
Tasaka, F.
Osaka J. Math.
46 (2009), 327–352

A NOTE ON THE GLAUBERMAN-WATANABE
CORRESPONDING BLOCKS

OF FINITE GROUPS WITH NORMAL DEFECT GROUPS

FUMINORI TASAKA

(Received September 25, 2007, revised January 11, 2008)

Abstract
Harris proved that there is an indecomposable bimodule witha trivial source

which induces a Morita equivalence between Glauberman-Watanabe corresponding
block algebras of finite groups with normal defect groups andthe Glauberman
correspondence of characters in corresponding blocks. We note an implication of
the Puig correspondence in the conext of the Glauberman-Watanabe correspondence
and then, using this, show Harris’s theorem in two ways.

1. Introduction

In this article, for a primep, let (K, O, k) be a p-modular system whereO is a
complete discrete valuation ring having an algebraically closed residue fieldk of char-
acteristic p and having a quotient fieldK of characteristic zero which will be assumed
to be large enough for any of finite groups we consider in this article.

Let G be a finite group andS a solvable group such thatS acts onG via auto-
morphism and (jGj, jSj) = 1.

Glauberman showed in [13] that there is a bijective correspondence with sign be-
tween the set ofS-invariant irreducible characters ofG and the set of irreducible char-
acters ofGS = CG(S), called theGlauberman correspondenceof (K-)characters.

Watanabe began in [36] a block-theoretical study of the Glauberman correspondence,
and gave a (p-)block correspondence under suitable assumptions, called Glauberman-
Watanabe correspondence: she proved that if anS-invariant blockb of G has a defect
group D centralized byS, then all irreducible characters inb areS-invariant, and by the
Glauberman correspondence, all of them are mapped bijectively to the irreducible charac-
ters belonging to a single blockw(b) of GS havingD as a defect group and whose Brauer
category is equivalent to that ofb, and that Glauberman correspondence with sign gives
a perfect isometrybetween the additive group of generalized characters inb and inw(b).
In fact, an existence ofisotypy is proved. Here for the notions of perfect isometry and
isotypy, see [6].

So, it is desirable to give a ring-theoretical explanation for this.
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In fact, until now, the case where the group isp-solvable and the case where
the block has a normal defect group have been treated. For ap-solvable case, see
[18] and [16]. Koshitani and Michler proved in [22] that Glauberman-Watanabe cor-
responding block algebras overk with normal defect groups are Morita equivalent. In
fact, Koshitani noted in [21] that they are Puig equivalent,that is, having isomorphic
source algebras, see [27, Definition 3.2] and hence Morita equivalent overO by [29,
Lemma 7.8]. Then, Harris showed in [14] that there is an indecomposableO[GS�G]-
module with a trivial sourc realizing a Morita equivalence and inducing the Glauberman
correspondence. Recall that if the bimodule inducing a Morita equivalence between
block algebras has a trivial source, then these blocks are Puig equivalent, see [31],
and an isotypy is induced in the character level, see [32].

In this article, we point out that above Harris’s result alsofollows from the Puig’s
theory as described in [27], [28] and [30]. In fact, we show inTheorem 4.9 that,
taking asS a cyclic groupS of prime orderq (by induction, it suffices to consider
this case, see Theorem 2.1 (i), (ii) and Theorem 4.11), for anS-invariant block b
of G with an S-centralized normal defect group, there is some pointed group, see
[27, Definition 1.1], GS� of OGb viewed as an interiorG-algebra, see [27, Defini-

tion 3.1], such that the block algebraOGSw(b) is isomorphic to the embedded alge-
bra (OGb)� , see [30, 4.2], ofGS� in OGb as interiorGS-algebras. Then, since an in-
decomposable direct summand ofOGb#GS�G, which belongs to the only isomorphism
class whose multiplicity inOGb#GS�G is not divided byq, induces a Morita equiv-
alence betweenOGb and (OGb)� , it cleary induces the Glauberman correspondence,
see Theorem 2.1 (3), and hence Harris’s result follows.

This article consists of the following:
In Section 2, we recall the correspondences of Glauberman and Watanabe.
In Section 3, we describe an implication of the Puig correspondence quoted in Theo-

rem 3.1 in the context of the Glauberman-Watanabe correspondence. Then as a special
case we note in Corollaries 3.6 and 3.7, forR 2 fO, kg, a vertex preserving correspon-
dence between the indecomposableS-invariant RG-modules and the indecomposable
RGS-modules with some properties, characterized by the multiplicities, depending on
Barker’s investigations. WhenGS contains a normalizer of a source, corresponding
modules are the Green corresponding modules, see [35, Section 20].

In Section 4, we specialize to group algebras with normal defect groups, and, in
Corollary 4.10, the Harris’s result stated above is deducedby applying Puig’s theorems,
in particular, the structure theorem as an (OD, OD)-bimodule of the source algebra of
a block with a normal defect groupD.

In Section 5, we note the compatibility of the results in Section 4 with an obser-
vation by Okuyama in [26]. In fact, we note that Corollary 4.10 also follows from
Broué’s theorem on the Morita equivalence and the relation (�) in Section 5 given in
[26] with the interpretation (��) in Section 5 of (�) given in [34], see Remark 5.1.
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Notation and terminology. We will cite necessary facts from textbooks [19], [24]
and [35] rather than original articles, and in particular, we refer to [35] for Puig’s theory.

For finite groupsG and S, if S acts onG via group automorphisms, we can con-
sider the semi-direct productG Ì S determined by that action, and denote it byGS.
Let H be a subgroup ofG. We denote by1H = f(h, h) 2 G�G j h 2 Hg the diagonal
subgroup ofG � G. If S stabilizesH , the centralizer ofS in H is denoted byH S.
We denote by [HnG] a set of left coset representatives ofH in G. We denote byGp0
the set of elements ofG with the order coprime top. A cyclic group of orderr is
denoted byCr .

By a character, we always mean an ordinary character overK. Denote by Irr(G)
the set of all irreducible characters ofG and by Irr(G)S the set of allS-invariant ir-
reducible characters ofG. For � 2 Irr(H ), we denote Irr(G j �) = f� j � 2 Irr(G)
such that [� , �#G

H ] 6= 0g, where [� , � ] is the usual inner product of characters. When
(jGj, jSj) = 1, for � 2 Irr(G)S, there exists a uniquely determined extension�̂ 2 Irr(GSj�) of � satisfying the conditionS� Ker(det(�̂)), called thecanonical extensionof �,
see [19, Lemma 13.3]. WhenS is cyclic, Ŝ acts on Irr(GS), see [11, Proposition 1.15
and (1.16)], whereŜ = Hom(S, K�) ' S is the dual group ofS, whose elements will
be identified with the elements of Irr(S). Above action is denoted multiplicatively.

For a ring R, we denote byR� the multiplicative group consisting of units ofR,
by J(R) the Jacobson radical ofR and by Irr(R) the set of all irreducible characters
of R. Let R 2 fO, kg andR0 2 fK, O, kg. We denote byR0G the group algebra ofG
over R0.

By modules, we meanR0-free finitely generated left modules. For modulesV and
W, denoteW j V if W is isomorphic to a direct summand ofV . For an (R0G, R0H )-
bimodule X, we view it as anR0[G � H ]-module in the usual way: (g, h) � x = g �
x � h�1 where g 2 G, h 2 H and x 2 X. (We use � for the action of elements of
group algebra on modules over that group algebra.) For a normal subgroupN of G
(denotedN ⊳ G), an R0N-module Y and g 2 G, we denote byYg the (g-)conjugate
R0N-module, see [35, Example 10.10]. Conjugate modules are defined also for the
modules over twisted group algebras, see [10, (5.27)]. For akG-moduleU , we denote
by P(U ) the projective cover ofU .

By a block of G or RG, we mean a primitive idempotentb of Z(RG). The set
of blocks ofRG with a defect groupD is denoted by BlR(G j D). For a blockb0 of
OG, denote byb0 the block of kG given by the canonical image ofb0, and denote
Irr(b0) = f� 2 Irr(G) j �(b0) 6= 0g, which is also called a block and whose elements are
called the characters ofG in b0 or b0.

We refer to [35, Section 10] for the notion of an (interior) G-algebra A over R.
We denote by ResG

H A the (interior) H -algebra given by the restriction toH of the
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structural map.AH is a subalgebra ofA consisting ofH -fixed elements. If 1A is the
unique idempotent ofAG, A is called aprimitive G-algebra. We view group alge-
bra RG, block algebrasRGb andR-endomorphism rings ofRG-modules as interior
G-algebras in the usual way, see [35, Examples 10.3 and 10.6].ConsideringRGb as
an (RG, RG)-bimodule, we view EndR[1�G](RGb) as an interiorG-algebra using the
left RG-module structure ofRGb. Then, as is well-known, we have an isomorphism
of interior G-algebras

RGb! EndR[1�G](RGb), x 7! 'x(℄)
where'x is theR-endomorphism ofRGb given by the left action ofx 2 RGb.

We refer to [28, Section 5] for the notions ak�-group Ĝ, a k�-subgroup Ĥ , a
k�-group homomorphismand thek�-group algebraR�Ĝ over R. See also [35, Ex-
amples 10.4, 10.8 and p. 407]. We also denote byK�Ĝ an algebra overK defined by
K 
O O�Ĝ. With the obvious grading,R0�Ĝ becomes a twisted group algebra ofG
over R0. For anR0�Ĝ-module V and anR0� Ĥ -module V 0, we denote byV#G

H the re-
striction of V to R0� Ĥ -module and byV 0"G

H the inducedR0�Ĝ-moduleR0�Ĝ
R� Ĥ V 0.
Similar notations forK-characters. We denote bym(V 0, V) the multiplici ty of V 0 in
V#G

H , that is, the number of modules isomorphic toV 0 in a direct sum decomposition
of V#G

H , and byn(V , V 0) the multiplicity of V in V 0"G
H . We use the similar notations

for modules over ordinary group algebras, see [28, 5.12.2].
For a G-algebraA over R, the trace mapfrom AH to AG is defined by TrGH (a) =P

g2[HnG] ag for a 2 AH and, for ap-subgroupP of G, theBrauer homomorphismBrA
P

is defined by the canonical epimorphismAP ! A(P) = AP
Æ�P

Q TrP
Q(AQ) + J(R)AP

	
where Q runs over strict subgroup ofP, see [35, Section 11]. WhenA = RG, A(P)
will be identified withkCG(P), see [35, Proposition 37.5].

We refer to [35, Sections 13 and 14] for the notionspointed groupsof A, the
action of G on them by the conjugation, theirlocalnessand the relationsK� � H� and
K� pr H� between pointed groupsK� and H� of A. For f 2 �, f A f has the obvious
H -algebra (interiorH -algebra if A has an interiorH -algebra structure) structure.A�
is the primitive (interior)H -algebra isomorphic tof A f, called anembedded algebra
of H� in A. For its uniqueness, see [35, Section 13]. When a local pointed group
P of A such thatH� � P is maximal with respect to the relation�, P is called
a defect pointed groupof H� , see [35, Section 18] andP is called adefect groupof
H� . For themultiplicity m(�, � ) of the point� in � , we refer to [4, Section 2]. In
particular, if A is a primitive G-algebra and� = f1Ag, then m(�, �) is the number of
occurrences of idempotents of� in a primitive idempotent decomposition of 1A in AH,
see [35, p. 28].

We denote byA(H�) the multiplicity algebraand byVA(H�) the multiplicity mod-
ule, of the pointed groupH� of A, see [35, Section 13]. Denote by�� the canonical
epimorphism fromAH to A(H�). For anotherG-algebraA0, if F : A! A0 is an em-
beddingof G-algebra, see [35, Section 12], thenF induces an injectionH� 7! H� 0 , of
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pointed groups ofA into pointed groups ofA0, see [35, Proposition 15.1].F also in-
duces an embedding ofNG(H�)=H (= NG(H� 0)=H )-algbra A(H�)! A0(H� 0 ) described

in [35, Proposition 15.3] and an isomorphism ofk�-groups from N̂G(H� 0)=H , which

is defined by the action ofNG(H� 0)=H on A0(H� 0), to N̂G(H�)=H , which is defined
by the action ofNG(H�)=H on A(H� ), described in [35, Proposition 15.4]. Through
these,VA(H�) will be identified with a direct summand ofVA0(H� 0), see [35, Propo-
sition 15.5]. WhenA is a primitive G-algebra, a defect pointed groupP of Gf1Ag is
called adefect pointed groupof A, P is called adefect groupof A, i 2  is called a
source idempotentof A and the embedded algebraA of P in A is called asource al-
gebra of A. Moreover, VA(P ) is called thedefect multiplicity moduleof A, which is

indecomposable projectivek� N̂-module, whereN = NG(P )=P, see [35, Section 19].
A canonical characterof a block b is the character ofDCG(D)=D corresponding to

the simple projective moduleVRGb(DÆ)#NG(DÆ )=D
DCG(D)=D, where DÆ is a defect pointed group

of RGb, see [35, Section 37].
When A is an interiorG-algebra overR, its structural homomorphism' from G

to A� can be extended to' : RG! A and we denotey � a = '(y)a and a � y = a'(y)
for y 2 RG and a 2 A. Moreover if A is primitive, then there is a unique blockb of
RG such thatb � 1A = 1A, and in this case, we say thatA is in b, see [30, 4.1].

When anR-algebraE is isomorphic to EndR(L) for someR-module L, we also
use � for the obvious action of elements ofE on L.

2. The correspondences of Glauberman and Watanabe

In this section, we recall the correspondences of Glauberman and Watanabe.

Theorem 2.1 (Glauberman [13]). For any pair (G, S) where G is a finite group
and S is a finite solvable group acting on G such that(jGj, jSj) = 1, there exists a
uniquely determined bijective map�(G,S): Irr(G)S ! Irr(GS ) satisfying the following
conditions:
(i) For T ⊳ S, Irr(G)S is mapped bijectively toIrr(GT )S by �(G, T ).
(ii) In the situation of(i), �(G, S) = �(GT , S=T ) Æ �(G, T ).
(iii) If S is a q-group for some prime q, then, for � 2 Irr(G)S , �(G,S)(�) is a unique
constituent of�#G

GS with a multiplicity m� not divisible by q. In fact, � determines a
sign �� 2 f�1g such that m� � �� (mod q).

The correspondence in Theorem 2.1 is called theGlauberman correspondenceof
(K-)characters.

REMARK 2.2. For anS-invariant simple projectivekG-module W, there is an
S-invariant irreducible and projectiveOG-lattice WO such thatW ' WO=J(O)WO.
Thus we can consider the Glauberman correspondent�(G, S)(� ) of the character� af-
forded byW. A set f�(G,S)(� )g forms a block ofGS with defect 0, see [25, Theorem



332 F. TASAKA

in p. 517], so that there exists an irreducible and projective OGS-lattice WO
0 which af-

fords the character�(G,S)(� ). We call a simple projectivekGS -module isomorphic to
WO

0=J(O)WO
0 a Glauberman correspondentof W.

By (i) and (ii) in Theorem 2.1, it suffices to consider the casewhereS is cyclic of
prime orderq, see Theorem 4.11. In the following, we always assume Condition 2.3
below.

CONDITION 2.3. G is a finite group andS' Cq acts onG whereq is a prime
not dividing the order ofG. Set0 = GS. � is a non-trivial element of̂S.

In fact, the correspondence in Theorem 2.1 is determined by iterated application
of the correspondence in [19, Theorem 13.6, Definition 13.7]which is defined when
an acting group is cyclic, see [19, Definitions 13.12 and 13.20, Theorem 13.18] (note
also that, with the notations in Theorem 2.1 and Proposition2.4, �� = Æ� under the
common assumptions, see [19, Theorem 13.14 (b)]). For a later use, we cite the fol-
lowing form of the Glauberman correspondence under Condition 2.3, which follows
immediately from [19, Theorem 13.6], see also [11]:

Proposition 2.4 (Glauberman [13]). For � 2 Irr(G)S, let �̂ 2 Irr(0) be the canon-
ical extension of� when q is odd, and �̂ 2 Irr(0) an arbitrary extension of� when
q = jSj = 2. Then there is a signÆ� which makes the following equation of generalized
characters hold:

(�̂ � ��̂)#0GSS = Æ�(�(G, S)(�)� 1� �(�(G, S)(�)� 1)).

Note that, whenq = 2, aboveÆ� depends on the choice of̂�. In the above propo-
sition, sinceGSS is a direct product ofGS and S, characters ofGSS are denoted in
the form of the product of characters ofGS and S. Note that�(�(G, S)(�) � 1) =�(G, S)(�) � �. In the following, we will use the notation of product for characters
of direct products, too.

Watanabe began in [36] ap-block theory of the Glauberman correspondence under
the condition that a defect group is centralized byS, which will be always assumed in
this article too.

Theorem 2.5 (Watanabe [36]). If an S-invariant block b ofOG has a defect
group D centralized by S, then the following holds:
(1) All charcters in b are S-invariant.
(2) There is a blockw(b) of OGS with a defect group D such thatIrr(w(b))= f�(G, S)(�) j� 2 Irr(b)g.
(3) There is a perfect isometryZ Irr(b) ' Z Irr(w(b)) mapping� 2 Irr(b) to Æ��(G, S)(�),
whereÆ� is the sign described inProposition 2.4 (in the case of q= 2, choosing�̂ in
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Proposition 2.4so thatf�̂ j � 2 Irr(b)g = Irr(b̂) for a block b̂ of 0 covering b). In fact,
the Glauberman correspondence induces an isotypy.

The correspondence in Theorem 2.5 is called theGlauberman-Watanabe correspon-
denceof (p-)blocks. We also definew(b) by w(b).

Note that ifS centralizes a Sylowp-subgroup ofG, then the Glauberman-Watanabe
correspondence induces a one-to-one correspondence between the set ofS-invariant blocks
of G and the set of blocks ofGS. In particular, the set ofS-invariant characters ofG
with defect 0 and the set of characters ofGS with defect 0 correspond bijectively by
the Glauberman correspondence.

The following is included in Theorem 2.5 (3).

Proposition 2.6 (Watanabe [36]). With the notations ofTheorem 2.5, let � 2
Irr(DCG(D)=D) be a canonical character of b. Then � is S-invariant and its
Glauberman correspondent is a canonical character ofw(b).

In the situation of Theorem 2.5, by [36, Proposition 1] and [8], b is covered by
q distinct isomorphic blocks of0 in the sense of [1] or [17]. In particular:

Lemma 2.7 (Dade [8], Watanabe [36]).For b as in Theorem 2.5and any block
b̂ of 0 covering b, it holds that Res0G(O0b̂) ' OGb as interior G-algebras and
O0b̂#0�0G�G ' OGb asO[G � G]-modules.

We also recall the following, see for example [22, Lemma 2.2]:

Lemma 2.8. NG(P) = NGS(P)CG(P) for an S-centralized subgroup P of G.

3. The correspondence of Puig

In this section, we note an implication of the Puig correspondence in the context
of the Glauberman-Watanabe correspondence. Firstly, we recall the Puig correspon-
denceof points or pointed groups and a particular case of Barker’sresult, see [30,
1.4.1], [4, Remarks 4.1 and 7.1, Propositions 4.4, 4.5, 7.4 and 7.5] and [35, Theo-
rem 19.1]:

Theorem 3.1 (Puig [27] [28]). Let A be a G-algebra. For any local pointed
group P and any subgroup H of G containg P, the correspondence mapping any

primitive idempotent j of AH on the k� Ĥ -module� ( j ) � VA(P ) induces a bijection
from the set of points� of H on A such that P is a defect pointed group of H�
onto the set of isomorphism classes of projective indecomposable direct summands of

VA(P )#G
H

where H = NH (P )=P. Moreover, for pointed groups K� and H� of A with
a defect pointed group P , and l 2 � and j 2 �,
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(1) K� � H� if and only if � ( j ) �VA(P ) j (� (l ) �VA(P ))#K
H

, and m(�, � ) = m(s ( j ) �
VA(P ), s (l ) � VA(P )).

(2) K� pr H� if and only if � (l ) �VA(P ) j (� ( j ) �VA(P ))"K
H

. When A is an interior
G-algebra constructed from the endomorphism ring of anRG-module L, n(l �L, j �L) =
n(� (l ) �VA(P ), � ( j ) �VA(P )), and moreover if� (l ) �VA(P ) and � ( j ) �VA(P ) are

simple k� K̂ - and k� Ĥ -modules respectively, then n(l � L, j � L) = m( j � L, l � L) (Barker).

With the above notations, ifVA(P ) is simple (and projective)k�Ĝ-module, we can
apply the Glauberman correspondence by considering an appropriate covering group of

the twisted group algebrak�Ĝ, which is a well-known argument, see for example [16]
and [23], and get some informations on pointed groups onA by the Puig correspon-
dence quoted above. Note that we may use the twisted group algebra version of the
Glauberman correspondence described in [11].

For V and V 0 as in Lemma 3.2 (1) below, we call ak�GS-module isomorphic
to V 0 a Glauberman correspondentof V . When A is an S-invariant ordinary block
algebra with defect 0, this usage coincides with that of Remark 2.2. In Lemma 3.2 (3),
we view V#G

N as akN-module in the canonical way, see [35, Example 10.9].

Lemma 3.2. Let Ã be a0-algebra which is simple as a k-algebra. (Then the
unique simpleÃ-moduleZ̃ has the k�0̂-module structure associated with the0-algebra
structure of Ã, see[35, Example10.8].) Let N be an S-invariant normal subgroup of
G such that G= GSN. Assume that the N S-algebra structure ofÃ is interior, whose
structural map commutes with the action of0. Then:
(1) Assume that a direct summandṼ of Z̃ is a simple and projective k�0̂-module such
that V = Ṽ#0G is a simple(and projective) k�Ĝ-module. Then there exists, unique up
to isomorphism, an indecomposable direct summand V0 of V#G

GS such that q∤ m(V 0, V).

Furthermore, V 0 is a simple(and projective) k�GS-module, and m(V 0, V) � �1 (modq).
(2) Assume that a direct summand U ofZ̃#0GS is simple and projective k�GS-module

and there exists an S-invariant simple(and projective) direct summand U00 of U"G
GS

such that q∤ n(V , V 0) (see the first paragraph of the proof of(2) for this condition).
Then n(U 00, U ) � �1 (modq), and any indecomposable S-invariant direct summand of
U"G

GS which is not isomorphic to U00 has a multiplicity divisible by q.

(3) Let W be an indecomposable direct summand of V#G
N for V in (1). Then:

(A) W is a simple, projective and S-invariant kN-module. The isomorphism classes
of the indecomposable direct summands of V#G

N are the isomorphism classes of
g-conjugate of W where g runs over G(so that are S-invariant).
(B) Let V0 and W0 be Glauberman correspondents of V and W, respectively. Then:

(a) The isomorphism classes of the indecomposable direct summands of V0#GS

NS

are the isomorphism classes of c-conjugate of W0 where c runs over GS.
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(b) If V#G
N is indecomposable(so that W=V#G

N), then V0#GS

NS is indecomposable

(so that W0 ' V 0#GS

NS).

Proof. The0-algebra structure ofÃ determines ak�-group 0̂ with a structural

short exact sequence: 1! k� ��! 0̂ d�! 0! 1. Recall that0̂ may be taken explicitly
as 0̂ = f(a, x) 2 Ã��0 j a0a = a0x for any a0 2 Ãg with d((a, x)) = x for (a, x) 2 0̂ and� (� ) = (�1Ã, 10) for � 2 k�. There is a split monomorphism� : N S!dN S of djdN S

mapping y to (y � 1Ã, y). Then �(N S) is a normal subgroup of̂0. Since �(N S) inter-
sects trivially with� (k�), the canonical epimorphisms of groups� : 0̂! 0̂=�(N S) and� : 0! 0=N S determine thek�-group 0̂=�(N S) whose structural short exact sequence
is given by the following commutative diagram:

There is a subgroup (0̂=�(N S))� of 0̂=�(N S) satisfying d((0̂=�(N S))�) = 0=N S with a
central subgroupZ = Ker(d

�
) = (0̂=�(N S))� \ � (k�) ' Cr where d

�
is the restriction

of d to (0̂=�(N S))� and r is an integer determined byj0=N Sj = rpn (p ∤ r ), see [35,
Proposition 10.5]. Note thatq ∤ r . Then0� = ��1((0̂=�(N S))�) is a finite subgroup of0̂ containing�(N S), satisfyingd(0�) = 0, and having a central subgroupZ = Ker(d�) =0� \ � (k�) ' Cr where d� is the restriction ofd to 0�. For a subgroupH of 0,
define a subgroupH� of 0� by H� = d��1(H ). If H is contained inG and S-invariant,
then �(S) acts coprimely onH� since q ∤ r jH j and we have, for (ah, h) 2 H�, (s �
1Ã,s)�1(ah,h)(s�1Ã,s) = (as

h,hs) 2 0�\d�1(H ) = H�. Note that0� = G��(S). Moreover,
(H�)�(S) = (H S)�. In fact, for (ac, c) 2 (H S)�, (s � 1Ã, s)�1(ac, c)(s � 1Ã, s) = (as

c, c) is
equivalent to (ac, c) modulo Z, that is, as

c = �ac for some� 2 k� such that� (�) 2 Z.
But since the order of� divides r, � must be 1k. Hence, (H�)�(S) � (H S)�. The
converse inclusion is clear. The inclusionH� ! Ĥ induces an isomorphism

R0H�e' R0� Ĥ ,(3.2.1)

where e is the central idempotent ofR0Z corresponding to the faithful linear repre-
sentation ofZ determined byz 7! �z 2 k� where z = � (�z) 2 Z, see [28, Proposi-
tion 5.15 (i)] or [10]. In the following, through the isomorphism (3.2.1), we will freely
identify R0� Ĥ -modules andR0H�-modules not annihilated bye. Similarly, we will
identify the characters ofK� Ĥ and the characters ofKH� covering� where� 2 Irr(Z)
is the character corresponding toe, see [10, Proposition 8.1]. Note that any charac-
ter which is a constituent of the characters obtained by restriction or induction of an
irreducible character ofH� covering� to groups containingZ covers�.
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Let ṼO be theO�0̂-module lifting Ṽ , and let be theK-character ofK�0̂ cor-
responding toK 
O ṼO. Then � =  #0G is the S-invariant irreducible character cor-
responding toV . Note that, by [10, Proposition 9.2], the characters ofK�H with
defect 0, see [10, Definition 9.1], correspond to the characters of H� with defect 0
covering� .

We also denote� for � Æ �j�1
S 2d�(S) (viewing �jS a map to�(S)). Then with the

notations of Proposition 2.4 for appropriate groups, ifÆ� = 1 (in the case ofq = 2,
when we take�̂ =  ), it holds that

 #0�
G� �(S)�(S) �  0 = �� #0�

G� �(S)�(S) �  0�
where 0 2 Irr(G��(S)�(S)) is some extension of�0 = �(G�, �(S))(�) (when q = 2,  0 =�0 � 1). Note thatG��(S)�(S) = (GSS)�. Hence, since� acts regularly on Irr(G��(S)�(S)),
blocks ofG��(S) are covered byq isomorphic blocks ofG��(S)�(S) and projective modules
are uniquely determined by its corresponding characters, see [24, III, Exercise 16], we
see that

Ṽ#0GSS ' Ṽ 0 �
 

q�1M
i =0

�iX

!
(3.2.2)

for a simple projectivek�dGSS-module Ṽ 0 corresponding to 0 and some projective
k�dGSS-module X . Here �iX is a projectivek�dGSS-module corresponding to�i8 2
Irr(G��(S)�(S)), denoting8 2 Irr(G��(S)�(S)) the character corresponding toX . We use
similar notations in (3.2.3) below. IfÆ� = �1, then

 #0�
G� �(S)�(S) + 0 = �� #0�

G� �(S)�(S) + 0�
and so we see that, for some projectivek�dGSS-moduleY,

Ṽ#0GSS '
 

q�1M
j =1

� j Ṽ 0!�
 

q�1M
i =0

�iY

!
.(3.2.3)

Hence, we see that (1) holds for a moduleV 0 corresponding toṼ 0#GS�S
GS . We also refer

to the proof of [11, Theorem 6.13] for the above argument.
We show (2). Denote by� the character ofG��(S) with defect 0 corresponding to

the simple projectivekG��(S)-module U , and let� 00 = �(G�, �(S))�1(�). We see that
the condition that there existsU 00 as in the statement is equivalent to the condition
that � 00 is a character ofG� with defect 0. (This is also equivalent to the condition
that � 00 belongs to a block ofG� which has a defect group centralized by�(S).) In
this case,U 00 is a simple projectivekG�-module corresponding to� 00 and n(U 00, U ) =�� 00, �"G�

G� �(S)

�
=
��, � 00#G�

G� �(S)

� � �1 (modq).
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Any �(S)-invariant direct summand ofU"G�
G� �(S) can be written asP(T) for some�(S)-invariant simplekG�-module T. By [33, Theorem 3],

n(P(T), U ) = m(P(U ), T).

Since U = P(U ), it suffices to show thatq j m(U , T) for any �(S)-invariant simple
kG�-module T such thatT 6' U 00.

Let � be the Brauer character ofG� corresponding toT and �̃ the function defined
by �̃(g�) = �(g�p0 ) whereg� 2 G� and g�p0 is the p0-part of g�. Then ˜� is a generalized
character ofG� and �̃jG�

p0 = �, see [24, III, Lemma 6.13]. Since ˜� is �(S)-invariant and

generalized characters ofG� are uniquely expressed as linear combinations of elements
of Irr(G�), �̃ can be expressed as

�̃ =
X

i

mi�i +
X

j

m j

 X
s2S

� �(s)
j

!

where�i are�(S)-invariant characters ofG�, � j are not�(S)-invariant characters ofG� and
mi , m j are appropriate non-zero integers. Then,� appears in�i#G�

G� �(S) with a multiple of
q, since�i and� are not the Glauberman corresponding characters, see [24, III, Exer-
cice 6.20]. On the other hand,� appears with a multiple ofq in

P
s2S � �(s)

j #G�
G� �(S) , since

for anys 2 S

��, � �(s)
j #G�

G� �(S)

�
=
�� �(s)�1

,
�� �(s)

j #G�
G� �(S)

��(s)�1�
=
��, � j#G�

G� �(S)

�
.

Hence,�jG� �(S)
p0 appears with a multiple ofq in �#G�

G� �(S) =
��̃#G�

G� �(S)

���
G� �(S)

p0 , and the asser-

tion follows.
For (3), note thatG�

⊲N� = Z��(N), G� = G��(S)N� andG��(S)
⊲N��(S) = Z��(NS).

Then (A), (B) (a) and (B) (b) are just restatements of [35, Lemma 26.10] and [37,
Corollary 2.4], [37, Lemma 5.3] and [20, Lemma 2.2] respectively, by the identi-
fication through the isomorphism (3.2.1) and the correspondences Irr(Z�(N) j � ) !
Irr(�(N)), � � � 7! � and Irr(Z�(NS) j � )! Irr(�(NS)), � � � 0 7! � 0.

Note that in Lemma 3.2, by the Frobenius reciprocity law,n(V , V 0) = m(V 0, V)
and m(U , U 00) = n(U 00, U ), and soV 0 satisfies the condition in (2) andU ' V 0 if and
only if U 00 ' V .

By the definition of the canonical extension and Proposition2.4, we see immediate-
ly the following:

Lemma 3.3. Let q be odd. With the assumptions ofLemma 3.2 (4) (B) (b)
and the notations in the proof ofLemma 3.2,the following are equivalent, denoting #0�(N S)� =  #0�Z��(N S) = � � � and � = �#�(N S)�(N) :
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(1) jSj�1 P
s2S �(s) acts trivially on Ṽ 0 where �(s) is the canonical image of�(s) 2 0̂

in k�0̂.
(2)  is the canonical extension of�.
(3)  #0�(N S)� is the canonical extension of�#G�

N� .
(4) � is the canonical extension of�.

Lemma 3.4. Let A be a primitive interior G-algebra with a defect group P. Let
H� be a pointed group of A. Assume NG(P) = NH (P)CG(P). Then H� has a defect
group P if and only if H� has a defect pointed group P� where � is any local point
of P on A.

Proof. This follows from the transitivity of defect pointedgroups by the conjuga-
tion action, see [35, Corollary 18.6].

Proposition 3.5. Let A be a primitive interior G-algebra overR which can be
extended to an interior0-algebra Ã and which has an S-centralized defect group P
and a simple defect multiplicity module. Let � = f1Ag be a unique point of AG. Then:
(1) There is a unique point� of AGS

satisfying the following:
(i) The pointed group GS� of A has P as a defect group.
(ii) q ∤ m� = m(�, �).

In fact, m� satisfies m� � �1 (modq).
(2) ([4, Proposition 4.8])G� pr GS� .
(3) If A is in b where b is a block of G having an S-centralized defect group D, then
A� is in w(b).

Proof. Recall from [36, Proposition 1] that there is anS-invariant defect pointed
group P of A by the transitivity underNG(P) of defect pointed groups ofA with
the group P, see [35, Corollary 18.6] and the Glauberman’s lemma, see [19, Lem-
ma 13.8]. Note that by the equalityNG(P) = NGS(P)CG(P) (Lemma 2.8) and the as-
sumption of A being an interiorG-algebra, any defect pointed group ofA with the
group P is also S-invariant.

(1) and (2) follow from the Puig correspondence Theorem 3.1 and Lemmas 2.8,
3.2 and 3.4. Here, in the application of Lemma 3.2, viewingA = Res0G(Ã) and P as
a pointed group ofÃ, we takeN = NG(P )=P, N0(P )=P ' N S, C = PCG(P)=P '
CG(P)=Z(P) and Ã(P ) for G, 0, N and Ã in Lemma 3.2, respectively.� is deter-
mined as the point ofGS on A corresponding to a Glauberman correspondentV 0 of

V = VA(P ) = VÃ(P )#N S
N

in V#N

N
S.

We show (3). For the argument below, see [5, Section 2]. Firstly, note that we
may assumeP � D, see [35, Proposition 37.3]. Recall that thekC-module structure
of VA(P ) comes from the canonical epimorphism� : AP ! A(P ) ' Endk(VA(P )),
which makesA(P ) an interiorCG(P)-algebra and the factu � a = a for any u 2 Z(P)
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anda 2 A(P ), which makesA(P ) an interiorC-algebra. The canonical epimorphism

kCG(P)! kC induces a one-to-one correspondence,fP 7! fP, between Blk(CG(P) j
Z(P)) and Blk(C j 1), see [24, V, Theorems 8.10 and 8.11]. Since� factors through
the Brauer homomorphism BrA

P, see [35, Corollary 14.6], whenA is in b, that is,
b � 1A = 1A, we see that

BrRG
P (b) � 1A(P ) = 1A(P ).(3.4.1)

Similary, for the blockb0 of GS such thatA� is in b0, we see that

BrRGS

P (b0) � 1A� (P 0 ) = 1A� (P 0 )(3.4.2)

where P 0 is a defect pointed group ofA� corresponding toP by the embedding as-

sociated withGS� . Any direct summandW of VA(P )#N
C

is an S-invariant simple pro-

jective kC-module, see Lemma 3.2 (3) (A), andW determineseP 2 Blk(C j 1) and
eP 2 Blk(CG(P) j Z(P)). Note that (P,eP) is a b-Brauer pair by (3.4.1). A Glauberman

correspondentW0 of W determinesw(eP) 2 Blk(C
S j 1), which is the canonical image

of w(eP) 2 Blk(CGS(P) j Z(P)) since the character corresponding toW can be seen as
a character ineP. By Lemma 3.2 (3) (B),W0 is isomorphic to a direct summand of a
Glauberman correspondentV 0 of VA(P ), which can be identified withVA� (P 0), with

the canonicalkC-module structures, by the construction of�. Hence we see that

w(eP) � A�(P 0) 6= 0,

and so (P, w(eP)) is a b0-Brauer pair by (3.4.2). On the other hand, since (P, w(eP))
is a w(b)-Brauer pair by Theorem 2.5 (3), it holds thatb0 = w(b).

Following [5, Section 2], we say that,RG-module L is simply defectiveif the in-
terior G-algebra EndR(L) has a simple defect multiplicity module. It is known that the
simple kG-modules, the fullOG-lattices of the irreducible characters ofG, see [27,
Proposition 1.6] or [35, p. 213], andRG-modules with full vertex, see [3, Proposi-
tion 1.2], are simply defective.

Corollary 3.6. Let P be an S-centralized p-subgroup of G. Then:
(1) Assume that X is a simply defective indecomposable S-invariant RG-module with
vertex P. Then there exists, unique up to isomorphism, an indecomposable direct sum-
mand X0 of X#G

GS satisfying the following:
(i) X0 has P as a vertex.
(ii) q ∤ m(X0, X).

In fact, X0 is simply defective, m(X0, X) � �1 (modq) and the set of isomorphism
classes of sourceRP-modules of X and X0 is same.



340 F. TASAKA

(2) Assume that Y is a simply defective indecomposableRGS-module with vertex P
and there exists an S-invariant simply defective indecomposableRG-module Y00 satis-
fying the following:

(i) Y00 has P as a vertex.
(ii) q ∤ n(Y00, Y).

Then n(Y00, Y) ��1 (modq), any S-invariant indecomposable direct summand of Y"G
GS

with vertex P and not isomorphic to Y00 has a multiplicity divisible by q, and the set of
isomorphism classes of sourceRP-modules of Y and Y00 is same.
(3) (Barker) n(X, X0) = m(X0, X) and so X0 in (1) satisfies the condition in(2) and
(X0)00 ' X. For Y in (2), m(Y, Y00) = n(Y00, Y) and so(Y00)0 ' Y.
(4) If X in (1) belongs to a block b of G with an S-centralized defect group, then X0
belongs to the blockw(b) of GS.

Proof. SinceX can be extended to anR0-module X̃ by [9, Theorem 4.5], (1)
follows from Proposition 3.5 (1) forÃ = EndR(X̃), [35, Example 13.4 and Proposi-
tion 18.11] and Lemma 2.8. (4) follows from Proposition 3.5 (3).

For (2), we consider the multiplicities ofS-invariant direct summands ofY0"G
GS

with vertex P.
Let Ỹ be an extension ofY to an RGSS-module. Denote byP be a defect

pointed group ofB̃ = EndR(Ỹ). Identify EndR(Y) with ResG
SS

GS (EndR(Ỹ)) as interior

GS-algebra and the defect multiplicity moduleU of EndR(Y) with VB̃(P )#NGSS(P )=P
NGS(P )=P .

Through the canonical embedding of interiorGSS-algebraD: B̃! C̃ = Ind0GSS(B̃), see
[35, p. 129], VB̃(P ) is identified with the direct summand� 0(1
 1B̃ 
 1) � VC̃(P 0)
of VC̃(P 0)#N0(P 0 )=P

NGSS(P 0 )=P, where P 0 is a pointed group ofC̃ corresponding toP by

D. On the other hand, forx 2 C̃P 0C̃P such that 1
 1B̃ 
 1 = TrG
SS

P (x), that is,
1C̃ = Tr0GSS(1
 1B̃ 
 1) = Tr0P(x), recall the following equalities and the isomorphism
from the last part of the proof of [4, Proposition 7.4]:

VC̃(P 0) = � 0 (1C̃) � VC̃(P 0)
= � 0 (Tr0P(x)) � VC̃(P 0)
= Tr

N0(P 0 )=P
1 (� 0 (x)) � VC̃(P 0)

= Tr
N0(P 0 )=P
NGSS(P 0 )=P

�
Tr

NGSS(P 0 )=P
1 (� 0(x))

� � VC̃(P 0)
= Tr

N0(P 0 )=P
NGSS(P 0 )=P(� 0 (1
 1B̃ 
 1)) � VC̃(P 0)

' (� 0(1
 1B̃ 
 1) � VC̃(P 0))"N0(P 0 )=P
NGSS(P 0 )=P.

Hence, with the above identifications, we have

U"NG(P 0 )=P
NGS(P 0 )=P ' VC̃(P 0)#N0(P 0 )=P

NG(P 0 )=P.
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Let G� be a pointed group of̃C with a defect pointed groupP 0 . Note thatG�
has a defect pointed groupP 0 if and only if G� has a defect groupP, see [35, Propo-
sition 16.7]. For j 2 � and s 2 S, we have

� 0( j s) � VC̃(P 0) = � 0(s�1 � 1C̃)� 0 ( j )� 0 (s � 1C̃) � VC̃(P 0)
= � 0(s�1 � 1C̃)� 0 ( j ) � VC̃(P 0)

and it is isomorphic tos-conjugate module (� 0 ( j ) � VC̃(P 0))s of the k�NG(P 0)=P̂-
module� 0( j ) �VC̃(P 0). Hence, we see that the indecomposable direct summand� 0 ( j ) �
VC̃(P 0) of VC̃(P 0)#N0(P 0 )=P

NG(P 0 )=P is S-invariant if and only ifG� is S-invariant.

On the other hand, for the interior0-algebra EndR
�
Ỹ"0GSS

�
, a pointed groupG� 00

of EndR
�
Ỹ"0GSS

�
and j 00 2 � 00, we see similarly thatG� 00 is S-invariant if and only

if the indecomposable direct summandj 00 � �Ỹ"0GSS

�
of the RG-module

�
Ỹ"0GSS

�#0G is
S-invariant.

Therefore, (2) follows from the condition in (2), Lemma 3.2 for Ã = C̃(P 0), The-
orem 3.1 forC̃, the isomorphism of interior0-algebraC̃ ' EndR

�
Ỹ"0GSS

�
, see [35,

Example 16.4], and the isomorphism ofRG-module
�
Ỹ"0GSS

�#0G ' Y"G
GS.

(3) follows from Theorem 3.1, (1) and (2).

Note that in the proof of Corollary 3.6 (2), except in the lastparagraph, we only
use the condition that a defect multiplicity module ofY is simple. Hence, we may use
the notations in the proof of Corollary 3.6 (2) for any indecomposableRGS-moduleY
with an S-centralized vertexP and with a simple defect multiplicity moduleU . Then
we see thatY satisfies the condition in Corollary 3.6 (2) if and only if� 0(1
 1B̃ 

1) � VC̃(P 0)#NGS(P 0 )=P ' U satisfies the condition in Lemma 3.2 (2) for̃A = C̃(P 0).
For example, ifS centralizes a Sylowp-subgroup ofNG(P 0)=P, then the condition
is satisfied, see the first paragraph of the proof of Lemma 3.2 (2).

Corollary 3.7. Assume that S centralizes a Sylow p-subgroup of G. Let P be
any S-centralized p-subgroup of G. Then there is a one-to-one correspondence be-
tween the set of isomorphism classes of S-invariant simply defective indecomposable
RG-modules with vertex P and the set of isomorphism classes ofsimply defective in-
decomposableRGS-modules with vertex P. The set of isomorphism classes of source
RP-modules of the corresponding modules is same. The corresponding modules be-
long to the Glauberman-Watanabe corresponnding blocks.

Proof. With the notaions in Corollary 3.6 (1), the mapX 7! X0 induces a map
from the former set to the latter set in the first statement.

Let Y be any simply defective indecomposableRGS-module with vertexP. ThenY
satisfies the condition in Corollary 3.6 (2), see the remark above this corollary. Hence,
with the notations in Corollary 3.6 (2), the mapY 7! Y00 induces a map from the latter
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set to the former set in the first statement. Note that Corollary 3.6 (2) says the unique-
ness ofY00 up to isomorphism under the assumption of the existence ofY00.

By Corollary 3.6 (3), above two maps are mutually inverse maps between the sets
in the first statement.

4. The Glauberman-Watanabe corresponding blocks with normal defect
groups

In this section, we reprove Harris’s result Corollary 4.10 below. For this, in The-
orem 4.9 below, we will show that the condition that anS-invariant block algebra
A = OGb has anS-centralized normal defect group is a sufficient condition for a prim-
itive interior GS-algebra A� determined by Proposition 3.5 being a block algebra (in
this case, the simple modules inkGb and kGSw(b) correspond by the correspondence
in Corollary 3.6).

CONDITION 4.1. b is an S-invariant block ofOG with an S-centralized defect
group D, and A is a primitive interiorG-algebraOGb. � is a point of AGS

determined
by Proposition 3.5 andf 2 �.

Proposition 4.2. AssumeCondition 4.1.ThenOGb#G�G
GS�G has, unique up to iso-

morphism, an indecomposable direct summand M satisfying the following:
(i) M has1D as a vertex.
(ii) q ∤ m = m(M, OGb).
In fact, m satisfies m� �1 (modq), and M is isomorphic to f(OGb) = f OG and is
an (OGSw(b), OGb)-bimodule.

Proof. As is well-known, see [31] or [2], we can identify the points of GS�G on
the interiorG�G-algebra EndO(OGb) with the points ofGS on the interiorG-algebra
A = OGb through (℄) in Section 1. Note also that, for ap-subgroupP of GS, since
we see ResG�G

P�G(EndO(OGb)) is relatively1P-projective, see [35, p. 111], it holds

TrGS�G1P (EndO(OGb)1P) = TrGS�G
P�G

�
TrP�G1P (EndO(OGb)1P)

�
= TrGS�G

P�G (EndO(OGb)P�G) ' TrGS

P ((OGb)P).

Hence, the isomorphism classes of the indecomposable direct summands ofOGb#G�G
GS�G

with vertex1D correspond to the points of (OGb)GS
with defect groupD. Since block

algebras have simple defect multiplicity modules, see [35,Corollary 37.6], the hypo-
theses of Proposition 3.5 are satisfied by Lemma 2.7, and so the statements follow.

CONDITION 4.3. D in Condition 4.1 is normal inG.
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Lemma 4.4 (Fan-Puig [12]). Let A be a primitive G-algebra with a normal de-
fect group P and let P be a defect pointed group of A. Then any point� of P on
A is a G-conjugate of , and so is a local point. Hence, for any subgroup H of G
containing P, any pointed group H� of A has P as a defect group.

Proof. SinceGf1Ag pr P and P is normal in G,

1A 2 TrG
P(AP AP) � X

g2[ PnG]

(AP AP)g =
X

g2[ PnG]

AP g AP,

see [12, 2.12.3]. Hence any primitive idempotent ofAP belongs to some idealAP g AP

of AP by Rosenberg’s lemma, see [35, Proposition 4.9]. Note that any primitive idem-
potent j of AP included in AP g AP must belong to g, see [12, 2.12.4] or [35,
Lemma 14.3], and so the statement follows.

In the normal defect case of our setting, since the Puig correspondence does not
lose the information by Lemmas 2.8, 3.4 and 4.4, we have the following:

Corollary 4.5. AssumeConditions 4.1and 4.3. Then any indecomposable direct
summand ofOGb#G�G

GS�G has1D as a vertex. Hence, we have the following indecompos-

able direct sum decomposition ofOGb#G�G
GS�G:

OGb#G�G
GS�G ' m( f OG)�

 M
i

mi Mi

!
,

where m� �1 (modq) and mi � 0 (modq) for all i .

Lemma 4.6. AssumeConditions 4.1and4.3. Then there are defect pointed groups
DÆ0 and DÆ00 of OGb andOGSw(b), respectively, satisfying the following:
(i) i0 = i 00 f0 = f0i 00 for some i0 2 Æ0, i 00 2 Æ00 and f0 2 �.
(ii) NG(DÆ0) = NGS(DÆ00)DCG(D). In particular, we may take[DCG(D)nNG(DÆ0)] =
[DCGS(D)nNGS(DÆ00)].

Proof. Let DÆ be a defect pointed group ofOGb, and letDÆ0 be a defect pointed
group ofOGSw(b) such thatVOGSw(b)(DÆ0 )#DCGS(D)=D is a Glauberman correspondent
of VOGb(DÆ)#DCG(D)=D, see Proposition 2.6. Then we have

NG(DÆ) \ GS = NGS(DÆ0 )(4.6.1)

and

NG(DÆ) = NGS(DÆ0 )DCG(D),(4.6.2)
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see [35, Proposition 37.11], [37, Lemma 3.5 (a)], Lemma 2.8 or explicitly [22, Lem-
ma 3.1 (d) (i)].

By the isomorphism EndO[D�G](M)' AD� for M as in Proposition 4.2, Lemmas 2.8,
3.4 and 4.4 and [35, Proposition 15.1 (e)], we have an indecomposable decomposition

M#GS�G
D�G ' mI

 M
c2[NGS(DÆ )nGS]

I (c,1)

!
,

where I is an indecomposableO[D�G]-module isomorphic toiOG for i 2 Æ, which
is called asource moduleof b in [2], and mI = m(I , M). On the other hand, by the
similar consideration for EndO[1�GS](OGSw(b)) ' OGSw(b), we have a decomposition

M#GS�G
D�G ' (OGSw(b)
OGS M)#GS�G

D�G

' mI 0
 M

c02[NGS(DÆ0 )nGS]

I 0(c0,1)

!

OGS M

' mI 0
 M

c02[NGS(DÆ0 )nGS]

(I 0 
OGS M)(c0,1)

!
,

where I 0 is an indecomposableO[D�GS]-module isomorphic toi 0OGS for i 0 2 Æ0 and
mI 0 = m(I 0,OGSw(b)). Note, firstly, that we may take [NGS(DÆ)nGS] = [ NGS(DÆ0 )nGS]
by (4.6.1). Secondly,

mI = dimk(VEndO(M)(D � G)Æ)
= dimk(VA� (DÆ))
= dimk(VOGSw(b)(DÆ0 ))
= dimk(VEndO(OGSw(b))(D � GS)Æ0 ) = mI 0 .

Here, for the first and last equalities, see [35, Proposition4.15 (a)] and the third equal-
ity follows from Proposition 2.6 and Lemma 3.2 (3) (B) (b). Therefore, comparing the

above two decompositions ofM#GS�G
D�G , we see thatI (c,1) ' I 0 
OGS M asO[D �G]-

modules for somec 2 [NGS(DÆ)nGS]. Hence we may take somei 2 Æ, i 0 2 Æ0 and
f 2 � such thati c = i 0 f = f i 0, and soDÆc and DÆ0 satisfy the condition (i).

For (ii), it suffices to show thatNGS(DÆ0 )c = NGS(DÆ0 ) since NG(DÆc) = NG(DÆ)c =
NGS(DÆ0 )cDCG(D) by (4.6.2). AssumeNGS(DÆ0 ) 6= NGS(DÆ0 )c. Then, by (4.6.1),

NGS(DÆ0 ) 6= NGS(DÆ0 )c = NGS(DÆ)c = NGS(DÆc).

Hence, there is somex 2 NGS(DÆ0 ) such thatx =2 NGS(DÆc) and so (i c)x =2 Æc. There-
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fore, i cOG 6' (i c)xOG as O[D � G]-modules. On the other hand, asO[D � G]-
modules,

i cOG = i 0 f OG ' i 0x f OG = (i 0 f )xOG = (i c)xOG,

which is a contradiction. Hence,DÆc and DÆ0 satisfy the conditions.

We cite Puig’s theorems as lemmas, on which our proof of Theorem 4.9 depends.

Lemma 4.7 (Puig [30, Proposition 4.3]). Let b be a block ofOG and i a source
idempotent ofOGb. Then there is an equivalence of categories between the category
of isomorphism classes of primitive interior G-algebras inb and the category of iso-
morphism classes of primitive iOGi-algebras, see[31, 4.2]. An object A of the former
corresponds to an object i� A � i of the latter.

Lemma 4.8 (Puig [28] or see [35, Theorem 44.3]).Let b be a block ofOG with
a normal defect group D, DÆ a defect pointed group ofOGb and i2 Æ. Then, for any ag 2
(iOGi)� satisfying a�1

g � u � ag = ug � i for any u2 D where g2 4 = [DCG(D)nNG(DÆ)]
(see[35, Proposition44.2] for the existence of ag), we have the following description of
a source algebra iOGi of OGb as an(OD, OD)-bimodule:

iOGi =
M
g24 OD � ag 'M

g24 ODg.

Theorem 4.9. AssumeConditions 4.1and 4.3. Then (OGb)� and OGSw(b) are
isomorphic as primitive interior GS-algebras. In particular, OGb andOGSw(b) are
Puig equivalent([21], [14]).

Proof. Second statement is clear, sinceA = OGb and A� are Puig equivalent by
the construction.

Since A� is in w(b) by Proposition 3.5 (3), it suffices to show that, for some
source idempotenti 0 of OGSw(b),

i 0 �OGSw(b) � i 0 ' i 0 � A� � i 0(4.9.1)

as primitive i 0OGSi 0-algebras, see Lemma 4.7.
For (4.9.1), letÆ0, Æ00, i0 2 Æ0, i 00 2 Æ00 and f0 2 � be points and idempotents as in

the statements of Lemma 4.6. Then we can see that

' : i 00 �OGSw(b) � i 00! i 00 � f0Af0 � i 00, x 7! f0x f0

is well-defined and is an isomorphism of primitivei 00OGSi 00-algebras.
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It is straightforward to check that' is well-defined and is ani 00OGSi 00-algebra
homomorphism by thei 00OGSi 00-algebra structures ofi 00 � OGSw(b) � i 00 = i 00OGSi 00 and
i 00 � f0Af0 � i 00 = i 00 f0Af0i 00 = f0i 00OGi 00 f0, which is equal toi0Ai0, see the condition
(i) in Lemma 4.6. Below, we note that' is an isomorphism ofO-spaces, using the
structure theorem of the source algebra of a block with a normal defect group. Denote4 = [DCGS(D)nNGS(DÆ00)] = [ DCG(D)nNG(DÆ0)], see the condition (ii) in Lemma 4.6.
By Lemma 4.8, we have

i 00OGSi 00 =
M
g24 OD � a0g

for a0g 2 (i 00OGSi 00)� as in Lemma 4.8. Then, for anyg 2 4, ag = '(a0g) = f0a0g f0 is in

(i0Ai0)� and satisfiesag
�1(u � i0)ag = ug � i0 for any u 2 D, as is immediately checked.

Hence we have

i0Ai0 =
M
g24 OD � ag

by Lemma 4.8. Therefore,' is an isomorphism, since' maps anO-basisfu �a0ggu2D,g24
of i 00OGSi 00

Assume Conditions 4.1 and 4.3. Sincef OG j OGb#G�G
GS�G, f OG has a trivial

source. By Theorem 4.9, tensoringf OG overOG, that is, multiplication by the idem-
potent f , induces a Morita equivalence betweenOGb andOGSw(b), see [35, Theo-
rem 9.9]. Moreover, from this and the decomposition of the restriction of OGb-modules
to OGS-modules described in Corollary 4.5,f OG induces cleary the Glauberman cor-
respondence, see Theorem 2.1 (3). (Note that ifb, hencew(b), is a principal block,
then the defect multiplicity module is trivial and sof = b, OGb#G�G

GS�G = f OG and

OGb = OGSw(b).)
From above and [15, Proposition 2.5], we have the following by induction, see

the first paragraph of the proof of Theorem 4.11:

Corollary 4.10 (Harris [14]). Assume the following:
1. G is a finite group acted by a finite solvable groupS such that(jGj, jSj) = 1.
2. b is anS-invariant block of G with anS-centralized normal defect group D.
Let 1 = S0 � S1 � S2 � � � � � Sn = S be a composition series ofS such thatjSi =Si�1j
is a prime, for 1 � i � n. (Then Irr(b) = Irr(b)S and there is a unique blockwi (b) of
GSi such thatIrr(wi (b)) = f�(G, Si )(�) j � 2 Irr(b)g, see[36, Proposition 1 and Theo-
rem 1].)

Then there is an indecomposableO[GSi � G]-module with a trivial source induc-
ing a Morita equivalence betweenOGb andOGSiwi (b) and the Glauberman corre-
spondence betweenIrr(b) and Irr(wi (b)). In particular, OGb andOGSiwi (b) are Puig
equivalent([21], [14]).
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In fact, we have a formulation in terms of pointed groups, which implies Corol-
lary 4.10:

Theorem 4.11. With the same assumptions and the notations inCorollary 4.10,
we have the following:
(1) There is a sequence Gfbg = GS0�0

� GS1�1
� GS2�2

� � � � � GS�n
� DÆ of pointed groups

of OGb such that(OGb)�i 'OGSiwi (b) as interior GSi -algebras, whereÆ is any point
of (OGb)D, which is necessarily local, seeLemma 4.4.
(2) (Watanabe)For l i 2 �i , yi 7! yi � l i , is an isomorphism of interior GSi -algebra from
OGSiwi (b) to liOGli where yi 2 OGSiwi (b), and so liOGli = OGSiwi (b)l i .
(3) For l i 2 �i , the (OGSi , OG)-bimodule liOG induces a Morita equivalence be-
tweenOGb andOGSiwi (b) and the Glauberman correspondence betweenIrr(b) and
Irr(wi (b)).

Proof. Firstly, recall the definition ofwi (b). Below, the action ofSi =Si�1 on GSi�1

is the action induced by the given action ofSi on G. For anSi =Si�1-invariant blockB of
GSi�1 with an Si =Si�1-centralized defect group, denote bywSi =Si�1(B) the Glauberman-
Watanabe corresponding block ofGSi = (GSi�1)Si =Si�1 induced by�(GSi�1, Si =Si�1). Tak-
ing w0(b) = b and using induction,wi (b) is defined bywi (b) = wSi =Si�1(wi�1(b)). By
induction, then, Irr(wi (b)) = f�(G, Si )(�) j � 2 Irr(b)g by Theorem 2.1 (ii) and Theo-
rem 2.5 (2),wi (b) is Si +1=Si -invariant by Theorem 2.1 (i) forSi ⊳ Si +1 andwi (b) has a
defect groupD by Theorem 2.5 (2), which isSi +1=Si -centralized.

By Theorem 4.9, there is some primitive idempotentfi in (OGSi�1wi�1(b))(GSi�1 )Si =Si�1 =
(OGSi�1wi�1(b))GSi such that

fiOGSi�1wi�1(b) fi ' OGSiwi (b)

as interiorGSi -algebras. Since we have an interiorGSi�1-algebra isomorphism

9i�1 : OGSi�1wi�1(b)! l i�1OGli�1

for l i�1 2 �i�1 by induction (in the casei = 1, this is trivial), for the primitive idem-
potent l i = 9i�1( fi ) of (l i�1OGli�1)GSi, there is an interiorGSi -algebra isomorphism

9i : l i (l i�1OGli�1)l i = l iOGli ! OGSiwi (b).

Note thatl i is also primitive in (OGb)GSi, see [35, Proposition 4.12], and let�i be the
point of GSi in OGb containing l i . Note that�i is uniquely determined by the point

of (OGSi�1wi�1(b))(GSi�1 )Si =Si�1 containing fi , see [35, Proposition 15.1 (a)]. SinceGSi�i

has defect groupD and NGSi�1 (D) = NGSi (D)CGSi�1 (D), DÆ is a defect pointed group

of GSi�i
whereÆ is any local point of (OGb)D. From above, (1) follows.
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Since l iOGli ' OGSiwi (b) as interiorGSi -algebras inwi (b), the structural map,
which is an interiorGSi -algebra homomorphism,OGSiwi (b)! l iOGli , yi 7! yi � l i , is
an isomorphism. Hence, we have (2).

By (2), we can takexi�1 2 OGSi�1wi�1(b) such thatl i = xi�1 � l i�1 = l i�1 � xi�1.
Then (3) follows from the following isomorphisms of (OGSiwi (b), OGb)-bimodules:

fi (OGSi�1wi�1(b))
OGSi�1 fi�1(OGSi�2wi�2(b))
OGSi�2 � � �

OGS2 f2(OGS1w1(b))
OGS1 f1(OGb)

' l i (l i�1OGli�1)
OGSi�1 l i�1(l i�2OGli�2)
OGSi�2 � � �

OGS2 l2(l1OGl1)
OGS1 l1(OGb)

= l i (l i�1OGSi�1l i�1)
OGSi�1 l i�1(l i�2OGSi�2l i�2)
OGSi�2 � � �

OGS2 l2(l1OGS1l1)
OGS1 l1(OGb)

= l i 
OGSi�1 l i�1
OGSi�2 � � � 
OGS2 l2
OGS1 l1(OGb)

= l i (l i�1 � xi�1)
OGSi�1 l i�1(l i�2 � xi�2)
OGSi�2 � � � 
OGS2 l2(l1 � x1)
OGS1 l1(OGb)

= l i (l i�1 � xi�1)
OGSi�1 l i�1(l i�2 � xi�2)
OGSi�2 � � � 
OGS2 l2
OGS1 l2(OGb)

= � � �
= l i 
OGSi�1 l i�1
OGSi�2 � � � 
OGS2 l2
OGS1 l i (OGb)

' l i (OGb).

5. Appendix

Throughtout this section, we assume Condition 4.1.
Since the Glauberman correspondence induces an isotypy between Glauberman-

Watanabe corresponding blocks, it is desirable to exist a two-sided complex inducing a
splendid derived equivalence and the Glauberman correspondence. In fact, in the nor-
mal defect case, this is proved in Harris’s result Corollary4.10.

On the other hand, Okuyama pointed out in [26] that there is some pairwise or-
thogonal (possibly zero) idempotentsbi , 0 � i � q � 1, of (OGb)GS

such thatb =Pq�1
i =0 bi and, as generalized characters ofK[GS� G],

80�8l =
X

�2Irr(b)

Æ�(�(G, S)(�)� �̌) for 1� l � q � 1,(�)
where8i is the character corresponding tobiKG, �̌ is the dual of� and Æ� is the
sign described in Proposition 2.4, taking�̂ so that Irr(̂b0) = f�̂ j � 2 Irr(b)g in the case
of q = 2. Here and below, we denote byb̂0 a canonical extension ofb in the sense of
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[36, p. 555]. In fact, we can take asbi

bi =
q�1X
j =0

ej b̂ j +i for 0� i � q � 1,(��)
where b̂t is the block ofO0 such that Irr(̂bt ) = f�t j  2 Irr(b̂0)g and et is the block
of OS corresponding to�t 2 Irr(S) for any integert , see [34, Section 4]. Note that
when q = 2, b0 depends on the choice ofb̂0.

We note that the normal defect case fits into this observation. That is, there is a
complex C� of (OGS, OG)-bimodules which induces a splendid derived equivalence
betweenOGb and OGSw(b) and whose character is canonically reduced to the left
hand side of (�) (hence which induces the Glauberman correspondence). Letm =
m( f OG,OGb) as in Proposition 4.2. In fact, by Proposition 5.2 below, for example,
we can take

C� : � � � ! 0! blOG! b0OG! 0! � � �
where the degree ofb0OG is 0 and the non-trivial differential is induced by inclusion
in the casem � 1 (modq) and projection in the casem � �1 (modq). Note that
C� ' f OG or C� ' f OG[1] in the appropriate derived (or homotopy) category where
we view f OG as a complex concentrated in degree 0.

REMARK 5.1. From (�) and Proposition 5.2 below, we see that, under Condi-
tions 4.1 and 4.3, the character ofK
O f OG is

P�2Irr(b)(�(G, S)(�)� �̌). Hence, by

[7, Théorème 0.2.],f OG induces a Morita equivalence betweenOGb andOGSw(b),
and we can also get Corollary 4.10 without using Lemmas 4.6, 4.7 and 4.8, if we
utilize the facts (�) and (��).

For a groupH and anOH -moduleM, we denote byMQ a maximal direct sum-
mand ofM any of whose indecomposable direct summand hasQ as a vertex. We
have a more precise statement of Proposition 4.2:

Proposition 5.2. AssumeCondition 4.1. With the above notations, we have the
following isomorphisms of(OGS,OG)-bimodules: when q is odd, if m � 1 (modq) then

(b0OG)1D ' f OG� (blOG)1D(5.1.1)

and if m� �1 (modq) then

(blOG)1D ' f OG� (b0OG)1D,(5.1.2)

and when q= 2, depending on the choice of b0, we have(5.1.1) or (5.1.2). Hence,
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if moreover we assumeCondition 4.3, then we have

b0OG ' f OG� blOG

or

blOG ' f OG� b0OG.

Proof. Letq be odd andm� 1 (modq). Similar for the casem� �1 (modq),
using (3.2.3) in the proof of Lemma 3.2.

Let DÆ be a defect pointed group ofO0b̂0 and V̂ = VO0b̂0
(DÆ). As in the proof of

Proposition 4.2, the indecomposable decomposition of (O0b̂0#GSS�0)1D is described
by the indecomposable decomposition ofV̂#GSS. Note thatN0(D) = NGSS(D)C0(D).
Below we will identify S with its canonical image inC0(D)=D and recall thatV̂ has
a canonicalkC0(D)=D-module structure.

Firstly, since primitive idempotents of EndO[GSS�0](O0b̂0) remain to be primitive

idempotents of EndO[GS�0](O0b̂0), for primitive idempotentsj1 and j2 of (O0b̂0)GSS

such that j1O0b̂0 j (O0b̂0#GSS�0)1D and j2O0b̂0 j (O0b̂0#GSS�0)1D,

j1(O0b̂0)#GSS�0
GS�0 ' ( j2O0b̂0)#GSS�0

GS�0
if and only if

(�Æ( j1) � V̂)#NGSS(DÆ )=D
NGS(DÆ )=D ' (�Æ( j2) � V̂)#NGSS(DÆ )=D

NGS(DÆ )=D .

Secondly, for a primitive idempotentj of (O0b̂0)GSS, since j =
Pq�1

r =1 er j in

(O0b̂0)GSS and �Æ is an interior S-algebra homomorphism, we haveet � ( jO0b̂0) 6= 0
if and only if et � (�Æ( j ) � V̂) 6= 0 for t 2 Z.

Note that an indecomposable direct summandZ of O0b̂0#GSS�0 is determined by
Z#GS�0 and et such thatet � Z 6= 0.

Since a canonical character ofb̂0 is the canonical extension of a canonical char-
acter of b by [36, p. 558], from the isomorphism (3.2.2) in the proof of Lemma 3.2,
Lemma 3.3 and above remarks, we have the following isomorphism of (OGSS, O0)-
bimodules for some (OGS, OGb)-bimoduleN :

�
O0b̂0#0�0GSS�0�1D

' �0 f̂ OG�
 

q�1M
i =0

�i N̂

!

where, for an (OGS, OGb)-bimoduleM, we denote by�iM̂ the extension ofM to
(OGSSei , O0b̂0)-bimodule.
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Hence, by Lemma 5.3 fort = 0 below, we have

(b0OG)1D ' (�0 f̂ OG� �0N̂ )#GSS�0
GS�G ' f OG�N

and

(blOG)1D ' (�q�l N̂ )#GSS�0
GS�G ' N .

Hence the statement follows.
Similar for the case ofq = 2.

Lemma 5.3. AssumeCondition 4.1.With the above notations and for any integer
t , we have the following(OGS, OG)-bimodule isomorphism:

biOG ' (et�iO0b̂t )#GS�G.

Proof. We have the following isomorphisms of (OGS, OG)-bimodules:

et�iO0b̂t =
q�1X
j =0

ej +t�i b̂ j +tO0b̂t = biO0b̂t ' biOGb.

For the last isomorphism, see Lemma 2.7.
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