D 1, we havexmax(w)w0=xs �lex u. Thereforexmax(w)w0=xs 2 L(u, v). In addition,
from (1.12), xmax(w)w0=xs >lex w and �1(xmax(w)w0=xs) D �1(w), so xmax(w)w0=xs � w.
In other words, we have got thatxtw D x j (xmax(w)w0=xs) 2 I�w and t 2 set(w).

The general problem of determining the resolution of arbitrary lexsegment ideals is
not completely solved. The resolutions of the lexsegment ideals with linear quotients
are described in [9] using iterated mapping cones. We recallthis construction from
[9]. Suppose that the monomial idealI has linear quotients with respect to the ordering
u1, : : : , um of its minimal generators. SetI j D (u1, : : : , u j ) and L j D (u1, : : : , u j ) W u jC1.
Since I jC1=I j ' S=L j , we get the exact sequences

0! S=L j ! S=I j ! S=I jC1 ! 0,

where the morphismS=L j ! S=I j is the multiplication byu jC1. Let F ( j ) be a graded
free resolution ofS=I j , K ( j ) the Koszul complex associated to the regular sequence
xk1, : : : , xkl with ki 2 set(u jC1), and  ( j ) W K ( j ) ! F ( j ) a graded complex morphism
lifting the map S=L j ! S=I j . Then the mapping coneC( ( j )) of  ( j ) yields a free
resolution ofS=I jC1. By iterated mapping cones we obtain step by step a graded free
resolution ofS=I .

Lemma 1.9 ([9]). Supposedegu1 � degu2 � � � � � degum. Then the iterated
mapping coneF , derived from the sequence u1, : : : , um, is a minimal graded free res-
olution of S=I , and for all i > 0 the symbols

f (� I u) with u 2 G(I ), � � set(u), j� j D i � 1

form a homogeneous basis of the S-module Fi . Moreoverdeg(f (� Iu)) D j� jC deg(u).
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Theorem 1.10 ([9]). Let I be a monomial ideal of S with linear quotients, andF� the graded minimal free resolution of S=I . Suppose that the decomposition function
g W M(I ) ! G(I ) is regular. Then the chain map� of F� is given by

�( f (� I u)) D �X
s2� (�1)�(� Is)xs f (� n sI u)CX

s2� (�1)�(� Is) xsu

g(xsu)
f (� n sI g(xsu)),

if � ¤ ;, and

�( f (;I u)) D u

otherwise. Here �(� I s) D jft 2 � j t < sgj.
In our specific context we get the following

Corollary 1.11. Let I D (L(u, v)) � S be a completely lexsegment ideal with lin-
ear quotients with respect to� andF� the graded minimal free resolution of S=I . Then
the chain map ofF� is given by

�( f (� I w)) D �X
s2� (�1)�(� Is)xs f (� n sI w)C X

s2� W
xsw�lexx1v

(�1)�(� Is)x1 f

�� n sI xsw
x1

�

C X
s2� W

xsw<lexx1v
(�1)�(� Is)xmax(w) f

�� n sI xsw
xmax(w)

�
,

if � ¤ ;, and

�( f (;I w)) D w
otherwise. For convenience we set f(� I w) D 0 if � � setw.

EXAMPLE 1.12. Letu D x2
1x2 and v D x3

2 be monomials in the polynomial ring
SD k[x1, x2, x3]. Then

L(u, v) D fx3
2, x1x2

2, x1x2x3, x1x2
3, x2

1x2g.
The ideal I D (L(u, v)) is a completely lexsegment ideal with linear quotients with
respect to this ordering of the generators. We denoteu1 D x3

2, u2 D x1x2
2, u3 D x1x2x3,

u4 D x1x2
3, u5 D x2

1x2. We have set(u1)D ;, set(u2)D f2g, set(u3)D f2g, set(u4)D f2g,
set(u5) D f2, 3g. Let F� be the minimal graded free resolution ofS=I .

Since maxfjset(w)j j w 2 L(u, v)g D 2, we haveFi D 0, for all i � 4.
A basis for theS-module F1 is f f (;I u1), f (;I u2), f (;I u3), f (;I u4), f (;I u5)g.
A basis for theS-module F2 is

f f (f2gI u2), f (f2gI u3), f (f2gI u4), f (f2gI u5), f (f3gI u5)g.
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A basis for theS-module F3 is f f (f2, 3gI u5)g.
We have the minimal graded free resolutionF�:

0! S(�5)
�2�! S(�4)5

�1�! S(�3)5
�0�! S! S=I ! 0

where the maps are

�0( f (;I ui )) D ui , for 1� i � 5,

so

�0 D �
x3

2 x1x2
2 x1x2x3 x1x2

3 x2
1x2

�
.

�1( f (f2gI u2)) D �x2 f (;I u2)C x1 f (;I u1),

�1( f (f2gI u3)) D �x2 f (;I u3)C x3 f (;I u2),

�1( f (f2gI u4)) D �x2 f (;I u4)C x3 f (;I u3),

�1( f (f2gI u5)) D �x2 f (;I u5)C x1 f (;I u2),

�1( f (f3gI u5)) D x3 f (;I u5) � x1 f (;I u3),

so

�1 D
0
BBBBB�

x1 0 0 0 0�x2 x3 0 x1 0
0 �x2 x3 0 �x1

0 0 �x2 0 0
0 0 0 �x2 x3

1
CCCCCA.

�2( f (f2, 3gI u5)) D �x2 f (f3gI u5)C x3 f (f2gI u5)C x1 f (f3gI u2) � x1 f (f2gI u3)

D �x2 f (f3gI u5)C x3 f (f2gI u5) � x1 f (f2gI u3),

since f3g � set(u2), so

�2 D
0
BBBBB�

0�x1

0
x3�x2

1
CCCCCA.

2. Non-completely lexsegment ideals with linear resolutions

Theorem 2.1. Let uD xa1
1 � � � xan

n , v D xb2
2 � � � xbn

n be monomials of degree d in S,
a1 > 0. Suppose that the ideal ID (L(u, v)) is not completely lexsegment ideal. Then
I has a linear resolution if and only if I has linear quotients.
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Proof. We only have to prove that ifI has a linear resolution thenI has linear
quotients for a suitable ordering of its minimal monomial generators. By [1, Theo-
rem 2.4], sinceI has a linear resolution,u and v have the form:

u D x1xalC1

lC1 � � � xan
n , v D xl x

d�1
n , for some l � 2.

Then the idealI D (L(u, v)) can be written as a sum of idealsI D J C K , where J
is the ideal generated by all the monomials ofL(u, v) which are not divisible byx1

and K is generated by all the monomials ofL(u, v) which are divisible byx1. More
precise, we have

J D (fw j xd
2 �lex w �lex vg)

and

K D (fw j u �lex w �lex x1xd�1
n g).

One may see thatJ is generated by the initial lexsegmentLi (v) � k[x2, : : : , xn], and
hence it has linear quotients with respect to lexicographical order>lex. Let G(J) Dfg1 � � � � � gmg, where gi � g j if and only if gi >lex g j . The idealK is isomorphic
to the ideal generated by the final lexsegmentL f (u=x1) of degreed � 1. Since final
lexsegments are stable with respect to the orderxn > � � � > x1 of the variables, it fol-
lows that the idealK has linear quotients with respect to>lex, where bylex we mean
the lexicographical order corresponding toxn > � � � > x1. Let G(K ) D fh1 � � � � � hpg,
where hi � h j if and only if hi >lex h j . We consider the following ordering of the
monomials ofG(I ):

G(I ) D fg1 � � � � � gm � h1 � � � � � hpg.
We claim that, for this ordering of its minimal monomial generators, I has linear quo-
tients. In order to check this, we firstly notice thatI�g W gD J�g W g for everyg 2 G(J).
Since J has linear quotients with respect to� it follows that J�g W g is generated by
variables. Now it is enough to show that, for any generatorh of K , the colon ideal
I�h W h is generated by variables. We note that

I�h W h D J W hC K�h W h.

Since K has linear quotients, we already know thatK�h W h is generated by variables.
Therefore we only need to prove thatJ W h is generated by variables. We will show
that J W h D (x2, : : : , xl ) and this will end our proof. Letm 2 J W h be a monomial. It
follows that mh2 J. Sinceh is a generator ofK , h is of the formh D x1x�lC1

lC1 : : : x�n
n ,

that is h � (x2, : : : , xl ). But this implies thatm must be in the ideal (x2, : : : , xl ). For
the reverse inclusion, let 2� t � l . Then xt h D x1
 for some monomial
 , of degree
d. Replacingh in the equality we get
 D xt x

�lC1

lC1 � � � x�n
n which shows that
 is a

generator ofJ. Hencext h 2 J.
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EXAMPLE 2.2. Let I D (L(u, v)) � k[x1, : : : , x6] with u D x1x2
3x5 and v D x2x3

6.
I is not a completely lexsegment ideal as it follows applying [4, Theorem 2.3], butI
has a linear resolution by [1, Theorem 2.4].I has linear quotients if we order its min-
imal monomial generators as indicated in the proof of the above theorem. On the other
hand, if we order the generators ofI using the order relation defined in the proof of
Theorem 1.2 we can easy see thatI does not have linear quotients. Indeed, following
the definition of the order relation from Theorem 1.2 we should take

G(I ) D fx4
2 � x3

2x3 � � � � � x2x3
6 � x1x2

3x5 � x1x2
3x6 � x1x3x2

4 � � � � � x1x3
6g.

For h D x1x3x2
4 one may easy check thatI�h W h is not generated by variables.

EXAMPLE 2.3. Let u D x1x3x4, v D x2x2
4 be monomials ink[x1, : : : , x4]. The

ideal I D (L(u, v)) � k[x1, : : : , x4] is a non-completely lexsegment ideal, since it does
not verify the condition [4, Theorem 2.3 (b)]. By [1, Theorem2.4], I has a linear
resolution and by the proof of Theorem 2.1,I has linear quotients with respect to the
following ordering of its minimal monomial generators:

x3
2, x2

2x3, x2
2x4, x2x2

3, x2x3x4, x2x2
4, x1x2

4, x1x3x4.

We note that set(x1x2
4) D f2g and set(g(x1x2x2

4)) D set(x2x2
4) D f2, 3g � set(x1x2

4), so
the decomposition function is not regular for this orderingof the generators.

3. Cohen–Macaulay lexsegment ideals

In this section we study the dimension and the depth of arbitrary lexsegment ideals.
These results are applied to describe the lexsegments ideals which are Cohen–Macaulay.
We begin with the study of the dimension. As in the previous sections, letd � 2 be an
integer. We denotem D (x1, : : : , xn). It is clear that ifI D (L(u, v)) � S is a lexsegment
ideal of degreed then dim(S=I ) D 0 if and only if I D m

d.

Proposition 3.1. Let uD xa1
1 � � �xan

n , v D x
bq
q � � �xbn

n , 1� q � n, a1,bq > 0, be two
monomials of degree d such that u�lex v and let I be the lexsegment ideal generated
by L(u, v). We assume that I¤ m

d. Then

dim(S=I ) D �
n� q, if 1� q < n,
1, if q D n.

Proof. Forq D 1, we haveI � (x1). Obviously (x1) is a minimal prime ofI and
dim(S=I ) D n� 1.

Let q D n, that is v D xd
n and L(u, v) D L f (u). We may write the idealI as a

sum of two ideals,I D JCK , where J D (x1L(u=x1, xd�1
n )) and K D (L(xd

2 , xd
n )). Let

p� I be a monomial prime ideal. Ifx1 2 p, then J � p. Since p also containsK , we
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have p� (x2, : : : , xn). HencepD (x1, x2, : : : , xn). If x1 � p, we obtain (x2, : : : , xn) � p.
Hence, the only minimal prime ideal ofI is (x2, : : : , xn). Therefore, dim(S=I ) D 1.

Now we consider 1< q < n and write I as before, I D J C K , where J D
(x1L(u=x1, xd�1

n )) and K D (L(xd
2 , v)).

Firstly we consideru D xd
1 . Let p � I be a monomial prime ideal. Thenp 3 x1

and, sincep � K , we also havep � (x2, : : : , xq). Hence (x1, : : : , xq) � p. Since
I � (x1, : : : , xq), it follows that (x1, : : : , xq) is the only minimal prime ideal ofI .
Therefore dim(S=I ) D n� q.

Secondly, leta1 > 1 andu¤ xd
1 . The lexsegmentL(u=x1, xd�1

n ) contains the lexseg-
mentL(xd�1

2 , xd�1
n ). Let p be a monomial prime ideal which containsI and such that

x1 � p. Then p� L(xd�1
2 , xd�1

n ) which implies that (x2, : : : , xn) � p. Obviously we also
have I � (x2, : : : , xn), hence (x2, : : : , xn) is a minimal prime ideal ofI .

Let p � I be a monomial prime ideal which containsx1. Since p � K , we also
have (x2, : : : , xq) � p. This shows that (x1, : : : , xq) is a minimal prime ideal ofI . In
conclusion, fora1 > 1, the minimal prime ideals ofI are (x1, : : : , xq) and (x2, : : : , xn).
Sinceq � n� 1, we get ht(I ) D q and dim(S=I ) D n� q.

Finally, let a1 D 1, that is u D x1xal
l � � � xan

n , for someal > 0, l � 2. As in the
previous case, we obtain (x1, : : : , xq) a minimal prime ideal ofI . Now we look for
those minimal prime ideals ofI which do not containx1.

If al D d � 1, the idealJ D (x1L(u=x1, xd�1
n )) becomesJ D (x1L(xd�1

l , xd�1
n )). If

p� I is a monomial prime ideal such thatx1 � p, we get (xl , : : : , xn) � p, and, sincep
containsK , we obtain (x2,:::, xq)� p. This shows that ifq < l then (x2,:::, xq, xl ,:::, xn)
is a minimal prime ideal ofI of heightqC n� l � q, and if q � l , then (x2, : : : , xn) is
a minimal prime ideal of heightn � 1 � q. In both cases we may draw the conclusion
that ht(I ) D q and, consequently, dim(S=I ) D n� q.

The last case we have to consider isal < d � 1. Then l < n and, with similar
arguments as above, we obtain dim(S=I ) D n� q.

In order to study the depth of arbitrary lexsegment ideals, we note that one can
restrict to those lexsegments defined by monomials of the form u D xa1

1 � � � xan
n , v D

xb1
1 � � � xbn

n of degreed with a1 > 0 andb1 D 0.
Indeed, ifa1 D b1, then I D (L(u, v)) is isomorphic, as anS-module, to the ideal

generated by the lexsegmentL(u=xa1
1 , v=xb1

1 ) of degreed � a1. This lexsegment may
be studied in the polynomial ring in a smaller number of variables.

If a1 > b1, then I D (L(u, v)) is isomorphic, as anS-module, to the ideal gen-
erated by the lexsegmentL(u0, v0), where u0 D u=xb1

1 has �1(u0) D a1 � b1 > 0 andv0 D v=xb1
1 has�1(v0) D 0.

Taking into account these remarks, from now on, we consider lexsegment ideals

of endsu D xa1
1 � � � xan

n , v D x
bq
q � � � xbn

n , for someq � 2, a1, bq > 0.
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The first step in the depth’s study is the next

Proposition 3.2. Let I D (L(u, v)), where uD xa1
1 � � � xan

n , v D x
bq
q � � � xbn

n , q � 2,
a1, bq > 0. Thendepth(S=I ) D 0 if and only if xnu=x1 �lex v.

Proof. Let xnu=x1 �lex v. We claim that (I W (u=x1)) D (x1, : : : , xn). Indeed, for
1 � j � n, the inequalitiesu �lex x j u=x1 �lex xnu=x1 �lex v hold. They show that
x j u=x1 2 I for 1� j � n. Therefore (x1, : : : , xn) � (I W (u=x1)). The other inclusion is
obvious. We conclude that (x1, : : : , xn) 2 Ass(S=I ), hence depth(S=I ) D 0.

For the converse, let us assume, by contradiction, thatxnu=x1 <lex v. We will
show that x1 � xn is regular onS=I . This will imply that depth(S=I ) > 0, which
contradicts our hypothesis. We firstly notice that, from theabove inequality, we have
a1�1D 0, that isa1 D 1. Therefore,u is of the formu D x1xal

l � � � xan
n , l � 2, al > 0.

Moreover, we havel � q.
Let us suppose thatx1 � xn is not regular onS=I , that is there exists at least a

polynomial f � I such that f (x1 � xn) 2 I . One may assume that all monomials of
supp(f ) do not belong toI . Let us choose such a polynomialf D c1w1C � � � C ctwt ,
ci 2 k, 1� i � t , with w1 >lex w2 >lex � � � >lex wt , wi � I , 1� i � t .

Then inlex((x1 � xn) f ) D x1w1 2 I . It follows that there exists� 2 G(I ) such that

(3.1) x1w1 D � � �0
for some monomial�0. We havex1 ­ �0 since, otherwise,w1 2 I , which is false.
Hence� is a minimal generator ofI which is divisible byx1, that is� is of the form� D x1
 , for some monomial
 such thatxd�1

n �lex 
 �lex u=x1. Looking at (3.1), we
get w1 D 
�0. This equality shows thatx1 ­ w1. We claim that the monomialxnw1

does not cancel in the expansion off (x1 � xn). Indeed, it is clear thatxnw1 cannot
cancel by some monomialxnwi , i � 2. But it also cannot cancel by some monomial
of the form x1wi sincexnw1 is not divisible byx1. Now we may draw the conclusion
that there exists a monomialw � I such thatw(x1 � xn) 2 I , that iswx1, wxn 2 I .

Let w � I be a monomial such thatwx1, wxn 2 I , let �, � 2 L(u, v) and �0, � 0
monomials such that

(3.2) x1w D � � �0
and

xnw D � � � 0.(3.3)

As before, we getx1 ­ w, hence� must be a minimal generator ofI such thatxd
2 �lex� �lex v. By using (3.3), we can see thatxn does not divide� 0, hencexn j �. It follows thatw is divisible by�=xn. w is also divisible by�=x1. Therefore,ÆD lcm(�=x1,�=xn) jw. If

degÆ � d there exists a variablex j , with j � 2, such that (x j�=xn) j Æ, thus (x j�=xn) jw.
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It is obvious thatxd
2 �lex x j�=xn �lex � �lex v, hencex j�=xn is a minimal generator of

I which dividesw, contradiction. This implies thatÆ has the degreed � 1. This yields�=x1 D �=xn. Then� D xn�=x1 �lex xnu=x1 <lex v, contradiction.

Next we are going to characterize the lexsegment idealsI such that depthS=I > 0,
that is xnu=x1 <lex v, which implies thatu has the formu D x1xal

l � � � xan
n , for some

l � 2, al > 0 and l > q, or l D q and aq � bq. We denoteu0 D u=x1 D xal
l � � � xan

n .
Then we havexnu0 <lex v. From the proof of Proposition 3.2 we know thatx1 � xn is
regular onS=I . Therefore

depth(S=I ) D depth(S0=I 0)C 1,

where S0 D k[x2, : : : , xn] and I 0 is the ideal ofS0 whose minimal monomial generating
set is G(I 0) D xnL(u0, xd�1

n ) [ Li (v).

Lemma 3.3. In the above notations and hypotheses on the lexsegment ideal I ,
the following statements hold:
(a) If v D xd

2 and l � 4, then depth(S0=I 0) D l � 3.
(b) If v D xd�1

2 x j for some3� j � n� 2 and l� j C 2 then depth(S0=I 0) D l � j � 1.
(c) depth(S0=I 0) D 0 in all the other cases.

Proof. (a) Letv D xd
2 and l � 4. The idealI 0 � S0 is minimally generated by all

the monomialsxn
 , wherexd�1
n �lex 
 �lex u0, deg(
 ) D d � 1, and by the monomial

xd
2 . Then it is clear thatfx3, : : : , xl�1g is a regular sequence onS0=I 0, hence

depthS0=I 0 D depth
S0=I 0

(x3, : : : , xl�1)S0=I 0 C l � 3.

We have

S0=I 0
(x3, : : : , xl�1)S0=I 0 � k[x2, xl , : : : , xn]

I 0 \ k[x2, xl , : : : , xn]
.

In this way we may reduce the computation of depth(S0=I 0) to the case (c).
(b) Let v D xd�1

2 x j , for some 3� j � n�2 andl � j C2. HenceI 0 is minimally
generated by the following set of monomials

fxn
 j 
 monomial of degreed � 1 such thatxd�1
n �lex 
 �lex u0g

[ fxd
2 , xd�1

2 x3, : : : , xd�1
2 x j g.
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Then fx jC1, : : : , xl�1g is a regular sequence onS0=I 0 and

depthS0=I 0 D depth
S0=I 0

(x jC1, : : : , xl�1)S0=I 0 C (l � j � 1).

Since

S0=I 0
(x jC1, : : : , xl�1)S0=I 0 � k[x2, : : : , x j , xl , : : : , xn]

I 0 \ k[x2, : : : , x j , xl , : : : , xn]
,

we may reduce the computation of depth(S0=I 0) to the case (c).
(c) In each of the cases that it remains to treat, we will show that (x2, : : : , xn) 2

Ass(S0=I 0), that is there exists a monomialw � I 0 such thatI 0 W w D (x2, : : : , xn). This
implies that depth(S0=I 0) D 0.

SUBCASE C1: v D xd
2 , l D 2. Thenw D xd�1

n � I 0 and xd�1
n �lex x jw=xn D

x j xd�2
n �lex x2xd�2

n �lex xal
l � � � xan

n D u0, for all 2� j � n. Hence
 D x jw=xn has the
property thatxn
 2 G(I 0). Therefore,x j 2 I 0 W w for all 2 � j � n. It follows that
I 0 W w D (x2, : : : , xn).

SUBCASE C2: v D xd
2 , l D 3. Thenw D xd�1

2 xd�1
n � I 0. Indeed, xd

2 ­ w and if
we assume that there existsxd�1

n �lex 
 �lex u0, deg
 D d � 1, such thatxn
 j w, we
obtain xn
 j xd�1

n which is impossible.
We show thatx jw 2 I 0 for all 2 � j � n. Indeed, x2w D xd

2 xd�1
n 2 I 0. Let 3�

j � n. Then xd�1
n �lex x j xd�2

n �lex x3xd�2
n �lex u0. It follows that 
 D x j xd�2

n has
the property thatxn
 D x j xd�1

n 2 G(I 0). Since xn
 j x jw, we havex jw 2 I 0. This
arguments shows thatI 0 W w D (x2, : : : , xn).

SUBCASE C3: v D xd�1
2 x j for some 3� j � n � 1 and 2� l � j C 1. Let us

consider again the monomialw D xd�1
2 xd�1

n . It is clear thatxtw 2 I for all 2� t � j .
Let t � j C 1. Thenxtw is divisible by xt xd�1

n . Sincext xd�2
n satisfies the inequalities

xd�1
n �lex xt xd�2

n �lex u0, we havext xd�1
n 2 G(I 0). It follows that xtw 2 I 0 for t � j C1.

Assume thatw 2 I 0. Sincexd�1
2 xt ­ w for 2� t � j , we should havexn
 j w for some
 of degreed � 1 such thatxd�1

n �lex 
 �lex u0. Since
 j xd�1
2 xd�2

n and 
 �lex u0, we
get l D 2 and a2 D �2(u0) � �2(
 ). Let 
 D xa

2 xd�1�a
n , for somea � 1. In this case

we change the monomialw. Namely, we consider the monomialw0 D x2xd�2
n which

does not belong toG(I 0) since it has degreed � 1.
If a2� 2, for any j such that 2� j � n, we havexd�1

n <lex x jw0=xn D x2x j xd�3
n <lex

xal
l � � � xan

n D u0. This shows thatx jw0 2 I 0 for 2� j � n and hence,I 0 WwD (x2, : : : , xn).
If a2 D 1, we takew00 D xd�1

n � I 0. For all j such that 2� j � n, we have
xd�1

n �lex x jw00=xn D x j xd�2
n �lex x2xd�2

n �lex u0. Thereforex jw00 2 I 0 for 2 � j � n,
henceI 0 W w00 D (x2, : : : , xn). In conclusion we have proved that in every case one may
find a monomialw � I 0 such thatI 0 W w D (x2, : : : , xn).

SUBCASE C4: Finally, let v �lex xd�1
2 xn. In this case, the idealI 0 W xd�1

2 obviously
contains (x2, : : : , xn). Since the other inclusion is trivial, we getI 0 W xd�1

2 D (x2, : : : , xn).
It is clear thatxd�1

2 � I 0.
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By using Lemma 3.3 we get:

Proposition 3.4. Let I D (L(u, v)) be a lexsegment ideal defined by the mono-

mials uD x1xal
l � � � xan

n , v D x
bq
q � � � xbn

n where al , bq > 0, l , q � 2 and xnu=x1 <lex v.
Then the following statements hold:
(a) If v D xd

2 and l � 4 then depth(S=I ) D l � 2;
(b) If v D xd�1

2 x j for some3� j � n� 2 and l � j C 2 then depth(S=I ) D l � j ;
(c) depth(S=I ) D 1 in all the other cases.

Proof. Sincex1 � xn is regular onS=I if xnu=x1 <lex v, we have depth(S=I ) D
depth(S0=I 0)C 1. The conclusion follows applying Lemma 3.3.

As a consequence of the results of this section we may characterize the Cohen–
Macaulay lexsegment ideals.

In the first place, we note that the only Cohen–Macaulay lexsegment ideal such
that dim(S=I ) D 0 is I D m

d. Therefore it remains to consider Cohen–Macaulay ideals
I with dim(S=I ) � 1.

Theorem 3.5. Let n� 3 be an integer, let uD xa1
1 � � � xan

n , v D xb1
1 � � � xbn

n , with
a1 > b1 � 0, monomials of degree d, and I D (L(u, v)) � S the lexsegment ideal de-
fined by u andv. We assume thatdim(S=I ) � 1. Then I is Cohen–Macaulay if and
only if one of the following conditions is fulfilled:
(a) u D x1xd�1

n and v D xd
2 ;

(b) v D xa
n�1xd�a

n for some a> 0 and xnu=x1 <lex v.

Proof. Let u, v be as in (a). Then dim(S=I ) D n � 2, by Proposition 3.1 and
depth(S=I ) D n� 2 by using (a) in Proposition 3.4 forn � 4 and (c) forn D 3.

Let u, v as in (b). Then dim(S=I ) D 1 by Proposition 3.1. By using Proposi-
tion 3.4 (c), we obtain depth(S=I ) D 1, henceS=I is Cohen–Macaulay.

For the converse, in the first place, let us takeI to be Cohen–Macaulay of dim(S=I )D
1. By Proposition 3.1 we haveq D n or q D n�1. If q D n, thenv D xd

n andxnu=x1 �lexv. By Proposition 3.2, depth(S=I ) D 0, so I is not Cohen–Macaulay.
Let q D n � 1, that isv D xa

n�1xd�a
n for somea > 0. By Proposition 3.2, since

depth(S=I ) > 0, we must havexnu=x1 <lex v, thus we get (b).
Finally, let dim(S=I ) � 2, that isq � n � 2. By using Proposition 3.4, we obtain

q D 2. Therefore dim(S=I ) D depth(S=I ) D n � 2. Using again Proposition 3.4 (a),
(b), it follows that u D x1xd�1

n and v D xd
2 .
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