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Abstract
C.A. Giller defined a crossing change for surfaces4ispace, and proved an
unknotting theorem. In this paper, we present such an utikgotheorem for
singular surface braids, extending S. Kamada’s resultfose without branch points.
As a consequence, we recover Giller's unknotting theorera.al§o study finite type
invariants for singular surface braids associated withdfmssing changes.

1. Introduction

A surface braidwas introduced by O. Viro [12] and has extensively studied by
S. Kamada [9]. L. Rudolph introduced a similar notion earlie [11]. By a singular
surface braid we mean an immersed (closed) surface braid (e We call a trans-
verse double point of a singular surface braidrassing point By a crossing change
we mean an operation for a singular surface br8ithserting a pair of positive and
negative crossing points along a chord that is a straightneag connecting adjacent
sheets ofS (cf. [4, 6]). In this paper, we present an unknotting theor@ineorem 4.1
in §4) for singular surface braids, which was proved by Kamadddndthose without
branch points. C.A. Giller [2, 8] proved that such an unkingtttheorem for surfaces
in Euclidean 4-space. We recover Giller's unknotting tleeorin Corollary 4.2. In35,
we also study finite type invariants for singular surfaceidsaassociated with cross-
ing changes. These invariants are completely determinethdyumber of sheets, the
Euler characteristic and the numbers of (signed) crosswigtp for each component
(Theorem 5.2).

2. Singular surface braids, chart descriptions andC-moves

Let D, be an oriented 2-disk and I&t,, be a fixed set o interior points ofD;. Let
Uo be the standard 2-spheldg = {(X, Y, z, w) € R* | X2+ y?+ 72 = 1, w = 0} in R* with
a base pointp. We denote by prD; x Uy — Ug the second factor projection. L&
be a compact oriented immersed surfac®inx Uy. ThenSis called a €losed singular
surface m-braidf the following conditions are satisfied: (i) Singulariief Sare crossing
points, (ii) for an immersionf : F — D; x Uy associated witls, the composition ps f
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(A) black vertices (B) nodes (C) a white vertex

(D) a free edge (E) a quasi-free edge a quasi-hoop
(G) an f-oval nest (H) an h-oval nest
Fig. 1.

is a simplem-fold branched covering map, i.e. for eagke U, #pr-i(y)NS} =m—1or
m. We may assume that Pr(gg) N S= Xn,. Two singular surfacen-braidsSandS are
equivalenif they are ambiently isotopic by a fiber-preserving isot@my} o<u<1 of D1 x Uy,
as aD;-bundle oveltJy. A singular surfacen-braid istrivial if it is equivalent toX, x Uo.
Let S%, ..., S be components of a singular surface brgjdhat is, eacts is the image
f(F') of a connected componeRt of F. A (ki, k)-crossing poinis a crossing point of
S andSe. In particular, ak, k)-crossing point is a self-crossing point 8f.

An m-chartI" is a (possibly empty) finite immersed graph in an orientegleseU,
with a base pointjp, which may havénoops(that are closed edges without vertices), satis-
fying the following conditions:

(i) Every vertex has degree one, two or six.

(i) Every edge is directed, and labeled by an integgin2, ..., m — 1}.

(iii) For each vertex of degree six, three consecutive edgedirected inward and the other
three are directed outward; these six edges are labeledyi + 1 alternately for some

(iv) For each vertex of degree two, the two edges are labgldtidosame integer and op-
positely directed.

(v) Each singularity ofl” is a transverse double point of two edges whose difference in
labels is more than one.

(vi) TN {go} = 0

A vertex of degree one, two or six is calledbkck vertex anodeor a white vertex
respectively (Fig. 1 (A)—(C)). In [6], Kamada gave a methogtesent a singular surface
m-braid by anm-chartI". Black vertices, nodes or white vertices in a cHantepresent
branch points, crossing points or triple points in a diagodiasingular surface-braid. A
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node whose adjacent edges are directed inward (or outvgazdléd gositive(or negativé
node The set of black vertices ifi is denoted byBr. An edge attached to a white vertex
is called amiddle edgéf it is the middle of the three consecutive edges which aienbed

in the same directions; otherwis@an-middle edge A free edgds an edge both endpoints
of which are black vertices (Fig. 1 (D)). guasi-free edgés a smooth arc in a chart whose
endpoints are black vertices and the other vertices on it@des (Fig. 1 (E)). A quasi-free
edge is callegbositive(or negative if the number of positive (or negative) nodes is larger
than that of negative (or positive) nodes.ghasi-hoogs a simple loop in a chart with two
nodes and no other vertices (Fig. 1 (F)). We regard a free aslgequasi-free edge, but do
not regard a hoop as a quasi-hoop. fAoval nest(or h-oval nestis a quasi-free edge (or
guasi-hoop) together with some concentric hoops (Fig. £(B8)). We always assume that
the base poindy is outside f-oval nests and h-oval nests.

Let S, andS be singular surface-braids presented by-chartsIy ¢ Ug andI', C Uy
with base pointgjy andqgy, respectively. Th@roductof I'y andI',, denoted by"; e I's, is
anm-chart obtained by identifying the boundarieddf\ Int N(go) andU| \ Int N(qp) for
neiborhoodsN (qo) © Up andN(qgy) < Uf in such a way thaN(go) N 'y = @ andN(gj) N
', =@. Then, we set a base pointBf e I'; on the identified boundaries. Tipeoductof
S andS;, denoted by, o S, is a singular surfacer-braid presented by an-chartl"y e ;.

REMARK 2.1. A crossing change of a singular surface braid corredptminsertion
of a quasi-hoop in a chart. See [6]. Thus, in this paper, asergchange also means
insertion of a quasi-hoop in a chart.

Operations listed below (and their inverses) are callegi-a C,-, Cy,;-, C,v- and
Cv-move respectively. These moves are calleanoves Twom-charts ar€ -move equiv-
alentif they are related by a finite sequence of s@zmoves and ambient isotopies.

(C)) For a 2-diskE on Ug such thatl” N E has neither black vertices nor nodes, replace
' N E with an arbitrary chart that has neither black vertices roufas.

(Ci) Suppose that an edgeis attached to a black verté and intersects another edge
nearB. Shortery to remove the intersection and moBeacrosss.

(Ci) Let a black vertexB and a white verteXV be connected by a non-middle edgef
W. Removex andW, attachB to the edge ofV opposite tax, and connect other four
edges in a natural way.

(Cwv) Let N be a node attached by edges o, and suppose that; intersects an edge
nearN. Move N acrosss.

(Cv) Let a nodeN and a white verteXV be connected by a non-middle edge/éf Move
N acrossw.

We illustrate examples &,-moves in Fig. 2 an;, —Cy-moves in Fig. 3.

Lemma 2.2(cf. [5, 6, 9]). Two m-charts are C-move equivalent if and only if their
presenting singular surface m-braids are equivalent
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Fig. 2. someC; moves

Fig. 3. C;—Cy moves
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3. Factorization graph of singular surface braids

Here, we introduce the notation of factorization graph[1] to see which sheets
of a singular surface braid are connected. It will be usafupioving Theorem 4.1.
Let S be a singular surface-braid presented by am-chartI" and Uy, go and Br
be as in§2. A Hurwitz arc systemof I is H = (ag, ..., &) with n = |Br| such that
for 1 <i <n, g is a simple path intersecting transversely (missing all the vertices
except at the initial points) such that
(i) qo is the terminal point ofy; for eachi,
(i) the intersection of the images @& anda; is qo for i # j,
(i) the images ofay, ..., a, appear in this order around the poip,
(iv) the initial points are inBr.
For eachi, consider a loop;; in Up \ Br with base pointgy such that it goes along
g, turns around the initial point of; in positive direction and comes back aloag
For loopsn; with 1 <i < n, assign to each intersection point witha lettero; if its
intersecting edge of is labeledj and directed from left to right with respect tg;
otherwise a Ietterrj‘l, wheres; and oj‘l are standard generators of thestring braid
group By, and their inverse. We obtain a wortd-(n;) of By, on these standard genera-
tors by reading off the letters along. For wr(n;) with 1 <i < n, let wj =z (wr(n;i))
wheren: By, » X, is natural homomorphism to symmetry grody,. Then, by the
definition of nj, we see that; is a transposition.

DerINITION 3.1 ([1]). () Let H be a Hurwitz arc system of a chart The
factorization graph G= (V, E) of I' associated witlH is the graph wher¥ ={1,..., m}
is the set of vertices 06 and E = {(x, y) | Ji s.t. wj = (X, y)} is the set of edges of
G. And we define the weighW((x, y)) of an edge of X, y) € E as the number of
elementsi s.t. w;j = (X, ).
(i) For a given graphG, we denote the graphs of its connected components as
G, ..., G' wherel is the number of the connected components of the graph. For
each connected component, Bt = (V¥, EX), where V¥ are the vertices ofsk and
EX are the edges.

In Fig. 4, two examples of factorization graphs with= 6 are given.

REMARK 3.2. Two Hurwitz arc system of a chart are related by sahge ac-
tions See [9]. It is easy to see that slide actions do not chane Thus, we also
denoteVX for a Hurwitz arc system of a chaft by VK(I).

Let n, be the maximal number among the elementsvéf A factorization graph
is good if it is satisfied thatVk = {x | ng_1 +1 < x < ny} for each 1< k < |. (For
example, see Fig. 4 (ii).) By Remark 3.2, the property of egood is independent
of the choice of Hurwitz arc systems.
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(i) (ii)
Fig. 4.

Lemma 3.3. By C-movesany chartI" can be transformed to another whose fac-
torization graph G is good

Proof. Interchanging sheets in neighborhood of'foo) c S leads to exchanging
of the vertices ofG. This is done by insertion of some concentric hoops arogs)d
which is aC;-move. ]

4. Unknotting theorem

An m-chart isunknottedif it consists of some quasi-free edges or if it is empty
(cf. [9]). A singular surfacan-braid isunknottedif it can be presented by an unknotted
m-chart. In this section, we will prove the following theorem

Theorem 4.1. Any singular surface braid can be transformed to an unkmubtte
one by crossing changes and its inverse operations

A crossing change of a surface in 4-space is inserting a pgiositive and neg-
ative crossing points in the sense of [2].

Corollary 4.2 ([2, 6]). Any surface in4-space can be transformed to an un-
knotted one by crossing changes and its inverse operations

Proof. A surface in 4-space can be represented by a (singsuaface braidS
(cf. [9]). By Theorem 4.1,S can be transformed to an unknotted singular surface braid
U by crossing changes and its inverse operations. Since amotteld singular surface
braid is an unknotted surface in 4-space (cf. [7, 9]), we hine corollary. ]

In order to prove Theorem 4.1, we prepare Proposition 4.3lardmas 4.4-4.8.

Proposition 4.3 ([4]). Any chart without black vertices can be transformed to the
empty chart by the some number of insertion and deletionidwaps and C-moves
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Lemma 4.4. Any chartl' can be transformed to a chart consisting of f-oval nests
by insertion and deletion of quasi-hoops and C-moves

Fig. 6.

Proof. A move illustrated in Fig. 5 is realized by-moves, insertion and dele-
tion of quasi-hoops. See Fig. 6: (1) Insertion of a quasiph(@) a C;-move and a
Cv-move (3) Cy-moves and &C,y,-move. By such moves an@-moves, each black
vertex can be an end of a quasi-free edge. Applying the puweeds in Fig. 29.2
of [9], we take all quasi-free edges near the base pagindf Us. Then, we have a
chartT” such thatl” N E includes no black vertices for a 2-didk in Uy. By Propo-
sition 4.3, TV N E becomes empty by inserting and deleting quasi-hoopsGxntbves.
This completes the proof. O

DEFINITION 4.5. An f-oval nest (or h-oval nest) isimple if the label of the
quasi-free edge (or quasi-hoop)iisand the labels of the concentric hoops in the order
from inside to outside aré+ 1,i +2,...,i +k (for somek) and orientations of the
hoops are induced from that &fy. See Fig. 7. We consider that a quasi-free edge (or
quasi-hoop) is a simple f-oval nest (or simple h-oval nesthwmpty hoops.



68 M. IWAKIRI

i+ k i+ k

a simple f-oval nest a simple h-oval nest
Fig. 7.
i+1 :
. 1
(i)
B
1+ 1 i
(i)
— (o T®
Fig. 8.

Lemma 4.6. The replacement illustrated ii) and (ii) of Fig. 8 are realized by
C-moves

Proof. (i) is given in [3, 5] and (ii) follows from Fig. 9. ]

We remark that a given orientation of each hoop in a chart eamelserved by
insertion and deletion of quasi-hoops, and we call ittleamove See Fig. 10.

Lemma 4.7. (i) Any f-oval nest in a chart is transformed to a simple one by
some insertion and deletion of quasi-hoops and C-moves
(i) Any h-oval nest in a chart is transformed to a simple one byesamertion and
deletion of quasi-hoops and C-moves

Proof. In this proof, for each f-oval nedt, we denote the number of hoops of
f by n(f). We prove the following assertion for amyf f). (i) is a consequence of it.
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Fig. 10. ID-move
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Fig. 11.

Assertion. Let f be an f-oval nest in a charfThen f can be transformed to a
simple one f with n(f’) < n(f) by ID-moves and C-moves

We prove this assertion by induction a(f). If n(f)=0, it is obvious. Supposed that
n(f)=1. In the case where the difference of labels of the quasi-édge and the hoop
of f is 1, by Lemma 4.6 (i) and alD-move (if necessary)f can be transformed to
a simple f-oval nestf’. In the other cases, the hoop is removed @ymoves C;-
moves andCy/-moves). Thus, we proved the assertiom{ff) = 1. If n(f) > 2, we
consider sub-f-oval nesf of f consisting of the quasi-free edge and hoops except
outermost hoop of f. By induction, we transformf to a simple f-oval nestf with
n(f) < n(f). Then, fUl is an f-oval nest witm(f) < n(f)—1. If n(f) <n(f)—1, by
induction hypothesis, we can transforfiul to a simple f-oval nesff’. It is supposed
that n(f) = n(f) — 1. Let i, v and n be the labels of the quasi-free edge bf the
outermost hoop off andl, respectively. In the case where< u—1 orn > v +1,
we removel by C-moves, so we havd’ = f. In the cases where =v,v+1, by an
ID-move andC-moves (if necessary), we transforfuU| to a simple f-oval nestf’.

In the other case, see Fig. 11 and Fig. 12. (If the orientadiohis reverse in Fig. 11
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Fig. 12.

and Fig. 12, we should change it by #D-move.) Thus, the proof of the assertion is

complete.
(ii) is proved by a similar method. (Use Lemma 4.6 (ii) instedf Lemma 4.6 (i).)
This completes the proof. O
For a chartl' consisting of simple f-oval nest§, ..., fx, we consider a Hurwitz
arc systemH = (ay, . . ., an) such that for any ki <n, & NT" c f;. Such a Hurwitz

arc system is calledimple We remark that the factorization grajh is independent
of the choice of a simple Hurwitz arc systehh.

Lemma 4.8. Let G;, G, and G; be the factorization graphs of charfs;, I',
and I'; consisting of simple f-oval nesteespectively associated with simple Hurwitz
arc systemsSuoopse that g G, and G; are locally different each other as iRig. 13
(a), (b) and (c) and the remainding parts are the samé&hen I';, I', and I's can be
changed each other by C-moves
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Proof. In the casé < j <k, I'1 andT'; are locally different each other as in the
first stage and the last stage of Fig. 14. Each steps in Figs Idbme byC-moves.
ThusT'; andTI'; are changed each other Bmoves. And see Fig. 15 fdr, and I's.
The other cases are treated similary. O

Proof of Theorem 4.1. Le§ be a singular surface braid presented by a chart
By Lemma 4.4,I" is transformed to a chaft’ consisting of some f-oval nests. We may
assumed that a factorization graphldfis good by Lemma 3.3. By Lemma 4.7 (i)}
is transformed to a chaft” consisting of some simple f-oval nests. By Lemma 4.8,
is transformed to a chart” of which factorization graph associated with simple Huewit
arc system is illustrated in Fig. 1@ is unknotted, so we have Theorem 4.1. [

Corollary 4.9. Any singular surface braid can be transformed to be a product
U e Ole ... e O° by crossing changegand no inverse operatiohswhere U is an
unknotted singular surface braid and!Qs a singular surface braid presented by a
chart consisting a simple h-oval nest for eathkc t < s.

Proof. Instead of deleting quasi-hoops on proof of Theoreh) we take a quasi-
hoop near the base poiay of Uy by applying the procedure as in Fig. 29.2 of [9].
Then, the resulting chart is the product of an unknotted tcaad some h-oval nests.
Thus, by Lemma 4.7 (i), we have this corollary. O

5. Finite type invariants

S. Kamada introduced finite type invariants of surfaces spdee associated with
crossing changes (finger moves) in [8] and 1-handle suyénig10]. The author [3]
defined finite type invariants of surface braids associatétl simple 1-handle surg-
eries. We consider similar invariants of singular surfacaids, which are finite type
invariants associated with crossing changes.

Let L™ be the family of equivalence classes of singular surfaebraids. We
consider a pairS = {S, {c, ¢, ..., Cqy}} where S is a singular surfacen-braid and
C1, C, ..., Cp are mutually disjoint chords that are straight segment eotimg adja-
cent sheets o5, (See [8] for a precise definition of aHord’.) For eachn-tuple of
signs €1, €2, - - ., &n), We denote by

(5‘1) 651,82,...,5,1

the singular surfacen-braid obtained fromS by a crossing change aboat (that is a
finger move alongg;) for everyi (1 <i < n) with & = +1. In a chart description, a
crossing change is presented by the insertion of a quag-hAanapv: L™ — A (Ais
an abelian group) is called amder k invariantif, for any pair& = {S, {c1, Cz, . . ., Ck+1}},
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the following equation holds:

Z €182 -+ - &1 V([Bgyen,.00l) = 0.

(£1,82,...,6k+1)

A mapv: L™ — A is called afinite type invariantif v is an orderk invariant for
somek.

EXAMPLE 5.1. LetSbe a singular surface-braid with| components!, . .., S.
For eachk (1 < k <), let FX be the component of the sourée of the immersionf
associated withS such thatf (F¥) = S¢. (See§2.) We define maps fromL.™ to Z as
follows;

ax([S]) = (the number of sheets &),

x«([S]) = (the Euler characteristic of¥),
d,jl 1 ([S]) = #(positive ki, k)-crossing points),
dy, ,([S]) = #(negative Ki, kp)-crossing points),
d, k. ([S]) = #((k1, k2)-crossing points),

&[S = (S — dh([SD

for 1 <k, kg, ko < 1. Then, we define the following two invariants;

| |
A= die (S,

ki=1 ki <kz

|
e[S = D &S]

k=1
If S is obtained fromS, by a crossing change, then
ds) =d(SD +2, e[S])=elSD). x(S])=x(SD.

Therefore,e and x are order zero invariants ardlis an order one invariant.

Theorem 5.2. Letv: L™ — A be a finite type invariantLet S and $ be sin-
gular surface m-braids with | component¥f oy ([S]) = c-([S]), d(S]) = d([S]).
&([S]) = e ([S]) and xk([S1]) = X ([S]) for any 1 < k <| and somer € %, then
v([S]) = v([SD).

This theorem is a consequence of Theorem 5.3.
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For any pair& ={S, {c;, Cp, . . -, cn}} of a singular surfacen-braid S and a set of
n mutually distinct chordgs, ¢,, . . ., ¢y each of which is a straight segment connecting
adjacent sheets db, we have an element

Z 182 - - &n[Ggygy.... 6]

(£1,82,--18n)

of the freeZ-module ZL™ generated byL™. Denote by£] the submodule oZL™
spanned by all elements as above. Evidently, we Igle> £7' > - - -.

Theorem 5.3. Let § and $ be singular surfacen-braids with | componentsif

w([S)) = e (=), d(S) = d(S]), &(S) = ew(S]) and xk([(S]) = x©([S])

for any 1 < k <| and somer € %, then[S] — [$] € £ for any n

From now on, we may assume that([S]) = ax([S]), x([S]) = x([S]), &([S]) =
&([S]), dki([S]) = dei([S]) and d;,v([S)+2 =di v ([S]) for 1 <k, k' <I and {k,k'} #
{t,t'} where S is a singular surface braid obtained from a singular surfaed S
with | components by a crossing change such that inserting cgogsimts are t, t')-
crossing points. This is possible by a suitable choice ofcesl of components o§.

In order to prove Theorem 5.3, we use the following lemmas Rraposition 5.9.

Lemma 5.4. Let S be a singular surface braid with | component§ k # k'
(1 <k K <), then ¢ ([S]) = d ([S]). In particular, dy i ([S]) is even if k7K'

Proof. If Sis unknotted, letl" be an unknotted chart presentif®) Since each
node inT is on a quasi-free edge, each double pointkiskj-double points for some
k (1 <k<l). Therefore,d; ([S]) = dg([S]) = 0. If Sis not unknotted, by Theo-
rem 4.1, S can be transformed to an unknotted singular surface b®aidy crossing
changes and its inverse operations. Since a crossing chsangsertion of a pair of a
positive and negative double points adg, ([S]) = d,\([S]), we see thad, ([]]) =
Ahc ([SD- O

Let V¥(I') be as in Remark 3.2 and we denote the minimal and maximal ersnb
of V(') by n(I") and ng(I"), or nx and ng for short, respectively.

Lemma 5.5. Let § and $ be singular surface m-braids with | component$
a([S)) = ar((S]), d([S)) = d([S)), a(S]) = ew(S]) and x([(S]) = x:0(S])
for any 1 < k < | and somer € %, then § and $ can be transformed t0;S-U; o
Oll - -0 Oil and S =Uj e 021 o -0 O;Z with VK(Iy) = VTO(Iy), Ok, 1 ([S]) =
A 0 ([S]): &(S) = e ([S)) and x([S)) = x:0([S) by the same number of
crossing changes where;Us an unknotted singular surface braid)} is a singular
surface braid presented by chart consisting of a simple dl-oest andT"; is a chart
presenting §f0r each j=1,2and1<t <s;.
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a chart T' - I O

ccrossing change .

a chart I’ <——> r

. Cr-moves ",

.—"Erossing chanéé*-. a simple h-oval nest

Fig. 18.

Proof. By Corollary 4.9,S and$; are transformed t&; = U; e Ole- .- O} and
S=Use é% o -0 C)? by some crossing changes, respectively. We may asuume that
VK(Iy) = V*®(I,) by insertion of some concentric hoops aroumgbefore applying
Lemma 4.7 (i) in the proof of Corollary 4.9 (Theorem 4.1) V\mérj is a chart pre-
senting éj for j =1, 2. Sinced(S) = d(S), applying crossing changes trivially as in
Fig. 17 if necessary, we may also assume th&) = d(S,). It is obvious that cross-
ing changes do not changeg anda< for eachk. Thus, it is satisfied tha@([Sﬂ) =
e ([S]) and x([S1)) = xeo([(S]). By Lemma 5.4,dy, kz(Sl) and d ), T(kz)(sz) are
even numbers for k ky # ko < |, so we see thath, k,([($1]) — drky).c)[S2]) IS
even. Sincex([S1]) = e ([S]), we also see thauk,k([%]) - di(k),,(k)([éz]) is even
for 1 < k <|. Therefore, applying crossing changes frand S, as in Fig. 18 for
all pairs (i, kz) (1 < ki, kz < 1) such thatd i, ([51]) 7 deg). -k ([S2]), We can ob-
tain singular surface braidS; and S, such thatdy, «,([S]]) = ).z ((S]) for any
1 < kg, ko <I. Then, the chart§’; and I', thus obtained, or the charts corresponding
to § and S,, respectively. Here, we need the same number of crossinggebafor
S, and §; to haveS and S, because ofi(S;) = d($;). Since the crossing changes as
in Fig. 17 and Fig. 18 do not changé® for 1 < k <, the lemma is proved.  []
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(i) . o (i)
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T > -

(iii) (iv)
T 1 [ i) 7
- -
bhd o bdd b4 ,
hofa fs o VI fi s
Fig. 19.

By u(S, &), we denote the minimal number of crossing changes that eeeeau
to satisfy the statement of Lemma 5.5.

Lemma 5.6. If |i —j| =1, then the local operations illustrated iRig. 19 (i}(iv)
are C-move equivalencevhere each (fand f, is a quasi-free edge fot <r,s <5
such that the number of nodes in if equal to the number of nodes if. f

Proof. See [7] for (i)—(iii). The operation (iv) follows fro Fig. 20. ]

Lemma 5.7. Let U; and U, be unknotted singular surface braids with | com-
ponents such that Y(I"y) = V*®(Iy), dk([U1]) = drqw, 0 ([U2]), &([U1]) = € ([Uz])
and xk([U1]) = x-qo([U2]) whereT; is a chart presenting Yfor L<k <l and j=1,2.
Then U, is equivalent to .

Proof. Thek-th componentujk of U; is presented by a chaﬁ}( consisting of
quasi-free edges with labslfor eachs e Vk(l‘j)\{nk(l"j)}. Then, Uj is presented by
a chartl“j1 o - F'j. We prove the following assertion.

Assertion. Fh-( can be transformed to a chart \Dby C-moves that satisfies the
following conditions(seeFig. 21):
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Fig. 22.

(1) The factorization graph of Passociated with a simple Hurwitz arc system is as
in Fig. 16.

(2) The number of quasi-free edge with at least one nodmdd;)| if e(U;) 7 0;
otherwisel.

(3) The number of quasi-free edge with at least two nodé @& 1.

(4) The quasi-free edge with labeb has nodes ifw > ng(I";) — d where d is the
number of quasi-free edge without nodesherwise it dose not have nade

(5) V(Dy) = VK(U)).

If the number of quasi-free edges Itf is more thanVv(I'*)|—1, that is,U¥ is not
a sphere, then it is easy to prove this assertion by Lemmaii§.610 case the num-
ber of quasi-free edges iﬂh‘ is equal to|V(F5-‘)| —1 ande(S) > 0, by Lemma 5.6 (i)
and (ii), F']-‘ is a chartl'; consisting of quasi-free edges that are positive. We may
assume thaf"; satisfies the condition (4) by Lemma 5.6 (iv). Applying theeop
tion as illustrated in Fig. 22 if necessary, we obtain a clizytsatisfying the condi-
tions (1)—(5). The other cases are treated similary. Thimptetes the proof of the
assertion.

Since VX(I'y) = VI®(I'2), dkk([Us]) = drgg.ro([U2]), &([U1]) = ego((U2]) and
xk([U1]) = xc0([U2]), both UK and UX can be also presented by the same ciit
for 1 < k <I. Therefore, botHJ,; andU, are presented by the chdbe---e Dy, and
henceU; is equivalent toU,. O

Lemma 5.8. Let S be a singular surface braid with | components such that S
U ¢ O where U is an unknotted singular surface brafd is a singular surface braid
whose crossing points are twk, k’)-crossing points(k < k), presented by a chart
consisting of a simple h-oval nesThen S is equivalent to U O such thatO is a
singular surface braid presented by a chart consisting ofrapte h-oval nest of which
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e — 1

Fig. 23.

the labels of the quasi-free edge and the outermost ciratergfT'") and nw (I'Y) — 1,
respectivelywhere 'Y is a chart presenting U (Fig. 23.)

Proof. Letl" be a chart presentin@. (I" is a simple h-oval nest.) It is seen
that the labels of the free edge and the outermost circleraké& \ {n,} and V¥ \ {ni}
whereng = ng(T'Y) andn, = ng(T'Y). The chartl' has quasi-free edges with lakefor
anyi e (VKU V¥)\ {n, n}. Applying the operation in Fig. 24T ¢ T is equivalent
to 'V e " wherel is as in Fig. 23. O

Proposition 5.9. Let § and $ be singular surface braids with | components
such that $=UjeOle---e O and S =UyeOle--.e OF with V¥(I'y) = VH(I,),
A ko ([S1]) = drky), e ([S])s &([S1]) = €0 ([S]) and xk([S1]) = x:([S]) where for
eachl <t <s; and j=1,2,U; is an unknotted singular surface brai®; is a sin-
gular surface braid presented by chart consisting of a sériploval nest and”; is a
chart presenting S Then § is equivalent to §

Proof. If the crossing points dD} are K, k)-crossing pointsl; oO} is unknotted.
Thus, we may assumed that the crossing point@bfare k, k’)-crossing points with
k <Kk. Now, VK1) = VTO(Ty), dik([U1]) = e, c([U2]), e([U1]) = ex([U2]) and
xk([U1]) = xz0([U2]) where T is a chart presentingy; for 1 <k <l andj =1, 2.
Therefore, by Lemma 5.7)J; is equivalent toU,. By Lemma 5.8,S; is equivalent to
UjeOle-- e 07 where Q! is a singular surface braid & in Lemma 5.8. Since
Ok, ko ([S1]) = Deqky).rko) [S2]) fOr ki 7 ko, it is see thatOl e --- o OF is equivalent to
Ole..-e 02 U is also equivalent tdJ,, soU; e Ole-.. e O} is equivalent to
Uz e Ole. ..o OF. Therefore,S is equivalent t0S. O

Proof of Theorem 5.3. We prove the following assersion faergwn € N.
Assertion. Let S and Sbe singular surface m-braids witta([S]) = o- ) ([S]).

d[(s]) = d([S)). &(S]) = ew(S]) and x([(S]) = xz([S]) for any1 <k < 1| and
somer € . If u(S, ) <r, then[§] —[S] € £ for any n>r + 1.
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Fig. 24.

Let a0 1= arc([S1]) = ctro([S2)), o 1= d(SL) = d([S5]). @co = a((S1]) = e (S2))
and x,0 := xk([S1]) = Xz ([S]) for any 1<k <| and somer € .

Let n be an integer witn > r + 1. Taker mutually disjoint cordc; or d; for
1<i <r each of which is a straight segment connecting adjacentsioé&, (or )
satisfying the following conditions:

(i) The surgery resulS; (or S,) along cordcy, Cp, ..., C (or di, do, ..., d;) are as
in Lemma 5.5.

(i) ¢ (or d) is a parallel copy oft; or d; for anyr +1<i <n.

For the pair&G, = {S;, {C1, ..., C}} (or &2 = {S, {dy, ..., dy}}) and for ann-tuple of
Signs €1, ..., &n), let (G1),,,....s, (OF (S2)e,,...,) e a singular surface-braid as the fo-
mula (5.1). And letp = p(es, ..., en) be the number of positive signs in tinetuple of
signs €1, ..., ¢en). Thenak(((S1)e,,...e0)) = 2o ([(S2)ey,..en]) = k0, A(S1)ey,.en]) =

d([(S2)ey.....en]) = dot2p, &([(S1)ey,....en]) = € ([(S2)ey,...en]) = B0 ANA XK ([(S 1)y, en]) =
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We prove the assertion by induction on If r =1, then G1),,...en = (62)ey,....cn
for any 1, ..., en) With p=p(e1, ..., &) > 0 by Lemma 5.9. Thus,

Z €1 Sn[(Gl)sl ..... an] + (_1)n([sl])

= > eaal(©2e, 0]+ (D[S (Mmod LY.

Therefore, we haved —[S] € £]". If r > 2, then by the induction hypothesis we
have [G1)e,..e,] = [(G2)ey,...e,] € L7 fOr any (e, . .., en) with p=p(e, ..., en) > 0.
Thus,

Therefore, we see that@(),,...c,] — [(S2)e,,...e,] € £'. This completes the proof
of assertion. Since]' 5 £7' 5 ---, we have f] —[S] € £ for all n. O
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