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Abstract
We deal with the value distribution problem for the linear combinations of

multiplicities of the cycle lengths of a random permutation. To examine the
characteristic functions, we derive asymptotic formulas for ratios of the Taylor
coefficients of the relevant generating series. The proposed version of analytic
method does not require any analytic continuation of these series outside the
convergence disk.

1. Introduction

We are concerned with the value distribution problem of mappings defined on ran-
dom permutations. For this purpose, one can apply the probabilistic approach developed
by R. Arratia, A.D. Barbour and S. Tavaré [1] which is similarto Kubilius’ method [17]
in probabilistic number theory. Another possibility is to apply the Fourier transforms
and to explore relevant asymptotic formulas for the Taylor coefficients of analytic func-
tions. In this direction, the most popular transfer method cultivated by P. Flajolet and
A. Odlyzko [9] requires analytic continuation of the generating series outside the conver-
gence disk. Therefore it loses in generality. So far, the most promising method remains
the approach extending the Halász’ [12] ideas. The first attempt to go along this path
was made in our paper [18]. Later that was continued in [20] and [21]. Recently [4],
to examine distributions with respect to the Ewens probability on the symmetric group,
jointly with G.J. Babu and V. Zacharovas we proposed a simpler version. We now pro-
ceed these investigations. Finally, we note that an application of the Voronoi summation
formulas is also possible (see the forthcoming paper [25]).

Let Sn be the symmetric group and� 2 Sn be a permutation havingk j (� ) � 0 cy-
cles of lengthj , 1� j � n. Thestructure vectoris defined as̄k(� ) := (k1(� ),:::,kn(� )).
If `(k̄) := 1k1 + � � � + nkn, where k̄ := (k1, : : : , kn) 2 Z+n

, then we have the relation

(1) `(k̄(� )) = n.
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Moreover, if `(k̄) = n, then the setf� 2 Sn: k̄(� ) = k̄g agrees with the class of conjugate
permutations inSn. Set

�n( � � � ) = (n!)�1#f� 2 Sn : � � � g
for the uniform probability measure onSn. If � j , j � 1, are independent Poisson
random variables (r.vs) given on some probability spacef�, F , Pg, E� j = 1= j , and�̄ : = (�1, : : : , �n), then [1]

�n(k̄(� ) = k̄) = 1f`(k̄) = ng nY
j =1

1

j k j k j !
= P(�̄ = k̄ j `(�̄ ) = n).

Moreover,

(k1(� ), : : : , kn(� ), 0, : : : ) �n) (�1, : : : , �n, �n+1, : : : )
in the sense of convergence of the finite dimensional distributions. Here and in what
follows we assume thatn ! 1. Despite that, in dealing with the asymptotic value
distribution of the linear combinations

(2) hn(� ) : = an1k1(� ) + � � � + annkn(� ), anj 2 R,

called completely additive(shortly, additive) functions, we face a lot of obstacles. The
main reason is dependence of the summands arising from relation (1). So far we lack
a general theory. The probabilistic number theory is a bit ahead in this regard (see [6]
or [17]). Following its tradition, in our case the main problem can be formulated as
follows:

Under what conditions the frequencies Vn(x; hn, �) := �n(hn(� ) � �(n) < x) with
some�(n) 2 R weakly converge to a limit distribution function?

Only in the case of degenerated limit law we have the final answer. To give some
impression, we just formulate this result. Setx� = minf1, jxjg signx.

Theorem 1 ([23]). Let hn(� ) be defined in(2). The frequencies Vn(x;hn,�) weak-
ly converge to the degenerated at the point x= 0 distribution function if and only if

X
j�n

(anj � � j )�2

j
= o(1)

and

�(n) = n� +
X
j�n

(anj � � j )�
j

+ o(1)

for some sequence� = �n 2 R.
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After the appearance of V.L. Goncharov’s paper [11] the value distribution of par-
ticular functions onSn was examined by P. Erdős and P. Turán [7]. Under the extra
condition anj = 0 for r < j � n, wherer log r = o(n), meaning thathn(� ) is supported
only by short cycles, a solution of the main problem was givenby V.L. Kolchin and
V.P. Chistyakov [16] (see also [15], Section 1.10). Theorem6 of the paper [2] extended
this result under the conditionr = o(n) only. R. Arratia and S. Tavaré also observed
that the approximation ofhn(� ) by an appropriate sum of independent r.vs does not
hold if r 6= o(n). That showed the limits of their probabilistic method. Ouranalytic
approach [18] had some advantages in proving general limit theorems, especially for
additive functions supported by the long cycles.

The authors of [1] and previous papers have demonstrated theimportance of the
weighted probabilities inSn. If � > 0 is fixed andw(� ) = k1(� ) + � � � + kn(� ) denotes
the number of cycles, then

�n,� (f� g) := �w(� )

 X
�2Sn

�w(� )

!�1

= �w(� )��1
(n) ,

where� 2 Sn and �(n) := �(� + 1) � � � (� + n� 1), also defines a probability measure on
Sn. Identifying the class of conjugate permutationsf� 2 Sn: k̄(� ) = k̄g with the partition
n = 1k1 + � � � + nkn, say �, we induce the Ewens probability

�n,� (k̄(� ) = k̄) = : P(f�g) =
n!�(n)

nY
j =1

��
j

�k j 1

k j !

on the set of partitions. Since its introduction into the models of mathematical genetics
[8], this probability proved to be useful in many other applied statistical problems (see,
for instance, [14]). Generalizing we can define the following extension of�n,� .

By definition, acompletely multiplicative(shortly, multiplicative) function g: Sn !
C has a decomposition

g(� ) =
nY

j =1

g
k j (� )
j ,

where fg j g is a complex sequence with the propertyg j 6� 0 and 00 := 1. Now setting

�(d)
n (f� g) = d(� )

 X
�2Sn

d(� )

!�1

, � 2 Sn,

where d : Sn ! R+ is a multiplicative function, maybe, depending onn and defined
via fd j := dnj g, we define a probability measure onSn. For motivation, we can refer to



276 E. MANSTAVI ČIUS

[5], where this measure appears in models of the equilibriumstate of some reversible
coagulation-fragmentation processes.

In this paper, we examine the asymptotic distribution ofhn(� ) with respect to�(d)
n

assuming the following condition

(3) 0< �� � d j � �+ <1
with some constants�� and �+. If �� = �+, we have the case of Ewens probabil-
ity studied extensively in [1] and in the series of author’s papers written jointly with
G.J. Babu (see the references in [4]).

2. Results

Theorem 1 indicates that the functionhn(� ) defined in (2) can have the additive
component�`(k̄(� )) = �n with some� = �n 2 R. Taking this into account, we set
anj (�) = anj � � j . Let Yj be independent Poisson r.vs,EYj = d j = j where j � 1.

Theorem 2. Assume condition(3). Let hn : Sn ! R be a sequence of additive
functions such that, for some� = �n 2 R,

(4)
X
j�n

anj (�)�2

j
� 1,

and

(5)
X

"n� j�n

anj (�)�2

j
= o(1)

for each0< " < 1.
The following assertions are equivalent:

(i) the sequence of distribution functions

Vn(x) := �(d)
n (hn(� )� �(n) < x)

weakly converges to a limit distribution;
(ii) the sequence of distribution functions

P

 X
j�n

anj (�)Yj � (�(n)� n�) < x

!

weakly converges to a limit distribution;
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(iii) there exists a nondecreasing bounded function9(u) defined onR̄ such that

9n(u) :=
X
j�n

anj (�)<u

d j anj (�)�2

j

weakly converges to9(u), 9n(�1) ! 9(�1), and

(6) �(n) = n�n +
X
j�n

d j anj (�)�
j

+ � + o(1)

for some constant� 2 R.
If the condition (iii) is satisfied, the limit distribution for the sequences in(i) or

(ii) is the same and its characteristic function has the form

exp

��i t� +
Z

R
(ei tu � 1� i tu�)u��2

d9(u)

�
, t 2 R.

The class of limit distributions agrees with the family of infinitely divisible distributions.

Condition (4) follows from (iii) and, thus, from (ii). Theorem 2 of [23] shows that
it also holds if the sequence of distribution functions�n(hn(� )��(n) < x) is relatively
compact. Using similar argument one can extend that for the weighted distributions
Vn(x). So, in some parts of Theorem 2, the only extra condition is (5). It allows to
truncate the additive functions up to the short cycles. Sometimes, as in Theorem 1, it
is necessary or implied by other conditions. We now reckon two such cases.

Corollary 3. In the previous notation, let

(7) 9n(u) ! �
1 if u > 0,
0 if u < 0

for some sequence�n of real numbers and let�(n) be given by(6) with � = 0. Then

(8) Vn(x) ! 8(x) =
1p
2�

Z x

�1 e�u2=2 du.

Observe that (7) assures (4) and (5), thus, this corollary concerns the additive
functions supported by short cycles only. In [3] by constructing an additive function
on long cycles, we have shown that even ford(� ) � 1 the Lindeberg type condition
(7) is not necessary for the relation (8).

To demonstrate a possibility to derive necessary and sufficient convergence condi-
tions, we present the following result.
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Theorem 4. Let condition (3) be satisfied and suppose that the functions d(� )
and hn(� ) = h(� ) do not depend on n(so do also dj and anj =: a j ) and �(n) 2 R.
The distribution functions�(d)

n (h(� )� �(n) < x) weakly converge to a limit law if and
only if the series

(9)
1X
j =1

d j (a j � � j )�2

j

converges for some fixed� 2 R and

(10) �(n) = n� +
X
j�n

d j (a j � � j )�
j

+ �1 + o(1),

where�1 2 R is a constant.

Theorem 4 contains the following analog of the Kolmogorov three series theorem.

Corollary 5. Let condition (3) be satisfied. In the notation of Theorem 4,the
distribution functions�(d)

n (h(� ) < x) weakly converge to a limit law if and only if the
series

1X
j =1

d j a�2

j

j

and

1X
j =1

d j a�j
j

converge.

Most probably, the probabilistic method [1], can be refined toprove our results
provided that the truncation assumption (5) is satisfied. Sofar, that was possible only
in the case whend j � � as j !1. Showing another advantage of our analytic ap-
proach, as in [18] or [4], one could examine the case when (5) is not satisfied.

3. Quotients of the Taylor coefficients

In this section we derive some asymptotic formulas for the quotients of the Taylor
coefficients using an analytic approach which is considerably simpler than that pro-
posed in our paper [21]. Partial cases have been examined in the paper [4].



AN ANALYTIC METHOD 279

Let fd j g, j � 1 be a sequence satisfying condition (3). Set

D(z) =
X
n�0

Dnzn := exp

(X
j�1

d j z j

j

)
.

For a sequence of complex numbersfb j g, j � 1 depending onn and, maybe, on other
parameters,jb j j � 1 define

M(z) =
X
n�0

Mnzn := exp

(X
j�1

d j b j z j

j

)
.

We explore the asymptotic behavior of the ratioMn=Dn as n ! 1. The goal is
to obtain the uniform remainder term estimates. Note that recently G. Freiman and
B.L. Granovsky [10] obtained an asymptotic formula forMn if in our notationb j = 1
and d j � j a with a > 0. Their method does not work for complex valuedb j .

Without loss of generality, we can taked j = b j = 0 if j > n. Check that differ-
entiating D(z) and comparing the coefficients in the equality obtained we derive the
recurrence relation

(11) Dn =
1

n

nX
j =1

d j Dn� j .

By virtue of (3) this further leads (see, for instance, [21],Lemma 3.1) to

(12) ��c(�+) exp

(X
j�n

d j � 1

j

)
� Dn � e�+ exp

(X
j�n

d j � 1

j

)
,

wherec(�+) > 0 is a constant andn � 1. Moreover, trivially jMnj � Dn.

Proposition 6. Assume condition(3). If

(13)
X
j�n

d j (1�<b j )

j
� L <1,

then

Mn =
1

2� in

Z 1+i K

1�i K
exp

(
w +

X
j�n

d j b j

j
e�w j =n) dw + O(Dn(K�c + n�1=2))

for each 2 � K � n with some positive constant c= c(��). The constant in O( � )
depends at most on L, ��, and �+.
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As a corollary, we obtain a result, proved in [21]. Now, for a positive sequence�n = o(1), we assume the additional condition

(14)
1

n

X
j�n

d j j1� b j j � �n = o(1).

Proposition 7. Under the conditions ofProposition (6)and (14), the following
asymptotic formula holds

Mn

Dn
= exp

(X
j�n

d j (b j � 1)

j

)
+ O(�c1

n + n�c2).

The constant in O( � ) depends at most on L, ��, and �+ while c1 = c1(��, �+) > 0
and c2 = c2(��, �+) > 0.

In the sequel, for brevity, we use the symbol� in the place ofO( � ). We will
need the following estimate obtained in [21].

Proposition 8. Let condition(3) be satisfied. Then

Mn

Dn
� exp

(
�c3 minj� j��

X
j�n

d j (1�<(b j e�i � j ))

j

)
,

where c3 = c3(��, �+) > 0 is a constant.

To prove Proposition 6, we use Cauchy’s formula

Mn =
1

2� i

�Z
10

+
Z
1
�

M(z)

zn+1
dz =: J0 + J,

where10 = fz = rei � : j� j � K=ng, 1 = fz = rei � : K=n < j� j � �g, r = e�1=n, and
2 � K � n. Check that the substitutionz = e�w=n reducesJ0 to the main term ofMn

in Proposition 6. Thus it remains to examine the integralJ. The main role is played
by the polynomial sequence

L(z) :=
X
j�n

d j (b j � 1)

j
z j ,
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therefore we start with its estimates. For a parameter 0< u � 2, we set

E(u) := exp

8><
>:2

X
j�njbj �1j>u

d j jb j � 1j
j

9>=
>; � exp

(
4u�1

X
j�n

d j jb j � 1j2
j

)

� expf�4u�1<L(1)g,
since j1� b j j2 � 2(1�<b j ) for jb j j � 1. Denote�(u) = 4u�+=� and

l (u) = E(u) expf<L(1)g.
Note that, for brevity, the sequences indexn � 1 is omitted in the notation.

Lemma 9. Let r = e�1=n, z = rei � , and j� j � � . Then, for arbitrary 0< u � 2,

expfjL(z)� L(1)jg = exp

(�����
X
j�n

d j (b j � 1)

j
(z j � 1)

�����
)
� E(u)

����1� z

1� r

����
�(u)

,

where the constant in� depends only on u and�+.

Proof. We use the argument given in the paper [21]. We have

j1� ei x j =
4�
X
m2Z

1

1� 4m2
eimx

for arbitrary x 2 R. Hence

(15)

jL(z)� L(1)j � �+u
X
j�n

jz j � 1j
j

+ log E(u)

� �+u
X
j�1

r j jei � j � 1j
j

+ �+u + log E(u)

� �(u) log
j1� rei � j

1� r
+ �+u + log E(u)

+ �(u)
X0

m2Znf0g
1

4m2 � 1
log

j1� reim� jj1� rei � j ,

where the dash denotes that the summation is restricted to those m 6= 0 for whichj1� reim� j > j1� rei � j. For suchm, we also havej1� reim� j=j1� rei � j � m with
an absolute constant in�. So, the last sum in (15) is bounded. For some bounded



282 E. MANSTAVI ČIUS

quantity C(�+, u), we obtain

jL(z)� L(1)j � �(u) log
j1� rei � j

1� r
+ log E(u) + C(�+, u).

The lemma is proved.

Lemma 10. Let r = e�1=n, z = rei � , j� j � � , and 0< u � 2 be arbitrary. In the
notation above, we have

M(z) � nDnl (u)

����1� z

1� r

����
�(u)���

.

Proof. It suffices to use the identity

M(z) = D(1) expfL(1)g expfL(z)� L(1)g D(z)

D(1)
,

(12), the estimate

jD(z)j
D(1)

� exp

(X
j�n

d j r j

j
(cos� j � 1)

)

� exp

(X
j�1

d j r j

j
(cos� j � 1)

)
� ����1� r

1� z

����
��

,

and Lemma 9. The lemma is proved.

Lemma 11. Let r = e�1=n, 2� K � n, and 0 � j � n. If condition (3) is satis-
fied, then

IK ( j ) :=
Z

K=n<j� j�� M(rei � )e�i j � d� � D j log K + Dn +
X

3 j =2<m�n

Dm

m
.

Proof. Integrating the power series by parts, we obtain

IK ( j ) =
1X

m=0

Mmr m
Z

K=n<j� j�� ei (m� j )� d�
= M j r

j

�
2� � 2

K

n

�� 2
X

m�0,m6= j

Mmr m sin((K=n)(m� j ))

m� j
.
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From (12) we haveD j � Dm � D j if jm� j j � j =2, therefore

(16)

IK ( j ) � D j + D j

X
1�jm� j j� j =2

����sin((K=n)(m� j ))

m� j

����
+

X
jm� j j> j =2

Dmjm� j jr m.

Further we apply the estimatesX
1�jm� j j� j =2

m6= j

����sin((K=n)(m� j ))

m� j

���� � X
1�jm� j j�n=K

K

n
+

X
n=K�jm� j j� j =2

1jm� j j
� 1 + log

�
2 +

j

2

K

n

�� log K

and X
jm� j j> j =2

Dmjm� j jr m � 1

j + 1

X
0�m< j =2 Dm +

X
3 j =2<m�n

Dm

m
+

1

n

X
m>n

Dmr m

� D j +
X

3 j =2<m�n

Dm

m
+

D(1)

n
.

In the last step we have used (3) and (11). The estimateD(1)� nDn following from
(12) yields the desired result. Lemma 11 is proved.

Lemma 12. Let " 2 [2=n, 1=2] be arbitrary. If �(u) < ��, then

J � ("�� + " log("�1))Dn log K + Dnl (u)K �(u)���"�1=2.

Proof. Since by Lemma 10

(17) max
z21 jM(z)j � nDnl (u)K �(u)��� ,

integrating by parts, we obtain

(18)

J =
1

2� in

Z
1

M(z)

zn

 X
j�n

d j b j z
j�1

!
dz + O(Dnl (u)K �(u)��� )

=
1

2�n

X
j�n

d j b j r
j�n

Z
K=n�j� j�� M(rei � )ei � ( j�n) d� + O(Dnl (u)K �(u)��� )

� 1

n

X
0� j�T

IK ( j ) +
1

n

X
T< j�n

����
Z

K=n�j� j�� M(rei � )e�i j � d� ���� + Dnl (u)K �(u)���

=:
1

n

X
0� j�T

IK ( j ) + I + Dnl (u)K �(u)��� ,
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where T = ["n] and IK ( j ) have been defined in Lemma 11. This lemma yields

1

n

X
0� j�T

IK ( j ) � log K

n

X
0� j�T

D j +
T Dn

n
+

1

n

X
0� j�T

X
3 j =2<m�n

Dm

m
.

Since by virtue of (3), (11), and (12), we have

Dm � Dn

�
n

m

�1���
, T � m� n

from the last estimate, using (11) again, we obtain

(19)

1

n

X
0� j�T

IK ( j ) � ("�� + ")Dn log K +
T

n

X
3T=2�m�n

Dm

m
+

1

n

X
m�3T=2 Dm

� ("�� + ")Dn log K + "Dnn1��� X
3T=2�m�n

m���2

� ("�� + " log("�1))Dn log K .

To estimate the termI in (18), we again use integration by parts and (17). Further
applying Cauchy’s inequality, we obtain

I � 1

n

X
T< j�n

1

j

����
Z

K=n�j� j�� M 0(rei � )e�i ( j�1)� d� ���� +
1

n

X
T< j�n

1

j
max
z21 jM(z)j

� 1

n
p

T

 X
1� j�n

����
Z

K=n�j� j�� M 0(rei � )e�i ( j�1)� d� ����
2
!1=2

+ Dnl (u)K �(u)��� log("�1).

The integrals under the last sum are just the Fourier coefficients of an appropriate func-
tion therefore, via Parseval’s identity, we further have

I � 1

n
p

T

�Z
K=n�j� j�� jM 0(rei � )j2 d��1=2

+ Dnl (u)K �(u)��� log("�1)

=
1

n
p

T

 Z
K=n�j� j�� jM(rei � )j2

�����
X
j�n

d j b j r
j ei � j

�����
2

d�
!1=2

+ Dnl (u)K �(u)��� log("�1).
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By Lemma 10 and Parseval’s identity again, we obtain

I � Dnl (u)K �(u)��� (n")�1=2 Z
K=n�j� j��

�����
X
j�n

d j b j r
j ei � j

�����
2

d�
!1=2

+ Dnl (u)K �(u)��� log("�1)

� Dnl (u)K �(u)���"�1=2.

Inserting this and (19) into (18) we complete the proof of Lemma 12.

Proof of Proposition 6. As we have mentionedMn = J0+ J and J0 gives the main
term. It remains to apply Lemma 12. Fixu to assure�(u) = 4u�+=� � ��=2. The
condition of Proposition 6 impliesl (u) � 1. If �� < 2, andK � K0(��) is sufficiently
large, choosing" = K���=2 we obtain

J � K�((��)2=2)̂ (��=4)Dn.

The same choice of" is possible and the last estimate holds if�� � 2 and 2=n �
K���=2. For (n=2)2=�� � K � n, we can take" = n�2=3 to get even better estimate
than we needJ � (log2 n)n�2=3Dn.

The proposition is proved.

Proof of Proposition 7. As a corollary, from Proposition 6 wehave

(20) Dn =
1

2� in

Z 1+i K

1�i K
ewD(e�w=n) dw + O(Dn(K�c + n�1=2))

and

Mn = exp

(X
j�n

d j (b j � 1)

j

)

� 1

2� in

Z 1+i K

1�i K
ewD(e�w=n) exp

(X
j�n

d j (b j � 1)

j
(e�w j =n � 1)

)
dw

+ O(Dn(K�c + n�1=2)).

In the previous notation, the last sum under the exponentialfunction is justL(e�w=n)�
L(1) therefore using Lemma 9 and the trivial estimate

jL(e�w=n)� L(1)j =

�����
X
j�n

d j (b j � 1)

j
(e�w j =n � 1)

����� � jwj�n,
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following from (14), we obtain

expfL(e�w=n)� L(1)g � 1� jwj�n

����1� e�w=n
1� r

����
�(1) � jwj1+�(1)�n.

Here the constant in� depends at most on�+ and L. By Lemma 10 we also have
D(e�w=n) � nDn with the additional dependence on��. Inserting the last estimates
into the integral expression ofMn, we derive

Mn = exp

(X
j�n

d j (b j � 1)

j

)
1

2� in

Z 1+i K

1�i K
ewD(e�w=n) dw

+ O(Dn�nK 2+�(1)) + O(Dn(K�c + n�1=2)).

Applying now (20) and choosingK = (min(��1
n , n))c1 with sufficiently small positive

constantc1 depending at most on�� and �+, we complete the proof of Proposition 7.

We end this section with the observation that Propositions 6and 7 hold under con-
dition l (u) � 1 for some 0< u � ���=8�+ which is weaker than (13).

4. Proofs of Theorems and Corollaries

The main probabilistic ingredient is the following lemma.

Lemma 13. Assume that a sequence of characteristic functions'n(t) has the fol-
lowing representation

'n(t) = exp

��i t
n +
Z

R
(ei tu � 1� i tu�)u��2

d9n(u)

�
, t 2 R,

where 
n 2 R and 9n(u) is a nondecreasing bounded function defined onR̄. Then'n(t) converges to a characteristic function if and only if there exist a constant
 2 R
and a nondecreasing bounded function9(u) defined onR̄ such that
n ! 
 , 9n(u)
weakly converges to9(u), and 9n(�1) ! 9(�1) as n!1.

Proof. See [24]. Check that we have slightly changed Lévy’s canonical represen-
tation. Our form can reduced to the original one by substitution

u��29n(u) = u�2(1 + u2)9̃n(u),

where 9̃n(u) is a nondecreasing bounded function defined onR̄.

The so-called convergence of types of distributions controls the centralizing
constants.
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Lemma 14. Let Fn(x), F(x), and G(x) be distribution functions. If, for some�n, Fn(x) and Fn(x + �n) weakly converge to F(x) and G(x) respectively, then there
exists a constant� 2 R such that�n ! � and F(x + �) = G(x).

Proof. See [24].

Proof of Theorem 2. Equivalence of (ii) and (iii) is well known. Actually, it fol-
lows from Lemmas 13 and 14.

Let conditions (4) and (5) be satisfied. We haveVn(x) = �(d)
n

�
(hn(� )� �`(k̄(� )))�

(�(n) � �n) < x
�
, thus without loss of generality, we can take� = 0. We now apply

Proposition 7 for

Mn =
1

n!

X
�2Sn

d(� )ei thn(� ), t 2 R.

Check that

(21)
X
j�n

d j

j
(1� costanj ) � (1 + T2)

X
j�n

d j a�2

nj

j

and

(22)

�n :=
1

n

X
j�n

d j j1� ei tanj j

� 2�+" +

 X
"n< j�n

d j

j

!1=2 
2
X

"n< j�n

d j

j
(1� costanj )

!1=2

� " +

�
log

�
1"
�

+ 1

�1=2 X
"n< j�n

d j a�2

nj

j

!1=2

uniformly in jt j � T for arbitrary T > 0 and 0< " < 1. Under conditions (4) and (5),
sum (21) is bounded and�n = o(1). So from Proposition 7 we obtain an asymptotic
formula for the characteristic function'n(t) of Vn(x). We have

'n(t) = exp

(
�i t�(n) +

X
j�n

d j

j
(1� ei tanj )

)
+ o(1)

= exp

(
�i t

 
�(n)�X

j�n

d j a�nj

j

!
+
Z

R
(ei tu � 1� i tu�)u��2

d9n(u)

)
+ o(1)

uniformly in jt j � T . Now, equivalence of (i) and (iii) follows from Lemmas 13 and14.
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The last expression of'n(t) shows that the limit law must be infinitely divisible.
To show that the limiting distributions comprise the whole class, it suffices to apply
Theorem 1 of A. Hildebrand [13].

Theorem 2 is proved.

Proof of Theorem 4. Since convergence of (9) assures conditions (21) and, as
in (22), the estimate�n = o(1), the sufficiency part follows from Theorem 2.

Assume now that�(d)
n (h(� )��(n) < x) weakly converges to a distribution function.

For the characteristic functions, this implies that

e�i t�(n)

Dn

X
�2Sn

d(� )ei th(� ) = '(t) + o(1)

uniformly in jt j � T for eachT > 0. Moreover, j'(t)j � 1=2 in some neighborhoodjt j � t0 with 0 < t0 � 1. Hence and by Proposition 8 for every sucht there exist a�(t) 2 [�� , � ] such that

(23)
1X
j =1

d j (1� cos(ta j � �(t) j ))

j
<1.

By (3), the factorsd j can be omitted in the series (23). Combining this fort1, t2, and
t1 + t2 from the interval [�t0, t0] and using the inequality

(24) 1� cos(x + y) � 2(1� cosx) + 2(1� cosy), x, y 2 R,

we obtain

1X
j =1

1� cos((�(t1 + t2)� �(t1)� �(t2)) j )

j
<1.

This is possible only in the casek(�(t1 + t2)��(t1)��(t2))=2�k = 0, wherek�k denotes
the distance to the nearest integer. As it has been observed in [22], the last equality
implies the linearity of the function�(t). So, we can write�(t) = �t with a constant� for t 2 [�t0, t0]. Inserting this into (23) we see that the series

1X
j =1

d j (1� cos(ta j (�)))

j
.

converges ifjt j � t0. Herea j (�) := a j �� j . Again by (24), the convergence region for
the last series can be extended tot 2 R. Using the inequality 1� cosx � 2x2=� forjxj � � and integration over the interval [0,T ] with an arbitraryT > 0, we establish
that the convergence of the last series is equivalent to condition (9). Under it, using the
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proved sufficiency part of this theorem and Lemma 14, we see that the centralization
sequence�(n) must have the form (10).

Theorem 4 is proved.

Proof of Corollary 5. Sufficiency trivially follows from Theorem 4. If the limit
law exists, by this theorem we obtain convergence of (9) and relation (10) for�(n) = 0
with some constant� 2 R. It implies

�� =
1

n

X
j�n

d j (a j � � j )�
j

+
�1

n
+ o

�
1

n

�
= o(1)

as n !1. Hence� = 0. Moreover, by (10), we obtain

X
j�n

d j a�j
j

= ��1 + o(1).

This shows convergence of the remaining series in Corollary5.
The corollary is proved.
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