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Abstract
In this paper we present a generalisation of a theorem due to Cornalba and

Harris, which is an application of Geometric Invariant Theory to the study of
invariants of fibrations. In particular, our generalisation makes it possible to treat the
problem of bounding the invariants of general fibred surfaces. As a first application,
we give a new proof of the slope inequality and of a bound for the invariants
associated to double cover fibrations.

Introduction

In [23] and [9], Xiao and Cornalba-Harris developed two methods that can be ap-
plied to the problem of bounding the invariants of fibred varieties. Given a complex
variety X fibred over a curve, the starting point of both methods is a line bundleL
on X. However, while Xiao’s method uses techniques of vector bundle stability, the
one of Cornalba-Harris exploits Geometric Invariant Theory (GIT). In the same papers,
the three authors treat the case of surfaces fibred over a curve, proving a fundamental
inequality on the invariants: the so-called slope inequality (cf. Section 2). However,
Cornalba and Harris prove the inequality only for semistable fibrations (i.e. fibred sur-
faces such that any fibre is a semistable curve in the sense of Deligne and Mumford).
In fact, their method applies only to semistable non-hyperelliptic fibrations, and the
semistable hyperelliptic case is obtained by an ad hoc argument.

A result of Tan [21, 22] made apparent that the general case ofthe slope inequality
cannot be reduced to the semistable case (see Remark 2.2).

The starting point of this work is the question whether or notit is possible to
treat the non-semistable and the hyperelliptic cases usingthe ideas of Cornalba-Harris.
The answer is affirmative; while the extension to non-semistable fibrations is straight-
forward, in order to treat the hyperelliptic case it is necessary to modify substantially
the method. This led us to develop a generalisation of the method which is, in our
opinion, interesting on its own.

Until now, the method of Xiao have been almost the only one used to find lower
bounds on the slope of fibred surfaces (although the very niceargument introduced by
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Moriwaki in [16] should also be taken into account, as remarked also in [2]). It has
been further developed and applied by Ohno, Konno, Barja, Zucconi, and others.

Thanks to the generalisation presented here, the Cornalba-Harris method qualifies
as a valid alternative. In this paper, besides proving the slope inequality, we can show
in a new and direct way that the fibred surfaces realising the equality are all hyper-
elliptic. Furthermore, we prove an inequality holding between the invariants of double
cover fibrations.

In [4] both the generalised Cornalba-Harris method and the one of Xiao have been
applied, obtaining a new bound on the slope of non-Albanese fibrations. Besides, the
first method seems to have promising applications to the caseof fibrations of higher
dimensional varieties [5], where the one of Xiao tends to be technically hard.

The importance of these kind of results is double. On the one hand, they are
fundamental tools in the study of the geography of complex surfaces (for example,
Pardini’s recent proof of the Severi inequality in [18], makes an essential use of the
slope inequality). On the other hand, the bounds on the slopehave an application to
the positivity of divisors on the moduli space of stable curves of genusg (for instance,
in [12], the slope inequality is a key ingredient for attaching a conjecture on the nef
cone).

We now give a brief account of the method of Cornalba-Harris and of its general-
isation. The idea of the method is the following. Letf : X ! T be a flat proper mor-
phism of complex varieties with a line bundleL on X whose restrictions to the general
fibres of f give embeddings in projective spaces. Suppose that the Hilbert points of
these embeddings are semistable in the sense of GIT. Then thekey-point of the method
is to translate the semistability assumption into the existence of a line bundle on the
baseT , together with a non-vanishing section of it. This producesin particular an el-
ement in the effective cone of the baseT . When T is a curve, the consequence is a
non-trivial inequality holding between the degrees of rational classes of divisors on it.

The main point of the generalisation is to drop the assumption that the line bun-
dle L gives anembeddingon the general fibres, and to considerarbitrary rational
maps. In order to do this, we need to introduce a suitable generalisation of Hilbert
(semi)stability for a variety with a map in a projective space (Definitions 1.1 and 1.3).
This generalisation sounds unexpected because, as GIT is mainly used to construct
moduli spaces, GIT stability is usually defined for line bundles whose associated mor-
phisms encode all the information about the variety, as in the case of the classical
Hilbert points. We prove that, assuming this generalised semistability, the argument
of Cornalba-Harris, with some modifications, can be pushed through, and still gives
as a consequence an effective divisor on the baseT (Theorem 1.5).

The paper is organised as follows. In the first section we prove the main theo-
rem (Theorem 1.5); under some more restrictive assumptions, we can derive explicit
inequalities on the rational classes of divisors on the base(Corollary 1.6). In Sec-
tion 2, we give the proof of the slope inequality, and of the fact that the fibrations
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with minimal slope are all hyperelliptic (Proposition 2.4). We treat in Section 3 the
case of surfaces having an involution on a genus
 fibration (double cover fibrations,
see Definition 3.1), proving an inequality on the invariants.

1. The Cornalba-Harris method generalised

Let G be a reductive complex algebraic group andV a finite dimensional repre-
sentation ofG. An elementv 2 V is said to be GITsemistableif the closure of its
orbit does not contain 0, and GITstable if its stabiliser is finite and its orbit closed.
Recall that a necessary and sufficient condition for the semistability of v 2 V is the
existence of aG-invariant non-constant homogeneous polynomialf 2 Sym(V_) such
that f (v) 6= 0.

Let X be a variety (an integral separated scheme of finite type overC), with a
linear systemV � H0(X, L), for some line bundleL on X. Fix h � 1 and callGh

the image of the natural homomorphism

(1.1) SymhV
'h�! H0(X, Lh).

Set Nh = dim Gh and take exterior powers

Nĥ

SymhV
VNh 'h����! Nĥ

Gh = detGh.

If we identify detGh with C, the homomorphism
VNh 'h can be seen as a liner func-

tional on
VNh SymhV . Changing the isomorphism, it gets multiplied by a non-zeroel-

ement ofC. Hence, we can see
VNh 'h as a well-defined element ofP

�VNh SymhV_�.
DEFINITION 1.1. With the above notations, we call

VNh 'h 2 P
�VNh SymhV_�,

the generalisedh-th Hilbert point associated to the couple (X, V).

If V induces an embedding, then forh � 0 the homomorphism'h is surjective
and it is the classicalh-th Hilbert point associated to .

Let dimV = s + 1 and consider the standard representationSL(s + 1, C) ! SL(V);
we get an induced natural action ofSL(s + 1, C) on P

�VN SymhV_�, and we can in-
troduce the associated notion of GIT (semi)stability: we say that theh-th generalised
Hilbert point of the couple (X, V) is semistable(resp. stable) if it is GIT semistable
(resp. stable) with respect to the natural SL(s + 1, C)-action.

REMARK 1.2. Let (X, V ) be as above. Consider the factorization of the induced
map through the image,

X 99K X̄
j,! Ps.
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Set L̄ = j �(OPs(1)) and let V̄ � H0(X̄, L̄) be the linear systems associated toj . The
homomorphism (1.1) factors as follows:

SymhV�= SymhV̄
'̄h�! H0(X̄, L̄h) ,! H0(X, Lh),

where the homomorphism ¯'h is the h-th Hilbert point of the embeddingj ; notice
that, by Serre’s vanishing theorem, this homomorphism is onto (and, in particular,
Gh = H0(X, L̄h)) for large enoughh. The generalisedh-th Hilbert point of (X, V)
is therefore naturally identified with theh-th Hilbert point of (X̄, V̄), and the gener-
alised Hilbert stability of (X, V) coincides with the classical Hilbert stability of the
embedding j .

DEFINITION 1.3. We say that (X, V ) is generalised Hilbert stable (resp. semistable)
if its generalisedh-th Hilbert point is stable (resp. semistable) for infinitely many inte-
gersh > 0.

In the case of embeddings in projective space, this notion coincides with the clas-
sical Hilbert stability introduced in [17].

1.1. The theorem. We will use the following well known fact about vector bun-
dles and representations.

REMARK 1.4. Let T be a projective variety. Consider a vector bundleE of rank
r on T and a complex holomorphic representation

GL(r , C)
��! GL(V).

Composing the transition functions ofE with �, we can construct a new vector bundle,
which we call E� . Hence, if fg�,�g is a system of transition functions forE with
respect to an open coverfU�,�g of T , then a system of transition functions forE�
with respect to the same cover isf�(g�,� )g. Clearly E� has typical fibreV .

For instance, if we consider as� the representation corresponding to symmetric,
tensor and exterior power, the vector bundleE� becomes respectively SymnE,

Nn E
and

Vn E.

We are now ready to state the theorem. Notation: given a sheafF over a varietyT ,
we call F 
 k(t) the fibre ofF over the pointt 2 T .

Theorem 1.5. Let f : X ! T be a flat morphism from a variety X to a variety
T . Let t be a general point of T, Xt the fibre of f at t. Let L be a line bundle
on X andF a locally free subsheaf of f�L of rank r. Suppose that for some integer
h > 0 the h-th generalised Hilbert point associated to the linearsystemF 
 k(t) �
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H0(Xt , L jXt ) is semistable. Let Gh � f�Lh be a locally free subsheaf that contains the
image of the morphism

SymhF! f�Lh,

and coincides with it at t. Set Nh = rankGh. Let Lh be the line bundle

Lh = det(Gh)r 
 (detF )�hNh .

Then there is a positive integer m, depending only on h, rankF and Nh, such that
(Lh)m is effective.

Proof. In what follows,t is a general point ofT . Set F := F 
 k(t), Gh := Gh

k(t). Consider the morphism SymhF


h�! Gh. Its fibre att , 
̄h: SymhF! Gh, is surjec-
tive by assumption. Its maximal exterior power is the generalised Hilbert point associ-
ated to (Xt , F). Therefore there exists by assumption a homogeneousSL(F)-invariant
polynomial (of degree, say,d) P 2 Symd

�VNh Symh F
�

such that

(1.2) Symd
Nĥ 
̄h(P) 6= 0 in (detGh)d.

We may assume (simply taking a power ofP if necessary) that the degree ofP is
mr, where m is an integer depending only onh, r and Nh. Fixing an isomorphism
F �= Cr , P corresponds to an element

P̃ 2 Symmr
Nĥ

SymnCr .

If we change the isomorphism, asP is invariant by the action ofSL(F), we obtain
P̃ multiplied by a non-zero element ofC. Hence, the lineW generated byP̃ in
Symmr

�VNh SymhCr
�
, is well defined and invariant under the action ofGL(r , C). This

produces naturally a line bundle onT with an injective morphism into (detGh)mr, as
we verify at once, using the language of representations.

Let � be the Nh-th exterior power of theh-th symmetric power of the standard
representation,

� : GL(r , C) ! GL

 
Nĥ

SymhCr

!
.

Using the notations of Remark 1.4, the vector bundleF� is
VNh SymhF . Let

� : GL(r , C) ! GL(W)
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be the representation obtained by restriction from Symmr�. Thus, there is an inclusion
of vector bundlesF� ,! SymmrF� . Composing this inclusion with Symmr VNh 
h, we
obtain a homomorphismF� ! (detGh)mr, whose fibre att is the following composition

W ,! Symmr
N̂

Symn(F) ! (detGh)mr,

which is a non-zero homomorphism by construction because ofproperty (1.2) (it is,
roughly speaking, the evaluation of
h on P). It remains to understand explicitlyF� .
Given an elementM 2 GL(r , C), if we write M = (detM)1=r U , whereU 2 SL(r , C),
the action ofM on P is the following:

� (M)P = Symmr�((detM)1=r U )P = det�(M)hNm Symmr�(U )P = det�(M)hNmP.

It follows that in our caseF� is the line bundle (detF )hNm, and the proof is concluded.

In all the applications of the Cornalba-Harris method that have been made so far,
including ours, the condition of stability is satisfied not for a fixed h, but for h large
enough: more precisely Hilbert stability is satisfied (see Definition 1.3).

Moreover, it is often the case that the choice ofF � f�L and of Gh is such that
the first rational Chern classc1(Lh) 2 A1(T)Q is a polynomial inh of the form

(1.3) c1(Lh) = �dhd + � � � + �1h + �0, �i 2 A1(T)Q.

Theorem 1.5 assures that for infinitely many positive integers h there exists an integer
m such that the line bundleLm

h is effective, hence the classc1(Lh) 2 A1(T)Q is effec-
tive. In this situation, we can therefore conclude that the leading coefficient�d is the
limit in A1(T)Q of effective divisors.1

We can make explicit computations and simplifications underadditional assump-
tions (this corollary should be compared to the original Theorem (1.1) of [9]).

Corollary 1.6. With the notations ofTheorem 1.5,suppose thatF induces a
Hilbert semistable map on the general fibres. Suppose moreover that
(1) f is proper, T is irreducible of dimension k and X is of pure dimension k+ d;
(2) for t 2 T general, the fibreF 
 k(t) induces an embedding of Xt ;
(3) the higher direct images Ri f�Lh vanish for i> 0, h� 0 (this happens for instance
if the fibre of F induces an ample linear system onany fibre of f).

1Note that, although we are speaking of limits, we don’t need to pass to real coefficients, because
in fact both�d and the members of the succession converging to it given by (1.3) belong toA1(T )Q.
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Then, the class

E(L, F ) := r f�(c1(L)d+1 \ [X]) � (d + 1)c1(F ) \ f�(c1(L)d \ [X])

is contained in the closure of the effective cone of Ak�1(T)Q.

Proof. By the second assumption, for generalt , the homomorphism

SymhF
k(t) ! H0(Xt , LhjXt
)

is surjective for large enoughh. Hence, we can chooseGh = f�Lh in Theorem 1.5.
Therefore,

c1(Lh) = rc1( f�Lh)� h rank f�Lhc1(F ).

The first assumption enables us to use the Riemann-Roch theorem for singular varieties
([11], Corollary 18.3.1) and obtain the formula

(1.4) ch(f! L
h \ td(OT )) = f�(ch(Lh) \ td(OX)).

Recalling that, for any varietyY, td(OY) = [Y]+terms of dimension< dimY, and using
standard intersection-theoretical computations, we obtain that

(1.5)

c1(Lh) \ [T ] =
hd+1

(d + 1)!
E(L, F )

+
dX

i =1

(�1)i +1(rc1(Ri f�Lh) \ [T ] � h rank(Ri f�Lh)c1(F ) \ [T ])

+ O(hd).

Hence, equation (1.5), together with the remarks made above, implies the statement.

2. Bounds on the slope of fibred surfaces

A fibred surface, is the datum of a surjective morphismf with connected fibres
from a smooth projective surfaceX to a smooth complete curveB. Throughout this
section, we shall use the term “fibration” as a synonym of fibred surface. The genusg
of the general fibre is called genus of the fibration. We call a fibration relatively min-
imal if the fibres contain no�1-curves. A fibration is said to besemistableif all the
fibres are semistable curves in the sense of Deligne and Mumford (i.e. if it is relatively
minimal with nodal fibres). From any fibred surfacef : X ! B, by contracting all the�1-curves in the fibres, we obtain an induced fibration onB, called the relatively min-
imal model of f , which is unique ifg � 1. We say that a fibration islocally trivial
if it is a holomorphic fibre bundle.
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As usual, therelative canonical sheafof a fibred surfacef : X ! B is the line
bundle! f = !X 
 ( f �!B)�1; and let K f denote any associated divisor. From now on
we will considerrelatively minimal fibrations of genus g� 2. Two basic invariants for
such a fibration are the following.

K 2
f = K 2

X � 8(g� 1)(g(B)� 1);

� f = �(OX)� �(OB)�(OF ) = �(OX)� (g� 1)(g(B)� 1).

Using Riemann-Roch and Leray’s spectral sequence, one seesthat � f = deg f�! f . It
is well known that both these invariants are non-negative. Moreover, � f = 0 if and
only if f is locally trivial. Assuming that the fibration is not locally trivial, we can
consider the ratio

s( f ) :=
K 2

f� f
,

which is called theslope. Of courses( f ) � 0; but a bigger bound holds, given by the
following result, which we callslope inequality:

Theorem 2.1 (Xiao, Cornalba-Harris). Let f : X ! B be a relatively minimal
fibration of genus g� 2.

(2.1) gK2
f � 4(g� 1)� f .

This inequality is sharp, and it is possible to classify the fibrations reaching it,
which are in particular all hyperelliptic (Proposition 2.4).

REMARK 2.2. As is well-known, the process ofsemistable reductionassociates
to any fibred surface a semistable one, by means of a ramified base change. One
might hope that, using semistable reduction, it could be possible to reduce the proof of
the slope inequality for any fibration to the semistable case. However, Tan has shown
(cf. Theorem A and Theorem B of [21, 22]) that the behaviour ofthe slope under base
changecannot be controlled when the base change ramifies over fibreswhich are not
D-M semistable, which is precisely what happens in the semistable reduction process.
In particular, the inequalities that can be shown to hold forsemistable fibrations, do
not necessarily extend to arbitrary fibrations.

The form of Theorem 1.5 we shall use in the applications to surfaces is the fol-
lowing.
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Corollary 2.3. Let f : X ! B be a fibred surface. Let L be a line bundle on X
and F a coherent2 subsheaf of f�L of rank r such that for general b2 B the linear
system

F 
 k(b) � H0(Xb, L jXb)

induces a Hilbert semistable map. Let Gh be a coherent subsheaf of f�Lh that contains
the image of the morphismSymhF! f�Lh, and coincides with it at general b. If
N = rankGh is of the form Ah+ O(1) and degGh of the form Bh2 + O(h), the following
inequality holds:

(2.2) r B � A degF � 0.

Proof. Straightforward from Theorem 1.5 and the observations made after it.

We now come to the proof of the slope inequality.

Proof of Theorem 2.1. We want to apply Corollary 2.3 withL = ! f and F =
f�L. Let Xb be a general fibre.

Observe that the higher direct imageR1 f�!h
f vanishes for large enoughh, as can

be seen for instance using the relative version of Kawamata-Viehweg vanishing theorem
(cf. [13], Theorem 1.2.3). We split the proof in two steps:
(1) Suppose f is non-hyperelliptic. The condition of Corollary 2.3 is satisfied, be-
cause the canonical embedding of a smooth non-hyperelliptic curve is Hilbert stable,
as shown in [17]: indeed (using Mumford’s notations), it is linearly stable, and hence
Chow stable, which in turns implies the generalised Hilbertstability; see also [1] or
[20] for a direct proof. We can compute the terms in inequality (2.2) as follows

rank f�! f = h0(Xb, ! f jXb
) = g;

rankGh = h0(Xb, ! f
hjXb

) = (2h� 1)(g� 1);

degGh =
(hK f � (h� 1)K f )

2
+ deg f�! f = h2

K 2
f

2
+ O(h).

Hence, inequality (2.2) becomes exactly the slope inequality.
(2) Suppose f is hyperelliptic. A general hyperelliptic fibred surface is not always a
double cover of a fibration of genus 0. Anyway we show below that for our purposes
it can be treated as if it were. We make use of a standard argument (cf. for instance
[2]) which can be applied to any fibred surface with an involution that restrict to an
involution on the general fibres.

First observe that the hyperelliptic involution on the general fibres extends to a
global involution � on X (see for instance [19]). If� has no isolated fixed points then

2As the baseB is a smooth curve, any coherent subsheaf of a locally free sheaf is locally free.
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X=h�i is a smooth genus 0 fibred surface overB and the quotient map is a double cover
whose ramification divisor is the fixed locus of�. Otherwise, we blow up the isolated
fixed points and obtain a smooth surfaceX̃ birational to X whose induced involution�̃ has no isolated fixed points. CallY the quotient ofX̃ by �̃. The surfaceY has a
natural genus 0 fibration� over B, but is not necessarily relatively minimal. We have
the following diagram:

(2.3)

Let R� Y be the branch divisor of� . By the theory of cyclic coverings (cf. [7] I.17),
we can find a line bundleL on Y such thatL2 = OY(R). Set f̃ = f Æ �. Recall that! f̃ = ��! f 
OX̃(E), whereE is the union of the exceptional�1-curves. Let� be the
number of connected components ofE. Consider the exact sequence

0! ��!h
f ! !h

f̃ ! OhE(hE) ! 0

and the long exact sequence induced by the pushforward byf̃ :

0! f�!h
f ! f̃�!h

f̃ ! f̃�OhE(hE)

! R1 f�!h
f ! R1 f̃�!h

f̃ ! R1 f̃�OhE(hE) ! 0.

Observe that deg̃f�OhE(hE) = h0(OhE(hE)) = 0, and that

degR1 f̃�OhE(hE) = h1(OhE(hE)) = � h2 � h

2
,

by the Riemann-Roch Theorem for embedded curves. Thereforef̃�!h
f̃

= f�!h
f for any

h, and

degR1 f̃�!h
f̃ = degR1 f�!h

f + � h2 � h

2
= � h2 � h

2
.

Recall that in our situation! f̃ = ��(!� 
 L) and ��OX̃ = OY � L�1. Therefore we

have the following decomposition of̃f�! f̃

(2.4) f̃�! f̃ = ����! f̃ = ��(����(!�
L)) = ��((!�
L)
��OY) = ��(!�
L)���!�.

Hence, f�! f = ��(!� 
 L), being� a genus 0 fibration.
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The canonical line bundle!Xb = ! f jXb
induces a morphism toPg�1 that factors

through a double cover ofP1 ramified at the Weierstrass points ofXb composed with
the Veronese embedding of degreeg � 1. The morphism Symh f�! f ! f�!h

f has fi-
bre onb

Symh H0(Xb,!Xb) = Symh H0(P1,OP1(g�1))� H0(P1,OP1(h(g�1)))� H0(Xb,!h
Xb

).

Observe that the fibre��(!� 
 L)h 
 k(b) is H0(P1, OP1(h(g� 1))); we hence choose��(!�
L)h as the sheafGh in Corollary 2.3. The semistability assumption is satisfied,
because the Veronese embeddingP1 ,! Pg�1 has semistable Hilbert point, as shown for
instance in [14], Corollary 5.3. For large enoughh, by the Riemann-Roch theorem

degGh = h2 (K� + L)2

2
+ degR1��(!� 
 L)h + O(h),

rankGh = h0(Yb, !h
Yb

(hL)) = h(g� 1) + 1.

We now estimate the degree ofR1��(!� 
 L)h for h � 0. Observe thatR1 f̃�!h
f̃

is

torsion and splits into the direct sum

R1 f̃�!h
f̃

= R1��(!� 
 L)h � R1��(!h� 
 Lh�1).

Now, observe that for large enoughh

degR1��(!� 
 L)h = degR1��(!h� 
 Lh�1) + O(h),

hence

degR1��(!� 
 L)h =
1

2
degR1 f̃�!h

f̃ + O(h) = � h2

4
+ O(h),

and inequality (2.2) becomes

g

2

�
(K� + L)2 +

�
2

�� (g� 1) deg��(!� 
 L) � 0.

As � is a finite morphism of degree 2, and� is a sequence of� blow ups,

K 2
f � � = K 2

f̃ = (��(K� + L))2 = 2(K� + L)2.

Remembering that deg��(!� 
 L) = deg f̃�! f̃ = deg f�! f = � f , we obtain the slope
inequality.

The following proposition has been proved by Konno in [15], some years later the
proof of the slope inequality, as a by-product of other inequalities. Using the approach
of Cornalba-Harris, it is a natural consequence of the construction. This proposition is
a generalisation of the first part of Theorem (4.12) of [9].
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Proposition 2.4. Let f : X ! B be a relatively minimal non-locally trivial fibred
surface of genus� 2 satisfying equality inTheorem 2.1.Then f is hyperelliptic.

Proof. Suppose by contradiction that it holdsgK2
f = 4(g�1)� f and that f is non-

hyperelliptic. Going back to the proof of Theorem 1.5, we seethat in order to have
equality, the degree of the degree 2 coefficient in the polynomial c1(Lh) must be 0. As
c1(Lh) is effective, the linear coefficient has to be of non-negative degree. Computing
this class we get

0� �g

2
K 2

f + (g� 1)� f = �(g� 1)� f ,

which is strictly negative forg� 2 and f non-locally trivial. Hence, we get the desired
contradiction.

The hyperelliptic fibrations that reach the bound can be classified, and turn out
to have restrictions on the type of singularities of the special fibres (see [9], Theo-
rem (4.12) for the semistable case, and [2] Section 2.2 for the general one).

3. Bounds for double cover fibrations

Arguing in a very similar way to what we did for hyperellipticfibrations, we can
prove a bound for the invariants of a more general class of fibred surfaces, double
cover fibrations:

DEFINITION 3.1. A double cover fibration of type(g, 
 ) is the data of a genus
g fibred surface f : X ! B together with a global involution onX that restricts, on
the general fibre, to an involution with genus
 quotient.

In particular, the double cover fibrations of type (g, 0) are exactly the hyperelliptic
ones. The slope of double cover fibrations has been studied in[6], and recently in
[10]. We refer to these two articles for a detailed discussion of the situation. In [10]
the sharp bound

(3.1) s( f ) � 4
g� 1

g� 

is proved, under the assumptiong � 4
 + 1. For g < 4
 the bound isfalse in general.
Proposition 3.2 below implies that the bound holds in general for a particular class
of double cover fibrations. A similar inequality can be foundapplying Xiao’s method
([3], Proposition 4.10).

Let f : X ! B be a double cover fibration of type (g, 
 ) with 
 � 1. With the
same construction made for the hyperelliptic case, we can associate to it a genus

fibration � : Y ! B, not necessarily relatively minimal, obtaining a diagram of the
form (2.3). Let us use the same notations of the hyperelliptic case.
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Proposition 3.2. Let f : X ! B be a double cover fibration of type(g, 
 ) with
 � 1 and g� 2
 + 1. Let �: Y ! B be the associated fibration of genus
 described
above.

Then the following inequality holds:

(3.2) K 2
f � 4

g� 1

g� 
 (� f � ��).

In particular, any double cover fibration with g� 2
 + 1 and associated genus
 fi-
bration isotrivial satisfies the bound(3.1).

Proof. Arguing as in the hyperelliptic case (same notations), we obtain the de-
composition

f�! f = ��(!� 
 L)� ��!�,

which on a general fibreXb amounts to

H0(Xb, !Xb) = H0(Yb, !Yb(L))� H0(Yb, !Yb),

where L is the restriction ofL to Yb. By Hurwitz’ formula degL = g� 2
 + 1. We
want to apply Corollary 2.3 of Theorem 1.5 to the rankg�
 subsheafF := ��(!�
L)
of f�! f .

We split the proof in two cases.
(1) Suppose that the restriction ofF on a general fibreYb does not belong to a

g1
2 on Yb (this holds in particular if� is non-hyperelliptic or ifg� 2
 +2). In this case

F induces on a general fibreXb a 2 : 1 morphism toYb followed by the morphism 
in Pg�
�1 induced by the line bundle!Yb(L). We distinguish again two cases. (1.a) 
is an embedding; in this case it is linearly stable, by [17], Section 2.15, hence, by the
same argument made in the non-hyperelliptic case of Theorem2.1, it is Hilbert stable.
We apply Corollary 2.3 taking asGh the sheaf��(!h� 
 Lh). Now, computing degGh,
rankGh, and degR1��(!�
L)h for h� 0, as in the hyperelliptic case of Theorem 2.1,
inequality (2.2) becomes

g� 

2

�
(K� + L)2 +

�
2

�� (g� 1) deg��(!� 
 L) � 0.

Remembering that

K 2
f � � = K 2

f̃ = ��(K� + L)2 = 2(K� + L)2,

and that deg��(!� 
 L) = deg f̃�! f̃ � deg��!� = deg f�! f � deg��!� = � f � ��,
we obtain the statement. (1.b) fails to be an embedding if and only if degL = 2.
Note that, by assumption, ifC is hyperelliptic, L =2 g1

2. In this case is a birational
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morphism, which is linearly semistable, and hence, by [17] again, its image is Chow
semistable. Chow semistability does not imply Hilbert semistability, hence we cannot
use the Cornalba-Harris method; however, we can in this caseapply a result of Bost
([8], Theorem 3.3) that gives as a consequence exactly the same inequality of Corol-
lary 2.3.

(2) Suppose on the other hand that� is hyperelliptic and that the morphism in-
duced by��!�
L on a general fibre factors through the hyperelliptic involution of Yb:

Xb
2:1�! Yb

2:1�! P1 v,! Pg�
�1,

wherev is the Veronese embedding. The semistability assumption issatisfied becausev is Hilbert semistable (as observed in the hyperelliptic case in Theorem 2.1) with sim-
ilar computations, we obtain

degGh = h2
K 2

f

8
+ O(h), rankGh = 
h + O(1),

and again inequality (2.2) gives the desired bound.
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