HYPERBOLIC LENGTHS OF SOME FILLING GEODESICS ON RIEMANN SURFACES WITH PUNCTURES

CHAOHUI ZHANG

(Received September 11, 2006, revised August 16, 2007)

Abstract

Let \tilde{S} be a Riemann surface of type (p, n) with 3p - 3 + n > 0 and $n \ge 1$. In this paper, we give a quantitative common lower bound for the hyperbolic lengths of all filling geodesics on \tilde{S} generated by two parabolic elements in the fundamental group $\pi_1(\tilde{S}, a)$.

1. Introduction

Let \tilde{c} be a non-trivial closed curve on a Riemann surface \tilde{S} of type (p, n) with 3p - 3 + n > 0. The length function

$$l_{\tilde{c}}: T(\tilde{S}) \to \mathbb{R}^+$$

on the Teichmüller space $T(\tilde{S})$ is defined by sending each hyperbolic structure $\sigma = \sigma(\tilde{S})$ of $T(\tilde{S})$ to the hyperbolic length $l_{\tilde{c}}(\sigma)$ of the closed geodesic homotopic to \tilde{c} on $\sigma(\tilde{S})$.

It is well known ([11]) that the function $l_{\tilde{c}}$ achieves its positive minimum value when \tilde{c} is a filling curve on \tilde{S} in the sense that every component of $\tilde{S} \setminus {\tilde{c}}$ is either a disk or a once punctured disk. The extremal value, of course, depends only on the homotopy class of \tilde{c} . In this paper, we give a quantitative common lower bound through $T(\tilde{S})$ for the hyperbolic lengths of certain kind of filling curves on \tilde{S} .

Note that if \tilde{S} contains punctures, then some elements $[\alpha]$ in the fundamental group $\pi_1(\tilde{S}, a), a \in \tilde{S}$, are represented by loops α that pass through *a* and are boundaries of once punctured disks. Let \mathcal{F} denote the set of those elements. $\mathcal{F} \subset \pi_1(\tilde{S}, a)$.

The main result of this paper is the following:

Theorem 1. Let \tilde{S} be a Riemann surface of type (p, n) with 3p - 3 + n > 0and $n \ge 1$. There are infinitely many homotopically independent filling curves \tilde{c} on \tilde{S} that can be expressed as products of two elements in \mathcal{F} . For each such \tilde{c} and each hyperbolic structure σ on \tilde{S} , we have:

(1.1)
$$l_{\tilde{c}}(\sigma) \ge 2\log(\kappa^2 - 5) - 4\log 2,$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 32G15; Secondary 30F60.

where $\kappa = 16p + 8n - 21$ if $n \ge 3$; 16p + 3 if n = 2; and 16p + 7 if n = 1.

REMARK. From the definition of \tilde{S} we know that $p \ge 0$ if $n \ge 4$; $p \ge 1$ if n = 1, 2, 3.

Let $\mathbb{H} = \{z \in \mathbb{C}; \text{ Im } z > 0\}$ denote the upper half plane with the hyperbolic metric $\rho_{\mathbb{H}}$ given by

(1.2)
$$\rho_{\mathbb{H}}(z)|dz| = \frac{|dz|}{\operatorname{Im} z}.$$

Let $\varrho \colon \mathbb{H} \to \tilde{S}$ be the universal covering with a covering group *G*. *G* is a torsion free Fichsian group of the fist kind of type (p, n) so that $\mathbb{H}/G \cong \tilde{S}$. The set \mathcal{F} is one-to-one correspondent with the set of parabolic elements of *G*.

Note that any hyperbolic element g is conjugate in $PSL_2(\mathbb{R})$ to $z \mapsto \lambda_g z$, where $\lambda_g > 1$ is called the multiplier of g. Let A_g be the axis of g. Using (1.2) one calculates the hyperbolic length of $\varrho(A_g)$ is $\log \lambda_g$.

The hyperbolic element g is called essential if every component of $\tilde{S} \setminus \varrho(A_g)$ is either a disk or possibly a once punctured disk. Theorem 1 can be restated as follows:

Theorem 1'. Let G be a finitely generated Fuchsian group of the first kind of type (p,n) with 3p-3+n > 0 and $n \ge 1$. There are infinitely many essential hyperbolic elements g of G that are generated by two parabolic elements of G. Furthermore, for each such element g, the multiplier λ_g of g satisfies:

(1.3)
$$\lambda_g \ge \left\{\frac{1}{4}(\kappa^2 - 5)\right\}^2,$$

where κ is given in Theorem 1.

2. Dilatations of pseudo-Anosov maps generated by two positive multi-twists

We first recall the definition and some basic properties of Teichmüller space T(R) of a Riemann surface R of type (p, n), 3p - 3 + n > 0. For more details see [3, 4, 8].

We define an equivalence class $[\sigma]$ of a conformal structure σ on \tilde{S} as follows. Two conformal structures σ_1 and σ_2 on R are called strongly equivalent if there is an isometry h of $\sigma_1(R)$ onto $\sigma_2(R)$ such that $\sigma_2^{-1} \circ h \circ \sigma_1$, as a self-map of the underlying surface R, is isotopic to the identity. The collection of strong equivalence classes $[\sigma]$ of conformal structures σ form a Teichmüller space T(R). T(R) is naturally equipped with a complex structure.

Let $[\sigma_1]$ and $[\sigma_2]$ be two points in T(R). Let $h: \sigma_1(R) \to \sigma_2(R)$ be a quasiconformal mapping. Define the complex dilation $\nu(z) = \partial_z h(z)/\partial_z h(z)$ and denote $||\nu|| =$ ess.sup{|v(z)|; $z \in \sigma_1(R)$ }. By definition, ||v|| < 1. The maximal dilatation K(h) is defined by

$$K(h) = \frac{1 + \|v\|}{1 - \|v\|}.$$

The Teichmüller distance between $[\sigma_1]$ and $[\sigma_2]$ is defined as

$$\langle [\sigma_1], [\sigma_2] \rangle = \frac{1}{2} \inf \log K(h),$$

where $h: \sigma_1(R) \to \sigma_2(R)$ runs over all maps homotopic to $\sigma_2 \circ \sigma_1^{-1}$. T(R) is a complete metric space with respect to the Teichmüller metric.

The mapping class group (or modular group) Mod_R is the group of isotopy classes f^* of self-maps f of R. f^* acts on T(R) by sending each $[\sigma]$ to $[\sigma \circ f^{-1}]$. Mod_R is a group of isometries with respect to the Teichmüller metric defined above.

An element f^* of Mod_R is called hyperbolic if $\langle [\sigma], f^*[\sigma] \rangle$ assumes a positive minimum value at a point $[\sigma_0]$ in T(R). An isometric image of the real line \mathbb{R} into T(R) is called a Teichmüller geodesic. Similarly, an isometric image of the unit disk $D = \{z \in \mathbb{C}; |z| < 1\}$ into T(R) is called a Teichmüller disk. According to Bers [4] and Kra [8], f^* is hyperbolic if and only if f^* keeps a Teichmüller geodesic l invariant, which is also equivalent to that f^* keeps a Teichmüller disk D invariant. In this case, for any point $[\sigma] \in l$, we let $[\sigma]$ be represented by R. Then f^* can be realized on Ras an absolutely extremal Teichmüller mapping $f_0: R \to R$. Let $K(f_0)$ (> 1) denote the maximal dilatation of f_0 .

Associated to l (or D), there is a integrable meromorphic quadratic differential ϕ that defines a singular Euclidean metric $|\phi|$ on R. Thus it determines a pair of singular measured foliation (\mathcal{F}_h , \mathcal{F}_v), where \mathcal{F}_h and \mathcal{F}_v are horizontal and vertical foliations respectively.

The absolutely extremal map f_0 takes the two singular foliations into themselves. Away from all singularities, the map stretches the horizontal leaves by the stretching factor $\lambda(f_0) = K(f_0)^{1/2}$, and compress the vertical leaves by the factor $1/\lambda(f_0) = K(f_0)^{-1/2}$. By using the language of Thurston [15], such a map f_0 is also called a pseudo-Anosov diffeomorphism. We use the notations $l_{\phi} = l$ and $D_{\phi} = D$ to emphasis that those D and l are determined by ϕ .

In the homotopy class f^* of f, f_0 is a unique pseudo-Anosov diffeomorphism. So the action of f^* on T(R) is analogous to the action of a hyperbolic Möbius transformation on \mathbb{H} . In particular, for each hyperbolic element f^* , there is a unique invariant Teichmüller geodesic and a unique invariant Teichmüller disk in T(R).

Let $A = \{\alpha_1, ..., \alpha_n\}$ and $B = \{\beta_1, ..., \beta_m\}$, $n \ge 1$ and $m \ge 1$ be collections of disjoint simple closed geodesics on R. We assume that A and B intersect minimally, and $A \cup B$ fills R in the sense that every non-trivial loop on R intersects with either A or B or both. Let t_A and t_B denote the positive multi-twists along some elements of A and B, respectively. $A \cup B$ is regarded as a graph on R. According to Proposition 6.4 of [9], when $A \cup B$ is dominant (see [9] for the definition), all elements in $\langle t_A, t_B \rangle$ except conjugates of powers of t_A^n , t_B^m , and possibly of $(t_A \circ t_B)^n$ and $(t_B \circ t_A)^n$, $n, m \in \mathbb{Z}$, are pseudo-Anosov maps. $(t_A \circ t_B)^n$ and $(t_B \circ t_A)^n$ are not pseudo-Anosov if the graph $A \cup B$ is critical (see also [9]).

Let $D_{\phi} \subset T(R)$ be a Teichmüller disk. We consider the stabilizer $\operatorname{Stab}(D_{\phi})$ in Mod_R , which is called a Veech group on a surface in D_{ϕ} . Since the Teichmüller disk is isometrically the same as \mathbb{H} , $\operatorname{Stab}(D_{\phi})$ actually determines a subgroup of $\operatorname{PSL}_2(\mathbb{R})$. Thus there defines a map

$$\mathcal{D}$$
: Stab $(D_{\phi}) \rightarrow \text{PSL}_2(\mathbb{R})$.

By the main theorem of [10], there exist Teichmüller disks D_{ϕ} and D_{ψ} such that $t_A \in \text{Stab}(D_{\phi})$ and $t_B \in \text{Stab}(D_{\psi})$ and they determine elements $\mathcal{D}(t_A)$ and $\mathcal{D}(t_B)$ in $\text{PSL}_2(\mathbb{R})$. Furthermore, t_A and t_B also act on a common Teichmüller disk D with respect to the flat structure constructed from the dual graph of $A \cup B$.

Define $N = N_{A,B}$ to be the $n \times m$ matrix whose (i, j)-entry is $i(\alpha_i, \beta_j)$, the intersection number of α_i and β_j , where $\alpha_i \in A$ and $\beta_j \in B$. By assumption, $A \cup B$ fills R. It follows that the graph defined by $A \cup B$ is connected. Hence NN^t is irreducible. Let $\mu(NN^t)$ be the maximum of moduli of the eigenvalues of NN^t (called the Perron-Frobenius eigenvalue in the literature), and set $\mu(A \cup B) = \sqrt{\mu(NN^t)}$. By [9, 16], we have the representations:

$$\mathcal{D}(t_A) = \begin{pmatrix} 1 & \mu(A \cup B) \\ 0 & 1 \end{pmatrix}$$

and

$$\mathcal{D}(t_B) = \begin{pmatrix} 1 & 0 \\ -\mu(A \cup B) & 1 \end{pmatrix}.$$

Let $\mu = \mu(A \cup B)$. The group $\langle \mathcal{D}(t_A), \mathcal{D}(t_B) \rangle$ generated by $\mathcal{D}(t_A)$ and $\mathcal{D}(t_B)$ is a discrete subgroup of PSL₂(\mathbb{R}) if $\mu > 2$. In this case, $\langle \mathcal{D}(t_A), \mathcal{D}(t_B) \rangle$ is free of rank 2. Denote $\mathcal{M} = \mathbb{H}/\langle \mathcal{D}(t_A), \mathcal{D}(t_B) \rangle$. By Lemma 6.3 of [9], \mathcal{M} has infinite area and its convex core is a twice punctured disk. These results will lead to the following Lemma 1.

Let ϵ_{μ} be the larger root of the quadratic equation

$$x^2 + (2 - \mu^2)x + 1 = 0.$$

That is,

$$\epsilon_{\mu} = \frac{1}{2}(\mu^2 - 2 + \mu\sqrt{\mu^2 - 4})$$

It is easy to check that ϵ_{μ} is an increasing function with respect to μ . Notice that different metric scales were used in different papers, we need to review those arguments

presented in [9] and [8] for the sake of consistency.

Let f be a pseudo-Anosov element in $\langle t_A, t_B \rangle$. f determines a Teichmüller disk D isometric to \mathbb{H} with respect to the Teichmüller metric on D and the hyperbolic metric on \mathbb{H} . Thus f induces a hyperbolic Möbius transformation $\mathcal{D}(f)$ on \mathbb{H} . Denote $F = \mathcal{D}(f)$. Let τ denote the translation length of F:

$$\tau = \inf_{z} \rho_{\mathbb{H}}(z, F(z)).$$

From Section 7.34 of Beardon [2], we know that

(2.1)
$$\frac{1}{2}|\operatorname{trace}(F)| = \cosh \frac{\tau}{2} = \frac{\exp(\tau/2) + \exp(-\tau/2)}{2}.$$

By isometry we obtain

(2.2)
$$\frac{1}{2}\log K(f) = \tau.$$

Since $\lambda(f) = K(f)^{1/2}$, from (2.2), we get

(2.3)
$$\log \lambda(f) = \tau.$$

Let $\xi = \exp(\tau/2)$. A simple calculation shows that ξ satisfies

$$\xi^2 - |\operatorname{trace}(F)|\xi + 1 = 0.$$

By Lemma 6.3 of [9], $\xi \ge \epsilon_{\mu}$, i.e., $\exp(\tau/2) \ge \epsilon_{\mu}$, or $\tau/2 \ge \log \epsilon_{\mu}$. It follows that

$$\tau \geq 2 \log \epsilon_{\mu}$$

Together with (2.3), we obtain

$$\log \lambda(f) \ge 2 \log \epsilon_{\mu}.$$

Hence, we have $\lambda(f) \ge \epsilon_{\mu}^2$. We summarize the result in the following lemma.

Lemma 1 (Leininger [9]). Assume that $\mu > 2$. For any pseudo-Anosov element f of $\langle t_A, t_B \rangle$, we have that

$$\lambda(f) \ge \epsilon_{\mu}^2.$$

REMARK. Due to different metric scales the original result stated in [9] takes the inequality $\lambda(f) \ge \epsilon_{\mu}$.

Since $\lambda(f) = K(f)^{1/2}$, from Lemma 1, we obtain:

(2.4)
$$K(f) \ge \left\{\frac{1}{2}(\mu^2 - 2 + \mu\sqrt{\mu^2 - 4})\right\}^4.$$

3. Translation lengths of essential hyperbolic elements

Let \tilde{S} be as in the introduction. Let $a \in \tilde{S}$ and let $S = \tilde{S} \setminus \{a\}$. *S* is of type (p, n+1). Associated to $T(\tilde{S})$ there is a fiber space $F(\tilde{S})$ defined as follows. For each $[\nu] \in T(\tilde{S})$, by Ahlfors-Bers [1], there is normalized quasiconformal automorphism w^{ν} of the complex plane \mathbb{C} such that the restriction $w^{\nu}|_{\mathbb{H}^*}$ to the lower half plane \mathbb{H}^* is conformal, and its Beltrami coefficient $\partial_{\tilde{z}} w^{\nu} / \partial_{z} w^{\nu}$ on \mathbb{H} projects to a conformal structure that determines $[\nu]$. We form the Bers fiber space

$$F(\tilde{S}) = \{ ([\nu], z); \ [\nu] \in T(\tilde{S}), \ z \in w^{\nu}(\mathbb{H}) \}.$$

Note that in this setting \mathbb{H} is considered the central fiber and the group G acts on $F(\tilde{S})$ in a natural manner.

In [3], Bers established an isomorphism $\varphi \colon F(\tilde{S}) \to T(S)$ that is unique up to a modular transformation on T(S).

The isomorphism φ determines an embedding φ^* of *G* into the mapping class group Mod_S such that each element in the image $\varphi^*(G)$ projects to the trivial mapping class on Mod_{\tilde{S}} defined by adding the puncture *a* back into *S*. Conversely, Bers [3] also showed that if a mapping class θ can be projected to the trivial one in Mod_{\tilde{S}}, then θ lies in the image $\varphi^*(G)$.

It was shown in [8, 12] that $g \in G$ is parabolic if and only if $g^* = \varphi^*(g)$ is induced by a Dehn twist along a boundary curve $\partial \Delta$, where Δ is a twice punctured disk on *S* enclosing *a* and another puncture *b*, where *b* is regarded as a puncture of \tilde{S} that is determined by the conjugacy class of *g*. In [8] Kra also proved that *g* is essential (that is, the complement of the projection of its axis A_g consists of disks and possibly once punctured disks) if and only if g^* is a pseudo-Anosov mapping class in Mod_{*S*}. By abuse of language, in the sequel we denote by $K(g^*)$ the dilatation of the corresponding absolutely extremal map on a surface *S* that realizes the mapping class g^* .

Let $g \in G$ be an essential hyperbolic element with axis A_g . For simplicity we denote $\tilde{c} = \varrho(A_g) \subset \tilde{S}$. Then \tilde{c} is a filling geodesic on \tilde{S} and by a theorem of [11], the length function $l_{\tilde{c}}: T(\tilde{S}) \to \mathbb{R}^+$ attains a minimum value at $[\mu_0] \in T(\tilde{S})$. We may assume that $[\mu_0] = [0]$. We need to see how the number $K(g^*)$ is dominated by $l_{\tilde{c}}([0])$. We review:

Lemma 2 (Kra [8]). With the conditions above, we let λ_g denote the multiplier of g, i.e., g is conjugate to $z \mapsto \lambda_g z$. Then

$$(3.1) K(g^*) \le \lambda_g^2.$$

Outline of proof. For any point $x \in A_g \subset \mathbb{H}$, the translation length $\rho_{\mathbb{H}}(x, g(x)) = l_{\tilde{c}}([0])$. By Royden's theorem [13] (see also Earle-Kra [6]), the Teichmüller metric on T(S) coincides with the Kobayashi metric on T(S). Since the restriction $\varphi|_{\mathbb{H}} \colon \mathbb{H} \to T(S)$ is holomorphic, it cannot increase the distance. Therefore,

(3.2)
$$\langle \varphi(x), g^* \circ \varphi(x) \rangle = \langle \varphi(x), \varphi(g(x)) \rangle \le \rho_{\mathbb{H}}(x, g(x)).$$

By definition, the translation length of g^* is no larger than the distance $\langle \varphi(x), g^* \circ \varphi(x) \rangle$. It follows from (3.2) that

$$\frac{1}{2}\log K(g^*) \le \langle \varphi(x), g^* \circ \varphi(x) \rangle \le \rho_{\mathbb{H}}(x, g(x))$$
$$= l_{\tilde{c}}([0]) = \int_1^{\lambda_g} \frac{1}{y} \, dy = \log \lambda_g.$$

It follows that

 $(3.3) K(g^*) \le \lambda_g^2,$

as asserted.

Let $A = \{\alpha_1, ..., \alpha_n\}$ and $B = \{\beta_1, ..., \beta_m\}$, $n \ge 1$ and $m \ge 1$, be defined in Section 2. First we consider the case that *A* and *B* are restricted to contain only one element (the case of n = m = 1). In this case, it is well known (see [7]) that there are pseudo-Anosov maps *f* on *S* that are not represented by elements in the group $\langle t_A, t_B \rangle$ generated by t_A and t_B . In general case, it is not completely clear whether every essential element $g \in G$, g^* is in the group $\langle t_A, t_B \rangle$. However, there exist infinitely many pairs $\{\alpha_1, \beta_1\}$ so that the group $\langle t_{\alpha_1}, t_{\beta_1} \rangle$ contains pseudo-Anosov mapping classes of forms g^* , where $g \in G$ is essential. In particular, there are infinitely many pairs $\{\alpha_1, \beta_1\}$, where α_1 and β_1 are peripheral on \tilde{S} , so that $\langle t_{\alpha_1}, t_{\beta_1} \rangle$ contains pseudo-Anosov mapping classes of forms g^* for $g \in G$ being essential hyperbolic.

By combining Lemma 1 and Lemma 2, we can readily obtain the following lemma:

Lemma 3. Assume that a hyperbolic element $g \in G$ is essential and $g^* \in \langle t_A, t_B \rangle$ for certain $A = \{\alpha_1, \ldots, \alpha_n\}$ and $B = \{\beta_1, \ldots, \beta_n\}$, $n \ge 1$ and $m \ge 1$. Then $A \cup B$ fills S and

$$\mu(A \cup B) \leq \max\left\{2, \frac{1}{2}\left(1 + \sqrt{5 + 4\sqrt{\lambda_g}}\right)\right\}.$$

Proof. Denote $\mu = \mu(A \cup B)$. By Lemma 1 and (3.3), we have

$$\lambda_g^2 \ge K(g^*) = \lambda(g^*)^2 \ge \left\{ \frac{1}{2}(\mu^2 - 2 + \mu\sqrt{\mu^2 - 4}) \right\}^4.$$

Note that $\lambda_g = \exp(l_{\tilde{c}}[0])$. We assume that $\mu > 2$. Then clearly $\mu - 2 \leq \sqrt{\mu^2 - 4}$. It follows that

$$\mu^2 - \mu - (1 + \sqrt{\lambda_g}) \le 0.$$

The lemma then follows immediately.

REMARK. The estimation in the above lemma can be sharpened by applying a theorem of [5] that states that if $\mu > 2$ then in fact $\mu > 2.0065936$. This implies that there is an integer N such that

$$\mu - \left(2 - \frac{1}{N}\right) \le \sqrt{\mu^2 - 4}.$$

A simple calculation shows that $N \ge 7$.

4. Peripheral simple curves on punctured Riemann surfaces

In this section we prove that there are infinitely many essential elements $g \in G$ generated by two parabolic elements.

Let \tilde{S} be of type (p, n) with 3p - 3 + n > 0 and $n \ge 1$. Let $a \in \tilde{S}$ and $S = \tilde{S} \setminus \{a\}$. Then *S* is of type (p, n + 1). Let $x_1 = a, x_2, \ldots, x_{n+1}, n \ge 1$, denote the punctures of *S*. Let $\mathcal{P}(S, a)$ denote the set of equivalence classes of paths α on *S* connecting *a* and another puncture, where two paths α_1 and α_2 are considered equivalent if they are homotopic to each other by a homotopy fixing the end punctures. Let $\mathcal{E}(S, a)$ denote the set of equivalence classes of twice punctured disks on *S* that enclose *a* and another puncture, where two such disks are equivalent if their boundary curves are homotopic to each other without interfering with any other punctures.

Given a path representative $\alpha \in \mathcal{P}(S, a)$, we can always fatten α , giving rise to an element in $\mathcal{E}(S, a)$. Conversely, for every element $\Delta \in \mathcal{E}(S, a)$, there is a path α connecting the two end punctures and lying entirely in Δ . α is unique up to a homotopy, i.e., any two such paths are homotopic within Δ and fix the end punctures. We thus obtain a bijection:

$$(4.1) j: \mathcal{P}(S, a) \to \mathcal{E}(S, a).$$

two elements $\alpha, \beta \in \mathcal{P}(S, a)$ are called to fill *S* if every component of $S \setminus \{\alpha, \beta\}$ is either a disk or a once punctured disk. We need the following lemmas.

Lemma 4. Let $\alpha, \beta \in \mathcal{P}(S, a)$ and assume that $\{\alpha, \beta\}$ fills S, then $\{\partial j(\alpha), \partial j(\beta)\}$ must also fill S in a regular sense.

Proof. Denote $\Delta_{\alpha} = j(\alpha)$ and $\Delta_{\beta} = j(\beta)$. It is easy to see that $\Delta_{\alpha} \cap \Delta_{\beta}$ consists of quadrilateral (that are homeomorphic to disks) and two or one punctured disk components (depending on whether or not α and β share both end punctures). The rest of

780

HYPERBOLIC LENGTHS OF FILLING GEODESICS

Fig. 2.

components in $\Delta_{\alpha} \cup \Delta_{\beta}$ include components of $\Delta_{\alpha} \setminus \Delta_{\beta}$ and components of $\Delta_{\beta} \setminus \Delta_{\alpha}$, all of which are homeomorphic to disks. The remaining components of $S \setminus \{\Delta_{\alpha} \cup \Delta_{\beta}\}$ are essentially the same as the components in $\overline{S} \setminus \{\alpha \cup \beta\}$ which are either disks or punctured disks. This proves Lemma 4.

The following lemma comes from referee's comments:

Lemma 5. Let S be of type (p, n + 1), 3p + n > 3, $n \ge 1$. There are infinitely many pairs (α, β) of paths in $\mathcal{P}(S, \alpha)$ so that $\{\alpha, \beta\}$ fills S.

Proof. Observe that S can be thought of as a Riemann sphere with p handles and n punctures. Let H be a handle with $(\partial D_0, \partial D'_0)$ the two boundary components. Let γ , δ be two curves on H that are not to be homotopic and $\{\gamma, \delta\}$ fills H. Note that γ can be winded around δ as many time as possible. The end points of γ are denoted by s, t, and the end points of δ are denoted by u, v. See Fig. 1.

We remove p pairs (D_i, D'_i) of small disks and n + 1 points $x_1 = a, x_2, \ldots, x_{n+1}$, $n \ge 1$, from the Riemann sphere \mathbb{S}^2 , obtaining S_0 . S_0 is drawn in Fig. 2 in the case that p is even (if p is odd, the positions of D_p and D_p in Fig. 2 are switched).

For i = 1, ..., p, let (u_i, s_i) and (v_i, t_i) be pairs of marked points on ∂D_i and $\partial D'_i$ respectively. Paste *p* copies of *H* to S_0 in such a way that $(\partial D_0, \partial D_i)$ and $(\partial D'_0, \partial D'_i)$ are glued together with $u_i = u$, $v_i = v$, $s_i = s$, and $t_i = t$. Then we can define $\alpha \in \mathcal{P}(S, a)$ as follows. Connect $a = x_1$ and s_1 , followed with γ , then connect t_1 and s_2 , and then followed with γ again, and so forth. After *p* steps, we connect t_p and x_{n+1} by a path away from all punctures other than the end punctures. Similarly, we can define $\beta \in \mathcal{P}(S, a)$ to be a path that goes from $a = x_1$ to v_1 , followed with the inverse

Fig. 3.

 δ^{-1} of δ , then go to u_1 , then connect u_1 and v_2 , and so forth. After p steps, we draw a path connecting u_p to x_{n+1} in such a way that the component of $S \setminus \{\alpha, \beta\}$ that includes x_i , $i = 2, ..., x_n$, is a once punctured disk (this could occur only when $n \ge 3$). Fig. 3 below shows the case that p is even and the two paths α and β are in $\mathcal{E}(S, a)$. One can easily check that any component of $S \setminus \{\alpha, \beta\}$ is either a disk or a once punctured disk, which says $\{\alpha, \beta\}$ fills S.

From Lemma 4 and Lemma 5, one obtains:

Lemma 6. There are infinitely many essential elements $g \in G$ that are generated by two parabolic elements.

Proof. From the construction there are infinitely many pairs (α, β) that fills *S*. According to Lemma 4, there are infinitely many pairs $(j(\alpha), j(\beta))$ that fill *S*. By Lemma 3 of [17], there are parabolic elements T_i , i = 1, 2, so that $\varphi^*(T_1) = \partial j(\alpha)$ and $\varphi^*(T_2) = \partial j(\beta)$. Since $\partial j(\alpha)$ and $\partial j(\beta)$ are homotopic to trivial loops as *a* is filled in, we see that any finite product

(4.2)
$$\prod_{i} \left(t_{\partial j(\alpha)}^{n_{i}} \circ t_{\partial j(\beta)}^{m_{i}} \right), \quad n_{i}, m_{i} \in \mathbb{Z},$$

projects to a trivial mapping class. It follows from Bers [4] that (4.2) is of form $\varphi^*(g)$ for an essential element $g \in G$. Clearly, g is generated by T_1 and T_2 . This proves the lemma.

5. Minimal intersections of two peripheral curves

In the previous section we constructed two curves α and β that are boundaries of twice punctured disks enclosing *a*. In this section we give an estimate of lower bound of intersections of α and β . We first prove:

Lemma 7. Let $\alpha, \beta \in \mathcal{P}(S, a)$. Suppose that $\{\alpha, \beta\}$ fills S. Then in addition to a and another end puncture, α intersects with β at least 2p - 3 + n points. In particular, if n = 1, 2, then α intersects with β at least 2p points.

Proof. Note that if punctures on *S* are considered distinguished points on the compactification \overline{S} of *S*, $\alpha \cup \beta$ defines a graph on *S* with a number *E* of edges, a number *F* of vertices, and a number *V* of vertices. We know that the Euler characteristic $\chi(\overline{S}) = 2 - 2p$.

Assume that in addition to *a* and possible another end point, α intersects with β *k* times. Let *n'* be the number of once punctured disk components of $S \setminus \{\alpha, \beta\}$. If *k* = 0, then $\alpha \cup \beta$ is a binary tree or a circle. In former case, E = 2, V = 3. Since F + V - E = 2 - 2p, F = 1 - 2p, which implies that F = 1. In order for α, β to fill *S*, we must have $n' \leq 1$ and *S* is of type (0, n + 1) for $n \leq 3$, contradicting to our hypothesis.

In later case, E = 2 and V = 2. Since F + V - E = 2 - 2p, F = 2 - 2p. This implies that F = 2. So we must have $n' \le 2$, and S is of type (0, n + 1) for $n \le 3$. Again, this is a contradiction.

Now we assume that k > 0 and that all the intersections are distinct. There are two cases to consider.

CASE 1. α and β share only one endpoint *a*. In this case, we have V = k + 3, E = 2(k+1). Since $\alpha \cup \beta$ fills *S*, $F \ge n'$, where n'+3 = n+1. Now from $\chi(\bar{S}) = 2-2p$ we obtain

$$2 - 2p = V + F - E \ge (k + 3) + (n - 2) - 2(k + 1).$$

It follows that $k \ge 2p + n - 3$.

CASE 2. α and β share both end punctures. In this case, $\alpha \cup \beta$ is closed when the two endpoints are added. We must have V = k+2, E = 2(k+1) and $F \ge n'$, where n' + 2 = n + 1. Hence

$$2 - 2p = V + F - E \ge (k + 2) + (n - 1) - 2(k + 1).$$

It follows that $k \ge 2p + n - 3$.

In the case of n = 1, 2, the author was informed by the referee that $k \ge 2p$. In fact, we first assume that n = 1. Then α and β share the same end punctures. So $\alpha \cup \beta$ is a closed when the two endpoints are added. Since each component of $S \setminus \{\alpha, \beta\}$ is a disk, $S \setminus \{\alpha, \beta\}$ is not connected. Hence $F \ge 2$. Recall that V = k+2, and E = 2(k+1). We have

$$2 - 2p = V + F - E \ge (k + 2) + 2 - 2(k + 1).$$

It follows that $k \ge 2p$. In the case of n = 2, when α , β share the same end punctures, by the same argument as above, we have $k \ge 2p$. Otherwise, we assume that α terminates x_2 and β terminates x_3 with $x_2 \ne x_3$. Then V = k + 3 and E = 2(k + 1). Since $F \ge 1$, we have

$$2 - 2p = V + F - E \ge (k+3) + 1 - 2(k+1).$$

Thus $k \ge 2p$, as asserted.

Let $\#\{c_1, c_2\}$ denote the set of the minimal intersection points of arbitrary two curves c_1, c_2 on S, and $i(c_1, c_2)$ the intersection number of c_1 and c_2 . We have

Lemma 8. Let α and β be defined as in Lemma 4. Then any point in $\#\{\alpha, \beta\}$ other than end punctures of α and β contributes at least 4 intersection points to $\#\{c_1, c_2\}$ for $c_1 = \partial j(\alpha)$, and $c_2 = \partial j(\beta)$.

Proof. We only handle the case that α and β share both end punctures, as drawn in Fig. 3. Let y_i be such an intersection in $\#\{\alpha \cap \beta\}$. By hypothesis, $b = x_{n+1}$ is the other endpoint of α and β , respectively. Let $c'_1 \sim c_1$, $c'_2 \sim c_2$ be representatives of $\partial j(\alpha)$ and $\partial j(\beta)$, respectively. Assume that c'_1 and c'_2 are very close to α and β respectively. Observe that y_i contributes 4 intersections to $\#\{c'_1, c'_2\}$. In fact, the intersection near y_i is a quadrilateral. Then the lemma follows from the fact that a homotopy does not decrease the intersection number.

Together with Lemma 6, Lemma 7, and Lemma 8, we are able to prove the following:

Lemma 9. Let \tilde{S} be of type (p, n) with 3p - 3 + n > 0 and $n \ge 1$. Then there are infinitely many pairs (c_1, c_2) of simple closed curves on S with the following properties: (1) $c_1 = \partial \Delta_1$ and $c_2 = \partial \Delta_2$ for $\Delta_1, \Delta_2 \in \mathcal{E}(S, a)$,

(2) $\{c_1, c_2\}$ fills S in the regular sense, and

(3) the intersection number $i(c_1, c_2) \ge 8p + 4n - 10$ if $n \ge 3$; $i(c_1, c_2) \ge 8p + 4$ if n = 1; and $i(c_1, c_2) \ge 8p + 2$ if n = 2.

Proof. First we consider the case of $n \ge 3$. If α, β share only one end puncture *a*, by Lemma 7, there are at least 2p - 3 + n distinct intersection points y_i in $\#\{\alpha, \beta\}$. By Lemma 8, each y_i , $1 \le i \le 2p - 3 + n$, contributes at least 4 intersections to $\#\{c_1, c_2\}$. The puncture *a* contributes at least 2 intersections in $\#\{c_1, c_2\}$. Therefore,

$$i(c_1, c_2) \ge 4(2p + n - 3) + 2 = 8p + 4n - 10.$$

If α and β share both end punctures (*a* and *b*), by Lemma 7 again, α and β cross at least 2p - 3 + n times. Let y_i , $1 \le i \le 2p - 3 + n$ denote these intersections. By Lemma 8, each y_i contributes at least 4 intersections to $\#\{c_1, c_2\}$. The punctures *a* and *b* each contributes at least 2 intersections to $\#\{c_1, c_2\}$. We conclude that

$$i(c_1, c_2) \ge 4(2p + n - 3) + 2 + 2 = 8p + 4n - 8$$

It follows that $i(c_1, c_2) \ge 8p + 4n - 10$ if $k \ge 3$.

If n = 1, then *S* has only two punctures and $\alpha \cup \beta$ has to be closed as the two end punctures are filled in. By Lemma 7 and Lemma 8, we have $i(c_1, c_2) \ge 4(2p) + 4 =$ 8p + 4. If n = 2, then *S* has three punctures. By Lemma 7 and Lemma 8 again, we have $i(c_1, c_2) \ge 4(2p) + 2$ if other than α and β have different terminal punctures; and $i(c_1, c_2) \ge 4(2p) + 4$ if α and β have the same end punctures ($\alpha \cup \beta$ is closed as the end punctures are filled in). Overall we have $i(c_1, c_2) \ge 4(2p) + 2$ if n = 2. This proves the lemma.

6. Proof of Theorem 1'

The fact that there are infinitely many essential elements g of G that are generated by two parabolic elements was proved in Section 4. Let $g \in G$ be an essential element generated by two parabolic elements T_1 and T_2 . Let $t_1 = \varphi^*(T_1)$ and $t_2 = \varphi^*(T_2)$. By Theorem 2 of [8, 12], t_1 and t_2 are Dehn twists along c_1 and c_2 for $c_1 = \partial \Delta_1$ and $c_1 = \partial \Delta_2$, where $\Delta_1, \Delta_2 \in \mathcal{E}(S, a)$.

We remark that in our situation the fixed point z_i of T_i , i = 1, 2, cannot be vertices of a common fundamental region of G. For otherwise, let $\omega: G \to \pi_1(\tilde{S}, a)$ denote a canonical isomorphism. Then we have that $\omega(T_1^{\pm 1} \circ T_2^{\pm 1})$ is either a simple loop bounding 2 punctures of \tilde{S} , or a "figure 8" loop on \tilde{S} that is not a filling loop unless \tilde{S} is of type (0, 3), which has been excluded by our assumption.

From Lemma 9, the intersection number $i(c_1, c_2) \ge \kappa_0$, where $\kappa_0 = 8p + 4n - 10$ if $n \ge 3$; $\kappa_0 = 8p + 4$ if n = 1; and $\kappa_0 = 8p + 2$ if n = 2. Since $A = \{c_1\}$ and $B = \{c_2\}$ consist single element, we have n = m = 1 in the discussion of Section 2. Hence by definition, $\mu(NN^t) = i(c_1, c_2)^2$. Thus

(6.1)
$$\mu(A \cup B) = \sqrt{\mu(NN^t)} = i(c_1, c_2) \ge \kappa_0.$$

In particular, since $p \ge 0$, and $p \ge 1$ if $n \le 3$, we see that $\kappa_0 > 2$. It follows that $\mu(A \cup B) > 2$. Since $\lambda_g > 1$,

$$\frac{1}{2}\left(1+\sqrt{5+4\sqrt{\lambda_g}}\right) > 2.$$

Now from Lemma 3 along with (6.1), we have that

$$\kappa_0 \leq \mu(A \cup B) \leq \frac{1}{2} \left(1 + \sqrt{5 + 4\sqrt{\lambda_g}} \right),$$

where $\lambda_g = \exp\{l_{\tilde{c}}([0])\}\)$. A simple calculation shows that

$$\lambda_g \geq \left\{\frac{1}{4}(\kappa^2 - 5)\right\}^2,$$

where $\kappa = 16p + 8n - 21$ if $n \ge 3$; $\kappa = 16p + 3$ if n = 2; and $\kappa = 16p + 7$ if n = 1. This proves Theorem 1'. Since $l_{\tilde{c}}([0]) = \log \lambda_g$, we obtain

$$l_{\tilde{c}}(\sigma) \ge 2\log(\kappa^2 - 5) - 4\log 2.$$

This proves Theorem 1.

ACKNOWLEDGMENT. The initial version of the paper only deals with the case that \tilde{S} is a punctured Riemann sphere. The author is greatly indebted to the referee for his/her generous contribution so that the extension from the case of Riemann spheres to the case of Riemann surfaces of general types becomes possible.

References

- [1] L. Ahlfors and L. Bers: *Riemann's mapping theorem for variable metrics*, Ann. of Math. (2) **72** (1960), 385–404.
- [2] A.F. Beardon: The Geometry of Discrete Groups, Springer, New York, 1983.
- [3] L. Bers: Fiber spaces over Teichmüller spaces, Acta Math. 130 (1973), 89-126.
- [4] L. Bers: An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978), 73–98.
- [5] A.E. Brouwer and A. Neumaier: The graphs with spectral radius between 2 and $\sqrt{2} + \sqrt{5}$, Linear Algebra Appl. **114/115** (1989), 273–276.
- [6] C.J. Earle and I. Kra: On holomorphic mappings between Teichmüller spaces; in Contributions to Analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, 107–124.
- [7] P. Hubert and E. Lanneau: Veech groups without parabolic elements, preprint (2005).
- [8] I. Kra: On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math. 146 (1981), 231–270.
- [9] C.J. Leininger: On groups generated by two positive multi-twists: Teichmüller curves and Lehmer's number, Geom. Topol. 8 (2004), 1301–1359.
- [10] A. Marden and H. Masur: A foliation of Teichmüller space by twist invariant disks, Math. Scand. 36 (1975), 211–228, and Addendum, 39 (1976), 232–238.
- [11] B. Maskit and J.P. Matelski: *Minimum geodesics on surfaces*, manuscript.
- [12] S. Nag: Nongeodesic discs embedded in Teichmüller spaces, Amer. J. Math. 104 (1982), 399–408.
- [13] H.L. Royden: Automorphisms and isometries of Teichmüller space; in Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Ann. of Math. Studies 66, Princeton Univ. Press, Princeton, N.J., 1971, 369–383
- [14] R.C. Penner: Probing mapping class group using arcs, manuscript, 2005.
- [15] W.P. Thurston: On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 417–431.
- [16] W.A. Veech: Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989), 553–583.
- [17] C. Zhang: Hyperbolic mapping classes and their lifts on Bers fiber space, to appear, 2005.

Department of Mathematics Morehouse College Atlanta, GA 30314 USA e-mail: czhang@morehouse.edu