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Abstract
We consider a generalization of Calabi-Yau structures in the context of Sasakian

manifolds. We study deformations of a special class of Legendrian submanifolds
and classify invariant contact Calabi-Yau structures on 5-dimensional nilmanifolds.
Finally we generalize to codimensionr .

1. Introduction

In their celebrated paper [9] Harvey and Lawson introduced the concept of cali-
bration and calibrated geometry. Namely, acalibration on an n-dimensional oriented
Riemannian manifold (M, g) is a closedr -form � such that for anyx ∈ M

�x|V ≤ Vol(V),

whereV is an arbitrary orientedr -plane inTx M. An oriented submanifoldp: L ,→ M
is said to becalibrated by � if p∗(�) = Vol(L). Compact calibrated submanifolds have
the important property of minimizing volume in their homology class. As a typical
example, the real part of holomorphic volume form of a Calabi-Yau manifold is a cal-
ibration; the corresponding calibrated submanifolds are said to bespecial Lagrangian.
In [13] McLean studied special Lagrangian submanifolds (andother special calibrated
geometries) showing that the Moduli space of deformations ofspecial Lagrangian man-
ifolds of a fixed compact oneL is a smooth manifold of dimension equal to the first
Betti number ofL.

In this paper we consider a generalization of Calabi-Yau structures in the context
of Sasakian manifolds. Recall that aSasakian structureon a 2n + 1-dimensional mani-
fold M is a pair (�, J), where� is a contact form onM and J is an integrable com-
plex structure on� = ker� calibrated by� = (1=2) d�. This is equivalent to require
the following data: a quadruple (�, g, R, J), where� is a 1-form, g is a Riemannian
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metric, R is a unitary Killing vector field,J ∈ End(T M) satisfying

J2 = −I + � ⊗ R, g(J · , J · ) = g( · , · )− � ⊗ �, �(R) = 1

and such that the metric cone (M×R+, r 2g+dr⊗dr ) endowed with the almost complex
structureJ̃ = J−r�⊗ �r +(1=r )dr⊗ R is Kähler, where we extendJ by J(�r ) = 0 (see
e.g. [1], [2], [12]). These manifolds have been studied by many authors (see e.g. [1],
[3], [8], [11], [12] and the references included).

We consider contact Calabi-Yau manifolds which are a special class of Sasakian
manifolds: namely acontact Calabi-Yau manifoldis a 2n + 1-dimensional Sasakian
manifold (M, �, J) endowed with a closed basic complex volume form�. It turns out
that these manifolds are a special class of null-Sasakian�-Einstein manifolds. As a di-
rect consequence of the above definition, in a contact Calabi-Yau manifold (M, �, J, �)
the real part of� is a calibration. Furthermore, we have that ann-dimensional sub-
manifold p : L ,→ M of a contact Calabi-Yau manifold admits an orientation making
it a calibrated submanifold byℜe � if and only if

p∗(�) = 0, p∗(ℑm �) = 0.

In such a caseL is said to be aspecial Legendrian submanifold. We prove that:

The moduli space of deformations of special Legendrian submanifolds near a fixed
compact one L is a smooth1-dimensional manifold.

Moreover we get the following extension theorem:

Let (M, �t , Jt , �t ) be a smooth family of contact Calabi-Yau manifolds and let p: L ,→
(M,�0, J0,�0) be a compact special Legendrian submanifold. Then there exists a smooth
family of special Legendrian submanifolds pt : L ,→ (M,�t , Jt , �t ) that extends p: L ,→
M if and only if the cohomology class[ p∗(ℑm �)] vanishes.

This can be considered a contact version of a theorem of Lu Peng (see [10]) in Calabi-
Yau manifolds (see also [14]).

In Section 2 we fix some notation on contact and Sasakian geometry. In Sec-
tion 3 we define contact Calabi-Yau manifolds and we obtain some simple topologi-
cal obstructions to the existence of contact Calabi-Yau structures on odd-dimensional
manifolds. As a corollary, we get that there are no contact Calabi-Yau structures on
odd-dimensional spheres. In Section 4 we study the moduli space of special Legen-
drian submanifolds, proving the theorems stated above. In Section 5 we classify the
5-dimensional nilmanifolds carrying an invariant contactCalabi-Yau structure. The proof
is based on Theorems 21 and 23 of [5]. In the last section we generalize the previous
definition to the case of codimensionr proving an extension theorem. Some examples
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of contact Calabi-Yau manifolds and special Legendrian submanifolds are carefully de-
scribed.

2. Preliminaries

Let M be a manifold of dimension 2n + 1. A contact structureon M is a distri-
bution � ⊂ T M of dimension 2n, such that the defining 1-form� satisfies

(1) � ∧ (d�)n 6= 0.

A 1-form � satisfying (1) is said to be acontact formon M. Let � be a contact form
on M; then there exists a unique vector fieldR� on M such that

�(R�) = 1, �R� d� = 0,

where �R� d� denotes the contraction ofd� along R�. By definition R� is called the
Reeb vector fieldof the contact form�. A contact manifoldis a pair (M, � ) where M
is a 2n + 1-dimensional manifold and� is a contact structure. Let (M, � ) be a contact
manifold and fix a defining (contact) form�. Then the 2-form� = (1=2) d� defines
a symplectic form on the contact structure� ; therefore the pair (� , �) is a symplectic
vector bundle overM. A complex structureon � is the datum ofJ ∈ End(� ) such that
J2 = −I� .

DEFINITION 2.1. Let � be a contact form onM, with � = ker� and let � =
(1=2) d�. A complex structureJ on � is said to be�-calibrated if

gJ [x]( · , · ) := �[x]( · , Jx · )

is a Jx-Hermitian inner product on�x for any x ∈ M.

The set of�-calibrated complex structures on� will be denoted byC�(M). If J
is a complex structure on� = ker�, then we extend it to an endomorphism ofT M by
setting

J(R�) = 0.

Note that such aJ satisfies

J2 = −I + � ⊗ R�.

If J is �-calibrated, then it induces a Riemannian metricg on M given by

(2) g := gJ + � ⊗ �.
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Furthermore the Nijenhuis tensor ofJ is defined by

NJ(X, Y) = [J X, JY] − J[X, JY] − J[Y, J X] + J2[X, Y]

for any X, Y ∈ T M. We recall the following

DEFINITION 2.2. A Sasakian structure on a 2n + 1-dimensional manifoldM is a
pair (�, J), where
• � is a contact form;
• J ∈ C�(M) satisfiesNJ = −d� ⊗ R�.
The triple (M, �, J) is said to be aSasakian manifold.

For other characterizations of Sasakian structure see e.g.[1] and [2].
We recall now the definition of basicr -forms.

DEFINITION 2.3. Let (M, � ) be a contact manifold. A differentialr -form 
 on
M is said to bebasic if

�R�
 = 0, LR�
 = 0,

where L denotes the Lie derivative andR� is the Reeb vector field of an arbitrary
contact form defining� .

We will denote by3r
B(M) the set of basicr -forms on (M, � ). Note that

d3r
B(M) ⊂ 3r +1

B (M).

The cohomologyH •B(M) of this complex is called thebasic cohomologyof (M, � ).
If ( M, �, J) is a Sasakian manifold, then

J(3r
B(M)) = 3r

B(M),

where, as usual, the action ofJ on r -forms is defined by

J�(X1, : : : , Xr ) = �(J X1, : : : , J Xr ).

Consequently3r
B(M)⊗ C splits as

3r
B(M)⊗ C =

⊕

p+q=r

3p,q
J (� )

and, according with this gradation, it is possible to define the cohomology groups
H p,q

B (M). The r -forms belonging to3p,q
J (� ) are said to be oftype (p, q) with respect
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to J. Note that� = (1=2) d� ∈ 31,1
J (� ) and it determines a non-vanishing cohomology

class in H1,1
B (M). The Sasakian structure (�, J) also induces a natural connection∇�

on � given by

∇�XY =

{
(∇XY)� if X ∈ �
[R�, Y] if X = R�,

where the subscript� denotes the projection onto� . One easily gets

∇�X J = 0, ∇�XgJ = 0, ∇�Xd� = 0, ∇�XY −∇�Y X = [X, Y]� ,
for any X, Y ∈ T M. Consequently we have

Hol(∇� ) ⊆ U(n).

Moreover thetransverse Ricci tensorRicT is defined as

RicT (X, Y) =
2n∑

i =1

g
(
∇�X∇�ei

ei −∇�ei
∇�Xei −∇�[X,ei ]

ei , Y
)
,

for any X, Y ∈ � , where {e1, : : : , e2n} is an arbitrary orthonormal frame of� . It is
known that RicT satisfies

RicT (X, Y) = Ric(X, Y) + 2g(X, Y),

for any X, Y ∈ � , where Ric denotes the Ricci tensor of the Riemannian metricg =
gJ + � ⊗ �. Let us denote by�T the Ricci form of RicT , i.e.

�T (X, Y) = RicT (J X, Y) = Ric(J X, Y) + 2�(X, Y),

for any X, Y ∈ � . We recall that�T is a closed form such that (1=(2�))� represents
the first Chern class of (� , J) (see e.g. [7]); this form is called thetransverse Ricci
form of (�, J).

DEFINITION 2.4. The basic cohomology class

cB
1 (M) =

1

2� [�T ] ∈ H1,1
B (M)

is called thefirst basic Chern classof (M, �, J) and, if it vanishes, then (M, �, J) is
said to benull-Sasakian.

Furthermore we recall that a Sasakian manifold is called�-Einstein if there exist�, � ∈ C∞(M, R) such that

Ric = �g + �� ⊗ �.
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For general references on these topics see e.g. [4] and [3].
Finally, recall that a submanifoldp: L ,→ M of a 2n+1-dimensional contact man-

ifold (M, � ) is said to beLegendrianif:
1) dimRL = n,
2) p∗(T L) ⊂ � .
Observe that, if� is a defining form of the contact structure� , then condition 2) is
equivalent to say thatp∗(�) = 0. Hence Legendrian submanifolds are the analogue of
Lagrangian submanifolds in contact geometry.

3. Contact Calabi-Yau manifolds

In this section we study contact Calabi-Yau manifolds. As already explained in
the introduction, these manifolds are a natural generalization of the Calabi-Yau ones
in the context of contact geometry. Roughly speaking a contact Calabi-Yau manifold
is a Sasakian manifold endowed with a basic closed complex volume form. We can
give now the following

DEFINITION 3.1. A contact Calabi-Yau manifoldis a quadruple (M, �, J, �),
where
• (M, �, J) is a 2n + 1-dimensional Sasakian manifold;
• � ∈ 3n,0

J (� ) is a nowhere vanishing basic form on� = ker� such that

{� ∧ �̄ = cn�n

d� = 0,

wherecn = (−1)n(n+1)=2(2i )n and � = (1=2) d�.

Now we will describe a couple of examples.

EXAMPLE 3.2. ConsiderR2n+1 endowed with the standard Euclidean coordinates
{x1, : : : , xn, y1, : : : , yn, t}. Let

�0 = 2 dt − 2
n∑

i =1

yi dxi

be thestandard contact formon R2n+1 and let�0 = ker�0. Then �0 is spanned by

{y1�t + �x1, : : : , yn�t + �xn , �y1, : : : , �yn}.

For simplicity, setVi = yi �t + �xi , Wj = �y j , i , j = 1, : : : , n and

{
J0(Vr ) = Wr

J0(Wr ) = −Vr
r = 1, : : : , n.



CONTACT CALABI -YAU MANIFOLDS 133

Then J0 defines a complex structure inC�(M). Since the space of transverse 1-forms
is spanned by{dx1, : : : , dxn, dy1, : : : , dyn}, then the complex valued form

�0 := (dx1 + i dy1) ∧ · · · ∧ (dxn + i dyn)

is of type (n, 0) with respect toJ0 and it satisfies

{�0 ∧ �̄0 = cn�n
0

d�0 = 0,

where�0 = (1=2) d�0. Therefore (R2n+1, �0, J0, �0) is a contact Calabi-Yau manifold.

The following will describe a compact contact Calabi-Yau manifold.

EXAMPLE 3.3. Let

H (3) :=



A =




1 x y
0 1 z
0 0 1


 x, y, z ∈ R





be the 3-dimensional Heisenberg group and letM = H (3)=0, where 0 denotes the
subgroup ofH (3) given by the matrices with integral entries. The 1-forms�1 = dx,�2 = dy, �3 = x dy− dz are H (3)-invariant and therefore they define a global coframe
on M. Then � = 2�3 is a contact form whose contact distribution� is spanned by
V = �x, W = �y + x�z. Again

{
J(V) = W
J(W) = −V

defines a�-calibrated complex structure on� and � = �1 + i�2 is a (1, 0)-form on�
such that (M, �, J, �) is a contact Calabi-Yau manifold.

The last example gives an invariant contact Calabi-Yau structure on a nilmanifold.
It can be generalized to the dimension 2n + 1 in this way: letg be the Lie algebra
spanned by{X1, : : : , X2n+1} with

[X2k−1, X2k] = −X2n+1

for k = 1, : : : , n and the other brackets are zero. Theng is a 2n + 1-dimensional nil-
potent Lie algebra with rational constant structures and, by Malcev theorem, it follows
that if G is the simply connected Lie group with Lie algebrag, thenG has a compact
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quotient. Let{�1, : : : , �2n+1} be the dual basis of{X1, : : : , X2n+1}. Then we immedi-
ately get

d�1 = 0, : : : , d�2n = 0, d�2n+1 =
n∑

k=1

�2k−1 ∧ �2k.

Hence

� = 2�2n+1,

the endomorphismJ of � = ker� defined by

{
J(X2k−1) = X2k

J(X2k) = −X2k−1

for k = 1, : : : , n and the complex form

� = (�1 + i�2) ∧ · · · ∧ (�2n−1 + i�2n)

define a contact Calabi-Yau structure on any compact nilmanifold associated withg.
The following proposition gives simple topological obstructions in order that a com-

pact 2n + 1-dimensional manifoldM carries a contact Calabi-Yau structure.

Proposition 3.4. Let M be a2n + 1-dimensional compact manifold. Assume that
M admits a contact Calabi-Yau structure; then the following hold
1. if n is even, then bn+1(M) > 0;
2. if n is odd, then

{
bn(M) ≥ 2
bn+1(M) ≥ 2,

where bj (M) denotes the jth Betti number of M.

Proof. Let (�, J, �) be a contact Calabi-Yau structure onM and let� = ker�. Set� = ℜe �; then, since� ∈ 3n,0
J (� ), we have� = � + i J�. In view of the assumption

d� = 0, we obtaind� = d J� = 0 and sinced� ∈ 31,1
J (� ) it follows that

� ∧ d� = J� ∧ d� = 0.

Hence

d(� ∧ �) = d(J� ∧ �) = 0.

Furthermore we have

� ∧ �̄ = � ∧� + J� ∧ J� if n is even;� ∧ �̄ = −2i� ∧ J� if n is odd.
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1. If n is even, then�∧ (�∧�+ J�∧ J�) is a volume form onM. Assume that the
cohomology classes [�∧�], [ J�∧�] vanish; then there exist�, 
 ∈ 3n(M) such that

� ∧� = d�, � ∧ J� = d
 .

By Stokes theorem we have

0 6=
∫

M
� ∧� ∧� + � ∧ J� ∧ J� =

∫

M
d� ∧� + d
 ∧ J�

=
∫

M
d(� ∧�) + d(
 ∧ J�) = 0,

which is absurd. Therefore one of [� ∧ �], [ J� ∧ �] does not vanish. Consequently
bn+1(M) > 0.
2. Let n be odd. We prove that the cohomology classes [�] and [J�] are
R-independent. Assume that there exista, b ∈ R such thata[�] + b[ J�] = 0, (a, b) 6=
(0, 0). Then there exists� ∈ 3n−1(M) such that

a� + bJ� = d�.

We may assume thata = 1, so that� = d� − bJ�. Stokes theorem implies

0 6=
∫

M
� ∧� ∧ J� =

∫

M
� ∧ d� ∧ J� = −

∫

M
d(� ∧ � ∧ J�) = 0

which is a contradiction. Hencebn(M) ≥ 2. With the same argument, it is possible to
prove thatbn+1(M) ≥ 2 by showing that [� ∧ �] and [J� ∧ �] are R-independent in
Hn+1(M, R).

The following is an immediate consequence of Proposition 3.4.

Corollary 3.5. A 3-dimensional compact manifold M admitting contact Calabi-
Yau structure has b1(M) ≥ 2. In particular, there are no compact3-dimensional simply
connected contact Calabi-Yau manifolds. Moreover, the 2n + 1-dimensional sphere has
no contact Calabi-Yau structures.

The following proposition implies that the transverse Ricci tensor of a contact
Calabi-Yau manifold vanishes

Proposition 3.6. Let (M, �, J) be a 2n + 1-dimensional Sasakian manifold and� = ker�. The following facts are equivalent:
1. Hol0(∇� ) ⊆ SU(n)
2. RicT = 0.
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Proof. The connection∇� induces a connection∇K on 3n,0
J (� ) which has

Hol(∇K ) ⊆ U(1). Since Hol0(∇K ) and Hol0(∇� ) are related by

Hol0(∇K ) = det(Hol0(∇� )),
where det is the map induced by the determinant U(n) → U(1), then it follows that
Hol0(∇� ) ⊆ SU(n) if and only if Hol0(∇K ) = {1} and in this case∇K is flat. As in the
Kähler case it can be showed using transverse holomorphic coordinates (see e.g. [7],
[8]) that the curvature form of∇K coincides with the transverse Ricci form of (�, J).
Hence Hol0(∇� ) ⊆ SU(n) if and only if RicT = 0.

As a consequence of the last proposition we have the following

Corollary 3.7. Let (M,�, J,�) be a contact Calabi-Yau manifold. Then(M,�, J)
is null-Sasakian and the metric g induced by(�, J) is �-Einstein with� = −2 and� = 2n + 2. In particular the scalar curvature of the metric g associated to (�, J) is
equal to−2n.

4. Deformations of special Legendrian submanifolds

In this section we are going to study the geometry of Legendrian submanifolds in a
contact Calabi-Yau ambient. We will prove a contact versionof McLean and Lu Peng
theorems (see [13] and [10]).

Let (M, �, J, �) be a contact Calabi-Yau manifold of dimension 2n + 1. It easy to
see that for any orientedn-plane V ⊂ Tx M

ℜe �|V ≤ Vol(V),

where Vol(V) is computed with respect to the metricg induced by (�, J) on M. Hence
ℜe � is a calibration on (M, g) (see [9]). We have the following

Proposition 4.1. Let p: L ,→ M be an n-dimensional submanifold. The follow-
ing facts are equivalent
1. the submanifold satisfies

{
p∗(�) = 0
p∗(ℑm �) = 0,

2. there exists an orientation on L making it calibrated byℜe �.
We can give the following
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DEFINITION 4.2. An n-dimensional submanifoldp: L ,→ M is said to bespecial
Legendrianif

{
p∗(�) = 0
p∗(ℑm �) = 0.

It follows that compact special Legendrian submanifolds minimize volume in their
homology class and that there are no compact special Legendrian submanifolds in
(R2n+1, �0, J0, �0).

EXAMPLE 4.3. Let (M = H (3)=0, �, J, �) be the contact Calabi-Yau manifold
considered in the Example 3.3. Then the submanifold

L :=



[ A] ∈ M A =




1 x 0
0 1 0
0 0 1





 ≃ S1

is a compact special Legendrian submanifold.

Now we define the moduli space of special Legendrian submanifolds.

DEFINITION 4.4. Let (M, �, J, �) be a contact Calabi-Yau manifold and let
p0: L ,→ M, p1: L ,→ M be two special Legendrian submanifolds. Thenp1: L ,→ M
is said to be adeformationof p0: L ,→ M if there exists a smooth mapF: L×[0, 1]→
M such that
• F( · , t) : L × {t} → M is a special Legendrian embedding for anyt ∈ [0, 1];
• F( · , 0) = p0, F( · , 1) = p1.

Let (M, �, J, �) be a contact Calabi-Yau manifold and letp : L ,→ M be a fixed
compact special Legendrian submanifold. Set

M(L) := {special Legendrian submanifolds of (M, �, J, �)
which are deformations ofp : L ,→ M}=∼,

where two embeddings are considered equivalent if they differ by a diffeomorphism of
L; then by definitionM(L) is the moduli space of special Legendrian submanifolds
which are deformations ofp : L ,→ M. We have the following

Theorem 4.5. Let (M,�, J, �) be a contact Calabi-Yau manifold and let p: L ,→
M be a compact special Legendrian submanifold. Then the moduli spaceM(L) is a
1-dimensional manifold.

The next lemma will be useful in the proof of Theorem 4.5:
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Lemma 4.6 ([13], [6]). Let (V , �) be a symplectic vector space and let i: W ,→
V be a Lagrangian subspace. Then
1. � : V=W→ W∗ defined as� ([v]) = i ∗(�v�) is an isomorphism;
2. let J be a�-calibrated complex structure on V and let� ∈ 3n,0

J (V∗) satisfy

i ∗(ℑm �) = 0, � ∧ �̄ = cn
�n

n!
.

Then� : V=W→ 3n−1(W∗) defined as�([v]) := i ∗(�v ℑm �) is an isomorphism. More-
over for anyv ∈ V , we have

�([v]) = − ∗ � ([v]),

where∗ is computed with respect to i∗(gJ( · , · )) := i ∗(�( · , J · )) and the volume form
Vol(W) := i ∗(ℜe �).

For the proof of Lemma 4.6 we refer to [13] and [6].

Proof of Theorem 4.5. LetN (L) be the normal bundle toL. Then

N (L) = 〈R�〉 ⊕ J(p∗(T L)),

where R� is the Reeb vector field of�. Let Z be a vector field normal toL and let
expZ : L → M be defined as

expZ(x) := expx(Z(x)).

Let U be a neighborhood of 0 inC2,�(〈R�〉)⊕ C1,�(J(p∗(T L))) and let

F : U → C1,�(31(L))⊕ C0,�(3n(L)),

be defined as

F(Z) = (exp∗Z(�), 2 exp∗Z(ℑm �)).
We obviously have

Z ∈ F−1((0, 0))∩ C∞(N (L)) ⇐⇒ expZ(L) is a special Legendrian submanifold.

Note that since expZ and p are homotopic via expt Z , we have

[exp∗Z(ℑm �)] = [ p∗(ℑm �)] = 0.

Therefore

F : U → C1,�(31(L))⊕ dC1,�(3n−1(L)).
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Let us compute the differential of the mapF .

F∗[0](Z) =
d

dt
(exp∗t Z(�), 2 exp∗t Z(ℑm �))|t=0 = (p∗(LZ�), 2p∗(LZ ℑm �)),

whereL denotes the Lie derivative. We may writeZ = J X+ f R�; then applying Cartan
formula we obtain

F∗[0](Z) = (p∗(LZ�), 2p∗(LZ ℑm �))
= (p∗(d�Z� + �Z d�), 2p∗(d�Z ℑm �))
= (p∗(d�J X+ f R�� + �J X+ f R� d�), 2p∗(d�J X+ f R� ℑm �))
= (p∗(d� f R�� + �J X d�), 2p∗(d�J X ℑm �))
= (p∗(d f + �J X d�), 2dp∗(�J X ℑm �)).

By applying Lemma 4.6 we get

(3) F∗[0](Z) = (d( f ◦ p) + p∗(�J X d�), −d ∗ p∗(�J X d�)),

where∗ is the Hodge star operator with respect to the metricp∗(gJ) and the volume
form p∗(ℜe �). Now we show thatF∗[0] is surjective. Let (�, d
 ) ∈ C1,�(31(L)) ⊕
dC1,�(3n−1(L)). By the Hodge decomposition theorem we may assume

d
 = −d ∗ du with u ∈ C3,�(L)

and we have

� = dv + d∗� + h(�)

wherev ∈ C2,�(L), � ∈ C2,�(32(L)) and h(�) denotes the harmonic component of�.
Then we get

(�, d
 ) = (du− du + dv + d∗� + h(�), −d ∗ du)

= (dv − du + du + d∗� + h(�), −d ∗ (du + d∗� + h(�)).

We can find f ∈ C2,�(p(L)) and X ∈ C1,�(p∗(T L)) such that

f ◦ p = v − u

p∗(�J Xd�) = du + d∗� + h(�).

Hence

(�, d
 ) = (d( f ◦ p) + p∗(�J X d�), −d ∗ p∗(�J X d�))
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and F∗[0] is surjective. Therefore (0, 0) is a regular value ofF . Now we compute
ker F∗[0]. Formula (3) implies thatZ ∈ ker F∗[0] if and only if

d( f ◦ p) + p∗(�J X d�) = 0(4)

d∗p∗(�J X d�) = 0.(5)

By applying d∗ to both sides of (4) and taking into account (5) we get

0 = d∗d( f ◦ p) + d∗p∗(�J X d�) = d∗d( f ◦ p),

i.e.

1( f ◦ p) = 0.

Since L is compact f is constant. Hence (4) reduces to

(6) p∗(�J X d�) = 0.

The map

2 : p∗(T L)→ 31(L)

defined by

2(X) = p∗(�J X d�)

is an isomorphism; hence equation (6) impliesX = 0. ThereforeZ = W + f R� belongs
to kerF∗[0] if and only if

{
W = 0
f = constant.

It follows that kerF∗[0] = SpanR(R�) ⊂ C∞(N (L)). The implicit function theorem be-
tween Banach spaces implies that the moduli spaceM(L) is a 1-dimensional smooth
manifold.

REMARK 4.7. Note that the dimension ofM(L) does not depend on that ofL.
This is quite different from the Calabi-Yau case, where the dimension of the moduli
space of deformations of special Lagrangian submanifolds near a fixed compactL is
equal to the first Betti number ofL. This difference can be explained in the follow-
ing way: the deformations parameterized by curves tangent to the contact structure are
trivial, while those one along the Reeb vector fieldR� parameterize the moduli space.

Now we study the following



CONTACT CALABI -YAU MANIFOLDS 141

Extension problem. Let (M,�t , Jt ,�t ), t ∈ (−Æ, Æ), be a smooth family of contact
Calabi-Yau manifolds. Given a compact special Legendrian submanifold p: L ,→ M of
(M, �0, J0, �0) does it exist a familypt : L ,→ M of special Legendrian submanifolds
of (M, �t , Jt , �t ) such thatp0 : L ,→ M coincides withp?

This is a contact version of the extension problem in the Calabi-Yau case (see [10]
and [14]). We can state the following

Theorem 4.8. Let (M, �t , Jt , �t )t∈(−Æ,Æ) be a smooth family of contact Calabi-
Yau manifolds. Let p: L ,→ M be a compact special Legendrian submanifold of
(M, �0, J0, �0). Then there exists, for small t, a family of compact special Legendrian
submanifolds pt : L ,→ (M, �t , Jt , �t ) such that p0 = p if and only if the condition

(7) [p∗(ℑm �t )] = 0

holds for t small enough.

Proof. The condition (7) is necessary. Indeed if we can extend L, thenℑm �t is
a closed form such thatp∗t (ℑm �t ) = 0. Sincept is homotopic top0 we have

[ p∗0(ℑm �t )] = [ p∗t (ℑm �t )] = 0.

In order to prove that condition (7) is sufficient, we can consider the map

G : (−� , � )× C1,�(J(p∗T L))→ C0,�(32(L))⊕ C0,�(3n(L))

defined as

G(t , Z) = (exp∗Z(d�t ), 2 exp∗Z(ℑm �t )).

By our assumption it follows that

Im(G) ⊂ dC1,�(31(L))⊕ dC(1,�)(3n−1(L)).

Let X ∈ C1,�(p∗(T L)); a direct computation and Lemma 4.6 give

G∗[(0, 0)](0, J X) = (dp∗(�J X d�0), 2dp∗(�J X ℑm �))
= (dp∗(�J X d�0), −d ∗ p∗(�J X d�0)),

where∗ is the Hodge operator of the metricp∗(gJ) with respect to the volume form
p∗(ℜe �). It follows that G∗[(0, 0)](0, · ) is surjective and that

kerG∗[(0, 0)]{0}×C1,� (p∗(J(T L))) ≡ H1(L),
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whereH1(L) denotes the space of harmonic 1-forms onL. Let

A = {X ∈ C1,�(p∗(T L)) | p∗(�J Xd�) ∈ dC1,�(L)⊕ d∗C1,�(32(L))}

and

Ĝ = G|(−Æ,Æ)×A.

Then by the Hodge decomposition of3(L) it follows that

G∗[(0, 0)]{0}×A : A→ dC1,�(L)⊕ d∗C1,�(32(L))

is an isomorphism. Again by the implicit function theorem and the elliptic regularity
there exists a local smooth solution of the equation

Ĝ(t ,  (t)) = 0.

The extension ofp : L ,→ M is obtained by considering

pt := exp (t) .

5. The 5-dimensional nilpotent case

In this section we study invariant contact Calabi-Yau structures on 5-dimensional
nilmanifolds. We will prove that a compact 5-dimensional nilmanifold carrying an in-
variant Calabi-Yau structure is covered by a Lie group whoseLie algebra is iso-
morphic to

g = (0, 0, 0, 0, 12 + 34),

just described in Section 2. Notationg = (0, 0, 0, 0, 12 + 34) means that there exists a
basis{�1, : : : , �5} of the dual space of the Lie algebrag such that

d�1 = d�2 = d�3 = d�4 = 0, d�5 = �1 ∧ �2 + �3 ∧ �4.

First of all we note that 5-dimensional contact Calabi-Yau manifolds are in partic-
ular hypo. Recall that anhypo structureon a 5-dimensional manifold is the datum of
(�, !1, !2, !3), where� ∈ 31(M) and!i ∈ 32(M) and
1. !i ∧ ! j = Æi j v, for somev ∈ 34(M) satisfyingv ∧ � 6= 0;
2. �X!1 = �Y!2 ⇐⇒ !3(X, Y) > 0:
3. d!1 = 0, d(!2 ∧ �) = 0, d(!3 ∧ �) = 0.
These structures have been introduced and studied by D. Conti and S. Salamon in [5].
Let (M, �, J, �) be a contact Calabi-Yau manifold of dimension 5. Then

�, !1 =
1

2
d�, !2 = ℜe �, !3 = ℑm �,
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define an hypo structure onM.
The following lemma, whose proof is immediate, will be useful in the sequel

Lemma 5.1. Let M = G=0 be a nilmanifold of dimension5. If M admits an
invariant contact form, then the Lie algebra of G is isomorphic to one of the following
• (0, 0, 12, 13, 14 + 23);
• (0, 0, 0, 12, 13 + 24);
• (0, 0, 0, 0, 12 + 34).

Let g be a non-trivial 5-dimensional nilpotent Lie algebra and denote by V = g∗

the dual vector space ofg. There exists a filtration ofV

V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ V5 = V ,

with dVi ⊂ 32V i−1 and dimR V i = i . We may choose the filtrationV in such a way
that V2 ⊂ kerd ⊂ V4.

Let (M = G=0, �, !1, !2, !3) be a nilmanifold endowed with an invariant hypo
structure (�, !1, !2, !3)
1. Assume that� ∈ V4. Then we have the following (see [5])

Theorem 5.2. If � ∈ V4, then g is either (0, 0, 0, 0, 12), (0, 0, 0, 12, 13),or
(0, 0, 12, 13, 14).

In particular if (M, �, J, �) is contact Calabi-Yau, then� ∈ V4.
2. Assume that� =∈ V4. We have (see again [5])

Lemma 5.3. If � =∈ V4 and all !i are closed, then � is orthogonal to V4.

Theorem 5.4. If � is orthogonal to V4, then g is one of

(0, 0, 0, 0, 12), (0, 0, 0, 0, 12 + 34).

Let (M, �, J, �) be a contact Calabi-Yau manifold of dimension 5 endowed with an in-
variant contact Calabi-Yau structure; then by 1.� does not belong toV4. By Lemma 5.3� is orthogonal toV4 and by Theorem 5.4g = (0, 0, 0, 0, 12 + 34). Hence we have
proved the following

Theorem 5.5. Let M = G=0 be a nilmanifold of dimension5 admitting an in-
variant contact Calabi-Yau structure. Theng is isomorphic to

(0, 0, 0, 0, 12 + 34).
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6. Calabi-Yau manifolds of codimensionr

In this section we extend the definition of contact Calabi-Yau manifold to co-
dimensionr showing the analogous of Theorem 4.8.

Let us consider the following

DEFINITION 6.1. Let M be a 2n + r -dimensional manifold. Anr -contact struc-
ture on M is the datumD = {�1, : : : , �r }, where�i ∈ 31(M), such that
• d�1 = d�2 = · · · = d�r ;
• �1 ∧ · · · ∧ �r ∧ (d�1)n 6= 0.

Note that if D = {�1, : : : , �r } is an r -contact structure and� :=
⋂

ker�i , then
(� , d�1) is a symplectic vector bundle onM and there exists a unique set of vector
fields {R1, : : : , Rr } satisfying

�i (Rj ) = Æi j , �Ri d�i = 0 for any i , j = 1, : : : , r .

Let us denote byC� (� ) the set of complex structures on� calibrated by the symplectic
form � = (1=2) d�1 and by3r

0(M) the set ofr -forms 
 on M satisfying

�Ri 
 = 0 for any i = 1, : : : , r .

If J ∈ C� (� ), then we extend it toT M by defining

J(Ri ) = 0.

Note that such aJ satisfies

J2 = −I +
r∑

i =1

�i ⊗ Ri .

Consequently, for anyJ ∈ C� (� ), we haveJ(3r
0(M)) ⊂ 3r

0M and a natural splitting
of 3r

0(M) ⊗ C in

3r
0(M) ⊗ C =

⊕

p+q=r

3p,q
J (� ).

We can give the following

DEFINITION 6.2. An r -contact Calabi-Yau manifold is the datum of (M,D, J,�),
where
• M is a 2n + r -dimensional manifold;
• D = {�1, : : : , �r } is an r -contact structure;
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• J ∈ C� (� )
• � ∈ 3n,0

J (� ) satisfies

{� ∧ �̄ = cn�n

d� = 0.

EXAMPLE 6.3. Let M = H (3)=0 × S1 be the Kodaira-Thurston manifold, where
H (3) is the 3-dimensional Heisenberg group and0 is the lattice ofH (3) of matrices
with integers entries. Let

�1 = −2 dz+ 2x dy,

�2 = −2 dz+ 2x dy+ 2 dt.

One easily gets

d�1 = d�2 = 2 dx∧ dy

and thatD = {�1, �2} is a 2-contact structure onM. Note that� = ker�1 ∩ ker�2 is
spanned by{X1 = �x, X2 = �y + x�z}. Moreover the Reeb fields ofD are

R1 = −1

2
�z−

1

2
�t ,

R2 =
1

2
�t .

Therefore31
0(M) is generated by{dx, dy}. Let J ∈ End(� ) be the complex structure

given by

J(X1) = X2, J(X2) = −X1

and let� ∈ 31,0
J (� ) be the form

� = dx + i dy.

Then (M, D, J, �) is a 2-contact Calabi-Yau structure.

As in the contact Calabi-Yau case if (M, D, J, �) is an r -contact Calabi-Yau man-
ifold, then then-form � = ℜe � is a calibration onM. Moreover ann-dimensional
submanifoldp: L ,→ M admits an orientation making it calibrated by� if and only if

p∗(�i ) = 0 for any �i ∈ D,

p∗(ℑm �) = 0.

A submanifold satisfying these equations will be calledspecial Legendrian.
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EXAMPLE 6.4. Let (M, D, J, �) be the 2-contact Calabi-Yau structure described
in Example 6.3. Then

L :=



[ A] ∈ H (3)=0 A =




1 x 0
0 1 0
0 0 1


, x ∈ R



× {q} ≃ S1

is a compact special Legendrian submanifold for anyq ∈ S1.

The proof of the next theorem is very similar to that of Theorem 4.8 and it is omitted.

Theorem 6.5. Let (M, Dt , Jt , �t )t∈(−Æ,Æ) be a smooth family of r-contact Calabi-
Yau manifolds. Let p: L ,→ M be a compact special Legendrian submanifold of
(M, D0, J0, �0). Then there exists, for small t, a family of compact special Legendrian
submanifolds pt : L ,→ (M,Dt , Jt , �t ) extending p: L ,→ M if and only if the condition

[ p∗(ℑm �t )] = 0

holds for t small enough.
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