
Zhang, C.
Osaka J. Math.
45 (2008), 773–787

HYPERBOLIC LENGTHS OF SOME FILLING GEODESICS
ON RIEMANN SURFACES WITH PUNCTURES

CHAOHUI ZHANG

(Received September 11, 2006, revised August 16, 2007)

Abstract
Let S̃ be a Riemann surface of type(p, n) with 3p � 3 + n > 0 and n � 1. In

this paper, we give a quantitative common lower bound for thehyperbolic lengths
of all filling geodesics onS̃ generated by two parabolic elements in the fundamental
group�1(S̃, a).

1. Introduction

Let c̃ be a non-trivial closed curve on a Riemann surfaceS̃ of type (p, n) with
3p� 3 + n > 0. The length function

l c̃ : T(S̃)! R+

on the Teichmüller spaceT(S̃) is defined by sending each hyperbolic structure� = � (S̃)
of T(S̃) to the hyperbolic lengthl c̃(� ) of the closed geodesic homotopic toc̃ on � (S̃).

It is well known ([11]) that the functionl c̃ achieves its positive minimum value
when c̃ is a filling curve on S̃ in the sense that every component ofS̃ n fc̃g is ei-
ther a disk or a once punctured disk. The extremal value, of course, depends only on
the homotopy class of̃c. In this paper, we give a quantitative common lower bound
through T(S̃) for the hyperbolic lengths of certain kind of filling curveson S̃.

Note that if S̃ contains punctures, then some elements [�] in the fundamental group�1(S̃, a), a 2 S̃, are represented by loops� that pass througha and are boundaries of
once punctured disks. LetF denote the set of those elements.F � �1(S̃, a).

The main result of this paper is the following:

Theorem 1. Let S̃ be a Riemann surface of type(p, n) with 3p � 3 + n > 0
and n� 1. There are infinitely many homotopically independent fillingcurvesc̃ on S̃
that can be expressed as products of two elements inF . For each suchc̃ and each
hyperbolic structure� on S̃, we have:

(1.1) l c̃(� ) � 2 log(�2� 5)� 4 log 2,
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where� = 16p + 8n� 21 if n � 3; 16p + 3 if n = 2; and 16p + 7 if n = 1.

REMARK . From the definition ofS̃ we know thatp � 0 if n � 4; p � 1 if n =
1, 2, 3.

Let H = fz 2 C; Im z> 0g denote the upper half plane with the hyperbolic metric�H given by

(1.2) �H(z)jdzj = jdzj
Im z

.

Let % : H! S̃ be the universal covering with a covering groupG. G is a torsion free
Fichsian group of the fist kind of type (p,n) so thatH=G �= S̃. The setF is one-to-one
correspondent with the set of parabolic elements ofG.

Note that any hyperbolic elementg is conjugate in PSL2(R) to z 7! �g z, where�g > 1 is called the multiplier ofg. Let Ag be the axis ofg. Using (1.2) one calculates
the hyperbolic length of%(Ag) is log�g.

The hyperbolic elementg is called essential if every component ofS̃ n %(Ag) is
either a disk or possibly a once punctured disk. Theorem 1 canbe restated as follows:

Theorem 10. Let G be a finitely generated Fuchsian group of the first kind of
type (p,n) with 3p�3+n> 0 and n� 1. There are infinitely many essential hyperbolic
elements g of G that are generated by two parabolic elements of G. Furthermore, for
each such element g, the multiplier �g of g satisfies:

(1.3) �g �
�

1

4
(�2� 5)

�2

,

where� is given inTheorem 1.

2. Dilatations of pseudo-Anosov maps generated by two positive multi-twists

We first recall the definition and some basic properties of Teichmüller spaceT(R)
of a Riemann surfaceR of type (p, n), 3p�3 +n > 0. For more details see [3, 4, 8].

We define an equivalence class [� ] of a conformal structure� on S̃ as follows.
Two conformal structures�1 and �2 on R are called strongly equivalent if there is an
isometryh of �1(R) onto �2(R) such that��1

2 Æh Æ�1, as a self-map of the underlying
surfaceR, is isotopic to the identity. The collection of strong equivalence classes [� ]
of conformal structures� form a Teichmüller spaceT(R). T(R) is naturally equipped
with a complex structure.

Let [�1] and [�2] be two points in T(R). Let h : �1(R) ! �2(R) be a quasi-
conformal mapping. Define the complex dilation�(z) = �z̄h(z)=�zh(z) and denotek�k =
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ess:supfj�(z)j; z 2 �1(R)g. By definition, k�k < 1. The maximal dilatationK (h) is de-
fined by

K (h) =
1 +k�k
1� k�k .

The Teichmüller distance between [�1] and [�2] is defined as

h[�1], [�2]i =
1

2
inf log K (h),

whereh: �1(R)! �2(R) runs over all maps homotopic to�2Æ��1
1 . T(R) is a complete

metric space with respect to the Teichmüller metric.
The mapping class group (or modular group) ModR is the group of isotopy classes

f � of self-maps f of R. f � acts onT(R) by sending each [� ] to [� Æ f �1]. ModR

is a group of isometries with respect to the Teichmüller metric defined above.
An element f � of ModR is called hyperbolic ifh[� ], f �[� ]i assumes a positive

minimum value at a point [�0] in T(R). An isometric image of the real lineR into
T(R) is called a Teichmüller geodesic. Similarly, an isometricimage of the unit disk
D = fz2 C; jzj < 1g into T(R) is called a Teichmüller disk. According to Bers [4] and
Kra [8], f � is hyperbolic if and only if f � keeps a Teichmüller geodesicl invariant,
which is also equivalent to thatf � keeps a Teichmüller diskD invariant. In this case,
for any point [� ] 2 l , we let [� ] be represented byR. Then f � can be realized onR
as an absolutely extremal Teichmüller mappingf0 : R! R. Let K ( f0) (> 1) denote
the maximal dilatation off0.

Associated tol (or D), there is a integrable meromorphic quadratic differential �
that defines a singular Euclidean metricj�j on R. Thus it determines a pair of singular
measured foliation (Fh, Fv), whereFh and Fv are horizontal and vertical foliations
respectively.

The absolutely extremal mapf0 takes the two singular foliations into themselves.
Away from all singularities, the map stretches the horizontal leaves by the stretch-
ing factor �( f0) = K ( f0)1=2, and compress the vertical leaves by the factor 1=�( f0) =
K ( f0)�1=2. By using the language of Thurston [15], such a mapf0 is also called a
pseudo-Anosov diffeomorphism. We use the notationsl� = l and D� = D to emphasis
that thoseD and l are determined by�.

In the homotopy classf � of f , f0 is a unique pseudo-Anosov diffeomorphism. So
the action of f � on T(R) is analogous to the action of a hyperbolic Möbius transfor-
mation onH. In particular, for each hyperbolic elementf �, there is a unique invariant
Teichmüller geodesic and a unique invariant Teichmüller disk in T(R).

Let A = f�1,:::,�ng and B = f�1,:::,�mg, n� 1 andm� 1 be collections of disjoint
simple closed geodesics onR. We assume thatA and B intersect minimally, andA[B
fills R in the sense that every non-trivial loop onR intersects with eitherA or B or
both. Let tA and tB denote the positive multi-twists along some elements ofA and B,
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respectively. A[ B is regarded as a graph onR. According to Proposition 6.4 of [9],
when A [ B is dominant (see [9] for the definition), all elements inhtA, tBi except
conjugates of powers oftn

A, tm
B , and possibly of (tA Æ tB)n and (tB Æ tA)n, n, m 2 Z,

are pseudo-Anosov maps. (tA Æ tB)n and (tB Æ tA)n are not pseudo-Anosov if the graph
A[ B is critical (see also [9]).

Let D� � T(R) be a Teichmüller disk. We consider the stabilizer Stab(D�) in
ModR, which is called a Veech group on a surface inD� . Since the Teichmüller disk
is isometrically the same asH, Stab(D�) actually determines a subgroup of PSL2(R).
Thus there defines a map

D : Stab(D�)! PSL2(R).

By the main theorem of [10], there exist Teichmüller disksD� and D such that
tA 2 Stab(D�) and tB 2 Stab(D ) and they determine elementsD(tA) and D(tB) in
PSL2(R). Furthermore,tA and tB also act on a common Teichmüller diskD with re-
spect to the flat structure constructed from the dual graph ofA[ B.

Define N = NA,B to be then�m matrix whose (i , j )-entry is i (�i , � j ), the inter-
section number of�i and � j , where�i 2 A and � j 2 B. By assumption,A [ B fills
R. It follows that the graph defined byA[ B is connected. HenceN Nt is irreducible.
Let �(N Nt ) be the maximum of moduli of the eigenvalues ofN Nt (called the Perron-
Frobenius eigenvalue in the literature), and set�(A[ B) =

p�(N Nt ). By [9, 16], we
have the representations:

D(tA) =

�
1 �(A[ B)
0 1

�

and

D(tB) =

�
1 0��(A[ B) 1

�
.

Let � = �(A[B). The grouphD(tA),D(tB)i generated byD(tA) andD(tB) is a discrete
subgroup of PSL2(R) if � > 2. In this case,hD(tA), D(tB)i is free of rank 2. Denote
M = H=hD(tA),D(tB)i. By Lemma 6.3 of [9],M has infinite area and its convex core
is a twice punctured disk. These results will lead to the following Lemma 1.

Let �� be the larger root of the quadratic equation

x2 + (2� �2)x + 1 = 0.

That is,

�� =
1

2
(�2 � 2 +�p�2� 4).

It is easy to check that�� is an increasing function with respect to�. Notice that dif-
ferent metric scales were used in different papers, we need to review those arguments
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presented in [9] and [8] for the sake of consistency.
Let f be a pseudo-Anosov element inhtA, tBi. f determines a Teichmüller diskD

isometric toH with respect to the Teichmüller metric onD and the hyperbolic metric
on H. Thus f induces a hyperbolic Möbius transformationD( f ) on H. DenoteF =
D( f ). Let � denote the translation length ofF :

� = inf
z
�H(z, F(z)).

From Section 7.34 of Beardon [2], we know that

(2.1)
1

2
jtrace(F)j = cosh

�
2

=
exp(�=2) + exp(��=2)

2
.

By isometry we obtain

(2.2)
1

2
log K ( f ) = � .

Since�( f ) = K ( f )1=2, from (2.2), we get

(2.3) log�( f ) = � .

Let � = exp(�=2). A simple calculation shows that� satisfies

�2 � jtrace(F)j� + 1 = 0.

By Lemma 6.3 of [9],� � ��, i.e., exp(�=2)� ��, or �=2� log ��. It follows that

� � 2 log��.

Together with (2.3), we obtain

log �( f ) � 2 log��.

Hence, we have�( f ) � �2�. We summarize the result in the following lemma.

Lemma 1 (Leininger [9]). Assume that� > 2. For any pseudo-Anosov element
f of htA, tBi, we have that

�( f ) � �2�.

REMARK . Due to different metric scales the original result stated in [9] takes the
inequality �( f ) � ��.
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Since�( f ) = K ( f )1=2, from Lemma 1, we obtain:

(2.4) K ( f ) � �1

2
(�2� 2 +�p�2� 4)

�4

.

3. Translation lengths of essential hyperbolic elements

Let S̃ be as in the introduction. Leta 2 S̃ and let S = S̃ n fag. S is of type
(p, n + 1). Associated toT(S̃) there is a fiber spaceF(S̃) defined as follows. For each
[�] 2 T(S̃), by Ahlfors-Bers [1], there is normalized quasiconformalautomorphismw�
of the complex planeC such that the restrictionw� jH� to the lower half planeH� is
conformal, and its Beltrami coefficient�z̄w�=�zw� on H projects to a conformal struc-
ture that determines [�]. We form the Bers fiber space

F(S̃) = f([�], z); [�] 2 T(S̃), z 2 w�(H)g.
Note that in this settingH is considered the central fiber and the groupG acts onF(S̃)
in a natural manner.

In [3], Bers established an isomorphism' : F(S̃)! T(S) that is unique up to a
modular transformation onT(S).

The isomorphism' determines an embedding'� of G into the mapping class
group ModS such that each element in the image'�(G) projects to the trivial map-
ping class on Mod̃S defined by adding the puncturea back into S. Conversely, Bers
[3] also showed that if a mapping class� can be projected to the trivial one in ModS̃,
then � lies in the image'�(G).

It was shown in [8, 12] thatg 2 G is parabolic if and only ifg� = '�(g) is in-
duced by a Dehn twist along a boundary curve�1, where1 is a twice punctured disk
on S enclosinga and another punctureb, whereb is regarded as a puncture ofS̃ that
is determined by the conjugacy class ofg. In [8] Kra also proved thatg is essential
(that is, the complement of the projection of its axisAg consists of disks and possibly
once punctured disks) if and only ifg� is a pseudo-Anosov mapping class in ModS.
By abuse of language, in the sequel we denote byK (g�) the dilatation of the corre-
sponding absolutely extremal map on a surfaceS that realizes the mapping classg�.

Let g 2 G be an essential hyperbolic element with axisAg. For simplicity we
denotec̃ = %(Ag) � S̃. Then c̃ is a filling geodesic onS̃ and by a theorem of [11],
the length functionl c̃ : T(S̃)! R+ attains a minimum value at [�0] 2 T(S̃). We may
assume that [�0] = [0]. We need to see how the numberK (g�) is dominated byl c̃([0]).
We review:

Lemma 2 (Kra [8]). With the conditions above, we let �g denote the multiplier
of g, i.e., g is conjugate to z7! �gz. Then

(3.1) K (g�) � �2
g.
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Outline of proof. For any pointx 2 Ag � H, the translation length�H(x, g(x)) =
l c̃([0]). By Royden’s theorem [13] (see also Earle-Kra [6]), the Teichmüller metric on
T(S) coincides with the Kobayashi metric onT(S). Since the restriction'jH : H !
T(S) is holomorphic, it cannot increase the distance. Therefore,

(3.2) h'(x), g� Æ '(x)i = h'(x), '(g(x))i � �H(x, g(x)).

By definition, the translation length ofg� is no larger than the distanceh'(x), g� Æ'(x)i. It follows from (3.2) that

1

2
log K (g�) � h'(x), g� Æ '(x)i � �H(x, g(x))

= l c̃([0]) =
Z �g

1

1

y
dy = log�g.

It follows that

(3.3) K (g�) � �2
g,

as asserted.

Let A = f�1,:::,�ng and B = f�1,:::,�mg, n� 1 andm� 1, be defined in Section 2.
First we consider the case thatA and B are restricted to contain only one element (the
case ofn = m = 1). In this case, it is well known (see [7]) that there are pseudo-Anosov
maps f on S that are not represented by elements in the grouphtA, tBi generated by
tA and tB. In general case, it is not completely clear whether every essential element
g 2 G, g� is in the grouphtA, tBi. However, there exist infinitely many pairsf�1, �1g
so that the groupht�1, t�1i contains pseudo-Anosov mapping classes of formsg�, where
g 2 G is essential. In particular, there are infinitely many pairsf�1, �1g, where�1 and�1 are peripheral onS̃, so thatht�1, t�1i contains pseudo-Anosov mapping classes of
form g� for g 2 G being essential hyperbolic.

By combining Lemma 1 and Lemma 2, we can readily obtain the following lemma:

Lemma 3. Assume that a hyperbolic element g2 G is essential and g� 2 htA, tBi
for certain A= f�1, : : : , �ng and B = f�1, : : : , �ng, n � 1 and m� 1. Then A[ B
fills S and

�(A[ B) � max

�
2,

1

2

�
1 +

q
5 + 4

p�g

��
.

Proof. Denote� = �(A[ B). By Lemma 1 and (3.3), we have

�2
g � K (g�) = �(g�)2 � �1

2
(�2 � 2 +�p�2� 4)

�4

.
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Note that�g = exp(l c̃[0]). We assume that� > 2. Then clearly� � 2 � p�2� 4. It
follows that

�2� �� (1 +
p�g) � 0.

The lemma then follows immediately.

REMARK . The estimation in the above lemma can be sharpened by applying a
theorem of [5] that states that if� > 2 then in fact� > 2.0065936. This implies that
there is an integerN such that

�� �2� 1

N

� � p�2� 4.

A simple calculation shows thatN � 7.

4. Peripheral simple curves on punctured Riemann surfaces

In this section we prove that there are infinitely many essential elementsg 2 G
generated by two parabolic elements.

Let S̃ be of type (p, n) with 3p�3 +n > 0 andn � 1. Let a 2 S̃ and S= S̃n fag.
Then S is of type (p, n + 1). Let x1 = a, x2, : : : , xn+1, n � 1, denote the punctures
of S. Let P(S, a) denote the set of equivalence classes of paths� on S connectinga
and another puncture, where two paths�1 and�2 are considered equivalent if they are
homotopic to each other by a homotopy fixing the end punctures. Let E(S, a) denote
the set of equivalence classes of twice punctured disks onS that enclosea and another
puncture, where two such disks are equivalent if their boundary curves are homotopic
to each other without interfering with any other punctures.

Given a path representative� 2 P(S, a), we can always fatten�, giving rise to an
element inE(S, a). Conversely, for every element1 2 E(S, a), there is a path� con-
necting the two end punctures and lying entirely in1. � is unique up to a homotopy,
i.e., any two such paths are homotopic within1 and fix the end punctures. We thus
obtain a bijection:

(4.1) j : P(S, a)! E(S, a).

two elements�,� 2 P(S,a) are called to fillS if every component ofSnf�,�g is either
a disk or a once punctured disk. We need the following lemmas.

Lemma 4. Let �, � 2 P(S, a) and assume thatf�, �g fills S, then f� j (�), � j (�)g
must also fill S in a regular sense.

Proof. Denote1� = j (�) and1� = j (�). It is easy to see that1� \1� consists
of quadrilateral (that are homeomorphic to disks) and two orone punctured disk com-
ponents (depending on whether or not� and� share both end punctures). The rest of
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Fig. 1.

Fig. 2.

components in1� [1� include components of1� n1� and components of1� n1�,
all of which are homeomorphic to disks. The remaining components of Sn f1� [1�g
are essentially the same as the components inS̄ n f� [ �g which are either disks or
punctured disks. This proves Lemma 4.

The following lemma comes from referee’s comments:

Lemma 5. Let S be of type(p, n + 1), 3p + n > 3, n � 1. There are infinitely
many pairs(�, �) of paths inP(S, a) so that f�, �g fills S.

Proof. Observe thatS can be thought of as a Riemann sphere withp handles and
n punctures. LetH be a handle with (�D0, �D0

0) the two boundary components. Let , Æ be two curves onH that are not to be homotopic andf , Æg fills H . Note that
can be winded aroundÆ as many time as possible. The end points of are denoted
by s, t , and the end points ofÆ are denoted byu, v. See Fig. 1.

We removep pairs (Di , D0
i ) of small disks andn + 1 points x1 = a, x2, : : : xn+1,

n � 1, from the Riemann sphereS2, obtaining S0. S0 is drawn in Fig. 2 in the case
that p is even (if p is odd, the positions ofDp and Dp in Fig. 2 are switched).

For i = 1,: : : , p, let (ui , si ) and (vi , ti ) be pairs of marked points on�Di and �D0
i

respectively. Pastep copies ofH to S0 in such a way that (�D0, �Di ) and (�D0
0, �D0

i )
are glued together withui = u, vi = v, si = s, and ti = t . Then we can define� 2
P(S, a) as follows. Connecta = x1 and s1, followed with  , then connectt1 and s2,
and then followed with again, and so forth. Afterp steps, we connecttp and xn+1

by a path away from all punctures other than the end punctures. Similarly, we can
define� 2 P(S, a) to be a path that goes froma = x1 to v1, followed with the inverse
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Fig. 3.

Æ�1 of Æ, then go tou1, then connectu1 and v2, and so forth. Afterp steps, we
draw a path connectingup to xn+1 in such a way that the component ofSnf�, �g that
includes xi , i = 2, : : : xn, is a once punctured disk (this could occur only whenn �
3). Fig. 3 below shows the case thatp is even and the two paths� and � are in
E(S, a). One can easily check that any component ofSn f�, �g is either a disk or a
once punctured disk, which saysf�, �g fills S.

From Lemma 4 and Lemma 5, one obtains:

Lemma 6. There are infinitely many essential elements g2 G that are generated
by two parabolic elements.

Proof. From the construction there are infinitely many pairs(�, �) that fills S.
According to Lemma 4, there are infinitely many pairs (j (�), j (�)) that fill S. By
Lemma 3 of [17], there are parabolic elementsTi , i = 1, 2, so that'�(T1) = � j (�) and'�(T2) = � j (�). Since� j (�) and � j (�) are homotopic to trivial loops asa is filled in,
we see that any finite product

(4.2)
Y

i

�
tni� j (�) Æ tmi� j (�)

�
, ni , mi 2 Z,

projects to a trivial mapping class. It follows from Bers [4]that (4.2) is of form'�(g)
for an essential elementg 2 G. Clearly, g is generated byT1 and T2. This proves the
lemma.

5. Minimal intersections of two peripheral curves

In the previous section we constructed two curves� and � that are boundaries of
twice punctured disks enclosinga. In this section we give an estimate of lower bound
of intersections of� and �. We first prove:

Lemma 7. Let �, � 2 P(S, a). Suppose thatf�, �g fills S. Then in addition to a
and another end puncture, � intersects with� at least2p�3+n points. In particular,
if n = 1, 2, then � intersects with� at least2p points.
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Proof. Note that if punctures onS are considered distinguished points on the
compactificationS̄ of S, � [ � defines a graph onS with a numberE of edges, a
numberF of vertices, and a numberV of vertices. We know that the Euler character-
istic �(S̄) = 2� 2p.

Assume that in addition toa and possible another end point,� intersects with�
k times. Let n0 be the number of once punctured disk components ofS n f�, �g. If
k = 0, then� [ � is a binary tree or a circle. In former case,E = 2, V = 3. Since
F + V � E = 2� 2p, F = 1� 2p, which implies thatF = 1. In order for�, � to fill
S, we must haven0 � 1 and S is of type (0,n + 1) for n � 3, contradicting to our
hypothesis.

In later case,E = 2 and V = 2. SinceF + V � E = 2� 2p, F = 2� 2p. This
implies that F = 2. So we must haven0 � 2, and S is of type (0,n + 1) for n � 3.
Again, this is a contradiction.

Now we assume thatk > 0 and that all the intersections are distinct. There are
two cases to consider.

CASE 1. � and � share only one endpointa. In this case, we haveV = k + 3,
E = 2(k+1). Since�[� fills S, F � n0, wheren0 +3 = n+1. Now from�(S̄) = 2�2p
we obtain

2� 2p = V + F � E � (k + 3) + (n� 2)� 2(k + 1).

It follows that k � 2p + n� 3.
CASE 2. � and � share both end punctures. In this case,� [ � is closed when

the two endpoints are added. We must haveV = k + 2, E = 2(k + 1) andF � n0, where
n0 + 2 = n + 1. Hence

2� 2p = V + F � E � (k + 2) + (n� 1)� 2(k + 1).

It follows that k � 2p + n� 3.
In the case ofn = 1, 2, the author was informed by the referee thatk � 2p. In

fact, we first assume thatn = 1. Then� and� share the same end punctures. So�[�
is a closed when the two endpoints are added. Since each component of Sn f�, �g is a
disk, Snf�, �g is not connected. HenceF � 2. Recall thatV = k+2, andE = 2(k+1).
We have

2� 2p = V + F � E � (k + 2) + 2� 2(k + 1).

It follows that k � 2p. In the case ofn = 2, when�, � share the same end punctures,
by the same argument as above, we havek � 2p. Otherwise, we assume that� ter-
minatesx2 and � terminatesx3 with x2 6= x3. Then V = k + 3 and E = 2(k + 1). Since
F � 1, we have

2� 2p = V + F � E � (k + 3) + 1� 2(k + 1).
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Thus k � 2p, as asserted.

Let #fc1, c2g denote the set of the minimal intersection points of arbitrary two
curvesc1, c2 on S, and i (c1, c2) the intersection number ofc1 and c2. We have

Lemma 8. Let� and� be defined as inLemma 4. Then any point in#f�, �g other
than end punctures of� and � contributes at least4 intersection points to#fc1, c2g for
c1 = � j (�), and c2 = � j (�).

Proof. We only handle the case that� and� share both end punctures, as drawn
in Fig. 3. Let yi be such an intersection in #f� \ �g. By hypothesis,b = xn+1 is
the other endpoint of� and �, respectively. Letc01 � c1, c02 � c2 be representatives
of � j (�) and � j (�), respectively. Assume thatc01 and c02 are very close to� and �
respectively. Observe thatyi contributes 4 intersections to #fc01, c02g. In fact, the inter-
section nearyi is a quadrilateral. Then the lemma follows from the fact thata homo-
topy does not decrease the intersection number.

Together with Lemma 6, Lemma 7, and Lemma 8, we are able to prove the fol-
lowing:

Lemma 9. Let S̃ be of type(p, n) with 3p�3+n> 0 and n� 1. Then there are
infinitely many pairs(c1,c2) of simple closed curves on S with the following properties:
(1) c1 = �11 and c2 = �12 for 11, 12 2 E(S, a),
(2) fc1, c2g fills S in the regular sense, and
(3) the intersection number i(c1, c2) � 8p+4n�10 if n � 3; i (c1, c2) � 8p+4 if n = 1;
and i(c1, c2) � 8p + 2 if n = 2.

Proof. First we consider the case ofn� 3. If �,� share only one end puncturea,
by Lemma 7, there are at least 2p�3 +n distinct intersection pointsyi in #f�, �g. By
Lemma 8, eachyi , 1� i � 2p� 3 +n, contributes at least 4 intersections to #fc1, c2g.
The puncturea contributes at least 2 intersections in #fc1, c2g. Therefore,

i (c1, c2) � 4(2p + n� 3) + 2 = 8p + 4n� 10.

If � and � share both end punctures (a and b), by Lemma 7 again,� and � cross
at least 2p� 3 + n times. Let yi , 1 � i � 2p� 3 + n denote these intersections. By
Lemma 8, eachyi contributes at least 4 intersections to #fc1, c2g, The puncturesa and
b each contributes at least 2 intersections to #fc1, c2g. We conclude that

i (c1, c2) � 4(2p + n� 3) + 2 + 2 = 8p + 4n� 8.

It follows that i (c1, c2) � 8p + 4n� 10 if k � 3.
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If n = 1, thenS has only two punctures and�[� has to be closed as the two end
punctures are filled in. By Lemma 7 and Lemma 8, we havei (c1, c2) � 4(2p) + 4 =
8p + 4. If n = 2, then S has three punctures. By Lemma 7 and Lemma 8 again, we
have i (c1, c2) � 4(2p) + 2 if other thana � and � have different terminal punctures;
and i (c1, c2) � 4(2p) + 4 if � and � have the same end punctures (� [ � is closed as
the end punctures are filled in). Overall we havei (c1, c2) � 4(2p) + 2 if n = 2. This
proves the lemma.

6. Proof of Theorem 10
The fact that there are infinitely many essential elementsg of G that are generated

by two parabolic elements was proved in Section 4. Letg 2 G be an essential element
generated by two parabolic elementsT1 and T2. Let t1 = '�(T1) and t2 = '�(T2). By
Theorem 2 of [8, 12],t1 and t2 are Dehn twists alongc1 and c2 for c1 = �11 and
c1 = �12, where11, 12 2 E(S, a).

We remark that in our situation the fixed pointzi of Ti , i = 1, 2, cannot be vertices
of a common fundamental region ofG. For otherwise, let! : G ! �1(S̃, a) denote
a canonical isomorphism. Then we have that!(T�1

1 Æ T�1
2 ) is either a simple loop

bounding 2 punctures of̃S, or a “figure 8” loop onS̃ that is not a filling loop unless
S̃ is of type (0, 3), which has been excluded by our assumption.

From Lemma 9, the intersection numberi (c1, c2) � �0, where�0 = 8p + 4n � 10
if n � 3; �0 = 8p + 4 if n = 1; and�0 = 8p + 2 if n = 2. SinceA = fc1g and B = fc2g
consist single element, we haven = m = 1 in the discussion of Section 2. Hence by
definition, �(N Nt ) = i (c1, c2)2. Thus

(6.1) �(A[ B) =
p�(N Nt ) = i (c1, c2) � �0.

In particular, sincep � 0, and p � 1 if n � 3, we see that�0 > 2. It follows that�(A[ B) > 2. Since�g > 1,

1

2

�
1 +

q
5 + 4

p�g

� > 2.

Now from Lemma 3 along with (6.1), we have that

�0 � �(A[ B) � 1

2

�
1 +

q
5 + 4

p�g

�
,

where�g = expfl c̃([0])g. A simple calculation shows that

�g �
�

1

4
(�2 � 5)

�2

,
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where� = 16p + 8n� 21 if n � 3; � = 16p + 3 if n = 2; and� = 16p + 7 if n = 1. This
proves Theorem 10. Since l c̃([0]) = log �g, we obtain

l c̃(� ) � 2 log(�2 � 5)� 4 log 2.

This proves Theorem 1.

ACKNOWLEDGMENT. The initial version of the paper only deals with the case
that S̃ is a punctured Riemann sphere. The author is greatly indebted to the referee for
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