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In [4], by observing the directly finiteness of projective modules, the first
author classified directly finite (d.f. for short) regular rings satisfying the com-
parability axiom (c. axiom for short) into three types: Type A, Type B and
Type C.

In the present paper, we give a more explicite criterion of the directly
finiteness of projective modules over each types and show the following for a
d.f. regular ring R satisfying the c. axiom: (a) R is Type A if and only if Soc
(R)=0 and the intersection I(R) of all nonzero ideals of R is nonzero. (b)
R is Type B if and only if Soc(R)=0, I,(R)=0 and the family L(R) of all ideals
of R has a cofinal subfamily. (c) R is Type C if and only if Soc(R)=0, or I,
(R)=0 and L(R) does not have any cofinal subfamilies. As an application we
show the following for a projective module P over a d.f. regular ring satisfying
the c. axiom: P is directly infinite (d.inf. for short) if and only if P contains
a direct summand which is isomorphic to R, X for a suitable nonzero module X.

Throughout this paper we assume that R is a d.f. regular ring satisfying
the c. axiom, and all R-modules considered are unital right R-modules.

1. Notations and definitions

For two R-modules X and Y, we use X <Y (resp. X <@ Y) to mean that
X is isomorphic to a submodule of Y (resp. a direct summand of Y). XY
means that X <Y and X2¢Y. For asubmodule X of an R-module Y, X <®Y
means that X is a direct summand of ¥. For a cardinal number « and an R-
module X, aX denotes a direct sum of a-copies of X. For aset I, we denote by
|I] the cardinal number of 7. We denote by L(R) the family of all ideals of R.
Since R satisfies the c. axiom, L(R) is a linearly ordered set under inclusion ([1,
Proposition 8.5]). We put I(R)=N {/ |01 L(R)}. We denote by Soc(R) the
socle of R. We note that if Soc(R)==0 then it is homogeneous and coincides with
I(R).
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The reader is reffered to K.R. Goodearl [1] for the following elementary
properties on R;

i) Every finitely generated projective R-module is d.f..

ii) For any finitely generated projective R-modules P and Q, either P
O or Q<P holds.

iii) For any finitely generated projective R-module P and any R-modules
Xand YV, POX =PPY implies X =Y.

iv) For any projective R-module X and any finitely generated projective
R-modules Y,,Y,, - such that Y|P ---P Y,<<X for all n, we have that PY,X.
In particular, for finitely generated projective R-modules P and Q, if P<£nQ for
all n, then R,Q<P.

v) R has a unique dimension function D, namely, D is a function from the
family of all cyclic right ideals of R to [0, 1] such that

a) D(R)=1,

b) if J<XK, then D(J)=<D(K) and

c) if JBK is a cyclic right ideal of R, then D(J®K)=D(J)+D(K). D
is said to be strictly positive if D(J)>0 for all nonzero cyclic right ideals J of
R. We note that D is strictly positive dimension function if and only if R is
a simple ring, and that R is not simple if and only if there exists a nonzero 7
in R such that Ry(»R)<<R. Furthermore we note that {r&R|D(rR)=0} is the
unique maximal ideal of R.

Let {P;};Z, be a subfamily of the family of all cyclic projective R-modules.
We say that {P;};Z; is a cofinal subfamily if all P; are nonzero, P,>P,>-:+ and
for any nonzero cyclic projective R-module X there exists a positive integer 7
satisfying X>P,. Similarly a subfamily {I;}:Z, of L(R) is said to be a cofinal
subfamily of L(R) if all /; are nonzero, I;=1,=--- and for any nonzero X in L(R)
there exists a positive integer n satisfying X 3 1,,.

2. Directly finiteness and directly infiniteness

We start the following

Theorem 2.1. (a) For countably generated projective R-modules P and
0, either P<<Q or Q<P holds.

(6) If P and Q are countably generated projective R-modules such that P<Z
O and Q<_P, then P=Q.

Proof. We show the theorem by modifying the proof of [3, Lemma 2.5].
Let P=@;2,P;and Q=& ;Z,0; be cyclic decompositions of P and Q. (a) Assume
P<£0. Then there exists a positive integer # such that P,®---PP,L£O and so
0,P-DQ,<P,D- PP, for all m. Therefore Q<P P---BP,<PBP. (b) It
is sufficient to assume that P and Q are non-finitely generated projective and that
OLP,D--®P, for all n from the assumption. Since Q<P, there exists a
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positive integer 7, such that O, <P,@---@®P,, and Q;<LP,B--- PP, _,, and there
exists a positive integer m, such that O, @Q,, <P,D--PP, and QD
DOm+: 5P D---DP,,. Then we have a decomposition Q, 11 =X 1P V1
such that Y, ,,=0 and
P,®- PP, =0,P DOy, D Xpt1 -
Since Q<P, YV, s @O myse® -+ <P, 1P P, 1,B---. Then there exists a positive
integer n, (>mn,) such that Y,, <P, .,®--®P,, and Y, ,;LP, D DP,, ;.
So, there exists a positive integer m,(>m;) such that Y, /@ Q0m 12D D 0w, <
P, D DP,, and YV, ;DO 42D DOmyt 1L Ppt1@D - DP,,. 'Then we have
a decomposition Q1= Xy, 11D Y,y such that V,,,,40 and
Pa1+1@ ...@Pﬂzg Ym1+1@le+2@"'@sz®Xm2+1 .

Continuing this procedure, we have that P=<Q.

ReMARK. When R is simple, we can drop the assumption ‘countably gene-
rated’ from above Theorem 2.1 (see [3, Theorems 2.4 and 2.6]). But the assump-
tion can not be removed in general. For, if R is a non-simple d.f. regular ring
satisfying the c. axiom, then there exists a nonzero » in R such that Ry(7R)<<R.
So, Ra(rR) and a(rR)LR, where |R|<a. Next, if we take R as in [,
Example 5.15], then there exists a simple right ideal S of R such that XS<CR.
Then RRRSPRR and RSP RR<RR, but RGRXERSPRR.

Corollary 2.2. Let P and Q be countably generated projective R-modules
and let n be a positive integer.

(a) If nP=nQ, then P=Q.

(b) If nP<<nQ, then P<0.

Proof. (a) We prove the statement by induction on n. So, assume that
this holds for # and (n+1)P=¢(n+1)Q. Then we have decompositions nP=X,
@X, and P=Y,Y, such that X;pY,=n0 and X, Y,=0. By Theorem 2.1
(a), either Y,<<X, or X,<Y, holds. If Y,<<X,, then nQ=X,pY, <X, PX,=
nP and P=Y,@Y,<X,PY,=~0Q; so nQ<nP and nP<nQ. Hence the induction
hypothesis says that P=~Q. If X,<Y,, similarly, we have that P=Q. (b)
Assume that nP<<nQ and Pin Then O<<P, and so nQ<nP. Therefore
nP==nQ by Theorem 2.1 (b); whence P==(Q by (a), a contradiction.

< »

Now, for our purpose we define a relation “~” on the family of all cyclic
projective R-modules CP(R) by the rule: For any P and Q in CP(R), P~Q if
and only if P<<mQ and Q<nP for some positive integers m and n. For P in
CP(R) we put [P]={Q€CP(QR)|Q~P}. Then the relation “~” is a con-

gruence relation.
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Proposition 2.3. Let P be a non-finitely generated, countably generated pro-
Jective R-module with a cyclic decomposition P=@ ;=,P; such that P,>P,=--- and
[P=[P.]="":. If {P;}:Z: is cofinal, then P is d.inf. if and only if P=<R,P; for
all i.

Proof. “If” partis clear. “Only if”’ part. Let P be a d.inf. projective R-
module. From [4, Theorem 6], tP,;tP,« AP P, P+ for all £ and hence RP;<<
P, PP, ,P--<P. Since P<R,P;, it follows from Theorem 2.1 that P=R,P;
for all 7.

Remark. Let P be a non-finitely generated, countably generated projective
R-module with a cyclic decomposition P=;,P; such that |I|=R, and [P;]=
[P,] for any 7, jE1I. If there exists 7&1 such that | {jeI|P;<P;} |=X,, then
P==R,P; for all i€l by Theorem 2.1.

Proposition 2.4. Let P be a non-countably generated (d.inf.) projective R-
module with a cyclic decomposition P=@ 4¢P, such that [P,]|=[Pg] for any a, 8
€1. Then there exists an infinite cardihal v (> R,) such that P=7Py for any yE1.

Proof (cf. the proof of [3, Theorem 2.6]). Let B be the set of all countably
infinite subsets of I, and let yel. We consider the family consisting of all
subsets F of B satisfying the following properties:

(1) each member of F is pairwise disjoint, and

(2) for each member I’ of F, Pp=@ yeprPy=<R,Py.

Then this family is non-empty set from the proof of [4, Theorem 6] and Remark
of Proposition 2.3. Since this family is inductively ordered set under inclusion,
there exists a maximal member F by Zorn’s Lemma. Put [*= Ug K. If I*
=1, then our proof is complete. Next, consider the case that [*s=1. Let I**
be a complement of I* in I. From the proof of [4, Theorem 6], Remark of
Proposition 2.3 and the maximality of F, I** is a countable set. Choose one
member K’ of F and put F'=F—{K'} and K”"=K'UI** Then K” is a
countably infinite set and Py =<R,Py since [P,]=[Pg] for any a, B€ I. Therefore
P=(Dker(DPuackls))DP (D sk Ps)==TPy for some infinite cardinal 7> R,.

Corollary 2.5 ([3, Theorem 2.6]). Assume that R is simple. Then every
d.inf. projective R-module is a free R-module.

Proof. Let P be a d.inf. projective R-module with a cyclic decomposition
P=@®,c;P, and we consider ROP=RP (P e;P,). Noting that R is simple, we
see that [X]=[R] for a nonzero cyclic projective R-module X; whence [P,]=[R]
for all e l. By Proposition 2.3, its Remark and Proposition 2.4, RPP==7R for
some infinite cardinal . Therefore P=<7R by the cancellation property of R.

Theorem 2.6. Let P and Q be d.inf. projective R-modules with cyclic decom-
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positions P=@ e, P, and Q=P pe;0p such that [P,)=[P,] and [Qp]=[Qp] for
any o, a'€land B, B'€J. If PO and Q=<P, then P=Q.

Proof. Since P<<Q and Q<CP, we note that [P,]=[Qs] for any P, and Q.
If |I| =R, and | J| =R,, then P=Q from Theorem 2.1. Therefore we may
consider the following cases:

1) |I|=R,and |J|>R,

2) |I|>R,and |J|>R,

In order to prove for these cases, we show the following for any nonzero cyclic
projective R-module T" and cardinal numbers o and p:

(#) If pT<<oT, then p=o.

Let 7 be a cardinal number. We regard 7 an initial ordinal; so | {ordinal a|a<<
7}|=7. Put A(r)={ordinal a|a<7}. We shall prove (§) by the transfinite
induction on o. First assume that =R, and let f be a monomorphism from pT’
to eT=R,T. Putting I',={aEA(p)| (Ts)=D:Z:1T;}, we see that f(Bauer,Ta)
=®.u4T; |ITyl=m and U,T,=A(p). Therefore p=|A(p)|=|U.Inl =R,
=g. Next assume that (#) holds for any cardinal number ¢'<<o, and let f be a
monomorphism from p7"to ¢ 7. For any x in A(s), put I',={acA(p)| (T,)=
@ps:Tpt. Then f(Daer,Tw)=Dps:Ts UreawT:=A(p) and |{B]|B=x} | <o
because o is an initial ordinal. From the induction hypothesis, |T';|<o.
Therefore we see that p=|A(p)| =| U ;eas| =o°=0c as desired.

Case 1) Let Pg&E{P,} ;. Since | J| >R, and [P,]=[Qp] for all Qg, Q==
7P, for a suitable cardinal number 7. Since P<<Q=<7P, and Q=P, we see that
8P, <P and P<R,P,, whence RP,=P by Theorem 2.1. As 7P,=Q<R,P,,
T=R, by (#), a contradiction.

Case 2) By Proposition 2.4 and (#), we immediately have that P=<Q.

Corollary 2.7 ([3, Proposition 2.7]). Assume that R is simple. If P and
O are d.inf. projective R-modules such that P<<Q and Q=< P, then P=Q.

3. Types A, B and C

In [4] we showed the following result, which already used in Proposition
2.3: A non-finitely generated projective R-module P is d.f. if and only if P
is countably generated with a cyclic decomposition P=@;=,P; satisfying the
conditions (*) and (A), or (*) and (B) below:
(*) P;=P;,, for all 7, and there exists no nonzero R-module X such that
X <P, for all 7.
(A) There exists a positive integer m such that
(1) For each i=m, P;<t,P;,, for some positive integer #;, and
(2) &iz,.P;<tP,, for some positive integer .
(B) There exists an increasing sequence 1=17,<{3,<<--+, of positive integers
such that P; =>R,P; , for n=1, 2, ---.
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And, from this result, we classified d.f. regular rings R satisfying the c. axiom
into three types:

Type A: There exists a non-finitely generated d.f. projective R-module
P with a cyclic decomposition P=@;=,P; satisfying (*) and (A).

Type B: There exists a non-finitely generated d.f. projective R-module
P with a cyclic decomposition P=@;=,P; satisfying (*) and (B).

Type C: All d.f. projective R-modules are finitely generated.

Remark. If a ring R is Type A (resp. Type B), then all non-finitely gen-
erated d.f. projective R-module P have a cyclic decomposition P=&p;Z,P;
satisfying (*) and (A) (resp. (*) and (B)) by [4, Theorem 6 and Remark 2]. We
note that (¥) holds then Soc(R)=0. So, if Soc(R)=0 then R is type C.

In this section, as is mentioned in the introduction, we shall give ideal theo-
ritic characterizations of each types.

Lemma 3.1 ([1, Corollary 2.23]). Let H and J be right ideals of R, and
assume that H is finitely generated. Then H=R] if and only if H<n] for some
positive integer n.

For an element a of a ring R, we put
3, = S{xR|x=R and xR<aR} .

Lemma 3.2. (a) For each a=R, =, is the smallest ideal of R containing
a, and hence 3,,=RaR.

(b) For each a, bER, 3,3, if and only if aR<n(bR) for some positive
integer n.

(¢) For a, bER, 3,555, if and only if R(aR)<bR.

Proof. (a) LetrER and 3)%,x;7;E3, such that ;&R and x;R<CaR for
each 2. Then (rx7))RP(x7;)R=x;R<aR and rx;y;€3, for each 7, and so
r(itwir;) €3, Thus 3, is an ideal of R containing a. Let I be an ideal of R
containing @. If xR<<aR and xR, then xR<RaR=1I from Lemma 3.1. There-
fore 3,=<1I and hence 3,=RaR. (b) is clear from (a) and Lemma 3.1, and (c)
follows from (b).

Theorem 3.3. The following are equivalent:

(@) Ris Type A.

(0) Soc(R)=0 and I(R)=0.

(¢) There exists a non-finitely generated d.f. projective R-module P with a
cyclic decomposition P=;Z\P; such that {P;};Z, is cofinal, [P]=[P,]=:-- and
tP,=>P,PP;@ - for some positive integer t.

Proof. (a)—(b). Assume that Type A. Then of course Soc(R)=0. Now
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assume that Jo(R)=0. Since R is Type A, we have a non-finitely generated d.f.
projective R-module P with a cyclic decomposition P=¢;=,P; which satisfies (*)
and [P,]=[Py+,]="-- for some positive integer m. Let P;=<x;R for some x;ER.
Noting that I,(R)=0, we have a nonzero ideal X of R such that X553, =3, |
=-+, which contradicts that P=@;Z,P; satisfying (*). Therefore we see that
I(R)=#0. (b)—>(c). Take anonzero element x, in Iy(R); then =, =Iy(R). Since
Soc(R)=0, there exist nonzero cyclic right ideals x;,,R and y;,,R of R such that
#;R=x;,R®y;,R and x;1,R<y; R for each 7; so 2(x; ,R)<x;R. Put P=
@;=:x;R.  If there exists a nonzero element y of R such that yR<x;R for all ¢,
then X, =3,=3, for all ¢ by the smallity of 3,. Hence there exist positive
integers ¢ and m such that 2¢(x,R)<xR<t(yR)<t(x,R) from Lemma 3.2;
whence 2#(x,R)<t(x,R) which contradicts the directly finiteness of #(x,R).
Therefore {x;R};Z; is cofini cofinal. By the smallity of =, , we see that [x,R]=
[x;R] for all ¢ and ;Z1x,R<2(x,R), and hence @;=:x;Ris d.f.. (c)—(a)is clear.

Proposition 3.4. Assume that Soc(R)=0 and I,(R)=0. Then a non-
finitely generated projective R-module P is d.f. (if and only) if P has a cyclic de-
composition P= ;2,P; such that {P;};Z, is cofinal.

Proof. Assume that P is a countably generated projective R-module with a
cyclic decomposition P=@;Z,P; such that {P;};Z, is cofinal. We express each
P; as P;=x;R, where x,€R. Then 3, =3,>--. If there exists a positive
integer j such that 3,;=3,; =---, we have a nonzero ideal RxR such that RxR
=3,, since Iy(R)=0. By Lemma 3.2, we have xR=x;R for all 7, which contra-
dicts that {P;};Z, is cofinal. Therefore we have an increasing sequence #;<<t,<<-,
of positive integers such that 3, %3, . Then P; sx; R=>R(x;, , R)=P;
by Lemma 3.2. Thus above (B) holds and hence P is d.f..

B+l

Theorem 3.5. The following are equivalent:

(@) Ristype B.

(b) Soc(R)=0, I,(R)=0 and L(R) has a cofinal subfamily.

(¢) There exists a non-finitely generated d.f. projective R-module P with a
cyclic decomposition P=@ ;Z1P; such that {P;};Z, is cofinal and [P)]=[P,]== .

Proof. (a) —(b). Assume that R is Type B. Then it must hold that
Soc(R)=0. We have a countably generated d.f. projective R-module P with a
cyclic decomposition P=@P;Z,P; satisfying (*) and (B). Let P;=x;R for x;ER.
Then N;Z:%,,=0 and {3,};Z: is a cofinal subfamily of L(R). (b)—>(c). From
the assumption, we have a cofinal subfamily {/;};Z; of L(R) such that ;1= ---.
Take x;&I;—1;,,. Since L(R) is a linearly ordered set under inclusion, we see
that I;=3,,51;,; so 2, 53,,5-. Putting that P=;Z1x;R, we see that
{x;R} ;=, is cofinal and [x,R]=[x,R]==--+; and hence P is d.f. from Proposition
3.4. (c)—(a) is clear, since (B) follows from (c).
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Theorem 3.6. The following are equivalent:
(@) Ris Type C.
(6) Soc(R)=+0, or I(R)=0 and L(R) does not have any cofinal subfamilies.

Proof. This is immediate from Theorems 3.3 and 3.5.

ReMARK. By theorems above, we see that Types A, B and C are right-
left symmetric.

As an application we show the following

Theorem 3.7. A projective R-module P is d.inf. if and only if there exists
a nonzero R-module X such that R,X is isomorphic to a direct summand of P.

Proof. “If” part is clear. “Only if”’ part. Let P=@,eP, be a d.inf.
projective R-module where each P, is nonzero cyclic. If Soc(R)==0, then for any
nonzero simple right ideal X <Soc¢(R), clearly |I|X<PP=©OD yePs whence
RXAP. So, we may consider the case Soc(R)=0. If |I|>R,, by the proof
of [4, Theorem 6], there exists Pg& {P,} 4 such that | {P, & {P,} yer | PePa} |
=Ro; 50 RPsPP. Hence we may further assume that |I|=R,, so say P=
@2 P;.  If {P;}:Z; is not cofinal, then clearly there exists a desired X. Hence
assume that {P;};Z, is cofinal. Since P is d.inf., we see from Proposition 3.4 that
I(R)#0. Noting that P is d.inf., together with Theorem 3.3, we see that [P,]=
[P,,:1]=""" for positive integer m and tP, P, ,,BP,.,® - for all . Then there
exists an ascending chain m=m,<<m,<---, of positive integers such that P, <&
PP DP,,;,  for i=1,2, .-, and so RPW<DP,, 1, DP, ., D <DBP as
desired.

Finally we give an example of Type A which has infinitely many ideals.

ExampLE (cf. [2, p. 486-p. 489]). Choose a field F and set R,=F. For
each positive integer #, let R, be the ring of all 8yX 8, matrices over R,_, of
the form

Xy X1 0
x = | ¥m Xnn
a
a
0 .
ln—l 0
,where x;;ER,_; and a€F, and put a,= 0 €R,, where 1,_, is the

identity element in R,_;. We define a ring homomorphism p,: R,—F by the
rule p,(x)=a for x above, and define a ring homomorphism f,; ,: R,—> R, by
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the rule
0

’ 24(3)
Frma)=| T () }

for all yeR,. Then each R, is a non-simple unit-regular ring satisfying the c.
axiom. Put R=lim R, and let ¢,: R,— R be the canonical map. Then we see
—

n=1
that R is a non-simple unit-regular ring satisfying the c. axiom with a nonzero

socle of R. Now set S,=M,s(R) for n=1, 2, ---. Map each R,—R,,, along the
diagonal, i.e., map x—>[6€ 2], and set S=lim S,, and let ¥»,: S,—S be the

canonical map. Then S is a non-simple d.f. regular ring satisfying the c. axiom
which is Type A and has an ascending chain Syr,(¢,(t,))SS=SY(Po()) S+
of ideals of S.

Unfortunately we do not have any examples of d.f. regular rings R satisfy-
ing the c. axiom such that [(R)=0; so we do not have any examples of Type
B and non-trivial Type C.
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