HYPERBOLIC LENGTHS OF SOME FILLING GEODESICS ON RIEMANN SURFACES WITH PUNCTURES

Chaohui ZHANG

(Received September 11, 2006, revised August 16, 2007)

Abstract

Let \tilde{S} be a Riemann surface of type (p, n) with $3 p-3+n>0$ and $n \geq 1$. In this paper, we give a quantitative common lower bound for the hyperbolic lengths of all filling geodesics on \tilde{S} generated by two parabolic elements in the fundamental group $\pi_{1}(\tilde{S}, a)$.

1. Introduction

Let \tilde{c} be a non-trivial closed curve on a Riemann surface \tilde{S} of type (p, n) with $3 p-3+n>0$. The length function

$$
l_{\tilde{c}}: T(\tilde{S}) \rightarrow \mathbb{R}^{+}
$$

on the Teichmüller space $T(\tilde{S})$ is defined by sending each hyperbolic structure $\sigma=\sigma(\tilde{S})$ of $T(\tilde{S})$ to the hyperbolic length $l_{\tilde{c}}(\sigma)$ of the closed geodesic homotopic to \tilde{c} on $\sigma(\tilde{S})$.

It is well known ([11]) that the function $l_{\tilde{c}}$ achieves its positive minimum value when \tilde{c} is a filling curve on \tilde{S} in the sense that every component of $\tilde{S} \backslash\{\tilde{c}\}$ is either a disk or a once punctured disk. The extremal value, of course, depends only on the homotopy class of \tilde{c}. In this paper, we give a quantitative common lower bound through $T(\tilde{S})$ for the hyperbolic lengths of certain kind of filling curves on \tilde{S}.

Note that if \tilde{S} contains punctures, then some elements $[\alpha]$ in the fundamental group $\pi_{1}(\tilde{S}, a), a \in \tilde{S}$, are represented by loops α that pass through a and are boundaries of once punctured disks. Let \mathcal{F} denote the set of those elements. $\mathcal{F} \subset \pi_{1}(\tilde{S}, a)$.

The main result of this paper is the following:
Theorem 1. Let \tilde{S} be a Riemann surface of type (p, n) with $3 p-3+n>0$ and $n \geq 1$. There are infinitely many homotopically independent filling curves \tilde{c} on \tilde{S} that can be expressed as products of two elements in \mathcal{F}. For each such \tilde{c} and each hyperbolic structure σ on \tilde{S}, we have:

$$
\begin{equation*}
l_{\tilde{c}}(\sigma) \geq 2 \log \left(\kappa^{2}-5\right)-4 \log 2, \tag{1.1}
\end{equation*}
$$

[^0]where $\kappa=16 p+8 n-21$ if $n \geq 3 ; 16 p+3$ if $n=2$; and $16 p+7$ if $n=1$.
Remark. From the definition of \tilde{S} we know that $p \geq 0$ if $n \geq 4 ; p \geq 1$ if $n=$ $1,2,3$.

Let $\mathbb{H}=\{z \in \mathbb{C} ; \operatorname{Im} z>0\}$ denote the upper half plane with the hyperbolic metric $\rho_{\mathbb{H}}$ given by

$$
\begin{equation*}
\rho_{\mathbb{H}}(z)|d z|=\frac{|d z|}{\operatorname{Im} z} . \tag{1.2}
\end{equation*}
$$

Let $\varrho: \mathbb{H} \rightarrow \tilde{S}$ be the universal covering with a covering group $G . G$ is a torsion free Fichsian group of the fist kind of type (p, n) so that $\mathbb{H} / G \cong \tilde{S}$. The set \mathcal{F} is one-to-one correspondent with the set of parabolic elements of G.

Note that any hyperbolic element g is conjugate in $\operatorname{PSL}_{2}(\mathbb{R})$ to $z \mapsto \lambda_{g} z$, where $\lambda_{g}>1$ is called the multiplier of g. Let A_{g} be the axis of g. Using (1.2) one calculates the hyperbolic length of $\varrho\left(A_{g}\right)$ is $\log \lambda_{g}$.

The hyperbolic element g is called essential if every component of $\tilde{S} \backslash \varrho\left(A_{g}\right)$ is either a disk or possibly a once punctured disk. Theorem 1 can be restated as follows:

Theorem 1'. Let G be a finitely generated Fuchsian group of the first kind of type (p, n) with $3 p-3+n>0$ and $n \geq 1$. There are infinitely many essential hyperbolic elements g of G that are generated by two parabolic elements of G. Furthermore, for each such element g, the multiplier λ_{g} of g satisfies:

$$
\begin{equation*}
\lambda_{g} \geq\left\{\frac{1}{4}\left(\kappa^{2}-5\right)\right\}^{2} \tag{1.3}
\end{equation*}
$$

where κ is given in Theorem 1.

2. Dilatations of pseudo-Anosov maps generated by two positive multi-twists

We first recall the definition and some basic properties of Teichmüller space $T(R)$ of a Riemann surface R of type $(p, n), 3 p-3+n>0$. For more details see $[3,4,8]$.

We define an equivalence class $[\sigma]$ of a conformal structure σ on \tilde{S} as follows. Two conformal structures σ_{1} and σ_{2} on R are called strongly equivalent if there is an isometry h of $\sigma_{1}(R)$ onto $\sigma_{2}(R)$ such that $\sigma_{2}^{-1} \circ h \circ \sigma_{1}$, as a self-map of the underlying surface R, is isotopic to the identity. The collection of strong equivalence classes [σ] of conformal structures σ form a Teichmüller space $T(R) . T(R)$ is naturally equipped with a complex structure.

Let $\left[\sigma_{1}\right]$ and $\left[\sigma_{2}\right.$] be two points in $T(R)$. Let $h: \sigma_{1}(R) \rightarrow \sigma_{2}(R)$ be a quasiconformal mapping. Define the complex dilation $v(z)=\partial_{\bar{z}} h(z) / \partial_{z} h(z)$ and denote $\|\nu\|=$
ess. $\sup \left\{|\nu(z)| ; z \in \sigma_{1}(R)\right\}$. By definition, $\|v\|<1$. The maximal dilatation $K(h)$ is defined by

$$
K(h)=\frac{1+\|v\|}{1-\|v\|} .
$$

The Teichmüller distance between $\left[\sigma_{1}\right]$ and $\left[\sigma_{2}\right]$ is defined as

$$
\left\langle\left[\sigma_{1}\right],\left[\sigma_{2}\right]\right\rangle=\frac{1}{2} \inf \log K(h),
$$

where $h: \sigma_{1}(R) \rightarrow \sigma_{2}(R)$ runs over all maps homotopic to $\sigma_{2} \circ \sigma_{1}^{-1} . T(R)$ is a complete metric space with respect to the Teichmüller metric.

The mapping class group (or modular group) Mod_{R} is the group of isotopy classes f^{*} of self-maps f of $R . f^{*}$ acts on $T(R)$ by sending each $[\sigma]$ to $\left[\sigma \circ f^{-1}\right] . \operatorname{Mod}_{R}$ is a group of isometries with respect to the Teichmüller metric defined above.

An element f^{*} of Mod_{R} is called hyperbolic if $\left\langle[\sigma], f^{*}[\sigma]\right\rangle$ assumes a positive minimum value at a point $\left[\sigma_{0}\right]$ in $T(R)$. An isometric image of the real line \mathbb{R} into $T(R)$ is called a Teichmüller geodesic. Similarly, an isometric image of the unit disk $D=\{z \in \mathbb{C} ;|z|<1\}$ into $T(R)$ is called a Teichmüller disk. According to Bers [4] and Kra [8], f^{*} is hyperbolic if and only if f^{*} keeps a Teichmüller geodesic l invariant, which is also equivalent to that f^{*} keeps a Teichmüller disk D invariant. In this case, for any point $[\sigma] \in l$, we let $[\sigma]$ be represented by R. Then f^{*} can be realized on R as an absolutely extremal Teichmüller mapping $f_{0}: R \rightarrow R$. Let $K\left(f_{0}\right)(>1)$ denote the maximal dilatation of f_{0}.

Associated to l (or D), there is a integrable meromorphic quadratic differential ϕ that defines a singular Euclidean metric $|\phi|$ on R. Thus it determines a pair of singular measured foliation $\left(\mathcal{F}_{h}, \mathcal{F}_{v}\right)$, where \mathcal{F}_{h} and \mathcal{F}_{v} are horizontal and vertical foliations respectively.

The absolutely extremal map f_{0} takes the two singular foliations into themselves. Away from all singularities, the map stretches the horizontal leaves by the stretching factor $\lambda\left(f_{0}\right)=K\left(f_{0}\right)^{1 / 2}$, and compress the vertical leaves by the factor $1 / \lambda\left(f_{0}\right)=$ $K\left(f_{0}\right)^{-1 / 2}$. By using the language of Thurston [15], such a map f_{0} is also called a pseudo-Anosov diffeomorphism. We use the notations $l_{\phi}=l$ and $D_{\phi}=D$ to emphasis that those D and l are determined by ϕ.

In the homotopy class f^{*} of f, f_{0} is a unique pseudo-Anosov diffeomorphism. So the action of f^{*} on $T(R)$ is analogous to the action of a hyperbolic Möbius transformation on \mathbb{H}. In particular, for each hyperbolic element f^{*}, there is a unique invariant Teichmüller geodesic and a unique invariant Teichmüller disk in $T(R)$.

Let $A=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $B=\left\{\beta_{1}, \ldots, \beta_{m}\right\}, n \geq 1$ and $m \geq 1$ be collections of disjoint simple closed geodesics on R. We assume that A and B intersect minimally, and $A \cup B$ fills R in the sense that every non-trivial loop on R intersects with either A or B or both. Let t_{A} and t_{B} denote the positive multi-twists along some elements of A and B,
respectively. $A \cup B$ is regarded as a graph on R. According to Proposition 6.4 of [9], when $A \cup B$ is dominant (see [9] for the definition), all elements in $\left\langle t_{A}, t_{B}\right\rangle$ except conjugates of powers of t_{A}^{n}, t_{B}^{m}, and possibly of $\left(t_{A} \circ t_{B}\right)^{n}$ and $\left(t_{B} \circ t_{A}\right)^{n}, n, m \in \mathbb{Z}$, are pseudo-Anosov maps. $\left(t_{A} \circ t_{B}\right)^{n}$ and $\left(t_{B} \circ t_{A}\right)^{n}$ are not pseudo-Anosov if the graph $A \cup B$ is critical (see also [9]).

Let $D_{\phi} \subset T(R)$ be a Teichmüller disk. We consider the stabilizer $\operatorname{Stab}\left(D_{\phi}\right)$ in Mod_{R}, which is called a Veech group on a surface in D_{ϕ}. Since the Teichmüller disk is isometrically the same as $\mathbb{H}, \operatorname{Stab}\left(D_{\phi}\right)$ actually determines a subgroup of $\mathrm{PSL}_{2}(\mathbb{R})$. Thus there defines a map

$$
\mathcal{D}: \operatorname{Stab}\left(D_{\phi}\right) \rightarrow \operatorname{PSL}_{2}(\mathbb{R}) .
$$

By the main theorem of [10], there exist Teichmüller disks D_{ϕ} and D_{ψ} such that $t_{A} \in \operatorname{Stab}\left(D_{\phi}\right)$ and $t_{B} \in \operatorname{Stab}\left(D_{\psi}\right)$ and they determine elements $\mathcal{D}\left(t_{A}\right)$ and $\mathcal{D}\left(t_{B}\right)$ in $\operatorname{PSL}_{2}(\mathbb{R})$. Furthermore, t_{A} and t_{B} also act on a common Teichmüller disk D with respect to the flat structure constructed from the dual graph of $A \cup B$.

Define $N=N_{A, B}$ to be the $n \times m$ matrix whose (i, j)-entry is $i\left(\alpha_{i}, \beta_{j}\right)$, the intersection number of α_{i} and β_{j}, where $\alpha_{i} \in A$ and $\beta_{j} \in B$. By assumption, $A \cup B$ fills R. It follows that the graph defined by $A \cup B$ is connected. Hence $N N^{t}$ is irreducible. Let $\mu\left(N N^{t}\right)$ be the maximum of moduli of the eigenvalues of $N N^{t}$ (called the PerronFrobenius eigenvalue in the literature), and set $\mu(A \cup B)=\sqrt{\mu\left(N N^{t}\right)}$. By [9, 16], we have the representations:

$$
\mathcal{D}\left(t_{A}\right)=\left(\begin{array}{cc}
1 & \mu(A \cup B) \\
0 & 1
\end{array}\right)
$$

and

$$
\mathcal{D}\left(t_{B}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\mu(A \cup B) & 1
\end{array}\right) .
$$

Let $\mu=\mu(A \cup B)$. The group $\left\langle\mathcal{D}\left(t_{A}\right), \mathcal{D}\left(t_{B}\right)\right\rangle$ generated by $\mathcal{D}\left(t_{A}\right)$ and $\mathcal{D}\left(t_{B}\right)$ is a discrete subgroup of $\mathrm{PSL}_{2}(\mathbb{R})$ if $\mu>2$. In this case, $\left\langle\mathcal{D}\left(t_{A}\right), \mathcal{D}\left(t_{B}\right)\right\rangle$ is free of rank 2 . Denote $\mathcal{M}=\mathbb{H} /\left\langle\mathcal{D}\left(t_{A}\right), \mathcal{D}\left(t_{B}\right)\right\rangle$. By Lemma 6.3 of [9], \mathcal{M} has infinite area and its convex core is a twice punctured disk. These results will lead to the following Lemma 1.

Let ϵ_{μ} be the larger root of the quadratic equation

$$
x^{2}+\left(2-\mu^{2}\right) x+1=0 .
$$

That is,

$$
\epsilon_{\mu}=\frac{1}{2}\left(\mu^{2}-2+\mu \sqrt{\mu^{2}-4}\right) .
$$

It is easy to check that ϵ_{μ} is an increasing function with respect to μ. Notice that different metric scales were used in different papers, we need to review those arguments
presented in [9] and [8] for the sake of consistency.
Let f be a pseudo-Anosov element in $\left\langle t_{A}, t_{B}\right\rangle . f$ determines a Teichmüller disk D isometric to \mathbb{H} with respect to the Teichmüller metric on D and the hyperbolic metric on \mathbb{H}. Thus f induces a hyperbolic Möbius transformation $\mathcal{D}(f)$ on \mathbb{H}. Denote $F=$ $\mathcal{D}(f)$. Let τ denote the translation length of F :

$$
\tau=\inf _{z} \rho_{\mathbb{H}}(z, F(z)) .
$$

From Section 7.34 of Beardon [2], we know that

$$
\begin{equation*}
\frac{1}{2}|\operatorname{trace}(F)|=\cosh \frac{\tau}{2}=\frac{\exp (\tau / 2)+\exp (-\tau / 2)}{2} . \tag{2.1}
\end{equation*}
$$

By isometry we obtain

$$
\begin{equation*}
\frac{1}{2} \log K(f)=\tau . \tag{2.2}
\end{equation*}
$$

Since $\lambda(f)=K(f)^{1 / 2}$, from (2.2), we get

$$
\begin{equation*}
\log \lambda(f)=\tau \tag{2.3}
\end{equation*}
$$

Let $\xi=\exp (\tau / 2)$. A simple calculation shows that ξ satisfies

$$
\xi^{2}-|\operatorname{trace}(F)| \xi+1=0 .
$$

By Lemma 6.3 of [9], $\xi \geq \epsilon_{\mu}$, i.e., $\exp (\tau / 2) \geq \epsilon_{\mu}$, or $\tau / 2 \geq \log \epsilon_{\mu}$. It follows that

$$
\tau \geq 2 \log \epsilon_{\mu}
$$

Together with (2.3), we obtain

$$
\log \lambda(f) \geq 2 \log \epsilon_{\mu} .
$$

Hence, we have $\lambda(f) \geq \epsilon_{\mu}^{2}$. We summarize the result in the following lemma.
Lemma 1 (Leininger [9]). Assume that $\mu>2$. For any pseudo-Anosov element f of $\left\langle t_{A}, t_{B}\right\rangle$, we have that

$$
\lambda(f) \geq \epsilon_{\mu}^{2} .
$$

REMARK. Due to different metric scales the original result stated in [9] takes the inequality $\lambda(f) \geq \epsilon_{\mu}$.

Since $\lambda(f)=K(f)^{1 / 2}$, from Lemma 1 , we obtain:

$$
\begin{equation*}
K(f) \geq\left\{\frac{1}{2}\left(\mu^{2}-2+\mu \sqrt{\mu^{2}-4}\right)\right\}^{4} \tag{2.4}
\end{equation*}
$$

3. Translation lengths of essential hyperbolic elements

Let \tilde{S} be as in the introduction. Let $a \in \tilde{S}$ and let $S=\tilde{S} \backslash\{a\} . \quad S$ is of type $(p, n+1)$. Associated to $T(\tilde{S})$ there is a fiber space $F(\tilde{S})$ defined as follows. For each $[v] \in T(\tilde{S})$, by Ahlfors-Bers [1], there is normalized quasiconformal automorphism w^{ν} of the complex plane \mathbb{C} such that the restriction $\left.w^{\nu}\right|_{\mathbb{H}^{*}}$ to the lower half plane \mathbb{H}^{*} is conformal, and its Beltrami coefficient $\partial_{\bar{z}} w^{\nu} / \partial_{z} w^{\nu}$ on \mathbb{H} projects to a conformal structure that determines [v]. We form the Bers fiber space

$$
F(\tilde{S})=\left\{([\nu], z) ;[\nu] \in T(\tilde{S}), z \in w^{v}(\mathbb{H})\right\}
$$

Note that in this setting \mathbb{H} is considered the central fiber and the group G acts on $F(\tilde{S})$ in a natural manner.

In [3], Bers established an isomorphism $\varphi: F(\tilde{S}) \rightarrow T(S)$ that is unique up to a modular transformation on $T(S)$.

The isomorphism φ determines an embedding φ^{*} of G into the mapping class group Mod_{S} such that each element in the image $\varphi^{*}(G)$ projects to the trivial mapping class on $\operatorname{Mod}_{\tilde{S}}$ defined by adding the puncture a back into S. Conversely, Bers [3] also showed that if a mapping class θ can be projected to the trivial one in $\operatorname{Mod}_{\tilde{S}}$, then θ lies in the image $\varphi^{*}(G)$.

It was shown in [8, 12] that $g \in G$ is parabolic if and only if $g^{*}=\varphi^{*}(g)$ is induced by a Dehn twist along a boundary curve $\partial \Delta$, where Δ is a twice punctured disk on S enclosing a and another puncture b, where b is regarded as a puncture of \tilde{S} that is determined by the conjugacy class of g. In [8] Kra also proved that g is essential (that is, the complement of the projection of its axis A_{g} consists of disks and possibly once punctured disks) if and only if g^{*} is a pseudo-Anosov mapping class in Mod_{S}. By abuse of language, in the sequel we denote by $K\left(g^{*}\right)$ the dilatation of the corresponding absolutely extremal map on a surface S that realizes the mapping class g^{*}.

Let $g \in G$ be an essential hyperbolic element with axis A_{g}. For simplicity we denote $\tilde{c}=\varrho\left(A_{g}\right) \subset \tilde{S}$. Then \tilde{c} is a filling geodesic on \tilde{S} and by a theorem of [11], the length function $l_{\tilde{c}}: T(\tilde{S}) \rightarrow \mathbb{R}^{+}$attains a minimum value at $\left[\mu_{0}\right] \in T(\tilde{S})$. We may assume that $\left[\mu_{0}\right]=[0]$. We need to see how the number $K\left(g^{*}\right)$ is dominated by $l_{\tilde{c}}([0])$. We review:

Lemma 2 (Kra [8]). With the conditions above, we let λ_{g} denote the multiplier of g, i.e., g is conjugate to $z \mapsto \lambda_{g} z$. Then

$$
\begin{equation*}
K\left(g^{*}\right) \leq \lambda_{g}^{2} \tag{3.1}
\end{equation*}
$$

Outline of proof. For any point $x \in A_{g} \subset \mathbb{H}$, the translation length $\rho_{\mathbb{H}}(x, g(x))=$ $l_{\tilde{c}}([0])$. By Royden's theorem [13] (see also Earle-Kra [6]), the Teichmüller metric on $T(S)$ coincides with the Kobayashi metric on $T(S)$. Since the restriction $\left.\varphi\right|_{\mathbb{H}}: \mathbb{H} \rightarrow$ $T(S)$ is holomorphic, it cannot increase the distance. Therefore,

$$
\begin{equation*}
\left\langle\varphi(x), g^{*} \circ \varphi(x)\right\rangle=\langle\varphi(x), \varphi(g(x))\rangle \leq \rho_{\mathbb{H}}(x, g(x)) \tag{3.2}
\end{equation*}
$$

By definition, the translation length of g^{*} is no larger than the distance $\left\langle\varphi(x), g^{*} \circ\right.$ $\varphi(x)\rangle$. It follows from (3.2) that

$$
\begin{aligned}
\frac{1}{2} \log K\left(g^{*}\right) & \leq\left\langle\varphi(x), g^{*} \circ \varphi(x)\right\rangle \leq \rho_{\mathbb{H}}(x, g(x)) \\
& =l_{\tilde{c}}([0])=\int_{1}^{\lambda_{g}} \frac{1}{y} d y=\log \lambda_{g}
\end{aligned}
$$

It follows that

$$
\begin{equation*}
K\left(g^{*}\right) \leq \lambda_{g}^{2} \tag{3.3}
\end{equation*}
$$

as asserted.

Let $A=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $B=\left\{\beta_{1}, \ldots, \beta_{m}\right\}, n \geq 1$ and $m \geq 1$, be defined in Section 2. First we consider the case that A and B are restricted to contain only one element (the case of $n=m=1$). In this case, it is well known (see [7]) that there are pseudo-Anosov maps f on S that are not represented by elements in the group $\left\langle t_{A}, t_{B}\right\rangle$ generated by t_{A} and t_{B}. In general case, it is not completely clear whether every essential element $g \in G, g^{*}$ is in the group $\left\langle t_{A}, t_{B}\right\rangle$. However, there exist infinitely many pairs $\left\{\alpha_{1}, \beta_{1}\right\}$ so that the group $\left\langle t_{\alpha_{1}}, t_{\beta_{1}}\right\rangle$ contains pseudo-Anosov mapping classes of forms g^{*}, where $g \in G$ is essential. In particular, there are infinitely many pairs $\left\{\alpha_{1}, \beta_{1}\right\}$, where α_{1} and β_{1} are peripheral on \tilde{S}, so that $\left\langle t_{\alpha_{1}}, t_{\beta_{1}}\right\rangle$ contains pseudo-Anosov mapping classes of form g^{*} for $g \in G$ being essential hyperbolic.

By combining Lemma 1 and Lemma 2, we can readily obtain the following lemma:

Lemma 3. Assume that a hyperbolic element $g \in G$ is essential and $g^{*} \in\left\langle t_{A}, t_{B}\right\rangle$ for certain $A=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $B=\left\{\beta_{1}, \ldots, \beta_{n}\right\}, n \geq 1$ and $m \geq 1$. Then $A \cup B$ fills S and

$$
\mu(A \cup B) \leq \max \left\{2, \frac{1}{2}\left(1+\sqrt{5+4 \sqrt{\lambda_{g}}}\right)\right\}
$$

Proof. Denote $\mu=\mu(A \cup B)$. By Lemma 1 and (3.3), we have

$$
\lambda_{g}^{2} \geq K\left(g^{*}\right)=\lambda\left(g^{*}\right)^{2} \geq\left\{\frac{1}{2}\left(\mu^{2}-2+\mu \sqrt{\mu^{2}-4}\right)\right\}^{4}
$$

Note that $\lambda_{g}=\exp \left(l_{\tilde{c}}[0]\right)$. We assume that $\mu>2$. Then clearly $\mu-2 \leq \sqrt{\mu^{2}-4}$. It follows that

$$
\mu^{2}-\mu-\left(1+\sqrt{\lambda_{g}}\right) \leq 0
$$

The lemma then follows immediately.
REMARK. The estimation in the above lemma can be sharpened by applying a theorem of [5] that states that if $\mu>2$ then in fact $\mu>2.0065936$. This implies that there is an integer N such that

$$
\mu-\left(2-\frac{1}{N}\right) \leq \sqrt{\mu^{2}-4}
$$

A simple calculation shows that $N \geq 7$.

4. Peripheral simple curves on punctured Riemann surfaces

In this section we prove that there are infinitely many essential elements $g \in G$ generated by two parabolic elements.

Let \tilde{S} be of type (p, n) with $3 p-3+n>0$ and $n \geq 1$. Let $a \in \tilde{S}$ and $S=\tilde{S} \backslash\{a\}$. Then S is of type $(p, n+1)$. Let $x_{1}=a, x_{2}, \ldots, x_{n+1}, n \geq 1$, denote the punctures of S. Let $\mathcal{P}(S, a)$ denote the set of equivalence classes of paths α on S connecting a and another puncture, where two paths α_{1} and α_{2} are considered equivalent if they are homotopic to each other by a homotopy fixing the end punctures. Let $\mathcal{E}(S, a)$ denote the set of equivalence classes of twice punctured disks on S that enclose a and another puncture, where two such disks are equivalent if their boundary curves are homotopic to each other without interfering with any other punctures.

Given a path representative $\alpha \in \mathcal{P}(S, a)$, we can always fatten α, giving rise to an element in $\mathcal{E}(S, a)$. Conversely, for every element $\Delta \in \mathcal{E}(S, a)$, there is a path α connecting the two end punctures and lying entirely in $\Delta . \alpha$ is unique up to a homotopy, i.e., any two such paths are homotopic within Δ and fix the end punctures. We thus obtain a bijection:

$$
\begin{equation*}
j: \mathcal{P}(S, a) \rightarrow \mathcal{E}(S, a) \tag{4.1}
\end{equation*}
$$

two elements $\alpha, \beta \in \mathcal{P}(S, a)$ are called to fill S if every component of $S \backslash\{\alpha, \beta\}$ is either a disk or a once punctured disk. We need the following lemmas.

Lemma 4. Let $\alpha, \beta \in \mathcal{P}(S, a)$ and assume that $\{\alpha, \beta\}$ fills S, then $\{\partial j(\alpha), \partial j(\beta)\}$ must also fill S in a regular sense.

Proof. Denote $\Delta_{\alpha}=j(\alpha)$ and $\Delta_{\beta}=j(\beta)$. It is easy to see that $\Delta_{\alpha} \cap \Delta_{\beta}$ consists of quadrilateral (that are homeomorphic to disks) and two or one punctured disk components (depending on whether or not α and β share both end punctures). The rest of

Fig. 1.

Fig. 2.
components in $\Delta_{\alpha} \cup \Delta_{\beta}$ include components of $\Delta_{\alpha} \backslash \Delta_{\beta}$ and components of $\Delta_{\beta} \backslash \Delta_{\alpha}$, all of which are homeomorphic to disks. The remaining components of $S \backslash\left\{\Delta_{\alpha} \cup \Delta_{\beta}\right\}$ are essentially the same as the components in $\bar{S} \backslash\{\alpha \cup \beta\}$ which are either disks or punctured disks. This proves Lemma 4.

The following lemma comes from referee's comments:

Lemma 5. Let S be of type $(p, n+1), 3 p+n>3, n \geq 1$. There are infinitely many pairs (α, β) of paths in $\mathcal{P}(S, a)$ so that $\{\alpha, \beta\}$ fills S.

Proof. Observe that S can be thought of as a Riemann sphere with p handles and n punctures. Let H be a handle with $\left(\partial D_{0}, \partial D_{0}^{\prime}\right)$ the two boundary components. Let γ, δ be two curves on H that are not to be homotopic and $\{\gamma, \delta\}$ fills H. Note that γ can be winded around δ as many time as possible. The end points of γ are denoted by s, t, and the end points of δ are denoted by u, v. See Fig. 1.

We remove p pairs $\left(D_{i}, D_{i}^{\prime}\right)$ of small disks and $n+1$ points $x_{1}=a, x_{2}, \ldots x_{n+1}$, $n \geq 1$, from the Riemann sphere \mathbb{S}^{2}, obtaining $S_{0} . S_{0}$ is drawn in Fig. 2 in the case that p is even (if p is odd, the positions of D_{p} and D_{p} in Fig. 2 are switched).

For $i=1, \ldots, p$, let $\left(u_{i}, s_{i}\right)$ and $\left(v_{i}, t_{i}\right)$ be pairs of marked points on ∂D_{i} and ∂D_{i}^{\prime} respectively. Paste p copies of H to S_{0} in such a way that ($\partial D_{0}, \partial D_{i}$) and ($\partial D_{0}^{\prime}, \partial D_{i}^{\prime}$) are glued together with $u_{i}=u, v_{i}=v, s_{i}=s$, and $t_{i}=t$. Then we can define $\alpha \in$ $\mathcal{P}(S, a)$ as follows. Connect $a=x_{1}$ and s_{1}, followed with γ, then connect t_{1} and s_{2}, and then followed with γ again, and so forth. After p steps, we connect t_{p} and x_{n+1} by a path away from all punctures other than the end punctures. Similarly, we can define $\beta \in \mathcal{P}(S, a)$ to be a path that goes from $a=x_{1}$ to v_{1}, followed with the inverse

Fig. 3.
δ^{-1} of δ, then go to u_{1}, then connect u_{1} and v_{2}, and so forth. After p steps, we draw a path connecting u_{p} to x_{n+1} in such a way that the component of $S \backslash\{\alpha, \beta\}$ that includes $x_{i}, i=2, \ldots x_{n}$, is a once punctured disk (this could occur only when $n \geq$ 3). Fig. 3 below shows the case that p is even and the two paths α and β are in $\mathcal{E}(S, a)$. One can easily check that any component of $S \backslash\{\alpha, \beta\}$ is either a disk or a once punctured disk, which says $\{\alpha, \beta\}$ fills S.

From Lemma 4 and Lemma 5, one obtains:

Lemma 6. There are infinitely many essential elements $g \in G$ that are generated by two parabolic elements.

Proof. From the construction there are infinitely many pairs (α, β) that fills S. According to Lemma 4, there are infinitely many pairs $(j(\alpha), j(\beta))$ that fill S. By Lemma 3 of [17], there are parabolic elements $T_{i}, i=1,2$, so that $\varphi^{*}\left(T_{1}\right)=\partial j(\alpha)$ and $\varphi^{*}\left(T_{2}\right)=\partial j(\beta)$. Since $\partial j(\alpha)$ and $\partial j(\beta)$ are homotopic to trivial loops as a is filled in, we see that any finite product

$$
\begin{equation*}
\prod_{i}\left(t_{\partial j(\alpha)}^{n_{i}} \circ t_{\partial j(\beta)}^{m_{i}}\right), \quad n_{i}, m_{i} \in \mathbb{Z} \tag{4.2}
\end{equation*}
$$

projects to a trivial mapping class. It follows from Bers [4] that (4.2) is of form $\varphi^{*}(g)$ for an essential element $g \in G$. Clearly, g is generated by T_{1} and T_{2}. This proves the lemma.

5. Minimal intersections of two peripheral curves

In the previous section we constructed two curves α and β that are boundaries of twice punctured disks enclosing a. In this section we give an estimate of lower bound of intersections of α and β. We first prove:

Lemma 7. Let $\alpha, \beta \in \mathcal{P}(S, a)$. Suppose that $\{\alpha, \beta\}$ fills S. Then in addition to a and another end puncture, α intersects with β at least $2 p-3+n$ points. In particular, if $n=1,2$, then α intersects with β at least $2 p$ points.

Proof. Note that if punctures on S are considered distinguished points on the compactification \bar{S} of $S, \alpha \cup \beta$ defines a graph on S with a number E of edges, a number F of vertices, and a number V of vertices. We know that the Euler characteristic $\chi(\bar{S})=2-2 p$.

Assume that in addition to a and possible another end point, α intersects with β k times. Let n^{\prime} be the number of once punctured disk components of $S \backslash\{\alpha, \beta\}$. If $k=0$, then $\alpha \cup \beta$ is a binary tree or a circle. In former case, $E=2, V=3$. Since $F+V-E=2-2 p, F=1-2 p$, which implies that $F=1$. In order for α, β to fill S, we must have $n^{\prime} \leq 1$ and S is of type $(0, n+1)$ for $n \leq 3$, contradicting to our hypothesis.

In later case, $E=2$ and $V=2$. Since $F+V-E=2-2 p, F=2-2 p$. This implies that $F=2$. So we must have $n^{\prime} \leq 2$, and S is of type $(0, n+1)$ for $n \leq 3$. Again, this is a contradiction.

Now we assume that $k>0$ and that all the intersections are distinct. There are two cases to consider.

CASE 1. α and β share only one endpoint a. In this case, we have $V=k+3$, $E=2(k+1)$. Since $\alpha \cup \beta$ fills $S, F \geq n^{\prime}$, where $n^{\prime}+3=n+1$. Now from $\chi(\bar{S})=2-2 p$ we obtain

$$
2-2 p=V+F-E \geq(k+3)+(n-2)-2(k+1) .
$$

It follows that $k \geq 2 p+n-3$.
CASE 2. α and β share both end punctures. In this case, $\alpha \cup \beta$ is closed when the two endpoints are added. We must have $V=k+2, E=2(k+1)$ and $F \geq n^{\prime}$, where $n^{\prime}+2=n+1$. Hence

$$
2-2 p=V+F-E \geq(k+2)+(n-1)-2(k+1) .
$$

It follows that $k \geq 2 p+n-3$.
In the case of $n=1,2$, the author was informed by the referee that $k \geq 2 p$. In fact, we first assume that $n=1$. Then α and β share the same end punctures. So $\alpha \cup \beta$ is a closed when the two endpoints are added. Since each component of $S \backslash\{\alpha, \beta\}$ is a disk, $S \backslash\{\alpha, \beta\}$ is not connected. Hence $F \geq 2$. Recall that $V=k+2$, and $E=2(k+1)$. We have

$$
2-2 p=V+F-E \geq(k+2)+2-2(k+1) .
$$

It follows that $k \geq 2 p$. In the case of $n=2$, when α, β share the same end punctures, by the same argument as above, we have $k \geq 2 p$. Otherwise, we assume that α terminates x_{2} and β terminates x_{3} with $x_{2} \neq x_{3}$. Then $V=k+3$ and $E=2(k+1)$. Since $F \geq 1$, we have

$$
2-2 p=V+F-E \geq(k+3)+1-2(k+1) .
$$

Thus $k \geq 2 p$, as asserted.
Let $\#\left\{c_{1}, c_{2}\right\}$ denote the set of the minimal intersection points of arbitrary two curves c_{1}, c_{2} on S, and $i\left(c_{1}, c_{2}\right)$ the intersection number of c_{1} and c_{2}. We have

Lemma 8. Let α and β be defined as in Lemma 4. Then any point in $\#\{\alpha, \beta\}$ other than end punctures of α and β contributes at least 4 intersection points to $\#\left\{c_{1}, c_{2}\right\}$ for $c_{1}=\partial j(\alpha)$, and $c_{2}=\partial j(\beta)$.

Proof. We only handle the case that α and β share both end punctures, as drawn in Fig. 3. Let y_{i} be such an intersection in $\#\{\alpha \cap \beta\}$. By hypothesis, $b=x_{n+1}$ is the other endpoint of α and β, respectively. Let $c_{1}^{\prime} \sim c_{1}, c_{2}^{\prime} \sim c_{2}$ be representatives of $\partial j(\alpha)$ and $\partial j(\beta)$, respectively. Assume that c_{1}^{\prime} and c_{2}^{\prime} are very close to α and β respectively. Observe that y_{i} contributes 4 intersections to $\#\left\{c_{1}^{\prime}, c_{2}^{\prime}\right\}$. In fact, the intersection near y_{i} is a quadrilateral. Then the lemma follows from the fact that a homotopy does not decrease the intersection number.

Together with Lemma 6, Lemma 7, and Lemma 8, we are able to prove the following:

Lemma 9. Let \tilde{S} be of type (p, n) with $3 p-3+n>0$ and $n \geq 1$. Then there are infinitely many pairs $\left(c_{1}, c_{2}\right)$ of simple closed curves on S with the following properties:
(1) $c_{1}=\partial \Delta_{1}$ and $c_{2}=\partial \Delta_{2}$ for $\Delta_{1}, \Delta_{2} \in \mathcal{E}(S, a)$,
(2) $\left\{c_{1}, c_{2}\right\}$ fills S in the regular sense, and
(3) the intersection number $i\left(c_{1}, c_{2}\right) \geq 8 p+4 n-10$ if $n \geq 3$; $i\left(c_{1}, c_{2}\right) \geq 8 p+4$ if $n=1$; and $i\left(c_{1}, c_{2}\right) \geq 8 p+2$ if $n=2$.

Proof. First we consider the case of $n \geq 3$. If α, β share only one end puncture a, by Lemma 7, there are at least $2 p-3+n$ distinct intersection points y_{i} in $\#\{\alpha, \beta\}$. By Lemma 8, each $y_{i}, 1 \leq i \leq 2 p-3+n$, contributes at least 4 intersections to \#\{c, $\left.c_{2}\right\}$. The puncture a contributes at least 2 intersections in \# $\left\{c_{1}, c_{2}\right\}$. Therefore,

$$
i\left(c_{1}, c_{2}\right) \geq 4(2 p+n-3)+2=8 p+4 n-10 .
$$

If α and β share both end punctures (a and b), by Lemma 7 again, α and β cross at least $2 p-3+n$ times. Let $y_{i}, 1 \leq i \leq 2 p-3+n$ denote these intersections. By Lemma 8, each y_{i} contributes at least 4 intersections to $\#\left\{c_{1}, c_{2}\right\}$, The punctures a and b each contributes at least 2 intersections to $\#\left\{c_{1}, c_{2}\right\}$. We conclude that

$$
i\left(c_{1}, c_{2}\right) \geq 4(2 p+n-3)+2+2=8 p+4 n-8
$$

It follows that $i\left(c_{1}, c_{2}\right) \geq 8 p+4 n-10$ if $k \geq 3$.

If $n=1$, then S has only two punctures and $\alpha \cup \beta$ has to be closed as the two end punctures are filled in. By Lemma 7 and Lemma 8, we have $i\left(c_{1}, c_{2}\right) \geq 4(2 p)+4=$ $8 p+4$. If $n=2$, then S has three punctures. By Lemma 7 and Lemma 8 again, we have $i\left(c_{1}, c_{2}\right) \geq 4(2 p)+2$ if other than $a \alpha$ and β have different terminal punctures; and $i\left(c_{1}, c_{2}\right) \geq 4(2 p)+4$ if α and β have the same end punctures $(\alpha \cup \beta$ is closed as the end punctures are filled in). Overall we have $i\left(c_{1}, c_{2}\right) \geq 4(2 p)+2$ if $n=2$. This proves the lemma.

6. Proof of Theorem $\mathbf{1}^{\prime}$

The fact that there are infinitely many essential elements g of G that are generated by two parabolic elements was proved in Section 4. Let $g \in G$ be an essential element generated by two parabolic elements T_{1} and T_{2}. Let $t_{1}=\varphi^{*}\left(T_{1}\right)$ and $t_{2}=\varphi^{*}\left(T_{2}\right)$. By Theorem 2 of [8, 12], t_{1} and t_{2} are Dehn twists along c_{1} and c_{2} for $c_{1}=\partial \Delta_{1}$ and $c_{1}=\partial \Delta_{2}$, where $\Delta_{1}, \Delta_{2} \in \mathcal{E}(S, a)$.

We remark that in our situation the fixed point z_{i} of $T_{i}, i=1,2$, cannot be vertices of a common fundamental region of G. For otherwise, let $\omega: G \rightarrow \pi_{1}(\tilde{S}, a)$ denote a canonical isomorphism. Then we have that $\omega\left(T_{1}^{ \pm 1} \circ T_{2}^{ \pm 1}\right)$ is either a simple loop bounding 2 punctures of \tilde{S}, or a "figure 8 " loop on \tilde{S} that is not a filling loop unless \tilde{S} is of type $(0,3)$, which has been excluded by our assumption.

From Lemma 9, the intersection number $i\left(c_{1}, c_{2}\right) \geq \kappa_{0}$, where $\kappa_{0}=8 p+4 n-10$ if $n \geq 3 ; \kappa_{0}=8 p+4$ if $n=1$; and $\kappa_{0}=8 p+2$ if $n=2$. Since $A=\left\{c_{1}\right\}$ and $B=\left\{c_{2}\right\}$ consist single element, we have $n=m=1$ in the discussion of Section 2. Hence by definition, $\mu\left(N N^{t}\right)=i\left(c_{1}, c_{2}\right)^{2}$. Thus

$$
\begin{equation*}
\mu(A \cup B)=\sqrt{\mu\left(N N^{t}\right)}=i\left(c_{1}, c_{2}\right) \geq \kappa_{0} . \tag{6.1}
\end{equation*}
$$

In particular, since $p \geq 0$, and $p \geq 1$ if $n \leq 3$, we see that $\kappa_{0}>2$. It follows that $\mu(A \cup B)>2$. Since $\lambda_{g}>1$,

$$
\frac{1}{2}\left(1+\sqrt{5+4 \sqrt{\lambda_{g}}}\right)>2
$$

Now from Lemma 3 along with (6.1), we have that

$$
\kappa_{0} \leq \mu(A \cup B) \leq \frac{1}{2}\left(1+\sqrt{5+4 \sqrt{\lambda_{g}}}\right)
$$

where $\lambda_{g}=\exp \left\{l_{c}([0])\right\}$. A simple calculation shows that

$$
\lambda_{g} \geq\left\{\frac{1}{4}\left(\kappa^{2}-5\right)\right\}^{2}
$$

where $\kappa=16 p+8 n-21$ if $n \geq 3$; $\kappa=16 p+3$ if $n=2$; and $\kappa=16 p+7$ if $n=1$. This proves Theorem 1^{\prime}. Since $l_{\tilde{c}}([0])=\log \lambda_{g}$, we obtain

$$
l_{\tilde{c}}(\sigma) \geq 2 \log \left(\kappa^{2}-5\right)-4 \log 2
$$

This proves Theorem 1.

ACKNOWLEDGMENT. The initial version of the paper only deals with the case that \tilde{S} is a punctured Riemann sphere. The author is greatly indebted to the referee for his/her generous contribution so that the extension from the case of Riemann spheres to the case of Riemann surfaces of general types becomes possible.

References

[1] L. Ahlfors and L. Bers: Riemann's mapping theorem for variable metrics, Ann. of Math. (2) 72 (1960), 385-404.
[2] A.F. Beardon: The Geometry of Discrete Groups, Springer, New York, 1983.
[3] L. Bers: Fiber spaces over Teichmüller spaces, Acta Math. 130 (1973), 89-126.
[4] L. Bers: An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978), 73-98.
[5] A.E. Brouwer and A. Neumaier: The graphs with spectral radius between 2 and $\sqrt{2+\sqrt{5}}$, Linear Algebra Appl. 114/115 (1989), 273-276.
[6] C.J. Earle and I. Kra: On holomorphic mappings between Teichmüller spaces; in Contributions to Analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, 107-124.
[7] P. Hubert and E. Lanneau: Veech groups without parabolic elements, preprint (2005).
[8] I. Kra: On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math. 146 (1981), 231-270.
[9] C.J. Leininger: On groups generated by two positive multi-twists: Teichmüller curves and Lehmer's number, Geom. Topol. 8 (2004), 1301-1359.
[10] A. Marden and H. Masur: A foliation of Teichmüller space by twist invariant disks, Math. Scand. 36 (1975), 211-228, and Addendum, 39 (1976), 232-238.
[11] B. Maskit and J.P. Matelski: Minimum geodesics on surfaces, manuscript.
[12] S. Nag: Nongeodesic discs embedded in Teichmüller spaces, Amer. J. Math. 104 (1982), 399-408.
[13] H.L. Royden: Automorphisms and isometries of Teichmüller space; in Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Ann. of Math. Studies 66, Princeton Univ. Press, Princeton, N.J., 1971, 369-383
[14] R.C. Penner: Probing mapping class group using arcs, manuscript, 2005.
[15] W.P. Thurston: On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 417-431.
[16] W.A. Veech: Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989), 553-583.
[17] C. Zhang: Hyperbolic mapping classes and their lifts on Bers fiber space, to appear, 2005.

Department of Mathematics Morehouse College Atlanta, GA 30314 USA
e-mail: czhang@morehouse.edu

[^0]: 2000 Mathematics Subject Classification. Primary 32G15; Secondary 30F60.

