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Abstract
We consider a generalization of Calabi-Yau structures endbntext of Sasakian
manifolds. We study deformations of a special class of Ldgan submanifolds
and classify invariant contact Calabi-Yau structures odirbensional nilmanifolds.
Finally we generalize to codimension

1. Introduction

In their celebrated paper [9] Harvey and Lawson introdudesl ¢oncept of cali-
bration and calibrated geometry. Namely,calibration on ann-dimensional oriented
Riemannian manifoldNl, g) is a closedr-form ¢ such that for anyx € M

dxv < VOI(V),

whereV is an arbitrary oriented-plane inTyM. An oriented submanifolgp: L < M

is said to becalibrated by ¢ if p*(¢) =Vol(L). Compact calibrated submanifolds have
the important property of minimizing volume in their homgloclass. As a typical
example, the real part of holomorphic volume form of a Calédnui manifold is a cal-
ibration; the corresponding calibrated submanifolds aid $0 bespecial Lagrangian

In [13] McLean studied special Lagrangian submanifolds (atiter special calibrated
geometries) showing that the Moduli space of deformationspefkcial Lagrangian man-
ifolds of a fixed compact oné is a smooth manifold of dimension equal to the first
Betti number ofL.

In this paper we consider a generalization of Calabi-Yaucstires in the context
of Sasakian manifolds. Recall thatSasakian structur®en a 2 + 1-dimensional mani-
fold M is a pair ¢, J), wherea is a contact form orM and J is an integrable com-
plex structure ont = kera calibrated byx = (1/2)da. This is equivalent to require
the following data: a quadruplex(g, R, J), wherea is a 1-form, g is a Riemannian
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metric, R is a unitary Killing vector field,J € End(T M) satisfying
P=—1l+a®R, gJ-,3-)=9g(-, )—a®a, «(R)=1

and such that the metric con#(x R*,r?g+dr ®dr) endowed with the almost complex
structureJ = J —ra ®d, +(1/r)dr ® R is Kahler, where we extend by J(3;) = 0 (see
e.g. [1], [2], [12]). These manifolds have been studied bynynauthors (see e.g. [1],
[3], [8], [11], [12] and the references included).

We consider contact Calabi-Yau manifolds which are a spetéss of Sasakian
manifolds: namely acontact Calabi-Yau manifolds a 21 + 1-dimensional Sasakian
manifold (M, «, J) endowed with a closed basic complex volume formit turns out
that these manifolds are a special class of null-Sasaki&instein manifolds. As a di-
rect consequence of the above definition, in a contact Gytabimanifold M, «, J, €)
the real part ofe is a calibration. Furthermore, we have that miimensional sub-
manifold p: L — M of a contact Calabi-Yau manifold admits an orientation mgki
it a calibrated submanifold b$ie ¢ if and only if

p*(@) =0, p*(Sme)=0.
In such a casé. is said to be aspecial Legendrian submanifoldVe prove that:

The moduli space of deformations of special Legendrian anfifolds near a fixed
compact one L is a smoothdimensional manifold

Moreover we get the following extension theorem:

Let (M, at, J, ) be a smooth family of contact Calabi-Yau manifolds and let. p—
(M, ao, Jo, €0) be a compact special Legendrian submanifolthen there exists a smooth
family of special Legendrian submanifolds. p — (M, o, J;, €;) that extends pL —

M if and only if the cohomology clagp*(3m €)] vanishes

This can be considered a contact version of a theorem of Lig Fse [10]) in Calabi-
Yau manifolds (see also [14]).

In Section 2 we fix some notation on contact and Sasakian gepmé Sec-
tion 3 we define contact Calabi-Yau manifolds and we obtaimessimple topologi-
cal obstructions to the existence of contact Calabi-Yaucsires on odd-dimensional
manifolds. As a corollary, we get that there are no contadalie&rau structures on
odd-dimensional spheres. In Section 4 we study the modalcespf special Legen-
drian submanifolds, proving the theorems stated above. elti@ 5 we classify the
5-dimensional nilmanifolds carrying an invariant cont@etlabi-Yau structure. The proof
is based on Theorems 21 and 23 of [5]. In the last section wergkre the previous
definition to the case of codimensionproving an extension theorem. Some examples
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of contact Calabi-Yau manifolds and special Legendriamsauifolds are carefully de-
scribed.

2. Preliminaries

Let M be a manifold of dimensionr2+ 1. A contact structureon M is a distri-
bution § ¢ TM of dimension B, such that the defining 1-form satisfies

(@) a A (da)" #0.

A 1-form « satisfying (1) is said to be eontact formon M. Let « be a contact form
on M; then there exists a unique vector fiegR} on M such that

a(R,) =1, g da=0,

where g, de denotes the contraction afe along R,. By definition R, is called the
Reeb vector fieldf the contact formw. A contact manifoldis a pair M, &) where M
is a  + 1-dimensional manifold ané is a contact structure. LetV, &) be a contact
manifold and fix a defining (contact) form. Then the 2-form« = (1/2) do defines
a symplectic form on the contact structure therefore the pair&, «) is a symplectic
vector bundle oveM. A complex structuren & is the datum of] € Endg) such that
JZ = - |§.

DEFINITION 2.1. Leta be a contact form orM, with & = kera and let«x =
(1/2)da. A complex structure] on & is said to bex-calibrated if

go[XI(-, -) =xX]I(C-, I -)
is a Jx-Hermitian inner product oi§y for any x € M.

The set ofk-calibrated complex structures dnwill be denoted by¢,(M). If J
is a complex structure o = kera, then we extend it to an endomorphism DM by
setting

J(R,) =0.
Note that such al satisfies
P=—l+a®R,.

If J is «-calibrated, then it induces a Riemannian megrion M given by

2 g=g+ta®a.
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Furthermore the Nijenhuis tensor dfis defined by

N3(X, Y)=[IX, JY] = J[X, IY] = J[Y, IX]+ IX, Y]
for any X, Y € TM. We recall the following

DEFINITION 2.2. A Sasakian structure on a 2 1-dimensional manifoldV is a
pair («, J), where
e « is a contact form;
e Je ¢, (M) satisfiesN; = —do ® R,.
The triple M, «, J) is said to be &Sasakian manifold

For other characterizations of Sasakian structure seqi.gnd [2].
We recall now the definition of basicforms.

DEFINITION 2.3. Let (M, &) be a contact manifold. A differential-form y on
M is said to bebasicif

R,y =0, Lry=0,

where £ denotes the Lie derivative anR, is the Reeb vector field of an arbitrary
contact form defining.

We will denote byAg(M) the set of basie-forms on M, &). Note that
dAG(M) c AGH(M).

The cohomologyHg(M) of this complex is called théasic cohomologyf (M, £).
If (M, «, J) is a Sasakian manifold, then

J(AG(M)) = AG(M),
where, as usual, the action df on r-forms is defined by
JO(Xey ooy X)) = (I Xy, ..., IX).

ConsequentlyA(M) ® C splits as

AM)@C= P A% E)

p+q=r

and, according with this gradation, it is possible to defihe tohomology groups
Hy9(M). Ther-forms belonging toA () are said to be ofype (p, q) with respect
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to J. Note thatx = (1/2)da € Aﬁ’l(g) and it determines a non-vanishing cohomology
class in Hé’l(M). The Sasakian structurer,(J) also induces a natural connecti®ti
on & given by

Ev _ (VXY)S if XE%'
VXY =R, YT if X =R,

where the subscript denotes the projection ontp One easily gets
V53=0, V50;=0, Vida=0, ViY—ViX=[X, Y],
for any X, Y € TM. Consequently we have
Hol(V#) C U(n).

Moreover thetransverse Ricci tensoRic' is defined as

2n
RicT(X, Y) =D g(ViVie — VE Ve — Vi a8 Y),
i=1

for any X, Y € &, where{ey, ..., &} is an arbitrary orthonormal frame &f. It is
known that Ri¢ satisfies

Ric" (X, Y) = Ric(X, Y) +29(X, Y),

for any X, Y € &, where Ric denotes the Ricci tensor of the Riemannian metrc
g; +o ® . Let us denote by the Ricci form of Rid, i.e.

T (X, Y)=Ric"(JX, Y) = Ric(I X, Y) + 2(X, Y),

for any X, Y € £. We recall thatp" is a closed form such that ((27))p represents
the first Chern class of¢( J) (see e.g. [7]); this form is called thiansverse Ricci
form of («, J).

DEFINITION 2.4. The basic cohomology class
(M) = —[p"] € HY'(M)
1 2 B

is called thefirst basic Chern clasef (M, «, J) and, if it vanishes, thenM, «, J) is
said to benull-Sasakian

Furthermore we recall that a Sasakian manifold is callefinsteinif there exist
A, v e C®(M, R) such that

Ric=Ag+va ® «a.
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For general references on these topics see e.g. [4] and [3].

Finally, recall that a submanifolg: L — M of a 2n+1-dimensional contact man-
ifold (M, &) is said to beLegendrianif:
1) dimgL =n,
2) p(TL)Cé.
Observe that, ifx is a defining form of the contact structuée then condition 2) is
equivalent to say thap*(«) = 0. Hence Legendrian submanifolds are the analogue of
Lagrangian submanifolds in contact geometry.

3. Contact Calabi-Yau manifolds

In this section we study contact Calabi-Yau manifolds. Asady explained in
the introduction, these manifolds are a natural genet#izeof the Calabi-Yau ones
in the context of contact geometry. Roughly speaking a abr@alabi-Yau manifold
is a Sasakian manifold endowed with a basic closed compléxme form. We can
give now the following

DerINITION 3.1. A contact Calabi-Yau manifolds a quadruple M, «, J, €),
where
e (M, Jd)is a X+ 1-dimensional Sasakian manifold;
e cc A'J"O(s) is a nowhere vanishing basic form @n= kera such that

€ ANE=Chk"
de =0,

wherec, = (—=1)"D/2(2()" and k = (1/2) da.
Now we will describe a couple of examples.

ExaMPLE 3.2. ConsideiR?*! endowed with the standard Euclidean coordinates
{X1, oy Xy Y1, -+ -, Vs 1) Let

n
ao:Zdt—ZZyi dx
i=1
be thestandard contact fornon R?™*! and let&y = kerag. Thenég is spanned by
{Y10t + Oxys « o oy YnOt + Ox,y Oyys - - vy Oy )

For simplicity, setV; =y;a + 9y, Wj =0y, i, j=1,...,nand

(M) =W,

=1,...,n.
(W) ==V,
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Then Jy defines a complex structure i®,(M). Since the space of transverse 1-forms
is spanned by{dxy, ..., dX,, dvi, ..., dy,}, then the complex valued form

€0 = (dxg +idy)) A-- A (dX +idyn)
is of type £, 0) with respect toJy and it satisfies

€0 VAN 6_0 = Can
d€o = 0,

where kg = (1/2) dag. Therefore R?™1, ag, Jo, €0) is a contact Calabi-Yau manifold.
The following will describe a compact contact Calabi-Yaunifad.

EXAMPLE 3.3. Let

1
H(3) ::'A: 0
0

O - X
R N <

X,y,ZER]

be the 3-dimensional Heisenberg group and Net= H(3)/I", where " denotes the
subgroup ofH(3) given by the matrices with integral entries. The 1-forms= dx,

az =dy, ag=xdy—dz are H(3)-invariant and therefore they define a global coframe
on M. Thena = 2a3 is a contact form whose contact distributignis spanned by

V =0y, W =09y +x9;. Again

JV)=W
[J(W):—V

defines ax-calibrated complex structure ohande = oy +iay is a (1, 0)-form oné
such that M, «, J, €) is a contact Calabi-Yau manifold.

The last example gives an invariant contact Calabi-Yaucsire on a nilmanifold.
It can be generalized to the dimension 21 in this way: letg be the Lie algebra
spanned by Xy, ..., Xon+1} With

[Xok—1, Xak] = =Xon+1

for k=1,...,n and the other brackets are zero. Theis a 2 + 1-dimensional nil-
potent Lie algebra with rational constant structures arydMalcev theorem, it follows
that if G is the simply connected Lie group with Lie algelyathenG has a compact
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quotient. Let{way, ..., az+1} be the dual basis ofXy, ..., Xone1}. Then we immedi-
ately get

n

da; =0,...,das, =0, dagper = Za2k—1 A aok.
k=1

Hence
o= 2a2n+11

the endomorphisml of & = kera defined by

J(Xk-1) = X
J(Xk) = —Xok—1

for k=1,...,n and the complex form
€= (O(]_ + i0(2) A A (O{2n_1 + i0{2n)

define a contact Calabi-Yau structure on any compact nilfolshassociated withy.
The following proposition gives simple topological obstiions in order that a com-
pact 4 + 1-dimensional manifoldM carries a contact Calabi-Yau structure.

Proposition 3.4. Let M be a2n+ 1-dimensional compact manifaldAssume that
M admits a contact Calabi-Yau structyréhen the following hold
1. if nis even,then k.1(M) > 0;
2. if n is odd, then

bn(M) > 2
[bn+1(M) > 2.

where (M) denotes the th Betti number of M

Proof. Let ¢, J,€) be a contact Calabi-Yau structure df and leté = kera. Set
Q = Ree; then, sincee € Ar}o(s), we havee = Q +iJQ. In view of the assumption
de =0, we obtaind2 =dJQ = 0 and sinceda € A}Y(#) it follows that

QAda=JQ2Ada =0.
Hence
d(QAa)=dJQAa)=0.
Furthermore we have

eEANE=QAQ+IQAIQ if nis even;
EANE==2IQAIQ if nis odd.
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1. Ifnis even, theru A(QAQ+IQAJIQ) is a volume form onM. Assume that the
cohomology classesiA «], [J2 A«] vanish; then there exist, y € A"(M) such that

aAQ=dB8, aAnlQ=dy.
By Stokes theorem we have

0}"/0(/\QAQ+O(/\JQ/\JQ=/ dBAQ+dy AJQ
M M
:/ d(BAQ)+d(y AJQ)=0,
M

which is absurd. Therefore one ad2[A «], [I2 A o] does not vanish. Consequently
bnr+1(M) > 0.

2. Let n be odd. We prove that the cohomology class€d pnd [JQ2] are
R-independent. Assume that there exasb € R such thata[Q2] + b[J2] =0, (a, b) #
(0, 0). Then there exist8 € A""%(M) such that

aQ +bJQ = dg.

We may assume that =1, so thatQ =dg — bJQ. Stokes theorem implies

0;5/aAQ/\JQ:/a/\d,3/\JQ:—/ dlaABAJIR)=0
M M M

which is a contradiction. Hencle,(M) > 2. With the same argument, it is possible to
prove thatby:1(M) > 2 by showing that § A «] and [J2 A ] are R-independent in
H™(M, R). O

The following is an immediate consequence of Propositigh 3.

Corollary 3.5. A 3-dimensional compact manifold M admitting contact Calabi-
Yau structure has M) > 2. In particular, there are no compac3-dimensional simply
connected contact Calabi-Yau manifalddoreover the 2n + 1-dimensional sphere has
no contact Calabi-Yau structures

The following proposition implies that the transverse Ritensor of a contact
Calabi-Yau manifold vanishes

Proposition 3.6. Let (M, «, J) be a2n + 1-dimensional Sasakian manifold and
& = kera. The following facts are equivalent
1. HoP(V#) C SU()
2. Ric' =0.
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Proof. The connectionvé induces a connectioVk on A'T%(¢) which has
Hol(VK) C U(1). Since HA(VK) and HoP(V¢) are related by

Hol°(V¥) = det(HoP(V¢)),

where det is the map induced by the determinamt)U¢ U(1), then it follows that
Hol°(V$) € SU() if and only if Hol’(VK) = {1} and in this cas&/K is flat. As in the
Kéhler case it can be showed using transverse holomorplitdicates (see e.g. [7],
[8]) that the curvature form oW X coincides with the transverse Ricci form af,(J).
Hence HAl(V¢) € SU() if and only if Ric" = 0. O

As a consequence of the last proposition we have the follpwin

Corollary 3.7. Let(M,«, J,¢) be a contact Calabi-Yau manifaldhen(M, «, J)
is null-Sasakian and the metric g induced fy, J) is «-Einstein withi = —2 and
v =2n+ 2. In particular the scalar curvature of the metric g assoc@t® («, J) is
equal to—2n.

4. Deformations of special Legendrian submanifolds

In this section we are going to study the geometry of Legamdsubmanifolds in a
contact Calabi-Yau ambient. We will prove a contact versiérMcLean and Lu Peng
theorems (see [13] and [10]).

Let (M, «, J, €) be a contact Calabi-Yau manifold of dimension®1. It easy to
see that for any oriented-planeV c T4yM

Re €v < VO|(V),

where Vol{V) is computed with respect to the metdcnduced by &, J) on M. Hence
Re € is a calibration on |, g) (see [9]). We have the following

Proposition 4.1. Let p: L — M be an n-dimensional submanifoldhe follow-
ing facts are equivalent
1. the submanifold satisfies

[p*(a) =0
p*(3me) = 0,

2. there exists an orientation on L making it calibrated %y €.

We can give the following
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DEFINITION 4.2. Ann-dimensional submanifolgh: L < M is said to bespecial
Legendrianif

p*(x) =0
p*(Sme) = 0.

It follows that compact special Legendrian submanifoldsimize volume in their
homology class and that there are no compact special Legendubmanifolds in

(R?™ g, Jo, €0)-

ExAMPLE 4.3. Let M = H(3)/T', «, J, €) be the contact Calabi-Yau manifold
considered in the Example 3.3. Then the submanifold

1 0
L::[[A]GM A:<0 o)’:sl
0 1

is a compact special Legendrian submanifold.
Now we define the moduli space of special Legendrian subolasif

o = X

DEFINITION 4.4. Let M, «, J,€) be a contact Calabi-Yau manifold and let
Po: L > M, p1: L — M be two special Legendrian submanifolds. Then L — M
is said to be aleformationof po: L < M if there exists a smooth map: L x[0,1] —
M such that
e F(-,t):Lx{t} > M is a special Legendrian embedding for ang [0, 1];
° F('!O):p()v F(’il):pl-

Let (M, «, J, €) be a contact Calabi-Yau manifold and Ipt L — M be a fixed
compact special Legendrian submanifold. Set

M(L) := {special Legendrian submanifolds df1( «, J, €)
which are deformations op: L — M}/~,
where two embeddings are considered equivalent if theyrdiff/ a diffeomorphism of

L; then by definitionM1(L) is the moduli space of special Legendrian submanifolds
which are deformations op: L — M. We have the following

Theorem 4.5. Let(M,«, J,¢) be a contact Calabi-Yau manifold and let p —
M be a compact special Legendrian submanifolthen the moduli spac#i(L) is a

1-dimensional manifold

The next lemma will be useful in the proof of Theorem 4.5:
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Lemma 4.6 ([13], [6]). Let(V,«) be a symplectic vector space and le\W —
V be a Lagrangian subspacdhen
1. t:V/W — W* defined asr([v]) =i*(¢yx) is an isomorphism
2. let J be ax-calibrated complex structure on V and lete A’J"O(V*) satisfy

n

i*(Sme) =0, 6A€_:Cnl;—|.

Thend: V/W — A""1(W*) defined as®9([v]) :=i*(t, Sme) is an isomorphism More-
over for anyv € V, we have

O([v]) = — = z([v]),

where = is computed with respect td(g;(-, -)) :=i*((-, J-)) and the volume form
Vol(W) :=i*(Re€).

For the proof of Lemma 4.6 we refer to [13] and [6].
Proof of Theorem 4.5. Let(L) be the normal bundle tk. Then

N(L) = (Ry) ® I(p.(TL)),

where R, is the Reeb vector field ok. Let Z be a vector field normal th. and let
exp,: L — M be defined as

exp, (x) := exp (Z(x)).
Let U be a neighborhood of 0 i€2%((R,)) ® C1*(J(p.(T L)) and let
F:U — CY(AY(L)) @ CO%(AN(L)),
be defined as

F(2Z) = (exp, (), 2 exp;(3m €)).

We obviously have
Z e F7((0, 0))n C®(V(L)) < exp,(L) is a special Legendrian submanifold.
Note that since exp and p are homotopic via exp, we have
[expz(Sm e)] = [p*(Sm€)] = 0.
Therefore

F:U — CH(AYL)) @ dCH(A"H(L)).
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Let us compute the differential of the map

d
F[0(2) = (expz(@). 2exgz(3m €))=0 = (P"(L2a), 2p"(Lz Im e)),

where £ denotes the Lie derivative. We may wrike= J X+ f R,; then applying Cartan
formula we obtain

F.[0](Z) = (p*(Lza), 2p*(Lz Sm€))
= (p*(diza +1z da), 2p*(diz Sme))
= (P (digxstr,@ +tyx+iRr, da), 2p*(digxs+ R, SME))
= (p*(der, o +tyx dar), 2p*(deyx Sme))
= (p*(df +1yx da), 2dp*(tyx Sm€)).

By applying Lemma 4.6 we get
3) F.[0](Z) = (d(f o p) + p*(tax dr), —d % p*(tyx dr)),
where x is the Hodge star operator with respect to the mefri¢g;) and the volume

form p*(Ree). Now we show thatF,[0] is surjective. Let 4, dy) e C1¢(AL(L)) @
dCh¢(A™1(L)). By the Hodge decomposition theorem we may assume

dy =—d«du with ue C3>*(L)
and we have
n=dv+d*g+h(n)

wherev € C?%(L), B € C>*(A?(L)) and h(n) denotes the harmonic component ipf
Then we get

(n, dy) = (du— du+dv +d*g +h(y), —d * du)
= (dv — du+du+d*g +h(n), —d = (du+d*B + h(n)).
We can findf € C2%(p(L)) and X € C**(p,(T L)) such that
fop=v—u
p*(taxda) =du+d*B +h(n).
Hence

(n, dy) = (d(f o p) + p*(ax dar), —d = p*(1ax dar))
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and F,[0] is surjective. Therefore (0, 0) is a regular value Bf Now we compute
ker F,[0]. Formula (3) implies thaZ e ker F,[0] if and only if

4) d(f o p)+ p*(axde) =0
(5) d*p*(LJx da) =0.

By applying d* to both sides of (4) and taking into account (5) we get

0 =d"d(f o p)+d*p*(Lyx dar) = d*d(f o p),

A(fop)=0.
Since L is compactf is constant. Hence (4) reduces to
(6) p*(tax der) = 0.
The map
@: p.(TL) > AY(L)
defined by
O(X) = p"(tax da)

is an isomorphism; hence equation (6) impl¥és= 0. Thereforez =W + f R, belongs
to kerF,[0] if and only if

W=0

f = constant.
It follows that kerF,[0] = Spank(R,) c C*(N(L)). The implicit function theorem be-
tween Banach spaces implies that the moduli spai{é) is a 1-dimensional smooth
manifold. O

REMARK 4.7. Note that the dimension &i(L) does not depend on that &f.
This is quite different from the Calabi-Yau case, where timaemhsion of the moduli
space of deformations of special Lagrangian submanifols @ fixed compact is
equal to the first Betti number df. This difference can be explained in the follow-
ing way: the deformations parameterized by curves tangettieé contact structure are
trivial, while those one along the Reeb vector fidd parameterize the moduli space.

Now we study the following
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Extension problem. Let (M, o, J,€), t € (—4,8), be a smooth family of contact
Calabi-Yau manifolds. Given a compact special Legendrigomenifold p: L < M of
(M, ap, Jo, €0) does it exist a familyp;: L — M of special Legendrian submanifolds
of (M, oy, J, &) such thatpy: L < M coincides withp?

This is a contact version of the extension problem in the [@a&fau case (see [10]
and [14]). We can state the following

Theorem 4.8. Let (M, at, %, €t)te(—s,5) b€ @ smooth family of contact Calabi-
Yau manifolds Let p: L — M be a compact special Legendrian submanifold of
(M, ag, Jo, €0). Then there existdor small t, a family of compact special Legendrian
submanifolds g L — (M, o, %, €) such that p= p if and only if the condition

) [p"(Sme)] =0
holds for t small enough

Proof. The condition (7) is necessary. Indeed if we can eklenthenS3me¢; is
a closed form such thap(Sme;) = 0. Sincep; is homotopic topy we have

[Po(Sme)] = [pf(Sm )] = 0.
In order to prove that condition (7) is sufficient, we can d¢dasthe map
G: (-0, 0) x C*(JI(p.TL)) — CO(A%(L)) @ CO*(A"(L))
defined as
G(t, Z) = (expy(dayr), 2 exg; (Sm €t)).
By our assumption it follows that
Im(G) c dC**(AY(L)) ® dCEI(AML(L)).
Let X e C1¥(p,(TL)); a direct computation and Lemma 4.6 give

G.[(0, 0)](0, I X) = (dp"(tsx dag), 2dp*(tsx Sm €))
= (dp*(tax dap), —d * p*(13x dao)),

where  is the Hodge operator of the metrig’(g;) with respect to the volume form
p*(Ree). It follows that G,[(0, 0)](0, -) is surjective and that

ker G.[(0, 0)Jioxcre(p. Ly = HY(L),
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where HY(L) denotes the space of harmonic 1-forms lonLet
A={X e CH(p.(TL)) | p*(axde) € dCH*(L) & d*C*(A*(L))}
and
G= G|(—8,5)><A-
Then by the Hodge decomposition af(L) it follows that
G.[(0, O)]ojxa: A— dC**(L) @ d*C**(A%(L))

is an isomorphism. Again by the implicit function theoremdathe elliptic regularity
there exists a local smooth solution of the equation

G(t, v (1) = 0.
The extension ofp: L — M is obtained by considering
Pt = eXPyq) - O
5. The 5-dimensional nilpotent case

In this section we study invariant contact Calabi-Yau dtices on 5-dimensional
nilmanifolds. We will prove that a compact 5-dimensiondihmanifold carrying an in-
variant Calabi-Yau structure is covered by a Lie group whage algebra is iso-
morphic to

g=(0,0,0,0, 12 + 34),

just described in Section 2. Notatign= (0, 0, 0, 0, 12 + 34) means that there exists a
basis{a, ..., as} of the dual space of the Lie algebgasuch that

do; =dap =daz =das =0, das=ai Aas+az A as.

First of all we note that 5-dimensional contact Calabi-Yaanifolds are in partic-
ular hypo. Recall that ahypo structureon a 5-dimensional manifold is the datum of
(a, w1, wo, w3), Wherea € AY(M) and w;j € A%(M) and
1. wi Awj =§jv, for somev e A*M) satisfyingv A o #0;

2. Ixwi = lywy 0)3(X, Y) > 0:

3. dw; =0, d(w, Aa) =0, dlws Aa)=0.

These structures have been introduced and studied by Di @whtS. Salamon in [5].
Let (M, «, J, €) be a contact Calabi-Yau manifold of dimension 5. Then

1
o, wlzéda, wy=Ree, w3=3[me,
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define an hypo structure oil.
The following lemma, whose proof is immediate, will be uddfuthe sequel

Lemma 5.1. Let M = G/I" be a nilmanifold of dimensio®. If M admits an
invariant contact formthen the Lie algebra of G is isomorphic to one of the following
e (0,0, 12,13, 14 +23);

e (0,0,0,12,13+24);
e (0,0,0,0,12+34).

Let g be a non-trivial 5-dimensional nilpotent Lie algebra anchate byV = g*
the dual vector space gf. There exists a filtration o¥/

VicvicVvicvicvei=vy,

with dV' c A2Vi-1 and dimy V' =i. We may choose the filtratiol in such a way
that V2 c kerd c V4.

Let (M = G/T, «, w1, wy, w3) be a nilmanifold endowed with an invariant hypo
structure ¢, w1, w, w3)
1. Assume thatr € V4 Then we have the following (see [5])

Theorem 5.2. If « € V4, then g is either (0, 0, 0, 0, 12), (0, 0, 0, 12, 13)r
(0, 0, 12, 13, 14).

In particular if (M, «, J, €) is contact Calabi-Yau, thea € V4.
2. Assume thatr ¢ V4. We have (see again [5])

Lemma 5.3. If o ¢ V* and all w; are closed then« is orthogonal to \/.
Theorem 5.4. If « is orthogonal to \#, theng is one of
(0,0,0,0,12), (0,0,0,0, 12+ 34).
Let (M, «, J, €) be a contact Calabi-Yau manifold of dimension 5 endowedh it in-
variant contact Calabi-Yau structure; then byrldoes not belong t&¥4. By Lemma 5.3
« is orthogonal toV# and by Theorem 5.4 = (0, 0, 0, 0, 12 + 34). Hence we have

proved the following

Theorem 5.5. Let M = G/T" be a nilmanifold of dimensio® admitting an in-
variant contact Calabi-Yau structuréTheng is isomorphic to

(0,0, 0,0, 12 + 34).
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6. Calabi-Yau manifolds of codimensionr

In this section we extend the definition of contact CalahirYaanifold to co-
dimensionr showing the analogous of Theorem 4.8.
Let us consider the following

DEFINITION 6.1. LetM be a 21 +r-dimensional manifold. Amr-contact struc-
ture on M is the datumD = {ay, ..., o}, Wherea; € AY(M), such that
e da;=dapy=---=do;
o a1 A---Aop A(dag)" Z0.

Note that if D = {1, ..., o} IS anr-contact structure ang := () kere;, then
(&, day) is a symplectic vector bundle oM and there exists a unique set of vector
fields {Ry, . .., R} satisfying

(Xi(Rj):Sij, LR.dOliIO forany i,j=1,...,r.

Let us denote by, (¢) the set of complex structures @ncalibrated by the symplectic
form « = (1/2) do; and by Aj(M) the set ofr-forms y on M satisfying

iy =0 forany i=1,...,r.
If J e, (), then we extend it tof M by defining
J(R)=0.

Note that such al satisfies
;
P=—1+> 6 ®R.
i=1

Consequently, for any] € €.(¢), we haveJ(A{(M)) c AfM and a natural splitting
of Af(M)® C in

AM)®C= P AF9E).

p+q=r

We can give the following

DEFINITION 6.2. Anr-contact Calabi-Yau manifold is the datum &l (D, J, ¢),
where
e M is a X +r-dimensional manifold;
e D={ay,...,o0} IS anr-contact structure;
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o Je Q:K(é)
o e AY9(¢) satisfies

€ Ae =Cpk"
de = 0.

EXAMPLE 6.3. LetM = H(3)/T x S' be the Kodaira-Thurston manifold, where
H(3) is the 3-dimensional Heisenberg group dnds the lattice ofH(3) of matrices
with integers entries. Let

ay = —2dz+2x dy,
ap = —2dz+2x dy+2dt.

One easily gets
da; =day =2dx A dy

and thatD = {a1, ay} is a 2-contact structure oW. Note thaté = keraq N keray is
spanned by{ X1 = 9y, X2 = dy + X3;}. Moreover the Reeb fields @ are

Ry = 18 18

1= 22 2t1
1

Rzzéat.

Therefore A}{(M) is generated bydx, dy}. Let J € End§) be the complex structure
given by

J(X1) =Xz, I(X2) ==Xy
and lete € A}°(¢) be the form
€ =dx+idy.
Then M, D, J, €) is a 2-contact Calabi-Yau structure.

As in the contact Calabi-Yau case if( D, J, €) is anr-contact Calabi-Yau man-
ifold, then then-form Q = %e ¢ is a calibration onM. Moreover ann-dimensional
submanifoldp: L — M admits an orientation making it calibrated Ky if and only if

p*(a) =0 forany « €D,
p*(Sme) =0.

A submanifold satisfying these equations will be callgkcial Legendrian
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ExAMPLE 6.4. Let M, D, J, €) be the 2-contact Calabi-Yau structure described
in Example 6.3. Then

1
L:=1[Ale HR)T|A=[ O
0

o, X

0
0], xeR} x{q) =&
1

is a compact special Legendrian submanifold for any S'.
The proof of the next theorem is very similar to that of Theoré.8 and it is omitted.
Theorem 6.5. Let (M, Dy, J, €t)ie(—s,5) be a smooth family of r-contact Calabi-
Yau manifolds Let p: L — M be a compact special Legendrian submanifold of
(M, Dq, Jo, €0)- Then there existdor small t, a family of compact special Legendrian
submanifolds p L — (M, Dy, %, €) extending pL < M if and only if the condition
[p*(Sme)] =0

holds for t small enough
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