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A NONLOCAL PARABOLIC PROBLEM ARISING
IN LINEAR FRICTION WELDING
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Abstract
We study a nonlocal parabolic problem modeling the tempegan a thin region
during linear friction welding for a hard material. We derithe structures of steady
states of this nonlocal problem and its associated appwaieithproblems. Moreover,
some remarks on the parabolic problem are given.

1. Introduction

In this paper, we study the following initial boundary valpsblem:

uP
(1.1 Ut = Uyy — (fooo D) dx)lH/p’ O<Xx<oo, t>0,
1.2) Ux(0,1) =0, ux(oo,t)=1, t=>0,
(2.3) u(x, 0) = up(x), x>0,

where the parametep > 1 andug is a positive smooth function defined on ).
This model arises in the study of linear friction welding farhard material (cf. [8]
and its references). In particular, in the real model theupaterp is close to 4.

To study this problem, in [8] they proposed to study the fwelly approximated
problem in bounded intervals:

R -1-1/p
(1.4) Ug = Uyy — (/ uP(x, t) dx) uP O0<x<R t>0,
0
(1.5) ux(0,t) =0, u(Rt)=R, t>0,
(1.6) u(x, 0) = ug(x), 0<x <R,

2000 Mathematics Subject Classification. Primary 34K05, 3%ASecondary 34K60, 34E05.
This work was partially supported by the National Sciencen@i of the Republic of China under
the grant NSC 96-2115-M-003-004.



34 Y.-J.L. Guo

where R is any positive constant. It is convenient to introduce tbkofing transfor-
mation:

(1.7) X =Ry, t=R?%, u(x, t)=Ru(y,Ss).

Then (1.4)—(1.6) is reduced to the following problem:

1 ~1-1/p
(1.8) Vs = vyy—k</ v P(y, s) dy) v P, 0<y<1, s>0,
0
(1.9 vy(0,8) =0, v(l,s)=1, s>0,
Uo(RY)

(1.10) v(y, 0) = vo(y) := 0<y=1,

R
wherex = A(R) := RVYP,

It is well-known that the structure of steady states playsmportant role in the
study of parabolic problem. Therefore, the aim of this papeto study the structure
of steady states of (1.8)—(1.10) with > 0 as a free parameter. Moreover, we also
study the structure of steady states of (1.1)—(1.3).

In Section 2, we first derive the structure of steady stated &)—(1.10), by using
a method motivated by the works [3, 2]. We show that the prob{#.8)—(1.10) has a
unique steady state for ea¢h> 0. This is quite surprising in comparing with the local
problem [9] and a similar nonlocal problem [5]. For some tesflaworks on nonlocal
parabolic problems, we also refer the reader to [1, 4, 5, 8].7,

Then we prove in Section 3 that a unique steady state for thielgm (1.1)—(1.3)
exists for anyp > 1. Also, no steady states existjife (0, 1]. Indeed, by (1.2), when
p € (0, 1] the equation (1.1) is reduced to the heat equationreftuee, this case is not
physically relevant. Finally, some remarks on the globaltine) existence of solution
for (1.4)—(1.6) and some open problems are given in Section 4

2. Steady states in finite interval

In this section, we shall study the structure of steady staft¢he approximated prob-
lem (1.4)—(1.6) in a finite interval. By the transformatidn?), the problem (1.4)—(1.6) is
reduced to the problem (1.8)—(1.10) with= A(R) = R*Y/P for R > 0. In this section,
we always assume that > 1. With 1 as a free parameter, the associated steady state of
(1.8)—(1.10) is a solution of

1 ~1-1/p
(2.1) w’ = A(/ w™P(y) dy) wP O0<y<l,
0

(2.2) w(©) =0, w(l)=1.
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It is easy to see that any solution of (2.1)—(2.2) must be atisol of

(2.3) W =oW™ 0<y<l,
(2.4) W(0)=0 W) =1,

for a certain positive constamt. The problem (2.3)—(2.4) has been analyzed by Levine
[9]. It is shown that there exists a positive constafitsuch that the problem (2.3)—(2.4)
has exactly two solutions whes € (0, o*); has exactly one solution whet = o*;
and has no solutions when> o*. It is nature to expect that the structure of solutions
of (2.1)—(2.2) is similar to that of (2.3)—(2.4). It turnstathat this is not the case as
shown below.

For the structure of solutions of (2.1)—(2.2), we shall nfipdi method used in
[2, 3]. Let w be a solution of (2.1)—(2.2). Thew’ > 0 in (0, 1] and the minimum
wu :=w(0) € (0, 1). Multiplying (2.1) byw’ and integrating it over [Oy], usingw’ > 0
we deduce that

(25) v [ 2 e,
VulP—wir(y) Y p-1

Then, by integrating (2.5) ovey € [0, 1], we end up with

2\
2. = [ == y-@+1/p)2
(2.6) 60 = |57 ,

where
1
) = “P(y)dy,
2.7) o R LY
_ ! ds e lop
(2.8) G(M)._/M TF—Fg FO=s"

In order to eliminateY in (2.6), we introduce the following transformation:

Jg wP(s)ds
zi=2—V——, 0=y=l h@:=w'(y) y:i=1-p<0

Note thaty € [0, 1] if and only if z € [0, 1] and h satisfies the equation
(2.9) h'(2) = —A(p—1)Y¥YP  ze]0, 1].

Moreover, we have

h(©)=0, h(l)=1, h(z)<0 for ze(0,1]
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andv := h(0) = u” € (1, 0c0) is the maximum ofh. As before, we deduce from (2.9)
the following relation

Y dh
2.10 HO) := — /2o = DY VUn2,
(2.10) )= [ = = V201
Note thatH(v) = 2(v — 1)/2 for v > 1. Hence by (2.10) we obtain
_ 2v-1)
2.11 yi-yp - 2%~/
N Mp—1)

Plugging (2.11) into (2.6), we end up with the following téd@ between the param-
etersi and u = w(0):

1p p
(2.12) 1= [%} G(p)P~Y/P(yr — 1)(PHD/EP) .= [%] K (u)(P~1/P,

By the transformation
s\1P
a?:=1- (—) .0 =0(u) = y1—purt,
"
we compute from (2.8) that

0
(2.13) G(u) = ﬁﬂ(pﬂ)ﬂ/ (1—a?)~P(r-Dgga
- 0

It is trivial that G(17) = 0 and soK(17) = 0. From (2.12) and (2.13), we obtain
(2.14) () = =5 (L= e P 0 DL ),
where
L(n) = /09(1—a2)‘p/(p‘1)da, 0 =1—prt,
We compute

/ -1 — —1\—
L) = ~Po =L - uP 2 < 0.
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Therefore,K’'(1) < 0 for all © € (0, 1). Foru > 0 close to zero, we have
[4
L= [ (@-ay PP Vda
1/2

[4
z/ a(l—a%) P(P-Yda
1/2

p—1 . 3 -1/(p-1)
)™

Hencel(u) — oo asu — 0T,
Since the above procedure in obtaining the relations betweei and i is re-
versible, we thus have proved the following theorem.

Theorem 1. Given p> 1 fixed The problem(2.1}{2.2) has a unique solution
for eachA > 0.

3. Steady states in half line

In this section, we study the positive steady states of {{11}3), i.e., positive so-
lutions of the following boundary value problem:

4 Uip
(3.1) U’ = (U v @)™ 0< X < 00,
0
(3.2) U'(0)=0, U'(c0)=1,

where p is a positive constant. To study this problem, we first stddy related bound-
ary value problem:

(3.3) w’ =xw P, 0<X< oo,

(3.4) w'(0) =0, w'(o0) =1,

whereA is any positive constant. Note that > 0 in (0,00) and w(X) — co asX — oo
for any positive solutionw of (3.3)—(3.4).
Multiplying the equation (3.3) byw’, by an integration we obtain that

[w)? _ 2
=

(3.5 1= IO[wl*p(X) —whPO)] for p#1,

(3.6) = Alln w(x) —Inw()] for p=1

[w'(x)]?
2
for all x > 0 for any positive solutiorw of (3.3)—(3.4).
If pe(0,1), then, by lettingx — oo in (3.5), we obtain a contradiction. This
implies that (3.3)—(3.4) has no positive solutions for any 0, if p € (0,1). Similarly,
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using (3.6) we can show that (3.3)—(3.4) has no positivetienis for any > 0, if
p=1.

For p > 1, setu := w(0). Then, by lettingx — oo in (3.5), we have the identity
_ p— 1 p-1

This implies that there exists at most one solution of theblem (3.3)—(3.4) for a
given A > 0. This unique solution is the solution of the initial valuslplem:

(3.7) s

(3.8) w =iw P, x>0 w(0)=0, w(0)=u,

where u = u(1) is defined by (3.7). We shall denote this solution dy for a given
w. Indeed, it is easily check that,(x) = pwi(x/u). In particular, w; is the solution
of the initial value problem

p-—1

(3.9) w’ = Tw_p, x>0, w(0)=0, w()=1.

Next, we show that the (local) solutiom; of (3.9) exists globally in [0p0). In-
deed, ifw; is not global, then there iR < oo such thatw;(R™) = oco. It follows that
w/(R™) = 0. Note thatw] > 0 in [0, R). Then

X
wi(X) = /O wy(y) dy < Rzgpoaé) wi(2) < o0

for all x € [0, R). This implies thatw}(x) is bounded in [OR), a contradiction. There-
fore, we conclude that; exists globally in [0,00). Notice thatw)(oco) = 1.
We thus have proved the following proposition.

Proposition 3.1. Let p> 1. For any giveni > 0, there exists a unique positive
solution of the boundary value proble(B8.3)(3.4). This unique solution is given by
w,, which is the solution of the initial value proble(8.8) with p satisfying the rela-
tion (3.7).

Now, we return to the problem (3.1)—(3.2). Sifddgoco) = 1 for a positive solution
U of (3.1)-(3.2), we see thdll(x) ~ x asx — oco. Hence the integrafo°° U~P(x)dx
is finite. This implies that) = w,, for some positiveu satisfying

p—1 oo 1+1/p
(3.10) Tup—l(f w;,P(x) dx) =1
0

/ w;P(x)dx=;fP/ wlp(5> dx
0 0 1%

s /O wiP(y) dy.

We compute that
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It follows from (3.10) thatu satisfies

p— 1 oo 1+1/p
(3.12) TM_1+1/p</0 wy P(y) dy) =1.

The relation (3.11) defineg uniquely. Hence we have the following existence and
uniqueness theorem.

Theorem 2. For any p> 1, there exists a unique positive solution of the bound-
ary value problem(3.1)+3.2).

For p € (0, 1], we have
/ U~P(x)dx = oo
0

for any solutionU of (3.1)—(3.2). Hence a classical solutidh of (3.1)—(3.2) exists
only if U” =0 in [0, 0c0). This is impossible, sinc&)’(0) = 0 andU’(c0) = 1. There-
fore, we conclude that there is no solution of (3.1)—(3.2)pie (0, 1].

4. Remarks and discussions

We recall from [9] that the solution of

(4.1) Vs=Vyy—0oVP 0<y<l, s>0,
(4.2) V,(0,5)=0, V(1,5)=1, s>0,
(4.3) V(y, 0)=wo(y), O0=y=1,

with W-(y) < w(y) <1 fory e [0, 1] ando € (0, c*), exists globally in time, where
W is the minimal solution of (2.3)—(2.4).

a

Now we suppose that is a solution of (1.8)—(1.10) withg € (0, 1]. Then we have

1 —1-1/p
o(s:v) = ( [ 0.9 dy) € (0, 1)

as long asv exists. LetV be the solution of (4.1)—(4.3) with = A. It follows from
the comparison principle that > V as long asv exists. Therefore, we conclude that

Theorem 3. Suppose thak € (0,0%). If W, (y) < vo(y) <1 for y € [0, 1], then
the solutionv of (1.8){1.10) exists globally in time

Hence, whenR is small enough andV, (x/R) < up(x)/R < 1 for x € [0, R], the
solution of (1.4)—(1.6) exists globally in time.
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We also recall from [9] that the solutioW of (4.1)—(4.3) tends to the maximal

solution Wi of (2.3)—(2.4) ast — oo, if vo > W, . It should be very interesting to
see if such result also holds for the nonlocal problem (X45). In [8], numerical
simulations indicate that, fop > 1, the solutionu of (1.1)—(1.3) exists globally and
tends to the unique steady statetas> oo. It is also very interesting to see, under
certain condition, whether the solution of (1.1)—(1.3)sé&xiglobally and converges to
the unique steady state &s> co. We leave these two questions for the future study.
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