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Abstract
Using Perelman’s results on Kéahler-Ricci flow, we prove ttie K-energy is
bounded from below if and only if thé&-functional is bounded from below in the
canonical Kahler class.

1. Introduction

One of the central problems in Kéhler geometry is to studyetkistence of Kahler-
Einstein metrics, which is closely related to the behavioseveral energy functionals.
During the last few decades, these energy functionals haea intensely studied and
there are many interesting results. THeenergy, which was introduced by Mabuchi
in [10], plays an important role in Kéhler geometry.

Let (M, w) be ann-dimensional compact Kahler manifold wiity(M) > 0. We
define the space of Kéhler potentials by

PM, ®) = {p € C*(M, R) | @ ++/—103¢ > 0},

wherew € 2rc;(M). For anyg € P(M, w), we define theK-energy by

1 1
(1.1) vw(¢)=—v/0/M %(&[—B)w&/\dt

whereg; (t € [0, 1]) is a path inP(M, w) with ¢g =0 and¢; = ¢, R is the average
of scalar curvature, an¥ = [w]" is the volume. Bando-Mabuchi [1] showed that if
M admits a Kéahler-Einstein metric, then tlke-energy is bouned from below. Later,
Tian [16] [17] proved that the existence of Kahler-Einsteietrics is equivalent to the
properness of th&-energy in the canonical Kahler class. In fact, Tian proveat the
existence of Kahler-Einstein metrics is equivalent to thepprness of thé& -functional,
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which was introduced by Ding-Tian [7] as follows
= i +1
V n+1

1
- = "_log( = [ €= va").
V/M“”“’ g(V/M “’)

To prove the convergence of Kéhler-Ricci flow, Chen-Tian [[]introduced a se-
ries of energy functional€g(k =0, 1,..., n) defined by

1 " )
Bk o(®) = v /M (IO —(p - )(Z RIC AX ') A a)g_k
+ i / h, Z Ric Aok A ™K
V Im = @
I’l — // Bwt k+1 k+1)/\wn k— 1, dt

whereh,, is the Ricci potential defined by

Fo (w)‘

/x/ 8<p/\8<p/\a) /\a) -1
(1.2)

(1.3) Ric@) — w = +v/—1d0h,, and / (e — 1)o" =
M

and ¢; (t € [0, 1]) is a path from 0 top in P(M, w). The first energyEy of these
series is exactly th& -energy, and the secorg; is the Liouville energy on Riemann
surfaces.

There are many relations between these energy functioriRdd. [12] prove that
E; is bounded from below if the&K-energy is bounded from below. Recently, Chen-
Li-Wang [4] proved the converse is also true. There are aisoesresults on the lower
bound of Ex. Following a question proposed by X.X. Chen [3], Song-Weirk [15]
showed that the existence of Kahler-Einstein metrics isvedgnt to the properness of
E; in the canonical class, and they also showed tatre bounded from below under
some additional curvature conditions. Recently, follagvisuggestion of X.X. Chen,
the author [9] found new relations between all these funeti® and generalized Pali-
Song-Weinkove's results.

In summary, the relations between the existence of Kahiest&in metrics and
these energy functionals can be roughly written as folloWs:admits Ké&hler-Einstein
metrics<= the F-functional is proper— the K-energy is proper— E; is proper.
A natural question is what will happen if these energy fumis are just bounded
from below instead of proper. In this paper, we prove
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Theorem 1.1. The K-energy is bounded from below if and only if F is bounded
from below onP(M, w). Moreover we have

1
inf F,(o)= inf v a)/——/ha)n,
Jnf Fo(@) = jnf vo(@) = [ ho
where h, is the Ricci potential with respect to the metric

Combining this with the results in [4], we actually prove ttha is bounded from
below < the K-energy is bounded from beloee—= E; is bounded from below. We
expect that the lower boundedness of all energy functioBglés equivalent, and per-
haps the lower boundedness implies the existence of singfdhler-Einstein metrics
and certain stabilities.

The idea of the proof of Theorem 1.1 is essentially due to ount jpaper [4]. The
key point is to estimate the difference &f and v,, along the Kahler-Ricci flow, and
we show that the difference of these two functionals at ityfims a uniform constant
independent of the initial metric of the flow. However, theogir needs Perelman’s
deep estimates on the Kahler-Ricci flow, while in [4] the eglénce of theK-energy
and E; doesn’t. This is because we can compare the derivativesesketinergy func-
tionals along the Kahler-Ricci flow in [4], but we don’t havendlar estimates in this
paper. The readers are referred to [4] for details. We exibexttthis flow method can
be used to prove the equivalence of B|| functionals in the future.

2. Kabhler-Ricci flow and the K-energy

Let (M, w) be ann-dimensional compact Kahler manifold with € 2r¢;(M) > 0.
The Kahler-Ricci flow with the initial metrieog = w + +/—1 93¢ is of the form

ow, .
(2.1) a—t‘p =w, —Ric,,  ¢(0) = ¢o.

It follows that on the level of Kéhler potentials, the KahRicci flow becomes

g wh
2.2 —~ =log—2 +¢—h,,
(2.2) p - 1091t

where h,, is defined by (1.3). Notice that for any solutierit) of (2.2), the function
o(t) = p(t) + C¢€ is also a solution for any consta@t Since

o1 g
_ = — +
P ()] P (0) +C,

1 / o |
=0 V Ju 0t

we have

1 &l7
- / —¢w9 +C.
V M at ¢ t=0




256 H. Li

Thus we can normalize the solutian(t) such that the average od¢/at)(0) is any
given constant.

Next we recall some basic facts on energy functionals. Khenergy, which is
defined by (1.1), can be explicitly expressed as (cf. [2] J17]

1 ) 1
V(@) = v /M log w—ﬁa)g + v /M h, (0" — wp)

(2.3) =T B
- = V=109 Adp A& A",
V§n+1/,v| pRIQRC NG

By direct calculation, theK-energy is decreasing along the Kahler-Ricci flow. In fact,
for the solutiong(t) of (2.2) we havé

d 1 dpl?
(2.4) SCOREY ‘va o <0,

The following lemma tells us that if th&-energy is bounded from below, we can
normalize the solution such that the averaged@f/ot can be controlled. Since the
normalization is crucial in Section 3, we include a proofeer

Lemma 2.1 (cf. [5]). Suppose that the K-energy is bounded from below along
the Kéhler-Ricci flow Then we can normalize the solutigi{t) so that

c(O):é/oooe‘t/M

where ¢t) = (1/V) fM(aw/at)wg. Then for all time t> 0, we have

2

0
v ol A dt < 00,
ot ¢

c(t) > 0, /OO c(t) dt < v, (0) — v, (),
0
where v, (00) = lim;_ o Ve (t).

Proof. A simple calculation yields
O =c0 -y [ 10}
V Ju ¢
Define

_1 - 12
e(t) = V/M Vol wy.

IThroughout this paper, the expressions suchvas and A f are with respect to the metrig,,).
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Since theK energy has a lower bound along the Ké&hler Ricci flow, we have

o0 1 oo . n B
/0 e(t)dt = v /o /M |Vg0|2ww A dt =v,(0) — v, (0).

Now we normalize our initial value of(t) as

c(O):/ e(t)e ' dt
0
:i/me—‘/ V@20l A dt
V Jo M v

< 1/00/ Vo2 A dt
— w

= V6(0) — vy (00).
From the equation foc(t), we have
(e7tc(t)) = —e(t)e™.
Thus, we have
0<c(t)= / e(0)e Y dr < v,(0) — v, (o)
t

and

lim c(t) = lim / e(r)e Vdr =0.

t—o0 t—oo Ji

Since theK energy is bounded from below, we have
o0 B 1 oo S2n
ct)dt=— [Vol“w, A dt —c(0) < v,(0) — v, (c0). ]
0 Vo Jm

Now we recall the following result, which was proved by Perah using the
W-functional and the gradient estimates fay/ot.

Lemma 2.2 (cf. [13] [11]). For the solutiong(t) of (2.2), we choose @by the
condition h = —(d¢/dt) +a such that

(2.5) /M o) = V.
Then there is a uniform constant A independent of t such that

(2.6) I < A, [Vh?(t) < A, and |Ah| < A
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Finally, we state the following Poincaré inequality, whishwell-known in litera-
ture (cf. [8], [18]).

Lemma 2.3. For any Kéhler metricwg and any functionp € C*(M, C), we have

/|V¢|2e“w“>/ 6 — ¢l° oy,
M

where h is the Ricci potential function with respectag and
1 h n
== e
Y /M e

In this section, we prove the main theorem. First, by the esgion (2.3) and (1.2),
we can show the following lemma, which directly implies tKeenergy is bounded
from below if F is bounded from below.

3. Proof of Theorem 1.1

Lemma 3.1.
1
(3.1) 1o(9) = Fulg) + = / hao"
V Jm

Proof. By the expression (2.3), thHe-energy can be written as

vw(w)zi/Uw ——/(pa) +—/hww

1
V

(3.2)
—1—i

where

n

w‘ﬂ
u=log—+¢—h,.
w

By direct calculation, we have

(3.3)
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Using Jensen’s inequality, we have

1 _ 1
Iog(v/Me ”wg) > _V/M Uwg.

Thus, we have
1
Vu(9) > Fulp) + —/ h,o". O
V

Now we assume that th&-energy is bounded from below. For any metit=
w++/—13d¢o, we consider the solutiop(t) of Kahler-Ricci flow with the initial met-
rc o'

ap )

T zuz=log-2 +¢p— h,, 0) = on.
m g ot ¢(0) = 9o
Since F(t) = F,(¢(t)) is decreasing along the Kahler-Ricci flow (cf. [5]), we Wprove
that v, (t) — F(t) has a uniform bound as— oo, and the bound is independent of the
initial metric o’. Thus, F is also bounded from below.

Since F(t) is decreasing along the Kahler-Ricci flow, for asy t by the equal-

ity (3.3) we have

Fo(@) = F(0) = F(t) — vo(t) +vu(t)

1 t
(3.4) :F(t)—vw(t)+vw(s)—v//M |Vul?w))
1/t .1 .
:—f(t)+vw(s)—v/s/M|vu|2ww_v/thw_
where
1 n 1 —u_n
(3.5) f(t):v/MuwwHog(v/Me a)q]).

If we can find a sequence of timég — oo such that
(3.6) lim f(ty) =0,
m— oo

then we can take =t in (3.4), and letm — oo,

1 (> 1
Fo(@) > v,(s) — v/ /M |Vu|2w2 v /M h,o".
S
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Since theK-energy is decreasing along Kahler-Ricci flow, takig> oo in the above
inequality we have

. 1
(3.7) Fo(w) > infv, — —/ h,o".
Vm
Then F is bounded from below. Thus, it suffices to show that (3.6d&0l

Now we are ready to prove (3.6). Since theenergy is bounded from below, by
Lemma 2.1 we can normalize the solutig(t) such thatc(t) > 0 for all t, and

H — h 1 n —
(3.8) tﬂ)ryo c(t) —tll[rgo V/M Uw, = 0.
By Lemma 2.2, we prove

Lemma 3.2. There exists a constant B independent of t such fhak B.

Proof. We use the notations in Lemma 2.2. By the equality)(2:e have

[ eap-v.
M

1 _
:—Iog(v/Me ”a)f;).

It follows that

Then Lemma 2.2 implies

1 _
(3.9 —A< u+|og(v /M e “a);) <A

Since theK-energy is bounded from below, by Lemma 2.1 the integ”WUwg is uni-
formly bounded from above and below. Thus, integrating )(3v8 have

1 _
Iog(v/Me “wg)

for some constan€. Combining (3.9) with (3.10), the lemma is proved. ]

(3.10) <cC,

Next, we prove the following lemma
Lemma 3.3. For time t— oo, we have
u(t) —» 0,

where ut) = (1/V) [y ueh'w{;. Here we choosethas in Lemma 2.2.
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Proof. Observe that

(3.11) (i/ ueh‘a)")2< 1/ u?eo < e—A/ u?o!.
V Im ]~V Ju =V Ju ¢

Let
b(t):/ u?e".
M 4
Then
gb(t) = / (2u(Au + u) + U?Au)e
dt M ¢
:/ (—2Vul? + 2u — 2u|Vul’)w))
M
2/(—2|Vu|2+2u2—u2—|Vu|4)wg
M

> b(t)—(2+A)/M |Vul?w)

where we usgVu|? < A in the last inequality. Thus, integrating the above ineigyal
from O to co we have

/ b(t)dtgIimsupb(t)—b(O)+(2+A)/ / IVulo! < co.
0 t—oo 0 M

Here the last inequality comes from Lemma 3.2 and the fact the K-energy is
bounded from below. By Lemma 2.2, we haye/dt)b(t)] < C. Hence, we have
b(t) - 0 ast — oco. Therefore, by the inequality (3.11) we hau@) — 0. O
Now we can prove
Lemma 3.4. There is a sequence of timgs +> co such that
lim f(ty) — O,
m—oo
where f is defined by3.5).

Proof. By the equalities (3.5) and (3.8), it suffices to findeguence of times,

such that
(3.12) lim log 1 e 'wl) =0
' m— oo V Ju ¢ ’

t=tm
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Sinceu and u are bounded by Lemma 3.2 and Lemma 3.3, we have the Taylor
expansion

00 -1 k
(3.13) el W=1+%" %(u —u).
k=1
Therefore,
1 1 — (—1)
(3.14) Io%v e‘“a);) =—u+ Iog(l +V/ Z ( kl) (u —g)kw{;).
M Mk
Now by Lemma 2.2, we have
— (-1 — 1
’/Z( ) g)kw2</zw|u—u|sz
(3.15) M k=1 M= ™
< 3 e—A lu — ufeMw”
- k' Jm

Then by the Poincaré inequality in Lemma 2.3, we know

e A

e
ey TEATE,
k=1 UM

°° A k—2

A he n € (ZB) / 2.ht . .n

<e lu—-uletw, + _ lu—ul“e™w

eA+2B
A ' — n12eh
(3.16) <AV /M|u—g|2eh wp + (28)2/ lu—ul€"w),

A+ZB
A 2,h
< eV Vuzeht“+ / Vu|ce™
- /M IVuPetay (2B)? vul w

3on @2A+2B )
<e Vv Vul2wh + vu “
< /M [Vul“wg + 2B) / [Vul“w

Since theK-energy is bounded from below, by (2.4) we can find a sequehtines

tm — oo such that
2.n
/M IVul“w))

Combining this with (3.14)—(3.16), we know (3.12) holds. eTlemma is proved. []

— 0.
t=tm
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By Lemma 3.4, the equality (3.6) holds. This impli€s is bounded from below
and the inequality (3.7) holds. Combining this with Lemma, 3he main theorem is
proved.
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