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A NONLOCAL PARABOLIC PROBLEM ARISING
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Abstract
We study a nonlocal parabolic problem modeling the temperature in a thin region

during linear friction welding for a hard material. We derive the structures of steady
states of this nonlocal problem and its associated approximated problems. Moreover,
some remarks on the parabolic problem are given.

1. Introduction

In this paper, we study the following initial boundary valueproblem:

ut D uxx � u�p�R1
0 u�p(x, t) dx

�1C1=p , 0< x <1, t > 0,(1.1)

ux(0, t) D 0, ux(1, t) D 1, t > 0,(1.2)

u(x, 0)D u0(x), x � 0,(1.3)

where the parameterp > 1 and u0 is a positive smooth function defined on [0,1).
This model arises in the study of linear friction welding fora hard material (cf. [8]
and its references). In particular, in the real model the parameterp is close to 4.

To study this problem, in [8] they proposed to study the following approximated
problem in bounded intervals:

ut D uxx �
�Z R

0
u�p(x, t) dx

��1�1=p

u�p, 0< x < R, t > 0,(1.4)

ux(0, t) D 0, u(R, t) D R, t > 0,(1.5)

u(x, 0)D u0(x), 0� x � R,(1.6)
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where R is any positive constant. It is convenient to introduce the following transfor-
mation:

(1.7) x D Ry, t D R2s, u(x, t) D Rv(y, s).

Then (1.4)–(1.6) is reduced to the following problem:

vs D vyy � �
�Z 1

0
v�p(y, s) dy

��1�1=pv�p, 0< y < 1, s> 0,(1.8)

vy(0, s) D 0, v(1, s) D 1, s> 0,(1.9)

v(y, 0)D v0(y) WD u0(Ry)

R
, 0� y � 1,(1.10)

where� D �(R) WD R1�1=p.
It is well-known that the structure of steady states plays animportant role in the

study of parabolic problem. Therefore, the aim of this paperis to study the structure
of steady states of (1.8)–(1.10) with� > 0 as a free parameter. Moreover, we also
study the structure of steady states of (1.1)–(1.3).

In Section 2, we first derive the structure of steady states of(1.8)–(1.10), by using
a method motivated by the works [3, 2]. We show that the problem (1.8)–(1.10) has a
unique steady state for each� > 0. This is quite surprising in comparing with the local
problem [9] and a similar nonlocal problem [5]. For some related works on nonlocal
parabolic problems, we also refer the reader to [1, 4, 5, 6, 7,8].

Then we prove in Section 3 that a unique steady state for the problem (1.1)–(1.3)
exists for anyp> 1. Also, no steady states exist ifp 2 (0, 1]. Indeed, by (1.2), when
p 2 (0, 1] the equation (1.1) is reduced to the heat equation. Therefore, this case is not
physically relevant. Finally, some remarks on the global (in time) existence of solution
for (1.4)–(1.6) and some open problems are given in Section 4.

2. Steady states in finite interval

In this section, we shall study the structure of steady states of the approximated prob-
lem (1.4)–(1.6) in a finite interval. By the transformation (1.7), the problem (1.4)–(1.6) is
reduced to the problem (1.8)–(1.10) with� D �(R) D R1�1=p for R> 0. In this section,
we always assume thatp > 1. With � as a free parameter, the associated steady state of
(1.8)–(1.10) is a solution of

w00 D ��Z 1

0
w�p(y) dy

��1�1=pw�p, 0< y < 1,(2.1)

w0(0)D 0, w(1)D 1.(2.2)
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It is easy to see that any solution of (2.1)–(2.2) must be a solution of

W00 D �W�p, 0< y < 1,(2.3)

W0(0)D 0, W(1)D 1,(2.4)

for a certain positive constant� . The problem (2.3)–(2.4) has been analyzed by Levine
[9]. It is shown that there exists a positive constant� � such that the problem (2.3)–(2.4)
has exactly two solutions when� 2 (0, � �); has exactly one solution when� D � �;
and has no solutions when� > � �. It is nature to expect that the structure of solutions
of (2.1)–(2.2) is similar to that of (2.3)–(2.4). It turns out that this is not the case as
shown below.

For the structure of solutions of (2.1)–(2.2), we shall modify a method used in
[2, 3]. Let w be a solution of (2.1)–(2.2). Thenw0 > 0 in (0, 1] and the minimum� WD w(0) 2 (0, 1). Multiplying (2.1) byw0 and integrating it over [0,y], usingw0 > 0
we deduce that

(2.5)
w0(y)p�1�p � w1�p(y)

D
s

2�
p� 1

Y�(1C1=p)=2.

Then, by integrating (2.5) overy 2 [0, 1], we end up with

G(�) D
s

2�
p� 1

Y�(1C1=p)=2,(2.6)

where

Y WD Z 1

0
w�p(y) dy,(2.7)

G(�) WD Z 1

�
dsp

F(�) � F(s)
, F(s) WD s1�p.(2.8)

In order to eliminateY in (2.6), we introduce the following transformation:

z WD
R y

0 w�p(s) ds

Y
, 0� y � 1, h(z) WD w
 (y), 
 WD 1� p < 0.

Note thaty 2 [0, 1] if and only if z 2 [0, 1] and h satisfies the equation

(2.9) h00(z) D ��(p� 1)Y1�1=p, z 2 [0, 1].

Moreover, we have

h0(0)D 0, h(1)D 1, h0(z) < 0 for z 2 (0, 1]
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and � WD h(0)D �
 2 (1,1) is the maximum ofh. As before, we deduce from (2.9)
the following relation

(2.10) H (�) WD Z �
1

dhp� � h
D p

2�(p� 1)Y(1�1=p)=2.

Note that H (�) D 2(� � 1)1=2 for � > 1. Hence by (2.10) we obtain

(2.11) Y1�1=p D 2(� � 1)�(p� 1)
.

Plugging (2.11) into (2.6), we end up with the following relation between the param-
eters� and� D w(0):

(2.12) � D �
2

p� 1

�1=p

G(�)(p�1)=p(�
 � 1)(pC1)=(2p) WD �
2

p� 1

�1=p

K (�)(p�1)=p.

By the transformation

a2 WD 1� � s�
�1�p

, � D �(�) WD p
1� �p�1,

we compute from (2.8) that

(2.13) G(�) D 2

p� 1
�(pC1)=2 Z �

0
(1� a2)�p=(p�1) da.

It is trivial that G(1�) D 0 and soK (1�) D 0. From (2.12) and (2.13), we obtain

(2.14) K (�) D 2

p� 1
(1� �p�1)(pC1)=[2(p�1)]L(�),

where

L(�) WD Z �
0

(1� a2)�p=(p�1) da, � D p
1� �p�1.

We compute

L 0(�) D � p� 1

2
��2(1� �p�1)�1=2 < 0.
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Therefore,K 0(�) < 0 for all � 2 (0, 1). For� > 0 close to zero, we have

L(�) � Z �
1=2(1� a2)�p=(p�1) da

� Z �
1=2 a(1� a2)�p=(p�1) da

D p� 1

2

���1 � �3

4

��1=(p�1)�
.

HenceL(�) !1 as�! 0C.
Since the above procedure in obtaining the relations between w, � and � is re-

versible, we thus have proved the following theorem.

Theorem 1. Given p> 1 fixed. The problem(2.1)–(2.2) has a unique solution
for each� > 0.

3. Steady states in half line

In this section, we study the positive steady states of (1.1)–(1.3), i.e., positive so-
lutions of the following boundary value problem:

U 00 D U�p�R1
0 U�p dx

�1C1=p
, 0< x <1,(3.1)

U 0(0)D 0, U 0(1) D 1,(3.2)

where p is a positive constant. To study this problem, we first study the related bound-
ary value problem:

w00 D �w�p, 0< x <1,(3.3)

w0(0)D 0, w0(1) D 1,(3.4)

where� is any positive constant. Note thatw0 > 0 in (0,1) andw(x)!1 as x !1
for any positive solutionw of (3.3)–(3.4).

Multiplying the equation (3.3) byw0, by an integration we obtain that

[w0(x)]2

2
D �

1� p
[w1�p(x) � w1�p(0)] for p ¤ 1,(3.5)

[w0(x)]2

2
D �[ln w(x) � lnw(0)] for p D 1(3.6)

for all x > 0 for any positive solutionw of (3.3)–(3.4).
If p 2 (0, 1), then, by lettingx ! 1 in (3.5), we obtain a contradiction. This

implies that (3.3)–(3.4) has no positive solutions for any� > 0, if p 2 (0, 1). Similarly,
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using (3.6) we can show that (3.3)–(3.4) has no positive solutions for any� > 0, if
p D 1.

For p > 1, set� WD w(0). Then, by lettingx !1 in (3.5), we have the identity

(3.7) � D p� 1

2
�p�1.

This implies that there exists at most one solution of the problem (3.3)–(3.4) for a
given � > 0. This unique solution is the solution of the initial value problem:

(3.8) w00 D �w�p, x > 0, w0(0)D 0, w(0)D �,

where� D �(�) is defined by (3.7). We shall denote this solution byw� for a given�. Indeed, it is easily check thatw�(x) D �w1(x=�). In particular,w1 is the solution
of the initial value problem

(3.9) w00 D p� 1

2
w�p, x > 0, w0(0)D 0, w(0)D 1.

Next, we show that the (local) solutionw1 of (3.9) exists globally in [0,1). In-
deed, ifw1 is not global, then there isR<1 such thatw1(R�) D1. It follows thatw00

1(R�) D 0. Note thatw00
1 > 0 in [0, R). Then

w0
1(x) D Z x

0
w00

1(y) dy� R max
z2[0,R)

w00
1(z) <1

for all x 2 [0, R). This implies thatw0
1(x) is bounded in [0,R), a contradiction. There-

fore, we conclude thatw1 exists globally in [0,1). Notice thatw0
1(1) D 1.

We thus have proved the following proposition.

Proposition 3.1. Let p> 1. For any given� > 0, there exists a unique positive
solution of the boundary value problem(3.3)–(3.4). This unique solution is given byw� which is the solution of the initial value problem(3.8) with � satisfying the rela-
tion (3.7).

Now, we return to the problem (3.1)–(3.2). SinceU 0(1) D 1 for a positive solution
U of (3.1)–(3.2), we see thatU (x) � x as x !1. Hence the integral

R1
0 U�p(x) dx

is finite. This implies thatU D w� for some positive� satisfying

(3.10)
p� 1

2
�p�1

�Z 1
0

w�p� (x) dx

�1C1=p D 1.

We compute that Z 1
0

w�p� (x) dx D ��p
Z 1

0
w�p

1

�
x�
�

dx

D �1�p
Z 1

0
w�p

1 (y) dy.
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It follows from (3.10) that� satisfies

(3.11)
p� 1

2
��1C1=p

�Z 1
0

w�p
1 (y) dy

�1C1=p D 1.

The relation (3.11) defines� uniquely. Hence we have the following existence and
uniqueness theorem.

Theorem 2. For any p> 1, there exists a unique positive solution of the bound-
ary value problem(3.1)–(3.2).

For p 2 (0, 1], we have Z 1
0

U�p(x) dx D1
for any solutionU of (3.1)–(3.2). Hence a classical solutionU of (3.1)–(3.2) exists
only if U 00 � 0 in [0,1). This is impossible, sinceU 0(0)D 0 andU 0(1) D 1. There-
fore, we conclude that there is no solution of (3.1)–(3.2), if p 2 (0, 1].

4. Remarks and discussions

We recall from [9] that the solution of

Vs D Vyy � �V�p, 0< y < 1, s> 0,(4.1)

Vy(0, s) D 0, V(1, s) D 1, s> 0,(4.2)

V(y, 0)D v0(y), 0� y � 1,(4.3)

with W�� (y) � v0(y) � 1 for y 2 [0, 1] and� 2 (0, � �), exists globally in time, where
W�� is the minimal solution of (2.3)–(2.4).

Now we suppose thatv is a solution of (1.8)–(1.10) withv0 2 (0, 1]. Then we have

g(sI v) WD �Z 1

0
v�p(y, s) dy

��1�1=p 2 (0, 1)

as long asv exists. LetV be the solution of (4.1)–(4.3) with� D �. It follows from
the comparison principle thatv � V as long asv exists. Therefore, we conclude that

Theorem 3. Suppose that� 2 (0, � �). If W�� (y) < v0(y) � 1 for y 2 [0, 1], then
the solutionv of (1.8)–(1.10) exists globally in time.

Hence, whenR is small enough andW�� (x=R) < u0(x)=R� 1 for x 2 [0, R], the
solution of (1.4)–(1.6) exists globally in time.
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We also recall from [9] that the solutionV of (4.1)–(4.3) tends to the maximal
solution WC� of (2.3)–(2.4) ast ! 1, if v0 > W�� . It should be very interesting to
see if such result also holds for the nonlocal problem (1.4)–(1.6). In [8], numerical
simulations indicate that, forp > 1, the solutionu of (1.1)–(1.3) exists globally and
tends to the unique steady state ast ! 1. It is also very interesting to see, under
certain condition, whether the solution of (1.1)–(1.3) exists globally and converges to
the unique steady state ast !1. We leave these two questions for the future study.
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