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Abstract
Our aim in this paper is to give Sobolev’s inequality and Trudinger exponential

integrability for Riesz potentials of functions in non-doubling Morrey spaces.

1. Introduction

The space introduced by Morrey [13] in 1938 has become a usefultool of the
study for the existence and regularity of solutions of partial differential equations. In
the present paper, we aim to establish Sobolev’s inequalityfor the Riesz potentials of
functions in generalized Morrey spaces in the non-doubling setting, as extensions of
Gogatishvili-Koskela [4], Orobitg-Pérez [14] and Sawano-Sobukawa-Tanaka [19].

Let X be a separable metric space with a nonnegative Radon measure�. For sim-
plicity, write jx � yj for the distance ofx and y. We assume that�(fxg) = 0 and
0 < �(B(x, r )) <1 for x 2 X and r > 0, whereB(x, r ) denotes the open ball cen-
tered atx of radius r > 0. In this paper,� may or may not be doubling.

Let G be an open set inX. We define the Riesz potential of order� for a non-
negative measurable functionf on G by

U� f (x) =
Z

G

jx � yj� f (y)�(B(x, 4jx � yj)) d�(y).

Here we introduce the familyL p,�;k(G) of all measurable functionsf on G such that

k f kp
p,�,G;k = sup

x2G,0<r�dG

r ��(B(x, kr ))

Z
G\B(x,r )

j f (y)jpd�(y) <1,

where 1< p <1, � > 0, k > 1 anddG denotes the diameter ofG. In caseX = Rn

with a nonnegative Radon measure�, we know that

L p,�;k1(G) = L p,�;k2(G)
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when k2 > k1 > 1, but we have an example (see Remark 2.1) in which

L p,�;1(G) 6= L p,�;2(G);

see also Sawano-Tanaka [20]. The spaceL p,�;2(G) is referred to as a generalized Mor-
rey space.

To obtain Sobolev type inequalities for Riesz potentials offunctions belonging to
generalized Morrey spaces, we consider a generalized maximal function defined by

Mk f (x) = sup
r>0

1�(B(x, kr ))

Z
G\B(x,r )

j f (y)j d�(y)

for k � 1 and a locally integrable functionf on G. In view of Sawano [18, Corol-
lary 2.1]), M2 is bounded inL p(X). Further it is useful to remark that in a certain
metric measure spaceX, Mk fails to be bounded inL p(X) if and only if k < 2 (see
Sawano [18, Proposition 1.1]).

By applying the fact thatM2 is a bounded mapping fromL p,�;2(X) to L p,�;4(X)
(see Sawano-Tanaka [20, Theorem 2.3]), we first show thatU� f 2 L p℄,�;4(X) for f 2
L p,�;2(X), where 1=p℄ = 1=p � �=� > 0; in the borderline case� = �p, we consider
the exponential integrability. For this, we also refer the reader to Sawano-Sobukawa-
Tanaka [19, Theorem 3.1].

Finally, in our Morrey space setting, we establish an exponential integrability for
functions satisfying a Poincaré inequality, as an extension of Gogatishvili-Koskela [4]
and Orobitg-Pérez [14].

For related results, see Adams [1], Chiarenza-Frasca [3, Theorem 2], Nakai [15,
Theorem 2.2] and the authors [11, 12] in the doubling case.

2. Sobolev’s inequality

Throughout this paper, letC denote various constants independent of the variables
in question.

For a nonnegative measurable functionf on G and k > 1, define the maximal
function

Mk f (x) = sup
r>0

1�(B(x, kr ))

Z
G\B(x,r )

j f (y)j d�(y)

= sup
0<r<dG

1�(B(x, kr ))

Z
G\B(x,r )

j f (y)j d�(y)

for x 2 G, wheredG denotes the diameter ofG. Recall that

k f kp
p,�,G;k = sup

x2G,0<r�dG

r ��(B(x, kr ))

Z
G\B(x,r )

j f (y)jpd�(y).
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When X = Rn with a nonnegative Radon measure�, we see that ifG is an open set
of Rn and 1< k < 2, then

k f kp,�,G;k � Ck f kp,�,G;2

for all f 2 L p,�;2(G), whereC is a constant depending only onk and n; for this fact,
see e.g. [20, Proposition 1.1].

REMARK 2.1. We set

L p,�;k(G) =

�
f sup

x2G,0<r�dG

r ��(B(x, kr ))

Z
G\B(x,r )

j f (y)jpd�(y) <1�.

When G � Rn, L p,�;k(G) = L p,�;2(G) for all k > 1. We show by an example that

L p,�;1(G) 6= L p,�;k(G)

when k > 1. For this, consider a measure given by

d�(y) = eydy

on R1. For 0< � < 1, letting f (y) = y��=p for y > 0 and f (y) = 0 for y � 0, we
note the following:
(i) if 0 < x � r , then

r ��(B(x, 2r ))

Z
B(x,r )

j f (y)jpd�(y) � r �
ex(e2r � 1)

ex+r
Z 2r

0
y��dy

� C
r ���+1

er � 1
;

(ii) if x > r > 0, then

r ��(B(x, 2r ))

Z
B(x,r )

j f (y)jpd�(y) � r �
ex(e2r � 1)

Z x+r

x�r
y��eydy

� r �
ex(e2r � 1)

(x + r )1�� � (x � r )1��
1� � ex+r

� C
r ���+1

er � 1
;

(iii) if x > 0 and r > 0, then

r ��(B(x, r ))

Z
B(x,r )

j f (y)jpd�(y) � r �(x + r )�� .
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If 0 < � < 1 and� � �, then (i) and (ii) imply that f 2 L p,�;2(R1), and if 0< � < 1
and � < �, then (iii) implies that

lim sup
r!1

r ��(B(x, r ))

Z
B(x,r )

j f (y)jpd�(y) = 1
for every fixedx > 0, so that f =2 L p,�;1(R1).

In what follows, if f is a function onG, then we assume thatf = 0 outsideG.
First we present the boundedness of maximal functions in theMorrey spaceL p,�;2(G)

due to Sawano-Tanaka [20, Theorem 2.3].

Lemma 2.2. If � > 0, then

kM2 f kp,�,G;4 � Ck f kp,�,G;2

for all f 2 L p,�;2(G).

Proof. Let k f kp,�,G;2 � 1, and fix x 2 G and 0< r � dG. Write A0 = B(x, 2r )
and A j = B(x, 2j +1r ) n B(x, 2j r ) for each positive integerj . We set

f j = f �A j ,

where�E denotes the characteristic function ofE. Note that

Z
B(x,r )

M2 f (z)pd� � 2p�1

�Z
B(x,r )

M2 f0(z)pd� +
Z

B(x,r )
M2g0(z)pd��

� 2p�1(I1 + I2),

where g0 =
P1

j =1 j f j j. We have by Sawano [18, Theorem 1.2 and Proposition 1.1]

I1 �
Z

M2 f0(z)pd� � C
Z j f0(z)jpd�

= C
Z

B(x,2r )
j f (z)jpd� � Cr���(B(x, 4r )).

Next we see that forz 2 B(x, r )

M2 f j (z) � C supft :(2 j�1)r<t<(2 j +1+1)r g
1�(B(z, 2t))

Z
B(z,t)

j f (y)j d�
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� C supft :(2 j�1)r<t<(2 j +1+1)r g
�

1�(B(z, 2t))

Z
B(z,t)

j f (y)jpd��1=p

� C(2 j r )��=p,

so that

M2g0(z) � 1X
j =1

M2 f j (z) � C
1X
j =1

(2 j r )��=p � Cr��=p.

Hence it follows that

I2 � Cr�� Z
B(x,r )

d� � Cr���(B(x, r )).

Thus we obtain

r ��(B(x, 4r ))

Z
B(x,r )

M2 f (z)pd� � C,

which proves the lemma.

Lemma 2.3. If f is a nonnegative measurable function on G such thatk f kp,�,G;2 �
1, then Z

B(x,Æ)
jx � yj� f (y)�(B(x, 4jx � yj)) d�(y) � CÆ�M2 f (x)

for x 2 G and Æ > 0.

Proof. We have

Z
B(x,Æ)

jx � yj� f (y)�(B(x, 4jx � yj)) d�(y) =
1X
j =1

Z
B(x,2� j +1Æ)nB(x,2� j Æ)

jx � yj� f (y)�(B(x, 4jx � yj)) d�(y)

� 1X
j =1

(2� j +1Æ)��(B(x, 2� j +2Æ))
Z

B(x,2� j +1Æ) f (y) d�(y)

� Æ�M2 f (x)
1X
j =1

2(� j +1)�
= CÆ�M2 f (x),

as required.
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Lemma 2.4. Let �=p � �. Let f be a nonnegative measurable function on G
such thatk f kp,�,G;2 � 1. In case�=p > �,

Z
GnB(x,Æ)

jx � yj� f (y)�(B(x, 4jx � yj)) d�(y) � CÆ���=p

and in case�=p = � and G is bounded,

Z
GnB(x,Æ)

jx � yj� f (y)�(B(x, 4jx � yj)) d�(y) � C log
1Æ

for x 2 G and smallÆ > 0.

Proof. Let j0 be the smallest integer such that 2j0Æ � dG, wheredG is the diam-
eter of G as before. By using Hölder’s inequality, we haveZ

GnB(x,Æ)
jx � yj� f (y)�(B(x, 4jx � yj)) d�(y)

=
j0X

j =0

Z
B(x,2j +1Æ)nB(x,2j Æ)

jx � yj� f (y)�(B(x, 4jx � yj)) d�(y)

� j0X
j =0

(2 j +1Æ)� 1�(B(x, 2j +2Æ))
Z

B(x,2j +1Æ) f (y) d�(y)

� CÆ� j0X
j =0

2� j

�
1�(B(x, 2j +2Æ))

Z
B(x,2j +1Æ) f (y)pd�(y)

�1=p

� CÆ� j0X
j =0

2� j (2 j +1Æ)��=p

= CÆ���=p
j0X

j =0

2(���=p) j ,

which proves the required inequality.

With the aid of Lemmas 2.2, 2.3 and 2.4, we can apply Hedberg’strick (see [6]) to
obtain a Sobolev type inequality for Riesz potentials due toAdams [1, Theorem 3.1],
Chiarenza and Frasca [3, Theorem 2], Nakai [15, Theorem 2.2]and Sawano-Tanaka [20,
Theorem 3.3].
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Theorem 2.5. Let 1=p℄ = 1=p� �=� > 0. Then there exists a positive constant
c such that

r ��(B(z, 4r ))

Z
B(z,r )

fU� f (x)gp℄ d�(x) � c

for all z 2 X and r> 0, whenever f is a nonnegative measurable function on X sat-
isfying k f kp,�,X;2 � 1.

Proof. We see from Lemmas 2.3 and 2.4 that

U� f (x) =
Z

B(x,Æ)
jx � yj� f (y)�(B(x, 4jx � yj)) d�(y) +

Z
XnB(x,Æ)

jx � yj� f (y)�(B(x, 4jx � yj)) d�(y)

� CÆ�M2 f (x) + CÆ���=p

for all Æ > 0. Here, letting

Æ = fM2 f (x)g�p=� ,
we have

U� f (x) � CfM2 f (x)g1��p=� = CfM2 f (x)gp=p℄ ,
which yields Z

B(z,r )
fU� f (x)gp℄ d�(x) � C

Z
B(z,r )

fM2 f (x)gpd�(x)

for z 2 X and r > 0. Hence Lemma 2.2 gives

r ��(B(z, 4r ))

Z
B(z,r )

fU� f (x)gp℄ d�(x) � C

for such z and r , as required.

REMARK 2.6. Theorem 2.5 implies that the mappingf ! U� f is bounded from
L p,�;2(X) to L p℄,�;4(X).

REMARK 2.7. WhenX = Rn, consider the potential

U�,k f (x) =
Z jx � yj� f (y)�(B(x, kjx � yj)) d�(y)

for k > 1. Then we can show that the mappingf ! U�,k f is bounded fromL p,�;2(Rn)

to L p℄,�;2(Rn), when 1=p℄ = 1=p� �=� > 0.
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REMARK 2.8. We show by an example that the mappingf ! U�,1 f fails to be
bounded inL p,�;2(Rn).

For this purpose, considerd�(y) = eydy and

f (y) =

�
y��=p when y > 0;
0 when y � 0.

In view of Remark 2.1, we see thatf 2 L p,�;2(R1) when 0< � < � � 1. Further we
see that

U�,1 f (x) � Z 1
x

t�(x + t)��=p

ex(et � e�t )
ex+t dt = 1

for all x > 0 when � � �=p + 1 � 0. This implies thatU�,1 f does not belong to
L p,�;2(R1) when 0< � < � � 1.

3. Exponential integrability

Our aim in this section is to discuss the exponential integrability.

Theorem 3.1. Let G be bounded and� = �p. Then there exists a positive con-
stant c such that

r ��(B(z, 4r ))

Z
G\B(z,r )

fexp(cU� f (x))� 1g d�(x) � 1

for all z 2 G and 0 < r � dG, whenever f is a nonnegative measurable function on
G satisfyingk f kp,�,G;2 � 1.

Proof. Letk f kp,�,G;2 � 1. We see from Lemmas 2.3 and 2.4 that

U� f (x) =
Z

G\B(x,Æ)
jx � yj� f (y)�(B(x, 4jx � yj)) d�(y) +

Z
GnB(x,Æ)

jx � yj� f (y)�(B(x, 4jx � yj)) d�(y)

� CÆ�M2 f (x) + C log
1Æ

for x 2 G and smallÆ > 0. Here, letting

Æ = fM2 f (x)g�1=�flog(M2 f (x))g1=�
when M2 f (x) is large enough, we have

exp(U� f (x)) � C + CfM2 f (x)gp,
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so that Lemma 2.2 yieldsZ
G\B(z,r )

exp(U� f (x)) d�(x) � C�(G \ B(z, r )) + C
Z

G\B(z,r )
fM2 f (x)gpd�(x)

� C�(G \ B(z, r )) + C
�(B(z, 4r ))

r �
for z 2 G and r > 0. Hence we findc > 0 such that

r ��(B(z, 4r ))

Z
G\B(z,r )

fexp(cU� f (x))� 1g d�(x) � 1

for z 2 G and 0< r � dG, wheneverk f kp,�,G;2 � 1. Thus the required result is ob-
tained.

REMARK 3.2. In Theorem 3.1, we can not add an exponentq > 1 such that

r ��(B(z, 4r ))

Z
G\B(z,r )

fexp(cU� f (x)q)� 1g d�(x) � 1.

For this, consider the potential

U (x) =
Z

B
jx � yj��njyj��dy,

whereB = B(0, 1)� Rn. If � = �p < n and f (y) = jyj���B(y), then

r ��n
Z

B(x,r )
j f (y)jpdy� r ��n

Z
B(x,r )

jx � yj��pdy

� Cr ��nr n��p = C

for all x 2 B and r > 0, so that f 2 L p,�;1(B). On the other hand, we see that

U (x) � Z
BnB(x,jxj=2)

jx � yj��n f (y) dy

� 3�� Z
BnB(x,jxj=2)

jx � yj�ndy

� C log
2jxj

for x 2 B, and hence Z
B

exp(cU(x)q) dx = 1
for c > 0 andq > 1.
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Consider the function

eN(t) = et � 1� t � t2

2!
� � � � � t N�1

(N � 1)!
.

Theorem 3.3. Let � = �p. For �̃ > �, take a positive integer N such that

N > �̃ p�̃ � �p
= p̃.

Then there exists a positive constant c such that

r ��(B(z, 4r ))

Z
B(z,r )

eN(cU� f ) d�(x) � 1

for all z 2 X and r> 0, whenever f is a nonnegative measurable function on X sat-
isfying k f kp,�,X;2 + k f kp,�̃,X;2 � 1.

Proof. We see from Lemmas 2.3 and 2.4 that

U� f (x) =
Z

B(x,Æ)
jx � yj� f (y)�(B(x, 4jx � yj)) d�(y) +

Z
XnB(x,Æ)

jx � yj� f (y)�(B(x, 4jx � yj)) d�(y)

� CÆ�M2 f (x) + C log
1Æ

for small Æ > 0. Here, letting

Æ = fM2 f (x)g�1=�flog(M2 f (x))g1=�
when M2 f (x) is large enough, we have

U� f (x) � C log(2 + M2 f (x)).

We write G1 = fx 2 X : M2 f (x) > 2g and G2 = fx 2 X : M2 f (x) � 2g. Then we find
c1 > 0 such thatZ

G1\B(z,r )
eN(c1U� f (x)) d�(x) � Z

B(z,r )
fM2 f (x)gpd�(x)

and Z
G2\B(z,r )

eN(c1U� f (x)) d�(x) � Z
G2\B(z,r )

fU� f (x)g p̃d�(x)

� Z
B(z,r )

fM2 f (x)gpd�(x)
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for z 2 X and r > 0. Hence Lemma 2.2 gives

r ��(B(z, 4r ))

Z
B(z,r )

eN(c2U� f (x)) d�(x) � 1

for such z and r , wheneverk f kp,�,X;2 + k f kp,�̃,X;2 � 1. This gives the the required
result.

REMARK 3.4. Let � < �p and f be a nonnegative measurable function onX
belonging to L p,�;2(X). Then U� f (x) is seen to be continuous atx0 2 X where�(�B(x0, r )) = 0 for r > 0 and

(3.1)
Z jx0 � yj� f (y)�(B(x0, 2jx0 � yj)) d�(y) <1.

In fact, for Æ > 0, we write

U� f (x) =
Z

B(x0,3Æ)
jx � yj� f (y)�(B(x, 4jx � yj)) d�(y) +

Z
XnB(x0,3Æ)

jx � yj� f (y)�(B(x, 4jx � yj)) d�(y)

= U1(x) + U2(x).

The proof of Lemma 2.3 implies that

U1(x) � CÆ���=p

for x 2 B(x0, Æ), when�� �=p> 0. Note that�(B(x, 4jx� yj)) ! �(B(x0, 4jx0� yj))
as x ! x0 for fixed y 2 XnB(x0, 3Æ) by the assumption that�(�B(x0, r )) = 0 for r > 0.
Since jx� yj�=�(B(x, 4jx� yj)) � Cjx0� yj�=�(B(x0, 2jx0� yj)) for x 2 B(x0, Æ) and
y 2 X n B(x0, 3Æ), we have by Lebesgue’s dominated convergence theorem

lim
x!x0

U2(x) = U2(x0),

which shows thatU� f (x) is continuous atx0.

4. Poincaré inequality

Let � be a nonnegative measure on an open setG. For a measurable functionu
on G, we define the integral mean over a measurable setE � G of positive measure by

uE = –
Z

E
u(x) d� =

1�(E)

Z
E

u(x) d�(x).

In this section, we assume that� satisfies the lower Ahlforss-regularity condition

(4.1) c�r s � �(B) <1
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for all balls B = B(x, r ) � G, wheres> 0 andc� is a positive constant.
We say that a couple (u, g) satisfies a strong (1,p0) Poincaré inequality (inG) if

(4.2)
Z

B
ju(x)� uBj d�(x) � cP(diamB)1+s

�
1�(2B)

Z
B
jg(y)jp0 d�(y)

�1=p0

for each ball B = B(x, r ) with 2B = B(x, 2r ) � G, where 1� p0 < p and cP is a
positive constant.

Set 1=p℄ = 1=p� 1=� > 0.

Theorem 4.1. Let � be a nonnegative measure on G satisfying(4.1), and as-
sume that a couple(u, g) satisfies a strong(1, p0) Poincaré inequality(4.2). Ifkgkp,�,G;2 � 1, then

r ��(2B)

Z
B
ju(x)� uBjp℄ d�(x) � C

for every ball B= B(x, r ) with 2B � G.

Orobitg-Pérez [14] gave a version of Sobolev’s inequalities in theL p space setting.

Proof of Theorem 4.1. Let 2B = B(x0, 2r ) � G. For x 2 B, set

Bi (x) = B(x, 2�i r ).

By the Lebesgue differentiation theorem we have

lim
i!1 uBi (x) = u(x)

for �-a.e.x and hence we may assume that our fixed pointx has this property. Let
N = N(x) be a positive integer whose value will be determined later.Letting Bi = Bi (x)
for i = 1, 2,: : : , we have by (4.1)

ju(x)� uBj � juB1 � uBj + 1X
i =1

juBi � uBi +1j
� 1�(B \ B1)

Z
B
ju� uBj d� +

1�(B \ B1)

Z
B1

ju� uB1j d�
+

1X
i =1

1�(Bi +1)

Z
Bi

ju� uBi j d�
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� Cr�s
Z

B
ju� uBj d� + C

NX
i =1

(2�i r )�s
Z

Bi

ju� uBi j d�
+ C

1X
i =N+1

(2�i r )�s
Z

Bi

ju� uBi j d�
= I0 + I1 + I2.

By using Hölder’s inequality and a strong (1,p0) Poincaré inequality, we find

I0 � C(diamB)

�
1�(2B)

Z
B
jgjp0 d��1=p0

� C(diamB)

�
1�(2B)

Z
B
jgjpd��1=p

� Cr1��=p

and

I1 � C
NX

i =0

2�i r

�
1�(2Bi )

Z
Bi

jgjp0 d��1=p0

� C
NX

i =0

2�i r

�
1�(2Bi )

Z
Bi

jgjpd��1=p

� C
NX

i =0

(2�i r )1��=p

� C(2�Nr )1��=p.

According to the estimation ofI1, we obtain

I2 � C
1X

i =N+1

2�i r

�
1�(2Bi )

Z
Bi

jgjp0 d��1=p0

� C
1X

i =N+1

2�i r fM2g0(x)g1=p0

� C2�Nr fM2g0(x)g1=p0,

where g0(y) = jg(y)jp0�B(y) with �B denoting the characteristic function ofB. Now,
consideringN to be the integer part of (2�Nr )��=p = fM2g0(x)g1=p0, we establish

(4.3) ju(x)� uBj � C[r��=p℄ + fM2g0(x)gp=(p℄ p0)].
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Therefore, it follows from Lemma 2.2 thatZ
B
ju(x)� uBjp℄ d�(x) � C

Z
B
[r�� + fM2g0(x)gp=p0]d�(x)

� C

�
r���(B) +

Z
g0(y)p=p0 d�(y)

�

= C

�
r���(B) +

Z
B
jg(y)jpd�(y)

�
� Cr���(2B),

as required.

Corollary 4.2. Let � be a nonnegative measure on G satisfying(4.1), and as-
sume that a couple(u, g) satisfies a strong(1, p0) Poincaré inequality. Then

�
–
Z

B
ju(x)� uBjp� d�(x)

�1=p� � Cr�s=p��(B)1=p

�
–
Z

B
jg(y)jpd�(y)

�1=p

for every B= B(x, r ) with 2B � G, where1=p� = 1=p� 1=s> 0.

To show this, first suppose
R

B jg(y)jpd�(y) � 1. Then the decay condition (4.1)
implies thatkgkp,s,G;1 is bounded. Now we see from the inequalities after (4.3) that

Z
B
ju(x)� uBjp� d�(x) � Cr�s�(B).

Hence we obtain

�Z
B
ju(x)� uBjp� d�(x)

�1=p� � C(r�s�(B))1=p��Z
B
jg(y)jpd�(y)

�1=p

for a generalg, which gives the required result.

REMARK 4.3. Let G be an open set inRn. We assume that a couple (u, g)
satisfies a (1,p0) Poincaré inequality inG, that is,

(4.4) –
Z

B
ju(x)� uBj d�(x) � c0P�(B)1=s� –

Z
B
jg(y)jp0 d�(y)

�1=p0

for all balls B � G, where 1< p0 < p and c0P is a positive constant independent of
(u, g). We further assume that�(�B) = 0 and

�(B)�=s –
Z

B
jg(y)jpd�(y) � 1
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for each ballB � G, where 1< p < �. Then

sup
B�G

�(B)�=s –
Z

B
ju(x)� uBjp℄ d�(x) � C.

For this, we also refer to Hajłasz-Koskela [5].
For a proof of this fact, letx 2 G be a Lebesgue point ofu. As in the proof of

Theorem 1.1 by Gogatishvili-Koskela [4], we take a sequenceof balls fB j g such that
x 2 B j +1 � B j � B and�(B j ) = 2� j�(B). Then, as in (4.3), we can prove

ju(x)� uBjp℄ � C[�(B)��=s + fM1g0(x)gp=p0],

which gives the required inequality by the boundedness of the maximal operatorM1.

Finally we discuss the exponential integrability in the same manner as in Theo-
rem 4.1.

Theorem 4.4. Let G be bounded and� = p. Let � be a nonnegative measure on
G satisfying(4.1), and assume that a couple(u, g) satisfies a strong(1, p0) Poincaré
inequality. Then there exists a positive constant c such that

r ��(2B)

Z
B
fexp(cju(x)� uBj)� 1g d�(x) � 1

for every ball B= B(z, r ), whenever2B � G and kgkp,�,G;2 � 1.

REMARK 4.5. Let � be a nonnegative measure onRn satisfying (4.1), and as-
sume that a couple (u, g) satisfies a strong (1,p0) Poincaré inequality. Ifg 2 L p,�;2(Rn)
and p > �, then u can be corrected almost everywhere to be continuous onRn; for
this, see [10].

In fact, the first part of the proof of Theorem 4.1 implies that

ju(x)� uBj � Cr (p��)=p

for almost everyx 2 B, which proves

ju(x)� u(y)j � Cjx � yj(p��)=p

for almost everyx, y 2 B.
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