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Abstract
We deal with the value distribution problem for the linearndmnations of
multiplicities of the cycle lengths of a random permutationTo examine the
characteristic functions, we derive asymptotic formulas fatios of the Taylor
coefficients of the relevant generating series. The prapog®sion of analytic
method does not require any analytic continuation of thesees outside the

convergence disk.

1. Introduction

We are concerned with the value distribution problem of niagp defined on ran-
dom permutations. For this purpose, one can apply the pil@iabapproach developed
by R. Arratia, A.D. Barbour and S. Tavaré [1] which is simitarKubilius’ method [17]
in probabilistic number theory. Another possibility is tppdy the Fourier transforms
and to explore relevant asymptotic formulas for the Tayloefficients of analytic func-
tions. In this direction, the most popular transfer methattiated by P. Flajolet and
A. Odlyzko [9] requires analytic continuation of the gerigrg series outside the conver-
gence disk. Therefore it loses in generality. So far, thetrposmising method remains
the approach extending the Halasz’ [12] ideas. The firstrgitdo go along this path
was made in our paper [18]. Later that was continued in [2@] [@1]. Recently [4],
to examine distributions with respect to the Ewens proligbiin the symmetric group,
jointly with G.J. Babu and V. Zacharovas we proposed a simpdesion. We now pro-
ceed these investigations. Finally, we note that an agpitaf the Voronoi summation
formulas is also possible (see the forthcoming paper [25]).

Let S, be the symmetric group angl € S, be a permutation having; (o) > 0 cy-
cles of lengthj, 1< j <n. Thestructure vectoiis defined ak(c) := (ki(0), ..., kn(0)).

If ¢(k) = 1ky +- - - + nky, Wherek = (ky, . .., ky) € Z*", then we have the relation

1) t(k(0)) =n.
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Moreover, ifZ(E) =n, then the sefo € S;: E(a) = IZ} agrees with the class of conjugate
permutations inS,. Set
w( )= () o e Syt --o)

for the uniform probability measure 08,. If &, j > 1, are independent Poisson
random variables (r.vs) given on some probability spgeeF, P}, E&; = 1/j, and
E: = (El! vy Sn)v then [1]

(k@) =1 = 1@ = [ | Jk—lkj, = PE=k| (®) =n).
j=1 '

Moreover,

(Ke(0), ..., kn(0), 0,...) B (&1, ..., &y Eney .. .)

in the sense of convergence of the finite dimensional digiohs. Here and in what
follows we assume that — oo. Despite that, in dealing with the asymptotic value
distribution of the linear combinations

(2) ha(o): =aniki(o) +- - - +annkn(0), anj €R,

called completely additivéshortly, additive) functions, we face a lot of obstacles. The
main reason is dependence of the summands arising froniorelgt). So far we lack
a general theory. The probabilistic number theory is a béaahin this regard (see [6]
or [17]). Following its tradition, in our case the main pretsl can be formulated as
follows:

Under what conditions the frequencies (¥; hn, @) := vh(hn(o) — a(n) < x) with
somea(n) € R weakly converge to a limit distribution function?

Only in the case of degenerated limit law we have the final ansWo give some
impression, we just formulate this result. S&t= min{1, |x|} signx.

Theorem 1 ([23]). Let h, (o) be defined in{2). The frequenciesX; hy, o) weak-
ly converge to the degenerated at the point 8 distribution function if and only if

¥ (o= g
j=n
and
a(m=ni+). M +0(1)

j=n

for some sequence = A, € R.
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After the appearance of V.L. Goncharov's paper [11] the ealistribution of par-
ticular functions onS, was examined by P. Eéd and P. Turan [7]. Under the extra
conditiona,; =0 forr < j <n, wherer logr = o(n), meaning thahu(c) is supported
only by short cycles, a solution of the main problem was gitgnV.L. Kolchin and
V.P. Chistyakov [16] (see also [15], Section 1.10). Theowof the paper [2] extended
this result under the condition = o(n) only. R. Arratia and S. Tavaré also observed
that the approximation oh,(c) by an appropriate sum of independent r.vs does not
hold if r # o(n). That showed the limits of their probabilistic method. Camalytic
approach [18] had some advantages in proving general limibrems, especially for
additive functions supported by the long cycles.

The authors of [1] and previous papers have demonstratedhtpertance of the
weighted probabilities ir5,. If 6 > 0 is fixed andw(o) = k(o) +- - - + kn(0) denotes
the number of cycles, then

1
vne({o}) = 9’”(")<Z Gw(“)> =0"0,

g€S,

whereo € S, and ) :=60(0 +1)--- (¢ +n—1), also defines a probability measure on
S,. Identifying the class of conjugate permutatidase S,: k(o) = k} with the partition
n=1k; +- .. +nk,, sayx, we induce the Ewens probability

_ _ n ki
vno(k(o) = K) = P((x}) = % 1‘[(?) Wll
n ]:l H

on the set of partitions. Since its introduction into the mlsdof mathematical genetics
[8], this probability proved to be useful in many other apglistatistical problems (see,
for instance, [14]). Generalizing we can define the follagviextension ofvp g.

By definition, acompletely multiplicativéshortly, multiplicative functiong: S, —
C has a decomposition

n
9(0) =[]
j=1

where {g;} is a complex sequence with the propegys 0 and @ := 1. Now setting

-1
v (o)) = d(o)(Z d(a)) o ES,

g€eS,

whered: S, — R* is a multiplicative function, maybe, depending anand defined
via {d; := dynj}, we define a probability measure &. For motivation, we can refer to
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[5], where this measure appears in models of the equilibritate of some reversible
coagulation-fragmentation processes.

In this paper, we examine the asymptotic distributiorhgfo) with respect tov@
assuming the following condition

3) 0<60 =<dj<6"<o0

with some constant§~ and 0*. If 6~ = 9%, we have the case of Ewens probabil-
ity studied extensively in [1] and in the series of author&pers written jointly with
G.J. Babu (see the references in [4]).

2. Results

Theorem 1 indicates that the functidm(o) defined in (2) can have the additive
componentil(k(o)) = An with some X = &, € R. Taking this into account, we set
anj(A) =an; —Aj. LetY; be independent Poisson r\vBY; =d;/j wherej > 1.

Theorem 2. Assume conditior{3). Let hy: S, — R be a sequence of additive
functions such thatfor somex = 1, € R,

4) > ity g,
j<n

and

(5) Z ﬁ =0(1)

en<j<n

for eachO < ¢ < 1.
The following assertions are equivalent
() the sequence of distribution functions

Va(X) := v @(hy(0) — a(n) < X)

weakly converges to a limit distributipn
(ii) the sequence of distribution functions

P <Z anj(M)Y; — (@(n) — i) < x)

j=n

weakly converges to a limit distributipn
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(i) there exists a nondecreasing bounded functiofu) defined onR such that

TADERY dj anjj (1)

j=n
anj(A)<u

weakly converges t@(u), W,(+oo) - ¥(+o0), and

djan; () +a +0(1)

®) o(n) =g+ Y SHIEL

j=n

for some constant € R.
If the condition (iii) is satisfied the limit distribution for the sequences {i) or
(i) is the same and its characteristic function has the form

exp{—ita +/(eitu —1—ituru*’ d\IJ(u)}, t eR.
R
The class of limit distributions agrees with the family dinitely divisible distributions

Condition (4) follows from (iii) and, thus, from (ii). Theem 2 of [23] shows that
it also holds if the sequence of distribution functionghn(o) —a(n) < x) is relatively
compact. Using similar argument one can extend that for tee@hted distributions
Vih(X). So, in some parts of Theorem 2, the only extra condition5js (t allows to
truncate the additive functions up to the short cycles. Sonas, as in Theorem 1, it
is necessary or implied by other conditions. We now reckoa swch cases.

Corollary 3. In the previous notatianlet

1 if u>o0,
" %w**h if u<0

for some sequenck, of real numbers and le&(n) be given by(6) with « = 0. Then

(8) Va(X) = ®(x) = Xﬂww.

\/_

Observe that (7) assures (4) and (5), thus, this corollancems the additive
functions supported by short cycles only. In [3] by conging an additive function
on long cycles, we have shown that even &é{r) = 1 the Lindeberg type condition
(7) is not necessary for the relation (8).

To demonstrate a possibility to derive necessary and sifficionvergence condi-
tions, we present the following result.
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Theorem 4. Let condition (3) be satisfied and suppose that the functiorfs)d
and h (o) = h(o) do not depend on rfso do also ¢ and &; =: a;) and «(n) € R.
The distribution functions(@(h(c) — a(n) < x) weakly converge to a limit law if and
only if the series

= di(a —2j)*
(9) Z bt A B VA
=1 .
converges for some fixede R and
di(@aj — Aj)*
(10) am =+ 4@ =2, v o),
j=n
wherew; € R is a constant

Theorem 4 contains the following analog of the Kolmogorore¢hseries theorem.

Corollary 5. Let condition(3) be satisfied In the notation of Theorem 4,the
distribution functionsv@(h(c') < x) weakly converge to a limit law if and only if the
series

s d,-a]-"z
2

j=1

and

—%

da
j

o0
>
i=1
converge

Most probably, the probabilistic method [1], can be refinedptove our results
provided that the truncation assumption (5) is satisfied.féothat was possible only
in the case wheml; ~ 6 as j — oo. Showing another advantage of our analytic ap-
proach, as in [18] or [4], one could examine the case wheng3jot satisfied.

3. Quotients of the Taylor coefficients

In this section we derive some asymptotic formulas for thetigats of the Taylor
coefficients using an analytic approach which is considgrabnpler than that pro-
posed in our paper [21]. Partial cases have been examindteipaper [4].
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Let {dj}, j > 1 be a sequence satisfying condition (3). Set

D(2) =) Dnz":= exp{z d'J—ZJ}

n=0 j=1

For a sequence of complex numbgbg}, j > 1 depending om and, maybe, on other
parameters|b;| < 1 define

M2 =) Mn2":= expiz ﬁ}

n>0 j=1

We explore the asymptotic behavior of the rafid,/D, asn — oco. The goal is
to obtain the uniform remainder term estimates. Note thaemdy G. Freiman and
B.L. Granovsky [10] obtained an asymptotic formula fidfr, if in our notationb; = 1
andd; < j* with a > 0. Their method does not work for complex valuled

Without loss of generality, we can taldg =b; =0 if j > n. Check that differ-
entiating D(z) and comparing the coefficients in the equality obtained wevd the
recurrence relation

1 n
(11) Dn:EjZl:dj Dn_j.

By virtue of (3) this further leads (see, for instance, [2lgmma 3.1) to
d -1 d -1
(12) 0-c(6") exp{z ’T} <Dp<ef” exp{z JJ_}
j=n j<n

wherec(9*) > 0 is a constant and > 1. Moreover, trivially|Mp| < Dy,

Proposition 6. Assume conditiorf3). If

. _9‘ .
(13) ZMS'—«X)'

j<n
then
1 1+HK d:b; .
M, = explw+ > e /M dw + O(Dn(K~° +n~"/2))

2rin 1-iK i=n

for each2 < K < n with some positive constantcc(f~). The constant in Q- )
depends at most on,l2~, and 6*.
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As a corollary, we obtain a result, proved in [21]. Now, for asjlive sequence
un =0(1), we assume the additional condition

(14) —Zd 11— bj| < o = 0(2).

j=n

Proposition 7. Under the conditions ofProposition (6)and (14), the following
asymptotic formula holds

M di(b; — 1
D_n — exp{z I( Jj )} + O(Mﬁl + nfcz)_
n j=n

The constant in ©Q-) depends at most on,L9~, and 8" while ¢ =¢;(0~,0%) > 0
and g =cp(0,6%) > 0.

In the sequel, for brevity, we use the symb&l in the place ofO(-). We will
need the following estimate obtained in [21].

Proposition 8. Let condition(3) be satisfied Then

I\S—n < exp{—03 min Z d- q‘(b € ITJ))}

where g =c3(0, 6*) > 0 is a constant

To prove Proposition 6, we use Cauchy’s formula

s ([ 7))o=

where Ag = {z=re'": |t| < K/n}, A={z=re": K/n<|t| <x}, r =e ¥, and
2 < K < n. Check that the substitution= e~*/" reducesJy to the main term of\,
in Proposition 6. Thus it remains to examine the integltalThe main role is played
by the polynomial sequence

L(2) := Z MZ",

j=<n



AN ANALYTIC METHOD 281

therefore we start with its estimates. For a parameter0< 2, we set

b _ 112
Eu)=exp}2 > M 5exp{4u‘1zd’|b’+l|}

" J
\bJJ 1j>u I=n
< exp{—4uIRL (1)},
since|1 — bj|? < 2(1— %b;) for |bj| < 1. Denoted(u) = 4u6*/x and
[(u) = E(u) exp{ML(1)}.

Note that, for brevity, the sequences index 1 is omitted in the notation.

Lemma 9. Letr=e¥" z=re'", and|r| <. Then for arbitrary 0 < u < 2,

0(u)

Z d; (bjj — 1)(Zj —1

j=n

exp{IL(z) — L)1} = eXIO{

} < E(u) i%

where the constant iR depends only on u and*.

Proof. We use the argument given in the paper [21]. We have

4 1
1 eIX eII'T]X
| = Z 1—4m?
meZ
for arbitrary x € R. Hence
zl -1
L@ - L@ <euY 2 riogEq)
j<n
r e"J
<0'uy ——— | +9+u+logE(u)
(15) j=1 .
l1—re's
< 6(u) log % +6%u+log E(u)
|1— re'm|
+0 -
) Z |1—re'f| ’
meZ\{0

where the dash denotes that the summation is restrictedogeth # 0 for which
|1 —re"™?| > |1 —re'"|. For suchm, we also havgl —re'™|/|1 —re'"| « m with
an absolute constant igk. So, the last sum in (15) is bounded. For some bounded
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quantity C(9*, u), we obtain
1-re|

IL(z) — L(1)| < 6(u) log ;T +log E(u) + C(6*, u).

The lemma is proved. O

Lemma 10. Letr=e /" z=re'", |r| <x, and 0 < u < 2 be arbitrary. In the
notation above we have

1_7 O(u)y—6—
M(2) < nDpl(u)|7—
1-r
Proof. It suffices to use the identity
D(2)
M(2) = D(1) exp(L(1)} exp{L(2) — L(l)}m,
(12), the estimate
|D(2)] djr/ :
< exp ——(costj — 1)
D(1) ,XS: j
<expl Y. djrj(COSr' —1n! < 1-r”
and Lemma 9. The lemma is proved. O

Lemma 11. Letr=e¥", 2<K <n, and0 < j < n. If condition (3) is satis-
fied then

. y D
|K(j) = / M(relz)e—llr dr « Dj |og K+ D, + Z _m.

K/n<|t|sm 3j/2<m<n

Proof. Integrating the power series by parts, we obtain

(i) =D Mpr™ / eMir g
m=0

K/n<|z|<m

:Mjrj(zﬂ_zg)_z T SN/ = D)

m>0,m# j m-—1
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From (12) we haveDj « Dm <« Dj if Im— j| < j/2, therefore
Slﬂ((K/n)(rn - 1)

Ik(j))<Dj+D; Y

— m —
(16) 1§ImB:J/2
+ —rm,
i1>=i/2
Further we apply the estimates
sin((K /n)(m — K 1
> [sntn J))‘ Kooy |
1<im—]|<j/2 1<im— n<n/K N kimsiizise M
m#j N N

K
<1+ Iog<2 + JE_) < logK

and

I S TP DN D= S Bl

Im—j|>j/2 0<m<J/2 3j/2<m=n m>n
D(1)
Dm
< Dj+ + .
e Z n
3j/2<m<n

In the last step we have used (3) and (11). The estirbd® « nD, following from
(12) yields the desired result. Lemma 11 is proved. ]

Lemma 12. Lete € [2/n, 1/2] be arbitrary. If O(u) < 6, then
J <« (¢ +elog(e1))Dy log K + Dyl (U)K /W=7 =172,
Proof. Since by Lemma 10

(17) maxM(?)| < n Dyl (U)K /W=7
Ze

integrating by parts, we obtain

J= i M(Z) <Z djbj Zi—l) dz + O(Dnl(u)KG(u)—H’)

2rin Jo 20 =
Zd bJI‘J n/ M(reir)eir(i—n) dT+O(Dn|(u)K9(”)_97)
(18) j<n K/n<|t|<m
<<— > |K(J)+_ > / M(re'")e 7 dr | + Dyl (U)K W0~
K/n<t|<n

O<J<T T<j<n

= Y i)+ + DK

0<]<T
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whereT =[en] and Ik (j) have been defined in Lemma 11. This lemma yields
T

1 . log K D 1 D
ﬁle(])<< O?] ZDJ+ nn+ﬁz Z ?m

0<j<T 0<j=<T 0<j<T 3j/2<m=n

Since by virtue of (3), (11), and (12), we have

n 1-6-
Dm<<Dn<_> , T=m<n
m
from the last estimate, using (11) again, we obtain

1 - T Dm 1
= Ik (] " +¢)DplogK + — S D
- > 1k(j) < (" +£)Dy log - > pe > m

0<j=<T 3T /2<m=n m=<3T/2
(19) < (" +&)DplogK +eDpn"" Y~ mf 2
3T /2<m=<n

<« (% +elog(e™1)Dy log K.

To estimate the ternh in (18), we again use integration by parts and (17). Further
applying Cauchy’s inequality, we obtain
1

1
|<<HZT

o 1 1
M/(relr)e—l(J—l)T drl|+ = - maX|M(Z)|
/|;/n<|r<n : Z bt

T<j=n
2) 1/2

The integrals under the last sum are just the Fourier coefiisiof an appropriate func-
tion therefore, via Parseval’s identity, we further have

T<j=<n

1 _ y
<L —= E / M’(re”)e—'(l—l)r de
nvT <1§j§n K/n<jr|<w

+ Dpl (U)K W= Jog(e D).

1 _ 1/2 ~
| < —(/ IM/(re”)lsz> + Dol (WK~ log(e ™)
K/n<lt|<w

nvT
2 1/2
-1 / IM(re'™)|? de
nvT K/n<lr|<n

+ Dl (U)K W= og(s1).

Zdjbjl'jeirj

j=n
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By Lemma 10 and Parseval's identity again, we obtain

2 1/2
| < Dul (WK~ (ne)~"/2 / dibjrid| dr
K/n<lrl<x |75,
+ Dyl (U)K @ Jog(e 1)
< Dyl (U)KG(U)—9*8—1/2_
Inserting this and (19) into (18) we complete the proof of beanl2. ]

Proof of Proposition 6. As we have mentionbt} = Jo+J and Jp gives the main
term. It remains to apply Lemma 12. Fix to assuref(u) = 4uf*/x < 0~ /2. The
condition of Proposition 6 impliegu) < 1. If 6~ < 2, andK > Ky(67) is sufficiently
large, choosing = K¢ /2 we obtain

J« K—((0’)2/2)A(0’/4)Dn_

The same choice of is possible and the last estimate holdsdif > 2 and 2n <
K="/2. For (n/2)% < K < n, we can takes = n=%3 to get even better estimate
than we need) « (log? n)n=%3D,,.

The proposition is proved. ]

Proof of Proposition 7. As a corollary, from Proposition 6 Wwave

1 1+HK
(20) Dh=—— / ev D(e’“’/”) dw + O(Dn(K7C + n*1/2))
2rin Jiix

and

Mp = expiz 4 ~1) (bjj - l)}

j=n
1+ K

X —
2rin Ji_ik

(b —1 .
eV D(e—w/n) exp{z dl (bJJ )(e—w]/n _ 1)} dw

j=n

+ O(Dn(K ¢+ n~Y/?y).

In the previous notation, the last sum under the exponefiiaition is justL (e=*/") —
L(1) therefore using Lemma 9 and the trivial estimate

ILEe™™ — L) = < |wlpun,

> (b—jj “Dein 1)

j=n
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following from (14), we obtain

6(1)
& Jw Dy,

— e w/n

1
explL(e /™) — L(1)} — 1 < |w|un B e

Here the constant irg depends at most of* and L. By Lemma 10 we also have
D(e */") « nD, with the additional dependence @T. Inserting the last estimates
into the integral expression dfl,, we derive

. . 1+HK
M, = exp{z d (bJ. 1)} ! f e’ D(e™/") dw
1

o j 27in Ji_ik

+ O(DpunK27W) + O(Dy(K € + n~Y3)).

Applying now (20) and choosingk = (min(x, 1, n))% with sufficiently small positive
constantc; depending at most oA~ and9*, we complete the proof of Proposition 7.
O

We end this section with the observation that Propositioasié 7 hold under con-
dition I(u) « 1 for some O< u < 76~ /80" which is weaker than (13).

4. Proofs of Theorems and Corollaries

The main probabilistic ingredient is the following lemma.

Lemma 13. Assume that a sequence of characteristic functigy($) has the fol-
lowing representation

on(t) = exp{—ityn +/(eitu —-1- itu*)u*f2 d\IJn(u)}, t eR,
R

where y, € R and W,(u) is a nondecreasing bounded function defined Rin Then
¢n(t) converges to a characteristic function if and only if thesdsea constanty € R
and a nondecreasing bounded functigr(u) defined onR such thaty, — y, ¥h(u)
weakly converges t@(u), and ¥,(+o00) — ¥(+o00) as n— oc.

Proof. See [24]. Check that we have slightly changed Lévgisonical represen-
tation. Our form can reduced to the original one by sub&bitut

U Wy(u) = u=2(1 +u?)p(u),
where ¥,,(u) is a nondecreasing bounded function definedRon O

The so-called convergence of types of distributions cdstrihe centralizing
constants.
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Lemma 14. Let R(x), F(x), and G(x) be distribution functions If, for some
an, Fa(X) and R(x + an) weakly converge to (x) and G(x) respectively then there
exists a constan € R such thate, — o and F(x +«a) = G(x).

Proof. See [24]. O

Proof of Theorem 2. Equivalence of (ii) and (iii) is well knowActually, it fol-
lows from Lemmas 13 and 14.

Let conditions (4) and (5) be satisfied. We haugx) = v@ ((hn(o') — 1£(k(0))) —
(x(n) — An) < x), thus without loss of generality, we can take= 0. We now apply
Proposition 7 for

1 )
Mn = — > d(e)e™@), teR.

T 0eS,
Check that
d; 2 dj a:fuz
(21) > 1 —costay) < (1+TH) Y —
j=n J j<n ]
and

1 )
pn ==Y 1 — €]

j=n

q 1/2 d 1/2
22) 529+8+< > J—‘> <2 > Jfj(l—costa,”‘))

en<j<n en<j<n
1/2
1 1/2 d:a*?
Le+ (Iog(—) + 1> Z Lam
€ en<j<n J

uniformly in |t| < T for arbitrary T > 0 and O< ¢ < 1. Under conditions (4) and (5),
sum (21) is bounded and,, = 0o(1). So from Proposition 7 we obtain an asymptotic
formula for the characteristic functiop,(t) of V,(x). We have

onl®) = exp{—ita(n) £y %(1 - e“am')} +o(1)

j=<n

= exp{—it <a(n) — Z dj?;j

j<n

) +f(eitu —1—itut)u* dwn(u) } +o(1)
R

uniformly in [t| < T. Now, equivalence of (i) and (iii) follows from Lemmas 13 ahdl.
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The last expression ap,(t) shows that the limit law must be infinitely divisible.
To show that the limiting distributions comprise the wholass, it suffices to apply
Theorem 1 of A. Hildebrand [13].

Theorem 2 is proved. O

Proof of Theorem 4. Since convergence of (9) assures condit{21) and, as
in (22), the estimate:, = 0o(1), the sufficiency part follows from Theorem 2.

Assume now thab@(h(o) —a(n) < x) weakly converges to a distribution function.
For the characteristic functions, this implies that

e-ite(n)
Dn

> d(e)e™) = p(t) +0(1)

0€eS,

uniformly in |t| < T for eachT > 0. Moreover, |¢(t)| > 1/2 in some neighborhood
[t] <ty with 0 < tg < 1. Hence and by Proposition 8 for every suclhere exist a
A(t) € [-m, 7] such that

23) i dj(1— cos¢'aj —A(1)j)) =

=1 J

By (3), the factorsd; can be omitted in the series (23). Combining this tgrt,, and
t; +t; from the interval Fto, tg] and using the inequality

(24) 1—cosk +y) < 2(1—cosx)+2(1—cosy), X,yeR,
we obtain

i 1 — cos(f.(ty + tz)-— AMt) — A(t2))]) -

=1 J

This is possible only in the caggi(t; +t2) —A(t1) — A(t2))/27 || = 0, where|| - || denotes
the distance to the nearest integer. As it has been obsenviZR], the last equality
implies the linearity of the function.(t). So, we can writer(t) = At with a constant
A for t € [—tg, to]. Inserting this into (23) we see that the series

i d; (1 — costa; (1))
i1 J
converges ifit| < to. Herea;(X) :=a; —1j. Again by (24), the convergence region for
the last series can be extendedtta R. Using the inequality 1- cosx > 2x2/x for
|X] < and integration over the interval [@] with an arbitraryT > 0, we establish
that the convergence of the last series is equivalent toitond9). Under it, using the
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proved sufficiency part of this theorem and Lemma 14, we satttie centralization
sequencex(n) must have the form (10).
Theorem 4 is proved. L]

Proof of Corollary 5. Sufficiency trivially follows from Tlogem 4. If the limit
law exists, by this theorem we obtain convergence of (9) afation (10) fora(n) =0
with some constant € R. It implies

1 di(@j —rj)" a1 1\ _
D I R GRS

j=n

asn — oo. Hencel = 0. Moreover, by (10), we obtain

2

j=n

d;a*
= oy + ().

This shows convergence of the remaining series in Coroliary
The corollary is proved. O
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