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Abstract
We study the structure ofsymplectic quandles quandles which are also
R-modules equipped with an antisymmetric bilinear form. Wewe that every
finite dimensional symplectic quandle over a finite fiédor arbitrary fieldF of
characteristic other than 2 is a disjoint union of a trivialagdle and a connected
quandle. We use the module structure of a symplectic quamdie a finite ring to
refine and strengthen the quandle counting invariant.

1. Introduction

A quandleis a non-associative algebraic structure whose axioms neayrier-
stood as transcriptions of the Reidemeister moves. The ‘tquandle” was introduced
by Joyce [7], though quandles have been studied by othepautinder various names
such as “distributive groupoids” [9] and (for a certain dpecase) “Kei” ([14], [13]).
Several generalizations of quandles have been defined awliedt includingauto-
morphic sets(see [3]) andracks (see [6]) where the axioms are derived from regu-
lar isotopy movesyirtual quandles(see [8]) where additional structure is included for
modeling virtual Reidemeister moves, abiduandlesand Yang-Baxter setswhich also
have axioms derived from the Reidemeister moves but useferatit correspondence
between algebra elements and portions of link diagrams.

Quandles have found applications in topology as a sourcevafiants of topolog-
ical spaces. In particular, finite quandles are useful fdmdey computable invariants
of knotted circles inS® and other 3-manifolds as well as generalizations of orglinar
knots such as virtual knots, knotted surfacesSh etc.

In [15], an example of a quandle structure defined on a modilever a com-
mutative ring R with a choice of antisymmetric bilinear form, ): M x M — R
is given. In this paper we study the structure of this type aérglle, which we call
a symplectic quandle Our main result says that every symplectic quan@leover a
field F (of characteristic other than 2 If is not finite) isalmost connectedthat is,

Q is a disjoint union in the sense of [3] of a trivial quandle andonnected quandle.
Symplectic quandles are not just quandles but @smodules; we show how to use
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the R-module structure of a finite symplectic quandle to enharee usual quandle
counting invariant.

The paper is organized as follows. In Section 2 we recall tasicbdefinitions
and standard examples of quandles. In Section 3 we definelsgticpquandles, give
some examples and show that symplectic quandles are almosected. In Section 4
we give an application of symplectic quandles to knot irsats$, defining a new family
of enhanced quandle counting invariants associated t@ fayinplectic quandles.

2. Quandle basics

We begin with a definition from [7].

DEFINITION 1. LetQ be a set and: Q x Q — Q a binary operation satisfying
(i) forallae Q, ara=a,
(iiy for all a, b e Q, there is a unique € Q such thata=crb, and
(iii) for all a,b,ce Q, (arb)rc=(arc)>(b>c).

Axiom (i) says that the quandle operationhas a right inverse—! such that x>
y)>ty=xand kr"ty)>y=x. Itis not hard to show thaQ is a quandle under
>~1 (called thedual of (Q, »)) and that the two operations distribute over each other.

Standard examples of quandle structures include:

EXAMPLE 1. Any setQ is a quandle under the operation>y = x, called a
trivial quandle. We denote the trivial quandle of oraeby T,.

EXAMPLE 2. The finite abelian groufd, is a quandle undexr>y =2y —x. This
is sometimes called theyclic quandleof order n.

ExampPLE 3. Any groupG is a quandle under the following operations:
e Xxb>y=yixy, or

Xy =y "xy", or

x>y =s(xy 1)y wheres e Aut(G).

EXAMPLE 4. Any module overZ[t*!] is a quandle under

X>y=tx+(1-1t)y.

Quandles of this type are calledlexander quandlesSee [1] and [10] for more.
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ExamPLE 5. For any tame link diagram, there is a quandl€(L) defined by
a Wirtinger-style presentation with one generator for eachand one relation at each
crossing.

b
xXpy X @ Q(L)=(a,b,clarb=c, brc=a, cra=h).
¢ Ja
y

This knot quandleis in fact a classifying invariant of knots and unsplit links S* and
certain other 3-manifolds up to orientation-reversing eomorphism of the ambient
space. Elements of a knot quandle are equivalence classpsantile words in the arc
generators under the equivalence relation generated bgudedle axioms. See [7] and
[6] for more.

DEFINITION 2. Let Q={Xy, X2,...,Xn} be a finite quandle. The matridq with
Mgli, j]1 =k wherex, = x; >x; for all i, j € {1, 2,..., n} is the quandle matrixof Q.
That is, Mg is the operation table o) without the *”s.

EXAMPLE 6. The quandleQ =Z3 = {1, 2, 3 (note that we use 3 for the repre-
sentative of the coset 0 #3so that our row and column numbers start with 1 instead
of 0) with i > j =2j —i has quandle matrix

1 3 2
Mg=]3 2 1
2 1 3
3. Symplectic quandles

We begin this section with a definition (see [15]).

DEFINITION 3. Let M be a finite dimensional free module over a commutative
ring with identity R and let{ , ): M x M — R be an antisymmetric bilinear form
such that(x, x) =0 for all x e M. Then M is a quandle with quandle operation

XDy =X+ (X, Yy)y.
The dual quandle operation is given by
XpThy =X — (X, Y)y.

If Ris a field and the form is non-degenerate, i.e.{xify) =0 for all y € M implies
x=0e M, thenM is symplectic vector spacand ( , ) is asymplectic formthus it is
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natural to refer to sucM assymplectic quandlesFor simplicity, we will use the term
“symplectic quandle oveR” to refer to the general case wheReis any ring and{ , )
is any antisymmetric bilinear form. If , ) is non-degenerate, we will sa( >) is
a non-degenerate symplectic quandle over B and M’ are isometricif there is an
R-module isomorphisng: M — M’ which preserves the bilinear form, ).

DEFINITION 4. A quandle isinvolutory if >=1"1. Note that involutory quandles
are also calleckei (see [7], [13] and [14] for more).

Proposition 1. If M is a symplectic quandle over a ring R of characteristic
then M is involutory

Proof. If M is a symplectic quandle over a ring of characteristic 2, then for
anyx,y € M we have

XBY =X+ (X, Y)Y =X— (X, Y)y=x>ly. O

DEFINITION 5. Let Q and Q" be quandles witlQN Q" =@. Then we can make
QU Q' a quandle by definingk>y =x whenx € Q andy € Q" or whenx € Q' and
y € Q. This is thedisjoint unionof Q and Q' in the sense of Brieskorn [3]. IQ and
Q' are finite then the matrix oQ U Q" is the f +m) x (n +m) block matrix

Mg | row }

M ;=
Qe [row Mo

whererow indicates that all entries are equal to their row number aeddenoteQ =
{Xt, ..., Xn}, and Q" = {Xns1, . . .y Xnem}-

Every quandleQ can be decomposed as a disjoint union of a trivial subquandle
D={xeQ|xry=xandypx=y Vye Q}

and a non-trivial subquandl® \ D. Both D and Q \ D may be empty, andQ \ D
may contain trivial subquandles. Cdll the maximal trivial componenbf Q.

EXAMPLE 7. The quandleQ with matrix Mg below has maximal trivial compo-
nentD = {xs} and Q \ D = {Xy, X2, X3, Xa}.

<
©
I
—
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aAP ®WN
A WN PR
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Notice that even thougfxy, X2, X3} is a trivial subquandle, it is not part of the maximal
trivial component because of the way in which it is embeddedhe overall quandle.

Proposition 2. Let Q be a symplectic quandle over Rhen the maximal trivial
component of Q is the submodule of R on which ) is degenerate

Proof. For anyx € Q we havex>0=x+(x,00=x andO0>x =0+ (0, x)x =0, so
0 is in the maximal trivial component of. More generally, letD be the submodule
of Q on which({ , ) is degenerate, i.e.,

D={xeQl Xy =0,VyeQ}.

Then for anyd € D we havexrd=x+0d =x andd>x=d+0x=d, so D is a trivial
subquandle ofQ and Q is the disjoint union ofD and Q\ D in sense of Definition 5.
If x¢ D, then there is somg € Q with (X,y) # 0 so thatx>y # x; athenQ \ D is
non-trivial andD is precisely the submodule @& on which ( , ) is degenerate. []

Corollary 3. If Q is a nondegenerate symplectic quandigen the maximal triv-
ial component of Q is = {0}.

We will now restrict our attention to the case whévk is a free module over a
PID R. It is a standard result (see [2] for example) that suchMarequipped with a
nondegenerate antisymmetric bilinear form must be evered&nal, with basigb; |
i=1,...,2n} such that

2n

2n 2n .
. : 1 dd
(x, y):<;xibi,iX:l:yibi>:Z€(l)OliXiyi+e(i) where 6('):{_1 : gven,

i=1

ag = ag—1, and eachy; is either 1 or a nonunit irR. Such a basis is called sym-
plectic basis The o;s are calledinvariant factors and the set with multiplicities of
invariant factors determines the symplectic module stmectip to isometry (i.e.{ , )-
preserving isomorphism oR-modules). In particular, ifR is a field, then we may
choose our basis so thap =ay_;=1foralli=1,...,n.

In matrix notation withx, y row vectors, we havex, y) = xAy' where A is a
block diagonal matrix of the form

0 wm| 0 0 0 0
—a, 0] 0 O 0 0

0 0| 0 oy 0 0

A=| O O0|-as O 0 0
0 0] 0 O | 0 amn

| 0 0|0 O |-am O
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It is clear that isometricR-modules are isomorphic as quandles. Conversely, a
symplectic quandle structure oR" determines the antisymmetric bilinear forfn, )
uniquely up to choice of basis: for a bagls |i =1,..., 2n} of R" we have

b l>bj — by = (b, bj)bj :aijbj

and since{b;} is a basis, they; thus determined is unique. Changing bases to get
a symplectic basis, we then obtain the invariant factorsusTthe quandle structure
together with theR-module structure oM determine the invariant factors and hence
determine( , ), and we have:

Theorem 4. Let Q and Q be non-degeneratén-dimensional symplectic quandles
over a PID R Then Q and Qare isomorphic as quandles iff they are isometric

Our search through examples of finite symplectic quandles @l cardinality over
Zn for n non-prime has failed to yield any examples of symplecticngiles which are
isomorphic as quandles but not isometric Rsnodules. Thus, we have

Conjecture 1. Two symplectic quandles of the same dimension @yeare iso-
morphic as quandles if and only if they are isometric

The following example shows that cardinality alone does determineR or the
rank of Q.

EXAMPLE 8. Let R=7Z, andF =7Z,[t]/(t?+t+1). Both R and F are fields of
characteristic 2, and the symplectic vector spaces

01 00
L |1 00 0]
V=R, (XVy)=x 000 17
0 010
and
/2 — 01 T
V_Fa <X1y>_x[1 Oy



ON SYMPLECTIC QUANDLES 979

are both symplectic quandles of order 16. From their quantf&ices

11 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 4 3 2 2 8 7 2 2 12 112 2 2 16 1
3 4 3 2 3 8 3 6 3 12 3 10 3 16 3 1
4 3 2 4 4 7 6 4 4 11 10 4 4 15 14
5 5 5 5 5 5 5 5 13 14 15 16 9 10 11 1
6 6 8 7 6 6 4 3 14 13 6 6 10 9 6
7 8 7 6 7 4 7 2 15 7 13 7 11 7 9
My = 8 7 6 8 8 3 2 8 16 8 8 13 12 8 8
9 9 9 9 13 14 15 16 9 9 9 9 5 6 7
10 10 12 11 14 13 10 10 10 10 4 3 6 5 10 10
11 12 11 10 15 11 13 11 11 4 11 2 7 11 5 1
12 11 10 12 16 12 12 13 12 3 2 12 8 12 12 p
13 13 13 13 9 10 11 12 5 6 7 8 13 13 13 13
14 14 16 15 10 9 14 14 6 5 14 14 14 14 4
15 16 15 14 11 15 9 15 7 15 5 15 15 4 15
16 15 14 16 12 16 16 9 8 16 16 5 16 3 2 6
and
ri1 12 1 1 1 1 1 1 1 1 1 1 1 1 1 71
2 2 2 2 6 5 8 7 14 16 15 13 10 11 9 1p
3 3 3 3 11 9 10 12 7 6 8 5 15 16 13 14
4 4 4 4 16 13 15 14 12 11 10 9 8 6 5 ¢
5 6 8 7 5 2 16 11 5 14 12 3 5 10 4 1p
6 5 7 8 2 6 9 13 10 3 6 15 14 4 12 ¢
7 8 6 5 15 10 7 2 3 9 13 7 11 7 16 4
My, = 8 7 5 6 12 14 2 8 16 8 3 11 4 13 8
9 11 10 12 9 3 6 16 9 7 14 4 9 15 2
10 12 9 11 14 7 3 10 6 10 4 16 2 5 10 13
11 9 12 10 3 11 183 5 15 4 11 8 7 2 14 11
12 10 11 9 8 15 12 3 4 13 5 12 16 12 6
13 16 15 14 13 4 11 6 13 12 7 2 13 8 3 0
14 15 16 13 10 8 14 4 2 5 9 14 6 14 11
15 14 13 16 7 12 4 15 11 15 2 6 3 9 15
16 13 14 15 4 16 5 9 8 2 16 10 12 3 7 6

we can easily see that andV’ are not isomorphic as quandles by checking that the
quandle polynomialg|py (s, t) = st + 15s%t8 and qpy/(s, t) = s*6t16 + 155** are not
equal (see [11] for more).
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DerINITION 6. A quandleQ is connectedf it has a single orbit, i.e., if every
elementz € Q can be obtained from every other element Q by a sequence of
quandle operations and dual quandle operations®. A quandle isalmost connected
if it is a disjoint union in the sense of Definition 5 of its mendl trivial component
and a single connected subquandle.

Our main result says that symplectic quandi@over a finite field or infinite field
[ of characteristic other than 2 are almost connected; iniqudat, if ( , ) iS non-
degenerate then the subquandde\ {0} is a connected quandle. Connected quandles
are of particular interest for defining knot invariants sirkamot quandles for knots (i.e.,
single-component links) are always connected. In padicuthe image of a quandle
homomorphismf: Q(L) — T from a knot quandle tdr always lies within a single
orbit of the codomain quandI&, though of coursef need not be surjective.

For the remainder of this section, 1 be a symplectic quandle over a fiekl
and choose a symplectic bagis} with invariant factorswy =1 fori =1,...,n.

Lemma 5. If any component jxof x = Z?L‘l xibj € Q is nonzero then for any
j e{1,...,2n} there is az=x>y € Q with z 70 for somey € Q. That is we can
change a zero component to a nonzero component using a guapdtration provided
at least one other component »fis nonzero

Proof. Suppose; 70 andx;=0. Then choosg € IF such thaig Ze(i)xi/(€(j)Xj+<(j))
or, if Xj+e(j)=0, B 7 —e(i)x. and definey = bi+e(i) +,3bj. Then we have

Xpy =X+ (€)X — €(])Xj+e()B)Y
and thej-th component oz = x>y is
Zj =0+ ((i)x — Be(§)Xj+e(j))B

which is nonzero by our choice . ]

Lemma 6. For any x = Z?L‘l xibj € Q and for anyg € F, we can add(or sub-
tract) A2x to (or from) ..y with quandle operations and dual quandle operations

Proof.
X BDiveiy = X + (€(1)% B)Bbi+e(y = X + €(i) B bi+e(i)
and similarly

X5 BDiseiy = X — €(1)B2Xi Dive(p)- O
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Lemma 7. |If the characteristic ofF is not 2, then for anyx # 0, we can change
any component;xof x to any value z F with quandle operations and dual quandle
operations

Proof. Writex; =z+w. By Lemma 5 we may assume that.) 7 0. Then

x> whi =X+ (e(i +€(i))Xi+eqyw)wb;
and the new quandle element hath component equal to
X + e(i + e(i ))Xi+5(i)w2 =z+w+ E(i + e(i))Xi+e(i)w2

=z+e(l +E(i))Xi+E(i)(m + U)Z).

Let us denotej =i +¢€(i). If the characteristic off is not 2, then we can complete
the square to obtain

1 w 1
) V12 = iVy 2 _ (i)x:
XI +€(])ij Z+E(J)XJ <4XJ2 + E(])XJ tw ) E(J)XJ 4X12

= zeli 5+ e(j)w)2 — (i) (i)z

Then by Lemma 6 we can remove both terms via quandle opesasiod dual quandle
operations to obtairz in the i-th component, as required. ]

Lemma 8. In a finite fieldF of characteristic2, every element of is a square
Proof. The mapf: F — F given by f(x) = x? is a homomorphism of fields since
f(x+y)= (x+y)2=x2+2xy+y?> =x?+y? = f(x) + f(y)
and

f(xy) = (xy)? = x?y2.

Then ker(f) = {0} sinceF has no zero divisors; thu$ is injective and, since" is
finite, surjective. In particular, every € F satisfiesa = g2 for somepg e F. O

Taken together, Lemmas 5, 6, 7 and 8 imply:

Theorem 9. Let F be a field of characteristic other tha®, or a finite field of
characteristic2. Then every symplectic quandle ovéris almost connected
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If Ris not a field, then symplectic quandles o\R®meed not be almost connected,
as the next example shows.

EXAMPLE 9. The symplectic quandl¥'” = (Z4)? with bilinear form

_ [0 27+
(X'Y)—X|:2 O]y

has quandle matrix

-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I
2 2 2 2 10 12 10 12 2 2 2 2 10 12 10 12
3 3 3.3 3 3.3 3 3.3 3 3 3 3 38 3
4 4 4 4 12 10 12 10 4 4 4 4 12 10 12 12
5 7 5 7 656 15 5 15 5 7 5 7 5 15 5 1b
6 8 6 8 14 6 14 6 6 8 6 8 14 6 14 4
7 5 7 5 7 18 7 18 7 5 7 5 7 13 7 1B
My, = 8 6 8 6 16 8 16 8 8 6 8 6 16 8 16 § .
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
10 10 10 10 2 4 2 4 10 10 10 10 2 4 2 4
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
12 12 12 12 4 2 4 2 12 12 12 12 4 2 4 2
13 15 13 15 18 7 13 7 13 15 13 15 13 7 138 |7
14 16 14 16 6 14 6 14 14 16 14 16 6 14 6 14
15 13 15 13 15 5 15 5 15 13 15 13 15 5 15 5
| 16 14 16 14 8 16 8 16 16 14 16 14 8 16 8 16

V" has maximal trivial componend = {X3, X3, X9, X11}, but the nontrivial component
V"\ D has disjoint orbit subquandI€s;, X4, X10, X12}, {Xs, X7, X13, X15} and {Xg, Xg, X14, X16}
and hence is not connected. For comparison with the orderyd®lsctic quandles in
Example 8, the quandle polynomial ff” is qpy-(S, t) = 4s6t16 + 12588,

4. Symplectic quandles and knot invariants

The primary application for finite quandles has so far beerthe construction
of link invariants. Given a finite quandl& we have the quandle counting invariant
[Hom(Q(L), T)|, the quandle 2-cocycle invariants, (L, T) and the specialized sub-
quandle polynomial invariant®q,(L) described in [4] and [11] respectively. The con-
nected component of a symplectic quandle over a finite fietdfisite connected quandle
which generally has a number of nontrivial subquandles,inggthis type of quandle well
suited for the specialized subquandle polynomial invdriaim this section we describe
two additional ways of getting extra information about threkor link type from the set
of homomorphisms from a link quandle into a finite symplecpi@andle.
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One easy way to get more information out of the gédom(Q(L), T)| is to count
the cardinalities of the image subquandles for edch Hom(Q(L), T); even if T is
connected, the smallest subquandleTotontaining the images of generators QfL)
need not be the entire quandle If instead of counting 1 for each homomorphism
f, we count the cardinality of the image df, we obtain a set with multiplicities
of integers, which we can convert into a polynomial for easynparison with other
invariant values by converting the elements of the set tme&pts of a variablg and
converting the multiplicities to coefficients. Thus we have

DEFINITION 7. The enhanced quandle counting invarianf a link L with re-
spect to a finite target quandle is given by

(L, T)= Y g'"Mon

feHom(Q(L),T)

This enhanced quandle counting invariant can be undersasod decomposition
of the usual quandle counting invariant into a sum of cogntivariants over all sub-
qguandles of our target quandle with the restriction that wky @ount surjectivehomo-
morphisms onto each subquandle.

For any subquandl& C T of a finite quandleT, let SHQ(L), S) be the set of
surjective quandle homomorphisms from a link quan@id.) onto S and letSQT) be
the set of all subquandles df. Then

®e(L, T)= ) ISHQ(L), )’

SesqT)

Because symplectic quandles are not just quandles but Riswmdules, we can
take advantage of th&-module structure of a finite symplectic quandleto further
enhance the counting invariant.

DEerINITION 8. Let T be a finite symplectic quandle over a (necessarily finite)
ring R and letL be a link. Then for eachf € Hom(Q(L), T), let p(f) be the cardi-
nality of the R-submodule spanned by Ifif C T (note that Imf) itself need not be
a submodule). Then theymplectic quandle polynomialf L with respect toT is

Dol T)= 3 gimhig,
feHom(Q(L),T)

Note that in Definition 8 the finite target quandle has a fixedR-module struc-
ture; in the case of a counterexample to Conjecture 1, f.éwd symplectic quandles
exist which are isomorphic as quandles but not as modules, we would expect two
such symplectic quandles to define distinct symplectic dleapolynomial invariants.
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In particular, if R is not a field then we must be careful to specify fRemodule struc-
ture of T and our choice of bilinear form.

The following example demonstrates thhgq, contains more information than the
guandle counting invariant alone.

ExampPLE 10. The two pictured virtual links have the same value forghandle
counting invariant with respect to the symplectic quarflle (Z3)? but different values
for ®dgqL, T).

Lqy: Lo:

\

IHom(Q(L,), T)| = 105 IHom(Q(L>), T)| = 105
Beqi(L1, T) = 992+ 720228 + 2492 deqLa, T) = qz+ 72972 + 24032 + 89 B

Proposition 10. If T = K?" is the nondegenerate symplectic quandle of dimen-
sion 2n over the Galois field K= GF(p™) for a prime p then ®gq(Unknot, T) =
gz+(p?"" — gz,

Proof. Every element of Hongf(Unknot), T) is a constant map into a single ele-
ment of T. The zero map contributes'z! = gz to the sum, while each of the nonzero
constant maps has image subquandle consisting of a siregieent of T which spans a
dimension 1 subspace; hence each of the®& — 1 maps contributegz”" to the sum.

0

Specializingz =1 andq = 1 in ®sq(L, T) yields the quandle counting invariant
[Hom(Q(L), T)|. Specializingz = 1 yields the enhanced quandle counting invariant
Pe(L, T).

Our initial computations suggest that these symplectiadlgapolynomial invariants
are quite non-trivial for virtual links, though the fact tHimite symplectic quandles tend to
have rather large cardinalityR|?") means that more efficient computing algorithms may
be required to explore these invariants in greater detailr Nhipl e software is able to
compute®sq (L, T) for links with smallish numbers of crossings for sympleauandles
of order < 81 in a relatively short amount of time, but the time requiesmincreases
rapidly as|R| andn increase.
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