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Introduction

Let A" be a field and R — K\t\,...,td\ the polynomial ring in d variables over K.

Let A be a homogeneous affine semigroup ring generated by monomials belonging to

R. If T is a nonempty subset of [d] = {1, . . . , d}, then we write Rγ for the polynomial

ring K[{tj j e T}] with the restricted variables. A subring of A of the form AΓ) Rτ

with 0 ^ T C [d] is called a combinatorial pure subring of Λ.

The most reasonable question is which ring-theoretical properties are inherited by

combinatorial pure subrings. First of all, in Section 1, this problem will be discussed.

One of the most fundamental observation on combinatorial pure subrings is that the

elimination technique of Grδbner bases can be always applied to combinatorial pure

subrings. Namely, if I A is the defining ideal of A and if G is any reduced Grobner

basis of I A, then, for any combinatorial pure subring B of Λ, G Π /# is the reduced

Grδbner basis of /β, where /# is the defining ideal of B.

Let ΣΛ denote the infinite divisor poset (partially ordered set) of A; that is to say,

ΣA is the infinite poset consisting of all monomials belonging to A, ordered by divis-

ibility. It then follows immediately that if B is a combinatorial pure subring of A and

if of G Σβ, then any element β e ΈA with β < a belongs to Σ#. Hence, the closed in-

terval [ l ,α] of Σβ coincides with the closed interval [ l ,α] of Σ^. This simple obser-

vation enables us to show that all combinatorial pure subrings of a Koszul semigroup

ring are again Koszul. Moreover, it will be proved that if a homogeneous semigroup

ring is (i) normal, (ii) strongly Koszul, (iii) sequentially Koszul, or (iv) extendable se-

quentially Koszul, then any of its combinatorial pure subrings inherits each of these

properties.

In Section 2, we are interested in a homogeneous semigroup ring coming from a

poset, i.e., a homogeneous semigroup ring having an initial ideal which is the Stanley-

Reisner ideal of a finite poset. By virtue of the elimination technique together with

a combinatorial criterion for a squarefree quadratic monomial ideal to be the Stanley-

Reisner ideal of a finite poset, we can prove that if A comes from a poset, then all

combinatorial pure subrings of A come from posets. We will apply this basic fact to

so-called squarefree Veronese subrings.

Let 2 < q < d. The q-th squarefree Veronese subring of order d is the affine

semigroup ring ΊZ% which is generated by all squarefree monomials of degree q be-
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longing to the polynomial ring K[t\,..., td\ It is known [13] that each ΊZj has an

initial ideal generated by squarefree quadratic monomials. However, it seems to be un-

known if each TV% comes from a poset. Observing that Ίlj is a combinatorial pure

subring of ΊZj, if d < d\ we show that the q-th squarefree Veronese subring of or-

der d comes from a poset if and only if either q = 2 and 3 < d < 4, or q > 3 and

d = q + 1. See Theorem 2.3. In addition, it will be proved that the q-th squarefree

Veronese subring of order d is Golod if and only if d = q + 1. See Corollary 2.7.

The topic of Section 3 is the Lawrence lifting of homogeneous semigroup rings.

Let A = K[f\, . . . , fn\ be a homogeneous semigroup ring generated by monomi-

als f\, . . . , fn. Then, the Lawrence lifting of A is the homogeneous semigroup ring

K[f\Z\,.. , fnZn, Z i , . . . , Zn\, where z i , . . . , zn are variables over K. A crucial obser-

vation is that if B is any subring of A generated by a subset of {f\, . . . , /„}, then

the Lawrence lifting of B is a combinatorial pure subring of the Lawrence lifting of

A. Thus, the technique of combinatorial pure subrings will be useful for the study of

Lawrence liftings of homogeneous semigroup rings. The main result of Section 3 is

Theorem 3.4 which guarantees that the Lawrence lifting of a homogeneous semigroup

ring A is normal if and only if A is unimodular, i.e., all initial ideals of the defin-

ing ideal of A are squarefree. A quite effective criterion for a homogeneous semigroup

ring A to be unimodular is known: A homogeneous semigroup ring A is unimodular

if and only if every circuit belonging to the defining ideal of A is squarefree. (Here,

a circuit is an irreducible binomial with a minimal support and a binomial is called

squarefree if each of the monomials of the binomial is squarefree.) See Proposition

3.3. We conclude this paper with some examples of unimodular semigroup rings aris-

ing from combinatorial commutative algebra.

1. Basic results on combinatorial pure subrings

Let AT be a field and K[t] = K[t\, ..., tj] the polynomial ring in d variables over

K. Let A = {/i,...,/«} be a set of monomials belonging to K[t] and suppose that the

affine semigroup ring K[Λ] = K[f\,..., /„] is a homogeneous ^-algebra, i.e., K[A]

is a graded algebra K[A] = (K[A])0(&(K[A])ι® - with (K[A])0 = K and with
each fi e (K[A])\. Such a semigroup ring K[A] is called a homogeneous semigroup

ring. Let K[x] = K[x\, ..., xn] be the polynomial ring in n variables over K with each

degjt; = 1 and let 1Ά denote the kernel of the surjective homomorphism π : K[x] -+

K[A] defined by n{xt) = fi for all 1 < / < n. We call IΛ the defining ideal of K[A].

Let [d] = {1, . . . , d}. If T is a nonempty subset of [d], then we write AT for the

subset A Π K[{tj j e T}] of A. A subring of K[A] of the from K[AT] with 0 ^

T C [d] is called a combinatorial pure subring of K[A]. If AT = {fix, fi2, , fir],

then we set K[xτ] = K[xiχ, JC/2, . . . , xir]. Thus I^τ = I A Π ^ [ X ^ ] .

Let < be an arbitrary term order on K[x] and g e IA & binomial of K[x\. If the

initial monomial in<(g) of g belongs to K[xτ], then g must belong to K[xτ]. In fact,

if g = u — v where u and v are monomials of #[x], then π(u) = π(v) since g e /^.
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Thus π(u) e K[{tj j e T}] if and only if π(υ) e K[{tj j e T}]. Since π(jc ) e

K[{η j e T}] if and only if i e {iu i2,..., ιr}, it follows that π(μ) e K[{tj j e T}]

if and only if u e K[xτ].

This simple observation yields the fundamental result on elimination of Grδbner

bases for combinatorial pure subrings.

Proposition 1.1. If G is the reduced Grδbner basis of I A with respect to a term

order < on K[x], then G Π K[xγ] is the reduced Grobner basis of IAT (with respect

to the term order on K[xτ] induced by <).

Proof. Let h e IAT = I A Π K[xγ]. Since h e /A, we can find g e G such

that in<(g) divides /n<(/ι). Thus, in particular, in<(g) e K[xτ]. Since g is a binomial

with g e IA> 8 must belong to ^[x^]. Thus g e G Π K[xτ]. Hence, G Π K[xτ] is the

reduced Grobner basis of I^τ as required. D

Proposition 1.2. If K[Λ] is normal, then any combinatorial pure subring of

K[Λ] is normal.

Proof. Let ^[^4.^] be a combinatorial pure subring of K[Λ] and choose a mono-

mial u belonging to the quotient field of ΛΓ[*4j] such that u is integral over K[Aτ]

Since ^[^.r] is a subring of ^C[̂ 4], the monomial u belongs to the quotient field of

K[Λ] and is integral over A^y4]. Thus, u belongs to K[Λ] since K[Λ] is normal.

Since u belongs to the quotient field of ^Γ[^4r], it follows that no variable tj with

j & T appears in u. Hence, u must belongs to ^[^4.^] since ^[.4^] is a combinatorial

pure subring of ^[A]. Thus, ^[^4^] is normal as desired. D

Proposition 1.3. If K[Λ] is Koszul, then any combinatorial pure subrings of

K[Λ] is Koszul

Proof. Let Έκ[A] denote the infinite divisor poset of ^[Al; that is to say,

is the infinite poset consisting of all monomials belonging to ^[^4], ordered by divisi-

bility. It is known, e.g., [12] that ^[*4] is Koszul if and only if, for all a e Σ#[.A], the

closed interval [ l ,α] of ^K[A] is Cohen-Macaulay. If ^Γ[y4.r] is a combinatorial pure

subring of K[A\ and if a e Έκ[Aτ]> m e n a n v element β e ΈK[A\ w i t n ^ < α be-

longs to ΈK[AT]' Hence, the closed interval [ l ,α] of Σ#[^Γ] coincides with the closed

interval [ l ,α] of Σ/q^j. Thus, if K[Λ] is Koszul, then K[Λτ] is Koszul, as desired.

D

Let 5 be a graded AT-algebra and R C S a graded A^-subalgebra. Then, R is

called an algebra retract of S if there exists a surjective homomorphism of graded K-

algebras ε : S -+ R such that ε\R = id#. Note that a combinatorial pure subring K[Λγ]
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of a homogeneous semigroup ring K[Λ] is an algebra retract. In fact, the image of

K[Λ] under the natural epimorphism p : K[t] -> K[{tj j e T}] is just K[Λτ], and

the restriction of p to ^Γ[*4r] is the identity. Hence, ε = P\κ[Λ] is a retraction map for

K[ΛT] C K[A\.
Let R be a finitely generated homogeneous K -algebra and M a finitely generated

graded R-module. Set

pjf(s, t) = Σ d i m * Torf (M, K^t-i.

This formal power series is called the graded Poίncare series of M. Since for each /

there exist only finitely many j with Torf (M, K)j ^ 0, we can write

where each p^(t) is a polynomial in t.

Following Backelin [3] we define

It is clear that rate(/?) = 1 if and only if R is Koszul.

The following result generalizes Proposition 1.3.

Proposition 1.4. Let R C S be an algebra retract of graded K-algebras with

retraction map ε. Then, we have

(a) rate(/?) < rate(S);

(b) Consider R as an S-module via ε. Then, the following conditions are equivalent:

(i) R is Koszul,

(ii) S is Koszul and R has a linear S-resolution.

Proof. For the proof we use a graded version of the following result from [7]:

Write Ps

κ(s,t) = Σ / > O A W , P?(s,t) = Σ/>o?«W a n d PR(S> 0 = Σi>ori(t)s\
Then

Piif) = Σqj(t)pi-j(t) for all /.
7=0

Since the coefficients of the polynomials qι and r/ are all non-negative integers, it fol-
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lows that

0 + d e g r I _ < / ( 0 ; j = 0 , . . . , / } .

From this equation both assertion of the proposition follow at once. D

We refer the reader to [1], [2] and [8] for the fundamental information about

strongly Koszul, sequentially Koszul and extendable sequentially Koszul algebras.

Proposition 1.5. Let R C S be an algebra retract of graded K-algebras with

retraction map ε. If S is strongly Koszul, sequentially Koszul or extendable sequen-

tially Koszul with respect to the sequence x = x\, ..., xn (forming a K-basis of S\),

such that there exists a subset x' = JC/,, . . . , xιk of x with ε(xj) = Xj for Xj e xr and

ε(xj) = 0 for Xj $ xf. Then, R is strongly Koszul, sequentially Koszul or extendable

sequentially Koszul with respect to the sequence x1, respectively.

Corollary 1.6. Let K[Λτ] be a combinatorial pure subring of K[Λ\. If K[Λ]

is strongly Koszul, sequentially Koszul or extendable sequentially Koszul, then K[Λτ]

has this property, too.

Before proving Proposition 1.5 we note the following

Lemma 1.7. Let R c S be an algebra retract of graded K-algebras with retrac-

tion map ε, let I C S be an ideal and x e R. If ε(I) C /, then

ε(I :sx) = ε(I) :Rx.

Proof. Suppose a e I :s x\ then ax e /, and so ε(a)ε(x) e ε(I). Since x e /,
we have x = ε(x), and so ε(a) e ε(I) :R x. Conversely, let a e ε(I) :R x. Then

ax e ε(I) c /, and hence a e I :s x, so that a = ε(a) e ε(I :s x). •

Proof. [Proof of Proposition 1.5] Since x is ΛΓ-basis of Si, it follows at once that

x' is a K-basis of R\, and hence a minimal set of generators of the ^-algebra R.

Suppose S is strongly Koszul with respect to x, and let xi9 Xj e xr. Then (JQ) is Xj

is generated by a subset of x. By Lemma 1.7 we have ε((jcz ) is Xj) = (Xj) '-R Xi, and it

follows that (XJ) :R xt is generated by a subset of x', as desired.

Next suppose that S is sequentially Koszul with respect to x. In order to prove

that R is sequentially Koszul with respect to xr, we have to show that all derived se-

quences of x' have linear quotients. This will be a consequence of the following as-

sertion and Lemma 1.7: Let y' be an z'-th derived sequence of xr in R. Then, there

exists an i-th derived sequence of x in S with ε(y) = yr. In fact, there exists an

(/ — l)-th derived sequence Ί! = z\,..., zι of x' (with Zi G {x\,..., xn\) such that
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(y;) = (zi, . . . , Zj-\) R Zj for some j < I. Inducting on /, we may assume there exists

an (i — l)-th derived sequence z of x with ε(z) = z'. In particular, z' is a subsequence

of z. Let z be the largest initial sequence of z not containing Zj, and let y be the se-

quence generating the colon ideal (z) : Zj. Since ε(z) = zu , Zj-u it follows from

Lemma 1.7 that ε(y) = y'.

In a similar way one shows that R is extendable sequentially Koszul with respect

to x' if S has this property with respect to x. We only note that if a sequence y is ex-

tended to a sequence yi with linear quotients, then ε(y) can extended to ε(yθ, having

again linear quotients. D

2. Squarefree Veronese subrings

Let ^[x] = K[x\,... ,xn] be the polynomial ring in n variables over a field K

and suppose that / is an ideal of K[x] which is generated by squarefree quadratic

monomials. We say that / is the Stanley-Reisner ideal of the order complex of a finite

poset if there exists a partial order on [n] such that / is generated by those squarefree

quadratic monomials X[Xj such that / and j are incomparable in the partial order. Let

Γ(/) denote the graph on the vertex set [n] = {1,... ,n} with the edge set consisting

of all {/, j} such that X[Xj $. I.

Let G be a finite graph and suppose that G has no loop and no multiple edge. A

quasi-cycle of G of length k is a finite sequence of vertices (a\, a2,..., ak) of G such

that (i) all of the edges {ύ^β +i} with 1 < i < k — 1 and the edge {ak,a\} belong

to G and (ii) if α, = <2j with /, j < k and i 7̂  y, then βί+i φ cij+\, and if α/ = a^

with i < k, then α i+i -φ a\. A quasi-cycle is called o<i<i if its length is odd. Note that

a vertex may appear more than once in a quasi-cycle. A triangular chord of a quasi-

cycle (a\,ci2,. ., dk) is an edge of G of the form either {«/, α +2} with 1 < i <k — 2

or {α*_i,Λi} or {ak,a2}.

Now, the criterion, e.g., [5] guarantees that

Lemma 2.1. Le/ / &£ αn /<ieα/ o/ A'fx] which is generated by squarefree quad-

ratic monomials. Then, I is the Stanley-Reisner ideal of the order complex of a finite

poset if and only if the following condition (*) is satisfied: (*) Every odd quasi-cycle

of T(I) of length > 5 has at least one triangular chord.

We say that a homogeneous semigroup ring K[Λ] comes from a poset if /^ pos-

sesses an initial ideal which is the Stanley-Reisner ideal of the order complex of a

finite poset. For example, every monomial ASL (algebra with straightening laws) dis-

cussed in, e.g., [2] comes from a poset. It is shown in [12] that if K[Λ] comes from

a poset, then the infinite divisor poset of K[Λ] is shellable. Here, the infinite divisor

poset of K[Λ] is the infinite poset consisting of all monomials of K[Λ], ordered by

divisibility.
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Proposition 2.2. If a homogeneous semigroup ring K[Λ] comes from a poseΐ,

then any combinatorial pure subring of K[Λ\ comes from a poset.

Proof. Suppose that a homogeneous semigroup ring K[Λ] comes from a poset

and choose a term order < on K[x] such that the initial ideal /n<(/>^) is the Stanley -

Reisner ideal of the order complex of a finite poset. Let ^ [Ar] be a combinatorial

pure subring of K[A]. It then follows from Proposition 1.1 that /«<(/^4T) = in<(/^)Π

^[x^]. Hence, Γ(/^Γ) is an induced subgraph of Γ(/,4). Since Γ(I^) satisfies the con-

dition (*) of Lemma 2.1, its induced subgraph Γ(I^T) also satisfies the condition (*)

as desired. D

Let K[t\,..., td\ be the polynomial ring in d variables over a field K with each

degtj = 1. Let 2 < q < d. The q-th squarefree Veronese subring of order d is the

affine semigroup ring ΊZj which is generated by all squarefree monomials of degree

q belonging to K[t\, . . . , tj]. It is known [13] that each Ίlj has an initial ideal gen-

erated by squarefree quadratic monomials. However, it seems to be unknown if each

TZj comes from a poset.

Theorem 2.3. Let 2 < q < d. The q-th squarefree Veronese subring of order d

comes from a poset if and only if either (i) q = 2 and 3 < d < 4, or (ii) q > 3 and

Proof. First of all, note that the squarefree Veronese subring 7^ + 1 is the polyno-

mial ring in q + 1 variables over K. Thus, ΊZ^ comes from a poset in the obvious

way. Moreover, ΊZ^ comes from a poset since the defining ideal of V^ has an initial

ideal {x\X2, ^3^4).

To show the "only if" part, we first show that Ίlψ does not come from a poset.

It is discussed in [4] and [2, Example 4.3 (b)] that there exist only two quadratic ini-

tial ideals (up to symmetry) of Ίlψ\ they are

I\ =

The graph Γ(/i) has the odd cycle (3, 4, 9, 5, 6) of length 5 with no chord, and Γ(/2)

has the odd cycle (2, 3, 10, 7, 5) of length 5 with no chord. Hence, neither Γ(/j) nor

Γ(/i) satisfies the condition (*) of Lemma 2.1. Hence, Ίlψ does not come from a

poset, as required.

Now, if d > 6, then ΊZψ is a combinatorial pure subring of ΊZ^'. Hence, if d > 6,

then ΊZj does not come from a poset by Proposition 2.2.

Since T0^\2 = 7 ^ 2 , we know that TZ^}2 ^
o e s n o t c o m e fr°m a poset if q > 3.

Since ΊZ(^2 is a combinatorial pure subring of ΊZ{f if d > q + 2, it follows that ΊZ(f
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does not come from a poset if q > 3 and d > q + 2. •

The initial ideal I\ of ΊZψ in the above proof of Theorem 2.3 can be obtained by

a reverse lexicographic term order as well as by a lexicographic term order. The initial

ideal h of ΊZψ can be obtained by a lexicographic term order, but cannot be obtained

by a reverse lexicographic term order since all variables xt appear in the system of

generators of 72.

In [2], it is proved that all second squarefree Veronese subrings ΊZ^ are extend-

able sequentially Koszul. Hence, the infinite divisor posets of the second squarefree

Veronese subrings are shellable ([2, Theorem 4.1]). However, the shellability of the

infinite divisor posets of ΊZ^ cannot follow from [12] if d > 5. It remains open if

the infinite divisor posets of all squarefree Veronese subrings ΊZj with q > 3 are

shellable.

In the rest of this section, we will discuss the problem of finding all squarefree

Veronese subrings which are Golod. If T is a homogeneous ΛΓ-algebra, then we write

H(T) = H(x\ T) for the Koszul homology of T with respect to a Λ'-basis of genera-

tors x of T\. Recall that H(T) is a skew symmetric graded ^-algebra. This algebra is

unique up to isomorphisms, i.e., it does not depend on the particular chosen basis of

T\. In the category of skew-symmetric algebras we can define an algebra retract just

as in the commutative case.

Proposition 2.4. Let R C S be an algebra retract of homogeneous K-algebras.

Then the inclusion R C S induces an algebra retract H(R) C H(S).

Proof. Let ε : S -> R be the retraction map. We may choose a AT-basis x' =

JCI, . . . , xn of S\ such that for some m < n the sequence x = x\,..., xm is a ^Γ-basis

of R], and such that ε(jc ) = X[ for / = 1, . . . , m, and ε(x{) = 0 for / = m + 1, . . . , n. The

natural inclusion R c S induces an algebra homomorphism i : H(x; R) —> H(xf; S) and

the retraction map ε induces an algebra homomorphism η : H(xf; S) -^ H(ε(x'); R).

By the choice of the basis x' we have ε(x') = x\, . . . , xm, 0, . . . , 0. From this it fol-

lows easily that H(ε(xf); R) is isomorphic to the graded tensor product H(x; R)<g>/\V,

where V is a ^-vector space of dimension n — m + 1. In particular, //(x; R) is a sub-

algebra of H(ε(xf)\ R), and in fact is precisely the image of η o L, as desired. D

Corollary 2.5. Let R C S be an algebra retract of homogeneous K-algebras.

Write R = A/I and S = B/J, where A and B are polynomial rings over K, and I

and J are graded ideals containing no forms of degree 1. Then for the graded Betti

numbers of I and J we have

βήV)<β*(J) far all i and j .
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Proof. The assertion follows from 2.4 and the fact that β^(I) = dim^ Hi+\(R)j,

and β?j(J) = dirriκ Hi+ι(S)j for all i and j . D

Corollary 2.6. Let R C S be an algebra retract of homogenous K-algebras. If

S is Golod, then R is Golod.

Proof. By definition, S is Golod, if all Massey operations in the Koszul com-

plex K(S) vanish. The Massey operations μ(z\,..., zr) of order r (which are cycles

in K{S)) are defined on all r-tuples of cycles Zi of K(S), provided all Massey op-

erations of order r — \ are defined and are even boundaries (in which case one says

that the Massey operations of order < r vanish). Note that μ(z\,zi) is just z\Z2* s o

that H(S) has trivial multiplication if S is Golod. We refer the reader to [6] for a full

definition of Massey operations.

Now we wish to show that Massey operations in K(R) of order r vanish for all

r. We prove this by induction on r. Since H(R) is a subalgebra of H(S), it has trivial

multiplication, too. Hence the Massey operations of order 2 vanish. Now suppose that

r > 2, and that the Massey operations of order r — 1 vanish. Then μ(zι, . . . , zr) is

defined and is a cycle. Since μ(z\,..., zr) is also a Massey operation in K(S) and is

a boundary in K(S), and since the natural map H(R) -> H(S) is injective, it follows

that μ(z\, . . . , z r) is a boundary in K(R), too, as we wanted to show. D

Corollary 2.7. Let 2 < q < d. The q-th squarefree Veronese subring of order d

is Golod if and only if d = q + 1.

Proof. If d = q + 1, then 7 ^ , is a polynomial ring and the assertion is triv-

ial. Note that ΊZ^ is a complete intersection defined by two quadratic equations. The

Koszul homology of a complete intersection is the exterior algebra of the first Koszul

homology, and hence, unless it is a hypersurface ring, has not trivial multiplication. It

follows that ΊZ^ is not Golod. Now using Corollary 2.6 we argue as in the proof of

Theorem 2.3 to get the desired result. D

3. Lawrence liftings of semigroup rings

Let, as before, Λ = {/i,...,/«} be a set of monomials of K[t] = K[t\, ..., t^]

and suppose that the affine semigroup ring K[Λ] = K[f\, ..., fn] is a homogeneous

semigroup ring. Let Ij± C ̂ [x] = K[x\, . . . , xn] denote the defining ideal of λ^[*4].

If u e K[x] is a monomial, then we write supp(w) for the support of u, i.e.,

supp(w) is the set of variables X{ which divide u. \ϊ g - u — D is a binomial of

^[x], where u and v are monomials of K[x], then the support of g is supp(g) =

supp(w) U supp(f).

A binomial g = u — v e 1^ is called primitive if there exists no binomial g' =

u' — v' e I A with g' φ g such that u1 divides u and υf divides v. The set of all
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primitive binomials of I A is called the Graver basis of I A-

A binomial g = u — v e I A is called a circuit if g is irreducible and if there exists

no binomial g' = u' — v' e I A with supp(g') C supp(g) and with supp(g') •£ supp(g).

The universal Grobner basis of I A is the union of all reduced Grobner bases of

I A- Every circuit of I A belongs to the universal Grobner basis of I A , and the universal

Grobner basis of I A is a subset of the Graver basis of I A- See [13, Proposition 4.11].

Let Λ(A) = {f\Z\,..., fnzn,zu , zn), where z\,...,zn are variables over K.

The homogeneous semigroup ring

K[MA)] = K[flZl,...,fnZn,Zl,...,Zn]

is called the Lawrence lifting of K[Λ].

Let K[x, y] = K[x\,..., xn, yu . . . , yn] denote the polynomial ring in In variables

over K. If u = XixX[2 Xik is a monomial of K[x\, then we write ΰ for the monomial

yijii''' ytk °f ^[yl Moreover, if g = u — v is a binomial of K[x], then we define the

binomial g of K[x, y] by g = uv — vΰ. It then follows that the defining ideal IA(Λ) °f

the Lawrence lifting K[A(A)] of K[A] is generated by all binomials g with g € IA
Moreover, the Graver basis of IA(Λ) coincides with the set of those binomials g such

that g belongs to the Graver basis of I A , and the set of circuits of IA(A) coincides

with the set of those binomials g such that g is a circuit of IA-

In the present section, we are interested in the question when the Lawrence lifting

K[A(A)] of K[A] is normal.

Lemma 3.1. If g = u — v is a binomial of K[x] such that neither u nor v is

squarefree and if I A = (g), then K[A] is not normal.

Proof. Let g = x\uf —x\v!. Since π{x\u') = π(x\v'), we have Jπ(x\u')π(x\v') =

π(x\u')\ thus y/π(u')π(v') = π(x\u')/π(x2). Hence, the monomial *Jπ(u')π(yf) be-

longs to the quotient field of K[A] and is integral over .K[A|. Suppose that there ex-

ists a monomial w such that π(w) = π(x\uf)/π(x2). It then follows that the binomial

g' - χλu' — X2W belongs to I A- Since the degree of g' is less than that of g, we have

g1 = 0. Hence, X2 must divide u\ which is impossible since g is irreducible. Thus,

K[A] cannot be normal as required. D

Lemma 3.2. If g is a circuit of I A , then there exists a combinatorial pure sub-

ring K[B] of K[A(A)] with IB = (g).

Proof. Let {*i, . . . , xm] denote the support of g and K[A] = K[fu . . . , fm]. The

defining ideal of K[Ά] is I A; = IA Π K[xλ,..., xm]. First, we show that I A; = (g). Let

g = χ?u — v with x\ $ supp(w). Let h = x\u' — v' e IA! with x\ $. supp(wr) be an

irreducible binomial. Since both binomials (x[ύf — vq and (x\u')p — v'p belong to

IΛ', the binomial (x\ufv'p - {x\u')pvq belongs to IΛ>. Hence u«v'p - u'pvq e IΛ'.
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Since g is a circuit and since x\ g supp(uqvfP - u'pvq), it follows that uqυ'p = u'pvq.

Since supp(w)nsupp(t>) = 0 and supp(V)Πsupp(ι/) = 0, we have uq = u'p and vq = v'p.

Hence, if p φ q, say p < q, then we can find an integer k > 1 such that h = x\u' —

ι/ = (χq u\ )k — v\ . This is impossible since both binomials g and h are irreducible.

Hence p - q and we have g = h. Thus 1^ = (g) as desired.

Since 1Ά = (g), the Graver basis of 1^ is equal to {g}. Now, let K[B] denote the

subring K[f\Z\, , fmZm, z i , . . . , zm] of #[ΛC4)]. Then, K[B] is, in fact, a combi-

natorial pure subring of Λ^[Λ(*4)]. Since K[B] is the Lawrence lifting of £Ίy4'] and

since the Graver basis of lj^ is {g}, the Graver basis of Iβ is {g}. Thus, in particular,

IB = (g) as desired. D

We say that a homogeneous semigroup ring K[Λ] is unίmodular if all initial ide-

als of 1A are squarefree. It follows from [13, Remark 8.10] that K[Λ] is unimodular

if and only if all triangulations of the configuration associated with Λ are unimodular.

In addition, K[Λ\ is unimodular if and only if all lexicographic initial ideals of K[Λ]

are squarefree.

Even though the following criterion for K[Λ] to be unimodular must be well

known, we will write its proof for the sake of completeness. A binomial g = u — v

is called squarefree if both the monomials u and υ are squarefree.

Proposition 3.3. A homogeneous semigroup ring K[Λ] is unimodular if and

only if every circuit of 1Ά is squarefree.

Proof. First, suppose that every circuit of /^ is squarefree. Let a binomial g =

u — v belong to a reduced Grδbner basis of 7^. Then, by virtue of [13, Lemma 4.10],

we can find a circuit g' = u' — v' of /^ with supp(V) c supp(w) and supp(t/) C

supp(f). Since g! is squarefree, it follows that u' divides u and v' divides v. Since g is

primitive, we have g = g'. Hence, every reduced Grobner basis consists of squarefree

binomials.

Second, let g - u — v be a circuit of /^ such that the monomial u is not square-

free. Since g belongs to the universal Grδbner basis of 7^, it follows from [13, Corol-

lary 7.9] that there exists a term order < on ^[x] with /«<(g) = u such that g belongs

to the reduced Grobner basis of /^ with respect to <. Hence, the initial ideal //t<(/^)

is not squarefree. D

We are now in the position to give a main result of this section.

Theorem 3.4. Let K[Λ] be a homogeneous semigroup ring and ^Γ[Λ(^4)] its

Lawrence lifting. Then, the following conditions are equivalent.

(i) K[Λ] is unimodular;

(ii) K[A(Λ)] is unimodular;
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(iii) K[A(A)] is normal

Proof. First of all, (ii) =>> (iii) is well known. Since the set of circuits of IA(Λ)

coincides with the set of those binomials g such that g is a circuit of /^, we have (i)

<Φ>- (ϋ) by Proposition 3.3.

In order to show that (iii) =>• (i), suppose that K[A] is not unimodular. Then, by

Proposition 3.3 again, we can find a circuit g = u — v of I A such that either u is

not squarefree or v is not squarefree. Then, each of the monomials uv and vΰ of the

circuit g = uv — vΰ of IA(Λ) *S n o t squarefree. Now, Lemma 3.2 guarantees the ex-

istence of a combinatorial pure subring K[B] of K[A(Λ)] with I& = (g). Then, by

Lemma 3.1, K[B] is not normal. Hence, K[Λ(A)] is not normal by Proposition 1.2 as

required. D

REMARK 3.5. Let (P) be a ring-theoretical property which is inherited by (i)

combinatorial pure subrings, (ii) localizations and (iii) rings R such that the Laurent

polynomial ring R[z\, Z\~ι,..., zm, zm~ι] over R has the property (P). Then, if the

Lawrence lifting K[A(Λ)] of K[A] has the property (P), then, for any subset B C A,

the ring K[B] has the property (P). In fact, K[A(B)] has the property (P) since it is a

combinatorial pure subring of K[A(A)]. Inverting all ZΊ occurring in K[A(B)] we get

K[B][z\, z\~\ . . . , zm, Zm~ι] which has the property (P). Hence, K[B] has the prop-

erty (P), as desired.

We conclude this paper with some examples of homogeneous semigroup rings

which are unimodular.

EXAMPLE 3.6. (a) Let 1ZK[L] denote the monomial ASL (algebra with straight-

ening laws) associated with a finite distributive lattice L discussed in, e.g., [9]. Then,

ΊZκ[L] is unimodular if and only if L is planar. See also [1].

(b) Let K[G] denote the homogeneous semigroup ring arising from a finite con-

nected graph G studied in, e.g., [10] and [11]. Then, K[G] is unimodular if and only

if any two cycles of odd length of G possess a common vertex. In particular, K[G] is

unimodular if G is bipartite.
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