SOBOLEV'S INEQUALITY FOR RIESZ POTENTIALS OF FUNCTIONS IN NON-DOUBLING MORREY SPACES

Yoshiniro MIZUTA, Tetsu SHIMOMURA and Takuya SOBUKAWA

(Received July 6, 2007, revised December 20, 2007)

Abstract

Our aim in this paper is to give Sobolev's inequality and Trudinger exponential integrability for Riesz potentials of functions in non-doubling Morrey spaces.

1. Introduction

The space introduced by Morrey [13] in 1938 has become a useful tool of the study for the existence and regularity of solutions of partial differential equations. In the present paper, we aim to establish Sobolev's inequality for the Riesz potentials of functions in generalized Morrey spaces in the non-doubling setting, as extensions of Gogatishvili-Koskela [4], Orobitg-Pérez [14] and Sawano-Sobukawa-Tanaka [19].

Let X be a separable metric space with a nonnegative Radon measure μ. For simplicity, write $|x-y|$ for the distance of x and y. We assume that $\mu(\{x\})=0$ and $0<\mu(B(x, r))<\infty$ for $x \in X$ and $r>0$, where $B(x, r)$ denotes the open ball centered at x of radius $r>0$. In this paper, μ may or may not be doubling.

Let G be an open set in X. We define the Riesz potential of order α for a nonnegative measurable function f on G by

$$
U_{\alpha} f(x)=\int_{G} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y) .
$$

Here we introduce the family $L^{p, v ; k}(G)$ of all measurable functions f on G such that

$$
\|f\|_{p, v, G ; k}^{p}=\sup _{x \in G, 0<r \leq d_{G}} \frac{r^{v}}{\mu(B(x, k r))} \int_{G \cap B(x, r)}|f(y)|^{p} d \mu(y)<\infty,
$$

where $1<p<\infty, v>0, k>1$ and d_{G} denotes the diameter of G. In case $X=\mathbf{R}^{n}$ with a nonnegative Radon measure μ, we know that

$$
L^{p, v ; k_{1}}(G)=L^{p, v ; k_{2}}(G)
$$

when $k_{2}>k_{1}>1$, but we have an example (see Remark 2.1) in which

$$
L^{p, v ; 1}(G) \neq L^{p, v ; 2}(G) ;
$$

see also Sawano-Tanaka [20]. The space $L^{p, v ; 2}(G)$ is referred to as a generalized Morrey space.

To obtain Sobolev type inequalities for Riesz potentials of functions belonging to generalized Morrey spaces, we consider a generalized maximal function defined by

$$
M_{k} f(x)=\sup _{r>0} \frac{1}{\mu(B(x, k r))} \int_{G \cap B(x, r)}|f(y)| d \mu(y)
$$

for $k \geq 1$ and a locally integrable function f on G. In view of Sawano [18, Corollary 2.1]), M_{2} is bounded in $L^{p}(X)$. Further it is useful to remark that in a certain metric measure space X, M_{k} fails to be bounded in $L^{p}(X)$ if and only if $k<2$ (see Sawano [18, Proposition 1.1]).

By applying the fact that M_{2} is a bounded mapping from $L^{p, v ; 2}(X)$ to $L^{p, v ; 4}(X)$ (see Sawano-Tanaka [20, Theorem 2.3]), we first show that $U_{\alpha} f \in L^{p^{\sharp}, v ; 4}(X)$ for $f \in$ $L^{p, v ; 2}(X)$, where $1 / p^{\sharp}=1 / p-\alpha / v>0$; in the borderline case $v=\alpha p$, we consider the exponential integrability. For this, we also refer the reader to Sawano-SobukawaTanaka [19, Theorem 3.1].

Finally, in our Morrey space setting, we establish an exponential integrability for functions satisfying a Poincaré inequality, as an extension of Gogatishvili-Koskela [4] and Orobitg-Pérez [14].

For related results, see Adams [1], Chiarenza-Frasca [3, Theorem 2], Nakai [15, Theorem 2.2] and the authors [11, 12] in the doubling case.

2. Sobolev's inequality

Throughout this paper, let C denote various constants independent of the variables in question.

For a nonnegative measurable function f on G and $k>1$, define the maximal function

$$
\begin{aligned}
M_{k} f(x) & =\sup _{r>0} \frac{1}{\mu(B(x, k r))} \int_{G \cap B(x, r)}|f(y)| d \mu(y) \\
& =\sup _{0<r<d_{G}} \frac{1}{\mu(B(x, k r))} \int_{G \cap B(x, r)}|f(y)| d \mu(y)
\end{aligned}
$$

for $x \in G$, where d_{G} denotes the diameter of G. Recall that

$$
\|f\|_{p, v, G ; k}^{p}=\sup _{x \in G, 0<r \leq d_{G}} \frac{r^{\nu}}{\mu(B(x, k r))} \int_{G \cap B(x, r)}|f(y)|^{p} d \mu(y) .
$$

When $X=\mathbf{R}^{n}$ with a nonnegative Radon measure μ, we see that if G is an open set of \mathbf{R}^{n} and $1<k<2$, then

$$
\|f\|_{p, v, G ; k} \leq C\|f\|_{p, v, G ; 2}
$$

for all $f \in L^{p, v ; 2}(G)$, where C is a constant depending only on k and n; for this fact, see e.g. [20, Proposition 1.1].

Remark 2.1. We set

$$
L^{p, v ; k}(G)=\left\{\left.f\left|\sup _{x \in G, 0<r \leq d_{G}} \frac{r^{v}}{\mu(B(x, k r))} \int_{G \cap B(x, r)}\right| f(y)\right|^{p} d \mu(y)<\infty\right\} .
$$

When $G \subset \mathbf{R}^{n}, L^{p, v ; k}(G)=L^{p, v ; 2}(G)$ for all $k>1$. We show by an example that

$$
L^{p, v ; 1}(G) \neq L^{p, v ; k}(G)
$$

when $k>1$. For this, consider a measure given by

$$
d \mu(y)=e^{y} d y
$$

on \mathbf{R}^{1}. For $0<\beta<1$, letting $f(y)=y^{-\beta / p}$ for $y>0$ and $f(y)=0$ for $y \leq 0$, we note the following:
(i) if $0<x \leq r$, then

$$
\begin{aligned}
\frac{r^{\nu}}{\mu(B(x, 2 r))} \int_{B(x, r)}|f(y)|^{p} d \mu(y) & \leq \frac{r^{\nu}}{e^{x}\left(e^{2 r}-1\right)} e^{x+r} \int_{0}^{2 r} y^{-\beta} d y \\
& \leq C \frac{r^{\nu-\beta+1}}{e^{r}-1}
\end{aligned}
$$

(ii) if $x>r>0$, then

$$
\begin{aligned}
\frac{r^{\nu}}{\mu(B(x, 2 r))} \int_{B(x, r)}|f(y)|^{p} d \mu(y) & \leq \frac{r^{\nu}}{e^{x}\left(e^{2 r}-1\right)} \int_{x-r}^{x+r} y^{-\beta} e^{y} d y \\
& \leq \frac{r^{\nu}}{e^{x}\left(e^{2 r}-1\right)} \frac{(x+r)^{1-\beta}-(x-r)^{1-\beta}}{1-\beta} e^{x+r} \\
& \leq C \frac{r^{\nu-\beta+1}}{e^{r}-1} ;
\end{aligned}
$$

(iii) if $x>0$ and $r>0$, then

$$
\frac{r^{\nu}}{\mu(B(x, r))} \int_{B(x, r)}|f(y)|^{p} d \mu(y) \geq r^{\nu}(x+r)^{-\beta} .
$$

If $0<\beta<1$ and $\beta \leq \nu$, then (i) and (ii) imply that $f \in L^{p, \nu ; 2}\left(\mathbf{R}^{1}\right)$, and if $0<\beta<1$ and $\beta<\nu$, then (iii) implies that

$$
\limsup _{r \rightarrow \infty} \frac{r^{v}}{\mu(B(x, r))} \int_{B(x, r)}|f(y)|^{p} d \mu(y)=\infty
$$

for every fixed $x>0$, so that $f \notin L^{p, v ; 1}\left(\mathbf{R}^{1}\right)$.
In what follows, if f is a function on G, then we assume that $f=0$ outside G.
First we present the boundedness of maximal functions in the Morrey space $L^{p, v ; 2}(G)$ due to Sawano-Tanaka [20, Theorem 2.3].

Lemma 2.2. If $v>0$, then

$$
\left\|M_{2} f\right\|_{p, v, G ; 4} \leq C\|f\|_{p, v, G ; 2}
$$

for all $f \in L^{p, v ; 2}(G)$.
Proof. Let $\|f\|_{p, v, G ; 2} \leq 1$, and fix $x \in G$ and $0<r \leq d_{G}$. Write $A_{0}=B(x, 2 r)$ and $A_{j}=B\left(x, 2^{j+1} r\right) \backslash B\left(x, 2^{j} r\right)$ for each positive integer j. We set

$$
f_{j}=f \chi_{A_{j}},
$$

where χ_{E} denotes the characteristic function of E. Note that

$$
\begin{aligned}
\int_{B(x, r)} M_{2} f(z)^{p} d \mu & \leq 2^{p-1}\left(\int_{B(x, r)} M_{2} f_{0}(z)^{p} d \mu+\int_{B(x, r)} M_{2} g_{0}(z)^{p} d \mu\right) \\
& \equiv 2^{p-1}\left(I_{1}+I_{2}\right),
\end{aligned}
$$

where $g_{0}=\sum_{j=1}^{\infty}\left|f_{j}\right|$. We have by Sawano [18, Theorem 1.2 and Proposition 1.1]

$$
\begin{aligned}
I_{1} & \leq \int M_{2} f_{0}(z)^{p} d \mu \leq C \int\left|f_{0}(z)\right|^{p} d \mu \\
& =C \int_{B(x, 2 r)}|f(z)|^{p} d \mu \leq C r^{-v} \mu(B(x, 4 r)) .
\end{aligned}
$$

Next we see that for $z \in B(x, r)$

$$
M_{2} f_{j}(z) \leq C \sup _{\left\{t:\left(2^{j}-1\right) r<t<\left(2^{j+1}+1\right) r\right\}} \frac{1}{\mu(B(z, 2 t))} \int_{B(z, t)}|f(y)| d \mu
$$

$$
\begin{aligned}
& \leq C \sup _{\left\{t:\left(2^{j}-1\right) r<t<\left(2^{j+1}+1\right) r\right\}}\left(\frac{1}{\mu(B(z, 2 t))} \int_{B(z, t)}|f(y)|^{p} d \mu\right)^{1 / p} \\
& \leq C\left(2^{j} r\right)^{-v / p}
\end{aligned}
$$

so that

$$
M_{2} g_{0}(z) \leq \sum_{j=1}^{\infty} M_{2} f_{j}(z) \leq C \sum_{j=1}^{\infty}\left(2^{j} r\right)^{-v / p} \leq C r^{-\nu / p}
$$

Hence it follows that

$$
I_{2} \leq C r^{-v} \int_{B(x, r)} d \mu \leq C r^{-v} \mu(B(x, r))
$$

Thus we obtain

$$
\frac{r^{\nu}}{\mu(B(x, 4 r))} \int_{B(x, r)} M_{2} f(z)^{p} d \mu \leq C
$$

which proves the lemma.
Lemma 2.3. If f is a nonnegative measurable function on G such that $\|f\|_{p, v, G ; 2} \leq$ 1 , then

$$
\int_{B(x, \delta)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y) \leq C \delta^{\alpha} M_{2} f(x)
$$

for $x \in G$ and $\delta>0$.
Proof. We have

$$
\begin{aligned}
\int_{B(x, \delta)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y) & =\sum_{j=1}^{\infty} \int_{B\left(x, 2^{-j+1} \delta\right) \backslash B\left(x, 2^{-j} \delta\right)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y) \\
& \leq \sum_{j=1}^{\infty} \frac{\left(2^{-j+1} \delta\right)^{\alpha}}{\mu\left(B\left(x, 2^{-j+2} \delta\right)\right)} \int_{B\left(x, 2^{-j+1} \delta\right)} f(y) d \mu(y) \\
& \leq \delta^{\alpha} M_{2} f(x) \sum_{j=1}^{\infty} 2^{(-j+1) \alpha} \\
& =C \delta^{\alpha} M_{2} f(x),
\end{aligned}
$$

as required.

Lemma 2.4. Let $v / p \geq \alpha$. Let f be a nonnegative measurable function on G such that $\|f\|_{p, v, G ; 2} \leq 1$. In case $v / p>\alpha$,

$$
\int_{G \backslash B(x, \delta)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y) \leq C \delta^{\alpha-\nu / p}
$$

and in case $\nu / p=\alpha$ and G is bounded,

$$
\int_{G \backslash B(x, \delta)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y) \leq C \log \frac{1}{\delta}
$$

for $x \in G$ and small $\delta>0$.
Proof. Let j_{0} be the smallest integer such that $2^{j_{0}} \delta \geq d_{G}$, where d_{G} is the diameter of G as before. By using Hölder's inequality, we have

$$
\begin{aligned}
& \int_{G \backslash B(x, \delta)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y) \\
& =\sum_{j=0}^{j_{0}} \int_{B\left(x, 2^{j+1} \delta\right) \backslash B\left(x, 2^{j} \delta\right)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y) \\
& \leq \sum_{j=0}^{j_{0}}\left(2^{j+1} \delta\right)^{\alpha} \frac{1}{\mu\left(B\left(x, 2^{j+2} \delta\right)\right)} \int_{B\left(x, 2^{j+1} \delta\right)} f(y) d \mu(y) \\
& \leq C \delta^{\alpha} \sum_{j=0}^{j_{0}} 2^{\alpha j}\left(\frac{1}{\mu\left(B\left(x, 2^{j+2} \delta\right)\right)} \int_{B\left(x, 2^{j+1} \delta\right)} f(y)^{p} d \mu(y)\right)^{1 / p} \\
& \leq C \delta^{\alpha} \sum_{j=0}^{j_{0}} 2^{\alpha j}\left(2^{j+1} \delta\right)^{-v / p} \\
& =C \delta^{\alpha-\nu / p} \sum_{j=0}^{j_{0}} 2^{(\alpha-v / p) j},
\end{aligned}
$$

which proves the required inequality.
With the aid of Lemmas 2.2, 2.3 and 2.4, we can apply Hedberg's trick (see [6]) to obtain a Sobolev type inequality for Riesz potentials due to Adams [1, Theorem 3.1], Chiarenza and Frasca [3, Theorem 2], Nakai [15, Theorem 2.2] and Sawano-Tanaka [20, Theorem 3.3].

Theorem 2.5. Let $1 / p^{\sharp}=1 / p-\alpha / v>0$. Then there exists a positive constant c such that

$$
\frac{r^{\nu}}{\mu(B(z, 4 r))} \int_{B(z, r)}\left\{U_{\alpha} f(x)\right\}^{p^{z}} d \mu(x) \leq c
$$

for all $z \in X$ and $r>0$, whenever f is a nonnegative measurable function on X satisfying $\|f\|_{p, v, X ; 2} \leq 1$.

Proof. We see from Lemmas 2.3 and 2.4 that

$$
\begin{aligned}
U_{\alpha} f(x) & =\int_{B(x, \delta)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y)+\int_{X \backslash B(x, \delta)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y) \\
& \leq C \delta^{\alpha} M_{2} f(x)+C \delta^{\alpha-\nu / p}
\end{aligned}
$$

for all $\delta>0$. Here, letting

$$
\delta=\left\{M_{2} f(x)\right\}^{-p / v},
$$

we have

$$
U_{\alpha} f(x) \leq C\left\{M_{2} f(x)\right\}^{1-\alpha p / v}=C\left\{M_{2} f(x)\right\}^{p / p^{\sharp}},
$$

which yields

$$
\int_{B(z, r)}\left\{U_{\alpha} f(x)\right\}^{p^{z}} d \mu(x) \leq C \int_{B(z, r)}\left\{M_{2} f(x)\right\}^{p} d \mu(x)
$$

for $z \in X$ and $r>0$. Hence Lemma 2.2 gives

$$
\frac{r^{v}}{\mu(B(z, 4 r))} \int_{B(z, r)}\left\{U_{\alpha} f(x)\right\}^{p^{\sharp}} d \mu(x) \leq C
$$

for such z and r, as required.
REMARK 2.6. Theorem 2.5 implies that the mapping $f \rightarrow U_{\alpha} f$ is bounded from $L^{p, v ; 2}(X)$ to $L^{p^{\sharp}, v ; 4}(X)$.

Remark 2.7. When $X=\mathbf{R}^{n}$, consider the potential

$$
U_{\alpha, k} f(x)=\int \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, k|x-y|))} d \mu(y)
$$

for $k>1$. Then we can show that the mapping $f \rightarrow U_{\alpha, k} f$ is bounded from $L^{p, v ; 2}\left(\mathbf{R}^{n}\right)$ to $L^{p^{\sharp}, \nu ; 2}\left(\mathbf{R}^{n}\right)$, when $1 / p^{\sharp}=1 / p-\alpha / \nu>0$.

REMARK 2.8. We show by an example that the mapping $f \rightarrow U_{\alpha, 1} f$ fails to be bounded in $L^{p, v ; 2}\left(\mathbf{R}^{n}\right)$.

For this purpose, consider $d \mu(y)=e^{y} d y$ and

$$
f(y)= \begin{cases}y^{-\beta / p} & \text { when } \quad y>0 \\ 0 & \text { when } \\ y \leq 0\end{cases}
$$

In view of Remark 2.1, we see that $f \in L^{p, \nu ; 2}\left(\mathbf{R}^{1}\right)$ when $0<\beta<\nu \leq 1$. Further we see that

$$
U_{\alpha, 1} f(x) \geq \int_{x}^{\infty} \frac{t^{\alpha}(x+t)^{-\beta / p}}{e^{x}\left(e^{t}-e^{-t}\right)} e^{x+t} d t=\infty
$$

for all $x>0$ when $\alpha-\beta / p+1 \geq 0$. This implies that $U_{\alpha, 1} f$ does not belong to $L^{p, v ; 2}\left(\mathbf{R}^{1}\right)$ when $0<\beta<\nu \leq 1$.

3. Exponential integrability

Our aim in this section is to discuss the exponential integrability.
Theorem 3.1. Let G be bounded and $v=\alpha p$. Then there exists a positive constant c such that

$$
\frac{r^{\nu}}{\mu(B(z, 4 r))} \int_{G \cap B(z, r)}\left\{\exp \left(c U_{\alpha} f(x)\right)-1\right\} d \mu(x) \leq 1
$$

for all $z \in G$ and $0<r \leq d_{G}$, whenever f is a nonnegative measurable function on G satisfying $\|f\|_{p, v, G ; 2} \leq 1$.

Proof. Let $\|f\|_{p, v, G ; 2} \leq 1$. We see from Lemmas 2.3 and 2.4 that

$$
\begin{aligned}
U_{\alpha} f(x) & =\int_{G \cap B(x, \delta)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y)+\int_{G \backslash B(x, \delta)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y) \\
& \leq C \delta^{\alpha} M_{2} f(x)+C \log \frac{1}{\delta}
\end{aligned}
$$

for $x \in G$ and small $\delta>0$. Here, letting

$$
\delta=\left\{M_{2} f(x)\right\}^{-1 / \alpha}\left\{\log \left(M_{2} f(x)\right)\right\}^{1 / \alpha}
$$

when $M_{2} f(x)$ is large enough, we have

$$
\exp \left(U_{\alpha} f(x)\right) \leq C+C\left\{M_{2} f(x)\right\}^{p},
$$

so that Lemma 2.2 yields

$$
\begin{aligned}
\int_{G \cap B(z, r)} \exp \left(U_{\alpha} f(x)\right) d \mu(x) & \leq C \mu(G \cap B(z, r))+C \int_{G \cap B(z, r)}\left\{M_{2} f(x)\right\}^{p} d \mu(x) \\
& \leq C \mu(G \cap B(z, r))+C \frac{\mu(B(z, 4 r))}{r^{\nu}}
\end{aligned}
$$

for $z \in G$ and $r>0$. Hence we find $c>0$ such that

$$
\frac{r^{\nu}}{\mu(B(z, 4 r))} \int_{G \cap B(z, r)}\left\{\exp \left(c U_{\alpha} f(x)\right)-1\right\} d \mu(x) \leq 1
$$

for $z \in G$ and $0<r \leq d_{G}$, whenever $\|f\|_{p, v, G ; 2} \leq 1$. Thus the required result is obtained.

Remark 3.2. In Theorem 3.1, we can not add an exponent $q>1$ such that

$$
\frac{r^{\nu}}{\mu(B(z, 4 r))} \int_{G \cap B(z, r)}\left\{\exp \left(c U_{\alpha} f(x)^{q}\right)-1\right\} d \mu(x) \leq 1
$$

For this, consider the potential

$$
U(x)=\int_{\mathbf{B}}|x-y|^{\alpha-n}|y|^{-\alpha} d y
$$

where $\mathbf{B}=B(0,1) \subset \mathbf{R}^{n}$. If $v=\alpha p<n$ and $f(y)=|y|^{-\alpha} \chi_{\mathbf{B}}(y)$, then

$$
\begin{aligned}
r^{\nu-n} \int_{B(x, r)}|f(y)|^{p} d y & \leq r^{\nu-n} \int_{B(x, r)}|x-y|^{-\alpha p} d y \\
& \leq C r^{\nu-n} r^{n-\alpha p}=C
\end{aligned}
$$

for all $x \in \mathbf{B}$ and $r>0$, so that $f \in L^{p, v ; 1}(\mathbf{B})$. On the other hand, we see that

$$
\begin{aligned}
U(x) & \geq \int_{\mathbf{B} \backslash B(x,|x| / 2)}|x-y|^{\alpha-n} f(y) d y \\
& \geq 3^{-\alpha} \int_{\mathbf{B} \backslash B(x,|x| / 2)}|x-y|^{-n} d y \\
& \geq C \log \frac{2}{|x|}
\end{aligned}
$$

for $x \in \mathbf{B}$, and hence

$$
\int_{\mathbf{B}} \exp \left(c U(x)^{q}\right) d x=\infty
$$

for $c>0$ and $q>1$.

Consider the function

$$
e_{N}(t)=e^{t}-1-t-\frac{t^{2}}{2!}-\cdots-\frac{t^{N-1}}{(N-1)!}
$$

Theorem 3.3. Let $v=\alpha p$. For $\tilde{v}>v$, take a positive integer N such that

$$
N>\frac{\tilde{v} p}{\tilde{v}-\alpha p}=\tilde{p}
$$

Then there exists a positive constant c such that

$$
\frac{r^{\nu}}{\mu(B(z, 4 r))} \int_{B(z, r)} e_{N}\left(c U_{\alpha} f\right) d \mu(x) \leq 1
$$

for all $z \in X$ and $r>0$, whenever f is a nonnegative measurable function on X satisfying $\|f\|_{p, v, X ; 2}+\|f\|_{p, \tilde{v}, X ; 2} \leq 1$.

Proof. We see from Lemmas 2.3 and 2.4 that

$$
\begin{aligned}
U_{\alpha} f(x) & =\int_{B(x, \delta)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y)+\int_{X \backslash B(x, \delta)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y) \\
& \leq C \delta^{\alpha} M_{2} f(x)+C \log \frac{1}{\delta}
\end{aligned}
$$

for small $\delta>0$. Here, letting

$$
\delta=\left\{M_{2} f(x)\right\}^{-1 / \alpha}\left\{\log \left(M_{2} f(x)\right)\right\}^{1 / \alpha}
$$

when $M_{2} f(x)$ is large enough, we have

$$
U_{\alpha} f(x) \leq C \log \left(2+M_{2} f(x)\right) .
$$

We write $G_{1}=\left\{x \in X: M_{2} f(x)>2\right\}$ and $G_{2}=\left\{x \in X: M_{2} f(x) \leq 2\right\}$. Then we find $c_{1}>0$ such that

$$
\int_{G_{1} \cap B(z, r)} e_{N}\left(c_{1} U_{\alpha} f(x)\right) d \mu(x) \leq \int_{B(z, r)}\left\{M_{2} f(x)\right\}^{p} d \mu(x)
$$

and

$$
\begin{aligned}
\int_{G_{2} \cap B(z, r)} e_{N}\left(c_{1} U_{\alpha} f(x)\right) d \mu(x) & \leq \int_{G_{2} \cap B(z, r)}\left\{U_{\alpha} f(x)\right\}^{\tilde{p}} d \mu(x) \\
& \leq \int_{B(z, r)}\left\{M_{2} f(x)\right\}^{p} d \mu(x)
\end{aligned}
$$

for $z \in X$ and $r>0$. Hence Lemma 2.2 gives

$$
\frac{r^{v}}{\mu(B(z, 4 r))} \int_{B(z, r)} e_{N}\left(c_{2} U_{\alpha} f(x)\right) d \mu(x) \leq 1
$$

for such z and r, whenever $\|f\|_{p, v, X ; 2}+\|f\|_{p, \tilde{v}, X ; 2} \leq 1$. This gives the the required result.

REMARK 3.4. Let $v<\alpha p$ and f be a nonnegative measurable function on X belonging to $L^{p, v ; 2}(X)$. Then $U_{\alpha} f(x)$ is seen to be continuous at $x_{0} \in X$ where $\mu\left(\partial B\left(x_{0}, r\right)\right)=0$ for $r>0$ and

$$
\begin{equation*}
\int \frac{\left|x_{0}-y\right|^{\alpha} f(y)}{\mu\left(B\left(x_{0}, 2\left|x_{0}-y\right|\right)\right)} d \mu(y)<\infty . \tag{3.1}
\end{equation*}
$$

In fact, for $\delta>0$, we write

$$
\begin{aligned}
U_{\alpha} f(x) & =\int_{B\left(x_{0}, 3 \delta\right)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y)+\int_{X \backslash B\left(x_{0}, 3 \delta\right)} \frac{|x-y|^{\alpha} f(y)}{\mu(B(x, 4|x-y|))} d \mu(y) \\
& =U_{1}(x)+U_{2}(x) .
\end{aligned}
$$

The proof of Lemma 2.3 implies that

$$
U_{1}(x) \leq C \delta^{\alpha-\nu / p}
$$

for $x \in B\left(x_{0}, \delta\right)$, when $\alpha-v / p>0$. Note that $\mu(B(x, 4|x-y|)) \rightarrow \mu\left(B\left(x_{0}, 4\left|x_{0}-y\right|\right)\right)$ as $x \rightarrow x_{0}$ for fixed $y \in X \backslash B\left(x_{0}, 3 \delta\right)$ by the assumption that $\mu\left(\partial B\left(x_{0}, r\right)\right)=0$ for $r>0$. Since $|x-y|^{\alpha} / \mu(B(x, 4|x-y|)) \leq C\left|x_{0}-y\right|^{\alpha} / \mu\left(B\left(x_{0}, 2\left|x_{0}-y\right|\right)\right)$ for $x \in B\left(x_{0}, \delta\right)$ and $y \in X \backslash B\left(x_{0}, 3 \delta\right)$, we have by Lebesgue's dominated convergence theorem

$$
\lim _{x \rightarrow x_{0}} U_{2}(x)=U_{2}\left(x_{0}\right),
$$

which shows that $U_{\alpha} f(x)$ is continuous at x_{0}.

4. Poincaré inequality

Let μ be a nonnegative measure on an open set G. For a measurable function u on G, we define the integral mean over a measurable set $E \subset G$ of positive measure by

$$
u_{E}=f_{E} u(x) d \mu=\frac{1}{\mu(E)} \int_{E} u(x) d \mu(x) .
$$

In this section, we assume that μ satisfies the lower Ahlfors s-regularity condition

$$
\begin{equation*}
c_{\mu} r^{s} \leq \mu(B)<\infty \tag{4.1}
\end{equation*}
$$

for all balls $B=B(x, r) \subset G$, where $s>0$ and c_{μ} is a positive constant.
We say that a couple (u, g) satisfies a strong $\left(1, p_{0}\right)$ Poincaré inequality (in G) if

$$
\begin{equation*}
\int_{B}\left|u(x)-u_{B}\right| d \mu(x) \leq c_{P}(\operatorname{diam} B)^{1+s}\left(\frac{1}{\mu(2 B)} \int_{B}|g(y)|^{p_{0}} d \mu(y)\right)^{1 / p_{0}} \tag{4.2}
\end{equation*}
$$

for each ball $B=B(x, r)$ with $2 B=B(x, 2 r) \subset G$, where $1 \leq p_{0}<p$ and c_{P} is a positive constant.

Set $1 / p^{\sharp}=1 / p-1 / v>0$.
Theorem 4.1. Let μ be a nonnegative measure on G satisfying (4.1), and assume that a couple (u, g) satisfies a strong $\left(1, p_{0}\right)$ Poincaré inequality (4.2). If $\|g\|_{p, v, G ; 2} \leq 1$, then

$$
\frac{r^{\nu}}{\mu(2 B)} \int_{B}\left|u(x)-u_{B}\right|^{p^{\sharp}} d \mu(x) \leq C
$$

for every ball $B=B(x, r)$ with $2 B \subset G$.
Orobitg-Pérez [14] gave a version of Sobolev's inequalities in the L^{p} space setting.
Proof of Theorem 4.1. Let $2 B=B\left(x_{0}, 2 r\right) \subset G$. For $x \in B$, set

$$
B_{i}(x)=B\left(x, 2^{-i} r\right) .
$$

By the Lebesgue differentiation theorem we have

$$
\lim _{i \rightarrow \infty} u_{B_{i}(x)}=u(x)
$$

for μ-a.e. x and hence we may assume that our fixed point x has this property. Let $N=N(x)$ be a positive integer whose value will be determined later. Letting $B_{i}=B_{i}(x)$ for $i=1,2, \ldots$, we have by (4.1)

$$
\begin{aligned}
\left|u(x)-u_{B}\right| \leq & \left|u_{B_{1}}-u_{B}\right|+\sum_{i=1}^{\infty}\left|u_{B_{i}}-u_{B_{i+1}}\right| \\
\leq & \frac{1}{\mu\left(B \cap B_{1}\right)} \int_{B}\left|u-u_{B}\right| d \mu+\frac{1}{\mu\left(B \cap B_{1}\right)} \int_{B_{1}}\left|u-u_{B_{1}}\right| d \mu \\
& +\sum_{i=1}^{\infty} \frac{1}{\mu\left(B_{i+1}\right)} \int_{B_{i}}\left|u-u_{B_{i}}\right| d \mu
\end{aligned}
$$

$$
\begin{aligned}
\leq & C r^{-s} \int_{B}\left|u-u_{B}\right| d \mu+C \sum_{i=1}^{N}\left(2^{-i} r\right)^{-s} \int_{B_{i}}\left|u-u_{B_{i}}\right| d \mu \\
& +C \sum_{i=N+1}^{\infty}\left(2^{-i} r\right)^{-s} \int_{B_{i}}\left|u-u_{B_{i}}\right| d \mu \\
= & I_{0}+I_{1}+I_{2} .
\end{aligned}
$$

By using Hölder's inequality and a strong ($1, p_{0}$) Poincaré inequality, we find

$$
\begin{aligned}
I_{0} & \leq C(\operatorname{diam} B)\left(\frac{1}{\mu(2 B)} \int_{B}|g|^{p_{0}} d \mu\right)^{1 / p_{0}} \\
& \leq C(\operatorname{diam} B)\left(\frac{1}{\mu(2 B)} \int_{B}|g|^{p} d \mu\right)^{1 / p} \\
& \leq C r^{1-v / p}
\end{aligned}
$$

and

$$
\begin{aligned}
I_{1} & \leq C \sum_{i=0}^{N} 2^{-i} r\left(\frac{1}{\mu\left(2 B_{i}\right)} \int_{B_{i}}|g|^{p_{0}} d \mu\right)^{1 / p_{0}} \\
& \leq C \sum_{i=0}^{N} 2^{-i} r\left(\frac{1}{\mu\left(2 B_{i}\right)} \int_{B_{i}}|g|^{p} d \mu\right)^{1 / p} \\
& \leq C \sum_{i=0}^{N}\left(2^{-i} r\right)^{1-\nu / p} \\
& \leq C\left(2^{-N} r\right)^{1-\nu / p} .
\end{aligned}
$$

According to the estimation of I_{1}, we obtain

$$
\begin{aligned}
I_{2} & \leq C \sum_{i=N+1}^{\infty} 2^{-i} r\left(\frac{1}{\mu\left(2 B_{i}\right)} \int_{B_{i}}|g|^{p_{0}} d \mu\right)^{1 / p_{0}} \\
& \leq C \sum_{i=N+1}^{\infty} 2^{-i} r\left\{M_{2} g_{0}(x)\right\}^{1 / p_{0}} \\
& \leq C 2^{-N} r\left\{M_{2} g_{0}(x)\right\}^{1 / p_{0}},
\end{aligned}
$$

where $g_{0}(y)=|g(y)|^{p_{0}} \chi_{B}(y)$ with χ_{B} denoting the characteristic function of B. Now, considering N to be the integer part of $\left(2^{-N} r\right)^{-\nu / p}=\left\{M_{2} g_{0}(x)\right\}^{1 / p_{0}}$, we establish

$$
\begin{equation*}
\left|u(x)-u_{B}\right| \leq C\left[r^{-\nu / p^{\sharp}}+\left\{M_{2} g_{0}(x)\right\}^{p /\left(p^{\sharp} p_{0}\right)}\right] . \tag{4.3}
\end{equation*}
$$

Therefore, it follows from Lemma 2.2 that

$$
\begin{aligned}
\int_{B}\left|u(x)-u_{B}\right|^{p^{v}} d \mu(x) & \leq C \int_{B}\left[r^{-v}+\left\{M_{2} g_{0}(x)\right\}^{p / p_{0}}\right] d \mu(x) \\
& \leq C\left[r^{-v} \mu(B)+\int g_{0}(y)^{p / p_{0}} d \mu(y)\right] \\
& =C\left[r^{-v} \mu(B)+\int_{B}|g(y)|^{p} d \mu(y)\right] \\
& \leq C r^{-v} \mu(2 B),
\end{aligned}
$$

as required.
Corollary 4.2. Let μ be a nonnegative measure on G satisfying (4.1), and assume that a couple (u, g) satisfies a strong $\left(1, p_{0}\right)$ Poincaré inequality. Then

$$
\left(f_{B}\left|u(x)-u_{B}\right|^{p^{*}} d \mu(x)\right)^{1 / p^{*}} \leq C r^{-s / p^{*}} \mu(B)^{1 / p}\left(f_{B}|g(y)|^{p} d \mu(y)\right)^{1 / p}
$$

for every $B=B(x, r)$ with $2 B \subset G$, where $1 / p^{*}=1 / p-1 / s>0$.
To show this, first suppose $\int_{B}|g(y)|^{p} d \mu(y) \leq 1$. Then the decay condition (4.1) implies that $\|g\|_{p, s, G ; 1}$ is bounded. Now we see from the inequalities after (4.3) that

$$
\int_{B}\left|u(x)-u_{B}\right|^{p^{*}} d \mu(x) \leq C r^{-s} \mu(B) .
$$

Hence we obtain

$$
\left(\int_{B}\left|u(x)-u_{B}\right|^{p^{*}} d \mu(x)\right)^{1 / p^{*}} \leq C\left(r^{-s} \mu(B)\right)^{1 / p^{*}}\left(\int_{B}|g(y)|^{p} d \mu(y)\right)^{1 / p}
$$

for a general g, which gives the required result.
Remark 4.3. Let G be an open set in \mathbf{R}^{n}. We assume that a couple (u, g) satisfies a $\left(1, p_{0}\right)$ Poincaré inequality in G, that is,

$$
\begin{equation*}
f_{B}\left|u(x)-u_{B}\right| d \mu(x) \leq c_{P}^{\prime} \mu(B)^{1 / s}\left(f_{B}|g(y)|^{p_{0}} d \mu(y)\right)^{1 / p_{0}} \tag{4.4}
\end{equation*}
$$

for all balls $B \subset G$, where $1<p_{0}<p$ and c_{P}^{\prime} is a positive constant independent of (u, g). We further assume that $\mu(\partial B)=0$ and

$$
\mu(B)^{v / s} f_{B}|g(y)|^{p} d \mu(y) \leq 1
$$

for each ball $B \subset G$, where $1<p<\nu$. Then

$$
\sup _{B \subset G} \mu(B)^{v / s} f_{B}\left|u(x)-u_{B}\right|^{p^{\sharp}} d \mu(x) \leq C .
$$

For this, we also refer to Hajłasz-Koskela [5].
For a proof of this fact, let $x \in G$ be a Lebesgue point of u. As in the proof of Theorem 1.1 by Gogatishvili-Koskela [4], we take a sequence of balls $\left\{B_{j}\right\}$ such that $x \in B_{j+1} \subset B_{j} \subset B$ and $\mu\left(B_{j}\right)=2^{-j} \mu(B)$. Then, as in (4.3), we can prove

$$
\left|u(x)-u_{B}\right|^{p^{\sharp}} \leq C\left[\mu(B)^{-\nu / s}+\left\{M_{1} g_{0}(x)\right\}^{p / p_{0}}\right],
$$

which gives the required inequality by the boundedness of the maximal operator M_{1}.
Finally we discuss the exponential integrability in the same manner as in Theorem 4.1.

Theorem 4.4. Let G be bounded and $v=p$. Let μ be a nonnegative measure on G satisfying (4.1), and assume that a couple (u, g) satisfies a strong $\left(1, p_{0}\right)$ Poincaré inequality. Then there exists a positive constant c such that

$$
\frac{r^{\nu}}{\mu(2 B)} \int_{B}\left\{\exp \left(c\left|u(x)-u_{B}\right|\right)-1\right\} d \mu(x) \leq 1
$$

for every ball $B=B(z, r)$, whenever $2 B \subset G$ and $\|g\|_{p, v, G ; 2} \leq 1$.
REMARK 4.5. Let μ be a nonnegative measure on \mathbf{R}^{n} satisfying (4.1), and assume that a couple (u, g) satisfies a strong $\left(1, p_{0}\right)$ Poincaré inequality. If $g \in L^{p, v ; 2}\left(\mathbf{R}^{n}\right)$ and $p>v$, then u can be corrected almost everywhere to be continuous on \mathbf{R}^{n}; for this, see [10].

In fact, the first part of the proof of Theorem 4.1 implies that

$$
\left|u(x)-u_{B}\right| \leq C r^{(p-v) / p}
$$

for almost every $x \in B$, which proves

$$
|u(x)-u(y)| \leq C|x-y|^{(p-v) / p}
$$

for almost every $x, y \in B$.
Acknowledgment. We would like to thank Dr. Yoshihiro Sawano and the referee for their kind comments and suggestions.

References

[1] D.R. Adams: A note on Riesz potentials, Duke Math. J. 42 (1975), 765-778.
[2] D.R. Adams and L.I. Hedberg: Function Spaces and Potential Theory, Springer, Berlin, 1996.
[3] F. Chiarenza and M. Frasca: Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl. (7) 7 (1987), 273-279.
[4] A. Gogatishvili and P. Koskela: A non-doubling Trudinger inequality, Studia Math. 170 (2005), 113-119.
[5] P. Hajłasz and P. Koskela: Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000).
[6] L.I. Hedberg: On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505-510.
[7] J. Heinonen: Lectures on Analysis on Metric Spaces, Springer, New York, 2001.
[8] P. Mattila: Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, Cambridge, 1995.
[9] Y. Mizuta: Potential Theory in Euclidean Spaces, Gakkōtosho, Tokyo, 1996.
[10] Y. Mizuta and T. Shimomura: Continuity and differentiability for weighted Sobolev spaces, Proc. Amer. Math. Soc. 130 (2002), 2985-2994.
[11] Y. Mizuta and T. Shimomura: Sobolev embeddings for Riesz potentials of functions in Morrey spaces of variable exponent, J. Math. Soc. Japan 60 (2008), 583-602.
[12] Y. Mizuta and T. Shimomura: Continuity properties for Riesz potentials of functions in Morrey spaces of variable exponent, to appear in Math. Inequal. Appl.
[13] C.B. Morrey, Jr.: On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
[14] J. Orobitg and C. Pérez: A_{p} weights for nondoubling measures in \mathbf{R}^{n} and applications, Trans. Amer. Math. Soc. 354 (2002), 2013-2033.
[15] E. Nakai: Generalized fractional integrals on Orlicz-Morrey spaces; in Banach and Function Spaces, Yokohama Publ., Yokohama, 2004, 323-333.
[16] W. Orlicz: Über konjugierte Exponentenfolgen, Studia Math. 3 (1931), 200-211.
[17] J. Peetre: On the theory of $L_{p, \lambda}$ spaces, J. Funct. Anal. 4 (1969), 71-87.
[18] Y. Sawano: Sharp estimates of the modified Hardy-Littlewood maximal operator on the nonhomogeneous space via covering lemmas, Hokkaido Math. J. 34 (2005), 435-458.
[19] Y. Sawano, T. Sobukawa and H. Tanaka: Limiting case of the boundedness of fractional integral operators on nonhomogeneous space, J. Inequal. Appl. (2006), Art. ID 92470, 16 pp.
[20] Y. Sawano and H. Tanaka: Morrey spaces for non-doubling measures, Acta Math. Sin. (Engl. Ser.) 21 (2005), 1535-1544.

Yoshihiro Mizuta
Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima 739-8521
Japan
e-mail: yomizuta@hiroshima-u.ac.jp
Tetsu Shimomura
Department of Mathematics
Graduate School of Education
Hiroshima University
Higashi-Hiroshima 739-8524
Japan
e-mail: tshimo@hiroshima-u.ac.jp
Takuya Sobukawa
Department of Mathematics Education Faculty of Education
Okayama University
Tsushima-naka 700-8530
Japan
e-mail: sobu@cc.okayama-u.ac.jp

