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Abstract
In this paper, we introduce the wedk-expansivity which is a generalization
of both expansivity ands-expansivity. Also, we defing-stable andG-unstable
sets of a homeomorphism on a met@espaceX and investigate properties of them.
Finally, we consider the decomposition theorem @sspaces.

1. Introduction

Let X be a topological spaceic be a topological group, and: G x X — X
be a map. The tripleX, G, 0) is called atopological G-spacef the following three
conditions are satisfied:

(1) 6(e, x) =x for all x € X, wheree is the identity ofG;

(2) 6(g, 6(h, x)) =6(gh, x) for all x € X and for allg, h € G;

(3) 6 is continuous.

Here, gh is the group operation oG. Simply, we denoted(g, X) by gx and X is
usually said to be #@opological G-space

For any subse®A of X, G(A) is denoted by the sdiga: g € G, a € A}. G(X) is
called aG-orbit of x. A subsetA of X is called G-invariant if G(A) = A. A map
f: X — X on aG-spaceX is said to bepseudoequivarianprovided that f (G(x)) =
G(f(x)) for all x € X, and f is said to beequivariant provided thatf(gx) = gf(x)
forall x e X andg € G.

N. Aoki has proved the following topological decomposititveorem in 1983 ([1]),
which is an extension of Smale’s spectral decompositiorortra and Bowen’s de-
composition theorem in dynamical systems. All undefinedomstcan be found in [2].

Theorem 1.1 ([1]). Let f: X — X be a homeomorphism on a compact metric
space X and let CH) be the chain recurrent setf f|crf): CR(f) — CR(f) is an
expansive homeomorphism with the shadowing propénsn
(1) CR(f) contains a finite sequence; B1 < i < k) of f-invariant closed subsets
such that
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(@) CR(f)=J, B (disjoint union;
(b) flg: Bi — B; is topologically transitive
(2) for each B, there exist a subset Xof B and a> 0 such that
(@) f3(Xp) = Xp;
(b) Xpnfi(Xp)=0 (0<j <a);
(©) f2x,: Xp — X, is topologically mixing

(d) B =i FI(Xp)

A point x € X is called aG-periodic pointof f if there exist an integen > 0 and
g € G such thatf"(x) = gx. A pointx € X is called aG-nonwandering poinof f if for
every open neighborhodd of x, there exisn > 0 andg € G such thag f"(U)NU # .
Pers(f) (resp.Qg(f)) is denoted by the set of ab-periodic (respG-nonwandering)
points of f.

For a homeomorphisnf on a metricG-spaceX, a sequencgx; € X:i € Z} is
called a §, G)-pseudo orbitfor f provided that for each, there existsg; € G such
that d(g; f(X;), Xi+1) < 8. A (8, G)-pseudo orbit{x;} for f is said to bee-traced by a
point x € X provided that for each, there existsy € G such thatd(f'(x), gix) < e.

DEFINITION 1.2 ([5]). A homeomorphisnf: X — X has theG-shadowing prop-
erty (GSP) provided that for any > 0, there exist$ > 0 such that everys( G)-pseudo
orbit {x;} in X for f is e-traced by a poink € X.

ReEMARK 1.3. Itwas proved by E. Shah that, whi¥ris a compact metriG-space
and the orbit mapr: X — X/G is a covering map, a pseudoequivariant homeomorphism
f on X has the GSP if and only if the induced mép X/G — X/G has the shadowing

property ([5]).

If a pseudoequivariant continuous onto mép X — X has the GSP wher&X is
a compact metricG-space withG compact, thenf |q,(r) has the GSP ([5]).

The main purpose of this paper is to prove the following teews on compact
metric G-spaces.

Theorem A. Let X be a compact metric G-space with G compattf: X — X
is a pseudoequivariant G-expansive homeomorphism withGEE then Qg(f) con-
tains a finite sequence; 1 <i < n) of f-invariant G-invariant and closed subsets
such that
(1) flag(r) is topologically G-transitive
(2 Qc(f)=U~, B (disjoint union;

(3) flg has the GSP

A homeomorphismf : X — X is said to betopologically G-mixingprovided that
for every nonempty open subsdis and V of X, there exists an integeX such that
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for eachn > N, there isg, € G satisfyingg, f"(U)NV #Z@.

Theorem B. Let floyr): Qa(f) = Qc(f) be a G-expansive homeomorphism
with the GSPThen for any f-invariant G-invariant open and closed subset &
Qg(f) such that 1g: B — B is topologically G-transitive there are X, ¢ B and
a > 0 such that
(1) f3(Xp) = Xy
(2 XpNflI(Xp)=08 (0<j <a)

(3) fx,: Xp — X, is topologically G-mixing

@) B=U% fI(Xp).

DEFINITION 1.4. A homeomorphisnf: X — X on a metricG-spaceX is said
to be weak G-expansiverovided that there exists > 0 such that for everx, y € X
with G(xX) # G(y) if u e G(x) andv € G(y), there existsn =n(u, v) € Z such that

d(f"(u), f"(v)) > 6.
The constan$ is called aweak G-expansive constafar f.

The weakG-expansivity is a generalization of both expansivity @aexpansivity.
Here, G-expansivity has been defined by R. Das ([4]). A homeomorphifs X — X
is said to beG-expansiveprovided that there exist& > 0 such that for everx,y € X
with G(x) # G(y), there existsn € Z such that

d(f"(u), f"(v)) > 8 for all ue G(x), veG(y).

The constant is called aG-expansive constarior f.

REMARK 1.5. R. Das proved that there is no implication betw&expansivity
and expansivity by giving counterexamples ([4]).

ExampPLE 1.6 ([4]). Consider the compact spa¥e={1/n,1—1/n: n € N} with
the usual metric and let the topological groGp= {—1, 1} act on X with the actiond
defined byd(1, x) =x andf(—1, x) = 1— x. Define a homeomorphisni: X — X by

X if x=0,1;

00 = {next to the right ofx if x e X\ {0, 1.

Then f is an expansive map with expansive constarfd < § < 1/6). But, it is easy
to see that forx, y € X\ {1/2} with G(x) # G(y), there is non € Z such that

1) — ()| > 8 forall ueG(x), ve G(y),

whatevers > 0 may be. This means thdt is not G-expansive.
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EXAMPLE 1.7 ([4]). Consider the compact space = |J; Ci with the usual
metric, where eaclC; is the circle inR? with center the origin and radius De-
note G = SQ2) by the set of all 2 2 matrices whose determinants atd and define
an actionf: G x X — X by the usual rotations oX. Then the identity map oiX is
G-expansive withG-expansive constart (0 < § < 1).

Therefore, all properties of the following diagram are idigtished as we see in
Examples 1.6 and 1.7:

weak G-expansive

//‘\\

G-expansive expansive

DEerFINITION 1.8. Letf: X — X be a homeomorphism of a metrg-spaceX.
We define alocal G-stable set \i(x) and alocal G-unstable set W(x) by

W2(x) = {y € X: for eachn > 0,
there isgy € G such thatd(f"(gnx), f"(y)) < €},
WY(x) = {y € X: for eachn >0
there isg, € G such thatd(f ~"(g.x), f~"(y)) < €}.
We modify results of [3] into the following results by weakeg the condition
“equivariant” into “pseudoequivariant” and deleting thendition “invariant metric”. A

metricd on aG-spaceX is called aninvariant metricprovided thatd(x, y) = d(gx, gy)
for all x, ye X andg € G.

REMARK 1.9. LetX be a compact metriG-space withG compact. If f: X —
X is a weakG-expansive pseudoequivariant homeomorphism with w@agxpansive
constants > 0, then for everyy > 0, there isN > 0 such that for eaclk € X and for
eachn > N,

fRW5(x)) € WR(F(x))
and
FU(W5' (X)) € W(F (%))

Proof. We shall prove only the case of a lo€istable set because the other case
can be proved similarly. To do it, suppose that there exists 0 such that for all
N > 0, there arex € X andn > N satisfying

FIWE (X)) ¢ Wo(F7(x)).
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Let N > 0. Then there are; € X andn > N satisfying
FAUWS(x1) ¢ Wy (F"(x1)),

that is, there existy; € Wi(x1) such thatf"(y;) ¢ WS(f"(x1)). So there exists > 0
such that for evenh € G,

d(f'(hf"(x0)), 1 (f"(y)) > v.
Becausef is pseudoequivariant, there exists- O such that for everyg € G,
d(@f™"(xa), F*"(y2) > v.

Takem; =i +n and chooseN =m; + 1.
Continuing the process, we can find sequenogs> 0, x,, andy, € X such that
(1) Yo € Wy (xn);
(2) d(hf™(x,), f™(y,)) > y for all h e G;
3) limp_ oo My = 0.
It follows from y, € Wy(x,) that for eachi > —m,, there exist®j+m, € G such that

d(f"*™(Gism,Xn), ™ (¥n)) < 6.
Since f is pseudoequivariant, for ead.m,, there existsi.yn, € G such that
d( ' (Mism, F™ (%)), £1(F™(¥n)) = d(F ™ (Giem, Xa), £ ™ (V)
Hence, for each > —m,,
d(f! (hism, ™ (%0)), f1(F™(yn))) < 6.
If f™(X,) — X, T™(yn) = vy, andhj+y, — h asn — oo, then
d(f'(hx), f'(y)) <8 forall icZ.

Since § is a weak G-expansive constant forf, G(x) = G(y). But d(hx,y) =
limp_ oo d(hf™(xy), f™(yn)) >y > 0 for allh € G by (2). Thushx #y for all h € G,
and henceG(x) # G(y). This is a contradiction. ]

For a homeomorphisnf on a compact metrié&G-space, we define the following:
W3(x) = [y € X: there exists a sequency € G such that
lim_d(f"(@w), £"(y) = 0};
WY(x) = [y € X: there exists a sequencg € G such that
lim_d(="(gux), () =0}.
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W5(x) (resp.W!(x)) is called aG-stable sef(resp.G-unstable st

REMARK 1.10. LetX be a compact metriG-space withG compact. Iff: X —
X is a weakG-expansive pseudoequivariant homeomorphism with w@adxpansive
constants > 0, then for eacte with 0 < ¢ < §,

wWe(x) = N WE(F(0)));

n>0

WH) = FOWE(E ().

n>0

Proof. (C): Lety e W5(x) and O< € < §. Then there existtN > O such that for
eachn > N, we can choose, € G satisfying

d(f"(gnx), f"(y)) <e.
Thus,
d(f'(fN(gi+nx)), F1(FN(Y) <e forall i>o0.

Since f is pseudoequivariantf N(y) € WS(fN(x)). Therefore,

y e fNWEENE)) < [ N WECE00)).

n>0

(D): Letye f~"(WS(f"(x))) for somen > 0. Then f"(y) € W3(f"(x)). It fol-
lows from Remark 1.9 that for eveny > 0 there existdN > 0 such that for eaclk € X
andm > N,

f™0(y) e FMWE(F"(X))) € Wy (F™"(x)).
So for eachn > N, we can findg, € G such that
d(f™"(gnx), F™(y)) < y.

Since f is pseudoequivarianty € W3(x). The proof is completed. The case of a
G-unstable set can be proved similarly. O

2. Decomposition theorems
First we prepare the following four lemmas to show Theorem A.
Lemma 2.1 ([3]). Let (X, G, 6) be a compact metric G-space with G compact

Then for anye > 0, there is a finite open covelf = {Uy,..., Us} of X such that
diam@U;) < e forall ge G and i with1<i <s.
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In Lemma 2.1, notice that, for eadpe G, the open covefgU: U € U/} of X
satisfies diant(gU;) <€ for all h € G andi with 1 <i <s.

Lemma 2.2. Let X be a compact metric G-space with G compalftl/ is a
finite open cover of Xthen there exists > 0 such that for each subset A of X with
diam(A) <6, Ac gU for some Ue U/ and ge G.

Proof. Suppose not. Then for every> O there exists a subseét, of X such
that diam@,) < 1/n and A, ¢ gU for all U € &/ and g € G. Choosex, € A, for
eachn € N. Since X is compact, there exist a subsequerigg} of {x,} such that
Xp, = X. We fix g € G. Then there idJ € & with x € gU. Since X\ gU is compact,
d(x, X\ gU) > 0. Pute =d(x, X\ gU) and taken; > 0 such that In; < ¢/2 and
d(xn,, X) < €/2. Then for anyy € A,

d(y' X) S d(yl Xni)+d(xni; X) S ni'l'% < €.
i

Soy € gU. Therefore, A, c gU. This is a contradiction. ]

Lemma 2.3. Let X be a compact metric G-space with G compddien for any
€ > 0, there existss > 0 (§ < €) such that

d(x,y) <8 = d(gx,gy) <e forall geG.

Proof. Lete > 0. Then it follows from Lemma 2.1 that, for any positive < ¢,
there is a finite open cove such that diangU) < €, for all g € G andU € U.
Also, by Lemma 2.2, there is a constaht §(1{) > 0 such that for any subset with
diam(A) <8, Ac gU for someg € G andU € U. Letx andy in X with d(x, y) < 4.
Then x, y € goUg for somegyo € G and Uy € Y. Note that{goU: U € U} is an open
cover of X. For anyg € G, take g; € G such thatg; = gg. Then, by Lemma 2.1,
diam@gU) < €, that is, diam@:U) < e; < € for all U € . Sincegx, gy € ggpoUo =
a1Uo, d(gx, gy) <e. 0

Lemma 2.4. Let X be a compact metric G-space with G compact and let f be
a pseudoequivariant homeomorphism on Xhen f has the GSP if and only if for
any e > 0, we can find§ > 0 such that for everys, G)-pseudo orbit{x;} of X for f,
there exist xe X and h € G satisfying

d(f'(hix), xj) <e forall ieZ.

Proof. Suppose thaf has the GSP and let > 0. Then, by Lemma 2.3, there
existseg > 0 (ep < €) such that for eaclx, y € X,

d(x,y) <eo = d(gx,gy) <e forall geG.
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Let § be the constant corresponding ¢g in the definition of the GSP. Then every
(8, G)-pseudo orbit{x;} of X for f is ep-traced by a poink € X, that is, for each,
there existsg; € G such that

d(f'(x), gix) <e forall iecZ.
Since f is pseudoequivariant, for eadh € G, there existsh; € G such that
g 100 = f (hix).

Moreover, d(g " f1(x), x) < € and henced(fi(h;x), x) < € for all i € Z.
The converse can be proved similarly. ]

We have ([5]) thatf (Q2c(f)) = Qc(f) andCRs(f) = Qg(f) for a pseudoequivariant
homeomorphismf with GSP on a compact metrig-spaceX whereG is compact.

For x,y € X ands > 0, x is said to be {, G)-related to y(denoted byx iG y) if
there exist finite §, G)-pseudo orbitx = Xg, X1,..., Xk = Y} and{y = VYo, V1,..., Yo = X}
for f. If for every § > 0, x is (8, G)-related toy, thenx is said to beG-related
to y (denoted byx ~g y). A point x is said to be aG-chain recurrent pointof f
if x ~¢ X. CRs(f) is denoted by the set of alb-chain recurrent points off. A
homeomorphismf: X — X is calledtopologically G-transitiveprovided that for every
nonempty open subsets and V of X, there exist an integem > 0 andg € G such
thatgf"(U) NV #4.

Proof of Theorem A. Since the pseudoequivariant homeomorphignsatisfies
the GSP,CRs(f) = Qg(f). Thus Qg(f) =, B, where eachB, is an equivalence
class under the relatiorrg which is defined inCRs(f).

Claim 1. Each B is closed inQg(f).

Proof. Letx e B,. Then we can find a sequenfg} in B, which converges to.
Let « > 0 be given. Then there exists a finite open coéy, . .., Us} of X such that

diam@U;) < forall geG and i with 1<i<s

NI R

by Lemma 2.1. Sof(x) € U; for somei. Choose areg-neighborhoodN,,(f(x)) of
f(x) such thatN(f(x)) C U;. Then sincef is uniformly continuous, there exists
80 > 0 such that

d(x, y) < 8o = d(f(x), f(y)) < €o.
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Because{x;} converges tx, there isJ > 0 such thatd(x;, X) < min{a/2, §p}. From
the fact thatx; € CRs(f), we can find ad/2, G)-pseudo orbit

{X3=Yo: Y1, - -+ Yk—1, Yk = X3}

So d(gf(yo), 1) < «/2 for someg € G. Also d(f(yo), f(X)) < € and hence
d(9f(yo), 9f(x)) < /2. Thus,

d(@f(x), 1) = d(@F (9, 9T (o) +(@T(¥o). yo) < 5+ 5 =t

Therefore, {x, yi, . - -, Yk = X3} is an @, G)-pseudo orbit. It is clear that there is an
(a, G)-pseudo orbit fromx; to x by the uniform continuity of f. It follows from

X ~g Xj that x ~g x for all i because eack; € B,. Sincea is arbitrary, X € B;.
Therefore, B, is closed. O

Claim 2. Each B is f-invariant

Proof. To prove this, we firstly show that ~¢ f(x) for all x € Qg(f). Let
a > 0. Then there i$ > 0 (§ < «) such that

d(a b) <8 = d(f%@), f%(b)) < a.
Sincex € Qg(f), there aren > 0 andg € G such that
gf"(Ns(x)) N N5(x) # @

where Ns(x) is a §-neighborhood of. Then there existz € Ns(x) such thatgf"(z) €
Ns(x). Hence

(fx), f2(2), ..., " Y2), x}

is an @, G)-pseudo orbit and thusx ~g f(x). Since f is a homeomorphism, we
can show thaix ~g f~1(x) for all x € Qg(f) similarly. Therefore, f(B,) = B, for
eacha. O

Claim 3. Perg(f) is dense inQg(f).

Proof. Leta > 0 be aG-expansive constant fof and takee < «/2. Sincef has
the GSP, there exist& > 0 (§ < ¢€) such that every§ G)-pseudo orbit is-traced by
a point in X. Since f is uniformly continuous, there exists a positive constant §
such that ifd(a, b) < y, thend(f(a), f(b)) < 6. Let p € Qg(f). Then for every
y-neighborhoodN, (p) of p, there exist an integen > 0 andg € G such that

gf"(N,(p) NN, (p) # 9.
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Choose a poiny € gf"(N,(p)) N N, (p). Since f"(g~y) € N, (p),
d(f(p), f(f"(g™'y)) <.
Hence
L= p X = F ™ g ly), %= T ™2(gty), ..., % 1= g 2y), X =p,...}

is a ¢, G)-pseudo orbit forf. Since f has the GSP, it follows from Lemma 2.4 that,
for eachi € Z, there existx € X andg; € G such that

d(f'(gix), x) <e forall ieZ.
Thus,
d(f4Cf"(GkenX)), FX(GX)) < d(FECF (GenX)), Xicrn) + A (Xicen, F4(GKX))
= d(F*(F"(GesnX))s Xirn) + (X, F(GKX))

<2<«
for all k. Sincea is a G-expansive constant fof,
G(f"(x)) = G(x),
and hence
goX € Perg(f) N N(p)
where N.(p) is ane-neighborhood ofp. Therefore,Perg(f) is dense inQg(f). [
Claim 4. Each B is open inQg(f).
Proof. Leta > 0 be aG-expansive constant fof and lete < «. Denote
Ns(B;) = {y € Q2(f): d(y, B)) < &}

where § is the constant corresponding &in the definition of the GSP forf o).
Then for a pointp € N;(B;) N Perg(f), there existsy € B, such that

d(y, p) <.
Since f o (1) has the GSP, it follows from Remark 1.10 that
W (p) NW3(y) # 9
and
W2(p) N WH(y) 7 2.
Here, W3(p) and WY(p) are defined o2g(f). So, there existyy € B, (in particular,
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Yo belongs to thex-limit set a(y)) such thatyo ~ p, that is, p € B,. Therefore,

B:. D Ns(By) N Perg(f) D Ns(By) N Perg(f) = Ns(B,),
that is, B, is open inQg(f). ]

Since X is compact and2g(f) is a closed subset oK, Qg(f) can be covered
by finitely many B;’s, that is, Qc(f) = U, Bi.

Claim 5. Each B is G-invariant

Proof. Letx € B, g€ G, and§ > 0. We shall show thagx € B;. Sincex € B;,
there exists ad( G)-pseudo orbit{xg = X, X1, ..., Xn_1, Xn =X}. Thend(go f (X), X1) < 8
for somegp € G. Since f is pseudoequivariant, we can takes G such thatgy f (x) =
hf(gx). Thus{gx, X1,...,Xn_1, Xn = X} is a ¢, G)-pseudo orbit. By Lemma 2.3, there
existsy > 0 (y < 8) such that

dx,y) <y = d(gx,gy) <8 forall geG.

Let {Xo =X, X1, ..., Xn—1, Xn = X} be a §, G)-pseudo orbit. Then

d(gn-1f(xn-1),X) <y for some g, 1€ G

and hencead(ggh—1 f (Xn—1), gX) < 8. Thus{xg =X, X1, ..., Xn—1, gX} is a @, G)-pseudo
orbit. Sinces is arbitrary, gx ~g x. Therefore,gx € B;. 0

Claim 6. f|g has the GSP

Proof. Let O<e <min{d(B;, Bj):i #j, 1<i, ] <n} be given. Sincef|o(r)
has the GSP, there exists< ¢ such that every§( G)-pseudo orbifxx} C B; is e-traced
by a pointx € Qg(f). This means that, for eadh there existgyx € G such that

d(f (%), gkxe) < €.

Since B is G-invariant andxg € B;, goXo € Bj. Thereforex € B;. O

Claim 7. f|g is topologically G-transitive

Proof. LetU andV be nonempty open subsets Bf. Takex e U andy € V.
Thenx ~g y. Let N.(x) and N.(y) be e-neighborhoods ok andy respectively such

that N.(x) c U and N.(y) ¢ V. Choose a positive; < ¢ such that

d(a, b) <e; = d(ga, gh) <e forall geG.
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Since f|g has the GSP, there exisig > 0 such that everysf, G)-pseudo orbit inB;
is e;-traced by a point inB;. Thus, a §;, G)-pseudo orbit{xo = X, ..., Xn =Yy} C B
from x to y is €;-traced by a poinkz € B;. In particular,
d(z, gox) < €1 and d(f"(2), gny) <e1 for some go, gn € G.
Sinced(gy'z x) < € andd(g,* f"(2), y) <,
g'ze N.(x)cU

and

9,1 "2 € Ne(y) C V.
Since f”(gglz) e f"(U) and f is pseudoequivariant,

0:f"(2) € f"(U) for some g; € G.

Chooseg € G such thatgg; = g,1. Theng,1f"(z) € gf"(U). Therefore,gf"(U) N
VvV Z0. O

We next prepare the following three lemmas to complete TdraoB.

Lemma 2.5. Let f: X — X be a pseudoequivariant homeomorphism on a com-
pact metric G-space X with G compacthen

W (x) =W (p) forany xe W'(p) (i =s,u).

Proof. We shall prove only the case=s. Let y € W5(x) and lete > 0. Since
y € W5(x), there existsN; € N such thatn > N; implies that

d(f(hnx), F(y)) < g for some h, € G.
Let § > 0 be the constant satisfying the following:
d(x, y) <38 = d(gx, gy) < % forall geG.

Sincex € W5(p), there existsN, € N such thatn > N, implies that
d(f"(g,p), f"(x)) <8 for some g, € G.

Hence for somén], € G with h/, f"(x) = f"(hpx),

/ / 7 €
d(h;, (g, p), hy, F(x)) < 5
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Sinceh;, f"(g/,p) = f"(gnp) for someg, € G,

d(1"(Gnp). F"(Bnx)) < 5.
Take N = max{N;, No}. Thenn > N implies that
d(f(gnp). F(¥)) < d(f(gnp), f"(hnx)) +d(f (hnX), £7(y)) <e.
Therefore, W3(x) c WS(p). Similarly, one can provéVs(p) Cc W3(x). ]

Lemma 2.6. Let f: X — X be a pseudoequivariant homeomorphism on a com-
pact metric G-space X with G compact and lee V'(p). Then

gxe W (p) for every ge G,
and hence
GW! (p) =W'(p) (i =s,u).
Proof. Letx € W3(p), g € G and lete > 0. Then there i > 0 such that if

d(x, y) < 8, thend(gx, gy) < ¢ for all g € G. Since for eac € Z, we haveg, € G
such that

lim_d(f"(gnp), 1"0)) =0

that is, there existiN € N such that
n>N = d(f"(gnp), f"(x)) <.

Hence, forh), € G with h; f"(x) = f"(gx),

d(hy, £(gn ), hy F7(X)) <e.
Let h;, f"(gnp) = f"(hnp). Then

d(f"(hnp), f(g%)) <e.

Therefore,gx € W3(p). Similarly, one can prove the statement for the caseu. []

Lemma 2.7. Let f: X - X be a pseudoequivariant homeomorphism on a com-
pact metric G-space X with G compacthen for anye > 0O, there exists a positive
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constants < e satisfying the following if x € W;'(y), then for all ge G,

(1) gx € W(y)
and
) gy € W(x).

Proof. Lete > 0. Then, by Lemma 2.3, there exists a positive conséast ¢
such that

dix,y) <8 = d(gx,gy) <e forall geG.

Let x € Wy'(y) and letg € G. Then for eactn > 0, there existg), € G such that
d(f (%), £7"(gny)) < 6.
(1) Takeg), € G such thatg), f "(x) = f "(gx). Then
d(f7(9x), 9, F7"(9ny)) < €.

Since f is pseudoequivarianigx € WY (y).
(2) Takeg), € G such thatg), f "(gny) = f "(gy). Then

d(g, f "), f"(gy) < e.

Since f is pseudoequivarianigy € W!(x) for all g € G. ]

Proof of Theorem B. Let e > 0 be a constant which is less than Beexpansive
constant forf |g and let§ > 0 (§ < €) be the constant correspondingdan the defini-
tion of the GSP. LetX, = WY(p) N B for p € BN Perg(f). We can see directly from
Lemmas 2.3 and 2.6 that, is G-invariant, that is, ifx € X,, thengx e X, for all
geG.

Claim 1. X, is open in B
Proof. Sincep € Perg(f), we have an integem > 0 and g; € G such that
0: T™(p) = p. Denote Ns(Xp) = {y € B: d(y, Xp) < 8}. Let g € Ns(Xp) N Perg(f).

Then there isx e WY(p)N B with d(q, x) < §. Note thatg, f"(q) = q for some integer
n> 0 andg, € G. Since f|g has the GSP, the5(G)-pseudo orbit

(o £7200, 710, 0, f(@), F2(@), - )
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is e-traced by a poin’ € B, that is, for each € Z, there existsh; € G such that
(@) d(X, hoq) < ¢;
(b) d(f'(x), hef'(@)) < e (t > 0);
(©) d(f'(x), h_; (X)) <€ (t > 0).
Hence, it follows from Remark 1.10 that € WS(q) N W"(x) N B.

Since f is pseudoequivariant and € Perg(f), for eachk € Z, we havegimn €
G such that f*™(gymnp) = p.  Since WY(x) = WY(p) = WY(gkmnp) by Lemmas 2.5
and 2.6,

fKM(x’) € FXMYWY (GkmnP)) = WH (T (Gkmnp)) = WH(p).

Sinceq € W3(x'), for eachk € Z, one can findhymn € G such that
Jim d(himn F¥™(x"), £¥™(q)) = 0.
Take ixmn € G such thatigmn(hkmn) 2 £¥™Y(q) = g. Then
klim d(ikmnf kmn(x/), ikmn(hkmn)_l f kmn(q)) = klim d(ikmnfkmn(x/)y Q) =0.

Hence,q € WY(p) N B = X, becauséimnf“™(x’) € WY(p) for eachk € Z by Lem-
ma 2.6. Therefore,

Xp D Ns(Xp) NPerg(f) D Ns(Xp) NPerg(f) = Ns(Xp),

that is, X, is open inB. O

Note that f(X,) = f(WY(p)NB) = f(WU(p))N f(B) = WY(f(p)) N B = X¢(p).
Since X = Xgp for any g € G and g1 f™(p) = p,

FR(Xp) = Xtn(p) = X, tm(p) = Xp-
Take the smallest integexr > 0 such thata < m and f2(X,) = Xp.
Claim 2. B =J55 fI(Xp).

Proof. Letye B. Sincef |z is topologicallyG-transitive, for each An-neighborhood
Ni/n(y) of y, there arek > 0 andh, € G such thath,Nyn(y) N fk(Xp) Z0. So

hnN1/n(y) N (U?;Ol f1(Xp)) # 0 for eachn € N. We may assume thdt, - h € G
becauseG is compact. SinceUT;ol f1(Xp) is closed inB, hy e U?gol f1(Xp). Since
G(f1(Xp)) = G(X+i(p) = Xti(p = F1(Xp), we havey e Uej‘;ol f1(Xp). O
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Claim 3. Xp =Xy for g e X, NPerg(f).

Proof. Letq e XpNPerg(f) and supposen andn are G-periodic numbers op
andq respectively. SinceéNs(Xp) = X, for the constant > 0 in the above of Claim 1,
W;'(q) € Xp. We firstly show thatp € Xq. Suppose thap ¢ Xy. Thend(K, Xq) >0
whereK = X, \ Xq. Sinceq € X, = WY(p) N B, there existz € W"(p) N B such that
d(z, g) < d(K, Xq). Sinceze X, andz ¢ K, z e Xq. Furthermore, for each € Z,
there existsgy,,; € G such that

lim d(f=™"i(z), f=™"i(gy,ip)) = 0.
]—)OO
For eachj € Z, choosegmnj € G with gmnj f ~™(g),,;p) = p. Then we have
lim d(gmn; T "™(2), p) = 0.
]—>0o0

So gmnjf—m”j(z) ¢ Xq for sufficiently largej. Hence,

for hmnj € G With gmpj f ~™M(2) = f "™M(hmnj2). Thus,z ¢ Xq. This is a contradiction.
Therefore, p € Xq.
Let y € WY(q) and let O< §; < 82 < 83 =48 such that

dix,y) <8 = d(gx,gy) <+« foral geG (i=1,2).

Then there existdN € N such that ifk > N, thend(f=*(y), f %(hxq) < 8, for some
hy € G. Choosej € N with mnj> N. Then

d((f~" o ™) (y), (f " o ™) (hmnp+iq)) <81 for all i >0,
that is,
f=mNi(y) € Wyl (f~™"(q)).

By Lemma 2.7 (2),gf~™"(q) € Wyi(f~™"(y)) for all g € G. Sinceq € Perg(f), we
haveq e Wy, (f~™"(y)). Again, by Lemma 2.7 (2)gf~""(y) € W;'(q) for all g € G.
In particular, f~™"(y) € W(q). This means thay € f™(W}(q)) for somej > 0.
SoWH(g) C U0 F™I(WE(g)). Therefore,

Xq=Wi@NBc | fm™iWi(@)nBcX,NB=X,NB=X,.
j>0

Similarly, we haveX, C Xq. O
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Claim 4. Xpn fi(X,)=@for0<j <a.
Proof. SupposeX, N fi(Xp) # @ for some j. Since X, N fI(Xp) is open in
B, we can findg € X, N fI(X,) N Perg(f). Then Xq = Xp = f1(X,), which is a
contradiction to the choice of the integar O

Claim 5. @] is topologically G-mixing

Proof. LetU andV be non-empty open subsets ¥f, and letq e V N Perg(f).
Then fai(q) € Xp N Perg(f) for all j € Z. Since Xy = Xyai(q for all j € Z,

UNWY(Fa(q) =UNMWU(fa(@)NB)Z@ forall jeZ.

Letn> 0 be aG—periQdic number of). Then for eachj such that O< j <n—1, there
existsz; € U NWY(f2l(q)). Since f is pseudoequivariant, we may take this statement:
for eacht € Z, there existsh; € G such that

fim d(f2z)), £2(h F2"(a)) = 0.
For eacht € Z, chooseg; € G such thatg, f2i(h, f ~2"{(q)) = f2(q). Then we have
lim d(g. f ")), 13(@) =0,
and thus
Jim g f*"(z;) = £2(q).

Since fai(q) € f3(V), for eachj with 0 < j <n—1, we may choosN; > 0 such
that for allt > Nj,

g f2"(z)) e FA(V).
Let M =maxN;: 0 < j <n-—1}. For eacht > M, we gett =ns+j. If s> M, then
fiszj) = £ (gs T 2"(zj)) € V
for eachis € G such thatf —2"s-3i(isz;) = f ~2l(gs f 3"(z;)). Hence,
iszj e fA(V) if s> M (thatis,t >nM).
Thus, it follows fromz; € U that there exist& € G such that
ke f3(V)NU #@ for each t >nM.

Therefore, f@|x_ is topologically G-mixing. ]
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