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1. Introduction

We consider the configuration space Mr

n of equilateral polygon linkages with

n (n > 3) vertices, each edge having length 1 in the Euclidean plane R 2 modulo isometry

group. More precisely, let Cn be

(1.1) Cn = {(uu...,un)e(B2)n:\uw-ui\ = l ( l < i < n - l ) , | u i - u n | = l} .

Note that Iso(R2) (= the isometry group of R 2 , i.e., a semidirect product of R 2 with

0(2)), naturally acts on Cn. We define M'n by

(1.2) M ; = C n / I s o ( R 2 ) .

We remark that M'n has the following description: We set Mn = C n /Iso + (R 2 ) ,

where Iso+ (R 2 ) denotes the orientation preserving isometry group of R 2 , i.e., a semidirect

product of R 2 with SO(2). Then we can write Mn as

(1.3) Mn = {(uu...,un)eCn:u1 = (-,0) and u2 = (--,0)}.

Mn admits an involution σ = Iso(R 2 )/Iso + (R 2 ) such that M'n — Mn/σ. Under the

identification of (1.3), σ is given by

(1.4) σ ( u i , . . . , i i n ) = ( ΰ i , . . . , ϋ n ) ,

where ΰi = (xi, —yi) when u% = {x^yi).

Many topological properties of Mn are already known: First we know explicit topo-

logical type of Mn (n < 5) [3],[4],[8]. Next we have the results on the smoothness of Mn

[5],[7],[8]. Finally H*(Mn; Z) are determined in [6],[7] (cf. Theorem 2.1). In particular,

the natural inclusion in : Mn =—• ( 5 1 ) n ~ 1 (cf. (1.6)) induces isomorphisms of homology

groups up to a certain dimension (cf. Proposition 2.2).
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On the other hand, concerning M'n, what we know already are the following: First we

know the following examples.

EXAMPLES 1.5. M'z = {l-point},M4 = S 1 and Mf

b = t)RP 2, the five-times
5

connected sum of HP2.

Next some assertions on the smoothness of M'n are proved in [5]. However, we have

few information on H* (M'n Z), although we know χ(M'n), the Euler characteristic of M'n
[5] (cf. Proposition 3.4).

The purposes of this paper are as follows.

(i) We prove assertions on the smoothness of M'n.

(ii) We determine H*(Mf

n\2iP), wherep is an odd prime, and H*{Mf

n; Q).

In the following (iii)-(v), we assume n to be odd, and set n = 2m + 1. Then by the

results of (i) and (ii), M2rn+λ is a non-orientable manifold of dimension 2ra — 2.

(iii) Find a space V2πι and an inclusion i'2m+ι '• ^ L + i c~^ Vtm so that i'2rn+ι
induces isomorphisms of homotopy groups up to a certain dimension.

(iv) As V2m is a natural space, we determine H* (V^m; Z) completely. Then in partic-

ular we know H* ( M 2 m + 1 Z) up to some dimension by the result of (iii).

As we will see in Remark 1.9, knowing H*(V2m]Z) is equivalent to knowing

H^Sψ^/σ Z).

(v) Finally we determine H* ( M 2 m + 1 Z) except the possibility of higher two-torsions

in i / m _ i ( M 2 m + 1 ; Z) when m is even.

Now we state our results. Concerning (i), we have the following:

Theorem A. (a) M 2 m + 1 is a manifold of dimension 2m — 2.

(b) M2rn is a manifold of dimension 2m — 3 with singular points. (u\,..., U2m) £

M2rn is a singular point iff all of Ui lie on the x-axis, i.e., the line determined by U\ and

U2 (cf. (1.3)). Moreover every singular point of M2rn is a cone-like singularity and has a

neighborhood as C(Srn~2 Xz2 £ m ~ 2 ) , where C denotes cone and action o/Z 2 on both

factors is generated by the antipodal map.

Concerning (ii), first we prove the following:

Theorem B. H* (M^; Z) are odd-torsion free.

Thus in order to know H* {M'n\ Z p ) , we need to know H* (M'n\ Q), which is given by

the following:



TOPOLOGY OF EQUILATERAL POLYGON LINKAGES 733

Theorem C. The Poincarepolynomials PSQ(M^) = ΣχdimQHλ(M^ Q)tx are

given by

+ Σ , 2m W 2 6 + 1

m<26+l<2m-3

+ -3 \

Σ (
-1 \2b + 3

where (£) denotes the binomial coefficient.

Next we go to (iii). By setting ^ = i ^ + 2 — ̂ i+i (1 < ^ < n — 2), zn-\ —u\— un,

and identifying R 2 with C, we can write Mn (n > 3) as

(1.6) Mn 9* {(zu . . . , zn-ι) e ( S ' 1 ) n ~ 1 : zλ + + z n _i - 1 = 0}.

Let zn : Mn

 c-^ ( 5 1 ) 7 1 " 1 be the inclusion.

As we have mentioned, (S1 ) n ~ 1 approximates the topology of Mn up to some dimen-

sion (cf. Proposition 2.2). However, for an odd n = 2 m + 1 , our low-dimensional computa-

tions lead us to give up the hope that (S1)2rn/σ might approximate M 2 m + 1 = M 2 m + i / σ ,

where σ acts on ( S ' 1 ) 2 m in the same way as in (1.4). The essential reason for this is that

the action of σ on (51)2™ is not free, although on M 2 m + i is.

Thus we define y 2 m by

(1.7) Vr

2m = { ( 5 1 ) 2 m - Σ 2 m } / σ ,

where we set

Σ 2 m = { ( z i , . . . , z 2 m ) e ( S 1 ) 2 ™ : z i = ± l ( l < i < 2 m ) } .

^2m+i : ^ 2 m + i ^^ l ^ m be the inclusion. Then we have the following map of covering



734

spaces:

(1.8)
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Z 2

I

1
M i

22m+l

Z 2

i
M2m+1 ^ ^ ( 5 1 ) 2 m - Σ 2 m

I

Note that (S1)2™ - Σ 2 m is a maximal subspace of ( 5 1 ) 2 m on which σ acts freely. Thus it

is natural to consider the topology of V2m.

Now concerning the relation between M 2 m + 1 and V2πι, we have the following theo-

rem.

are isomorphisms for q < m — 2,TheoremD. (*2m+i)* : π

and an epimorphism for q = m — 1.

Concerning (iv), we have the following:

Theorem E. H* (V2m Z) is given by

Hq{V2rn Z) =

Θ Z

(2Γ)
^ Θ Z 2

q : even < 2m — 2

q : odd < 2m - 3

q = 2m - 1

otherwise,

where Θ Z denotes the (2m)-times direct sum ofZ.

(T)

Note that Theorems D and E give Hq{M2rn+1\ Z) for q < m — 2.

REMARK 1.9. By the Poincare-Lefschetz duality Hq((S1)2rn/σ, Σ 2 m ; Z) =

^2m-q(^2m; Z), knowing H*{V2m', Z) is equivalent to knowing i J * ( ( 5 1 ) 2 m / σ ; Z).

Concerning (v), we have the following:



TOPOLOGY OF EQUILATERAL POLYGON LINKAGES

Theorem F. (a) For an odd m, we have

735

(T)
q : even < m — 1

q : odd < m — 2

q : > m

otherwise.

(b) For an even m, we ha\

Hq{M'<lrnjtl\ Z ) = <

ve

( Θ Z

(T)
Θ Z 2

4(2r)
Θ Zθ

/ 2m \

θ ze

0

Tor.

e
Σ f

> g + 3 v
2 m z 2

even <

odd <

= m — 1

odd >

otherwise.

[ m -

m —

m +

-2

3

1

where Torm_i, the torsion submodule o/ifm_i(M2m_(_1; Z), satisfies that
2

Thus, in particular, Heven(M2rn+ι; Z) αr^ torsion free for all m.

REMARK 1.10. (a) By Theorems D, E and F, we see that (i2m+i)* # m - i

( M 2 m + 1 ; Z) ^^ i^m-i(^2m; Z) is an isomorphism when m is odd, but not an isomor-

phism when m is even.

(b) In order to prove Theorem F, we first determine i ϊ * ( M 2 m + 1 ; Z 2 ) , which is given

in Proposition 5.1. In particular, we see that ( i 2 m + 1 )*: Hm-i ( M 2 m + 1 Z 2 ) —> i ϊ m _ i (T^mJ

Z 2 ) is an isomorphism for all m (cf. Remark 5.2).

This paper is organized as follows. In §2 we recall the results of [7], then prove

Theorems A, B and D. In §3 we prove Theorem C. In §4 we prove Theorem E, and in §5

we prove Theorem F.

2. Proofs of Theorems A, B and D

In [7], the following theorem is proved.
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Theorem 2.1. H*(Mn;Z) are free Z-modules and the Poincare' polynomials
PS(Mn) = Σ\ rank# λ(M n; Z)tx are given by

The essential facts to prove Theorem 2.1 are the following three propositions.

Proposition 2.2. (i) (z2m+i)* : πq(M2m+i) —• πq((S1)2rn) are isomorphisms for

q < m — 2, and an epίmorphism for q — m — 1.

(ϋ) fem)* : Hq{M2m]Z) -• Hq((Sι)2rn-ι;Z) are isomorphisms for q < m - 2,

a/it/ an epimorphism for q = m — 1.

Proposition 2.3. (i) M2m-\-i is an orientable manifold of dimension 2m — 2. 77ΪWS

the Poincare'duality homomorphisms n[M2m+ι] : ^ ( M 2 m + i ; Z) —• H^m-Ί-q ( M 2 m + i ;

Z) are isomorphisms for all q, where [Λ^m+i] E i/2m-2(^2m+i; Z) w a fundamental

class.

(ii) M2 m w α manifold of dimension 2m — 3 vWίft singular points, (μi,..., it2m) ^

M2m w <z singular point iff all of Ui lie on the x-axis. Moreover every singular point

of M2m is a cone-like singularity and has a neighborhood as C{Srn~2 x Sm~2). Thus

the Poincare'duality homomorphisms fλ[M2m) : i/q r(M 2m;Z) —> i^2m-3-9(^2m; Z)

are isomorphisms for q < m — 3 or q > m, an epimorphism for q = m — 1, and a

monomorphism for q — m — 2.

Proposition 2.4. (i) χ(M2m+1) = ( - l ) m + 1 (2™).

REMARK 2.5. In order to prove Theorem 2.1, the homological assertion is suffi-

cient for Proposition 2.2 (i). But actually we can prove the homotopical assertion.

Proof of Theorem A. Since σ acts freely on M2 m +i, and Mξ^ (=the fixed point set

of the involution) equals to the set of singular points in M2 m , all of the assertions except

the type of the singular points of M ^ are deduced from Proposition 2.3.

Let ( z 1 ? . . . , z2m-i) be a singular point of M 2 m in the identification of (1.6). By

Proposition 2.3, we must have Z{ = ±1 (1 < i < 2m — 1). As the symmetric group

on (2m — 1)-letters acts on M2 m , we can assume that Zi = 1 (1 < i < m) and zι —

— 1 (m + 1 < i < 2m — 1). A neighborhood of ( z i , . . . , ^ m - i ) in (S1)2m~1 is written
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by

/m+l

where e > 0 is a fixed small number. As e is small, it is easy to see that we can write this

neighborhood as

< Vi < e (1 < i < Ίm - 1

Thus a neighborhood of a singular point in M 2 m is written as a subspace of R 2 7 7 1 " 1

defined by two equations

„ , . f ί / i + ' + 2/m- 2/m+i 2/L-i = 0
(2.6) v ^

I 2/1 H 1" Vm + 2/m+l H 1" 2/2m-l = 0.

By a linear transformation of parameters, we can write the quadratic form of (2.6),

i.e.,

2/1 + * + 2/m-l + (2/1 + " + 2/m-l + 2/m+l + ' + y<lm-\f ~ 2/m+l 2/L-H

as

m w2m-2'

Thus a singular point of M 2 m has a neighborhood C { ( u > i , . . . , Wm-i.Wm,... ,^2m-2)

u>i H h ̂ m _ i = 1, ̂ m H h ̂ 2m-2 = 1}» which is homeomoφhic to C(Srn~2 x
s™-2).

Now it is clear that σwi = —voi. Hence a singular point of M 2 r n has a neighborhood

C ( S m - 2 xz 2 5 — 2 ) , where σ(Ci,C2) = (-Ci,-C2) (Ci,C2 € 5TO"2). Π

Proof of Theorem B. For F = Z p (p : an odd prime) or Q, we have thatϋf* (Mf

n F)

= H* (M n ; F ) σ (= the fixed point set of H* (M n ; F) under the σ-action) (see for example

[2]). As H* (Mn Z) are free modules by Theorem 2.1, we have that dimZpHq(M'n; Zp) =

ά\mQHq(M^ Q). Hence Theorem B follows. •
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Proof of Theorem D. Let j2m : (S1)2™ - Σ 2 m ^ ( 5 1 ) 2 m be the inclusion. Since

Σ 2 m is a discrete set, the general position argument shows that ( j 2 m ) * 7 Γ ς((S f l ) 2 m —

Σ2m) —• 7Γς((^1)2 m) are isomorphisms for q < 2m — 2. Then Proposition 2.2 (i) shows

that (i2m+i)* : πq(M2m+i) —• ^((S 1 ) 2 ™ — Σ 2 m ) are isomorphisms for q < m — 2 and

an epimorphism for q = m — 1, where i2m+i Λ^m+i -̂» ( 5 1 ) 2 m - Σ 2 m is the inclusion.

By comparing the homotopy exact sequences of two covering spaces of (1.8), we

see that (^m+i)* ^ M m + i ) ""* ^ ( ^ m ) are isomorphisms for q < m — 2 and an

epimorphism for q = m — 1, where i 2 m + 1 : M 2 m + 1 -̂> V2m is the map induced from the

σ-equivariant inclusion Z2m+i M 2 m + i ^^ (5 1 ) 2 7 7 1 — Σ 2 m .

This completes the proof of Theorem D. •

3. Proof of Theorem C

Let in : Mn <—• ( 5 1 ) n ~ 1 be the inclusion. Note that in is a σ-equivariant map.

Hence ( i n )* : i ϊ * ( M n ; Q ) —> f ί*((S' 1 ) n ~ 1 ;Q) is also a σ-equivariant homomorphism.

Since JΪ*(Λί^; Q) = H*(Mn; Q ) σ , Proposition 2.2 tells us the following:

Proposition 3.1. (i) For q <m — 2,we have

( θ Q g :

tf*(A*2m+i;Q) = < ( " )

l θ q:

(ii) For g < m — 2, w^ /ί<2v̂

θ Q q:
Hq(M^;Q)={ (2T2)

0 q :

We assume the truth of the following Lemma for the moment. Let [Mn] G

ϋΓ n _ 3 (M n ; Q) be the fundamental class.

Lemma 3.2. σ*[Mn] = ( - l ) n [ M n ] .

Then we have the following:

Proposition 3.3. (i) For q>m,we have

( 0 q : even

θ Q g: odd.
(,2Γ2)
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(ii) For q> m,we have

( 0 q : even

θ Q q: odd.

( 2 )
Proof of Proposition 3.3. Take an element a G i / 9 ( M 2 m + i ; Q ) (q > m). By

Proposition 2.3, there is an element / G i J 2 m ~ 2 ~ ς ( M 2 m + i ; Q ) such that a = f Π

[M 2 m +i]. As σ*(/ Π [M 2 m + i ] ) = σ*/ Π σ*[M 2 m + i ] = -σ*f Π [ M 2 m + i ] , we have

that

ff*(M2m+i;Q)σ = {/ G J Ϊ 2 m - 2 - « ( M 2 m + 1 ; Q ) : σ*/ = -/} .

Now (i) follows from Proposition 3.1.

(ii) can be proved similarly. •

Now in order to determine H*(Mf

n; Q), we need to know only i J m _ 1 ( M 2 m + 1 ; Q)

and Hπι-ι(M2m; Q), which are determined if we know χ(M'n).

Proposition 3.4 ([5]). (i)

m : even

m : odd.

Proof. By a general formula of an involution (see for example [1]), we have χ(Mn)+

£) = 2χ(M'n). Then the result follows from Proposition 2.4. •

Proof of Lemma 3.2. First we treat the case of n = 2ra -f 1. We define a volume

element ω of M 2 m + i as follows. Fix (zι,..., z 2 m ) G M 2 m + i in the identification of (1.6).

It is easy to see that the tangent space T(Zl v . . ^ 2 m ) M 2 m + 1 is given by

(3-5) T ( 2 l > . . . ) 2 2 m ) M 2 m + 1 = < I

Write Zj as (z,, j/j). Then for ηλ,..., η2m-2 e T(Zl i... )Z2TO)Λf2m+i, we set

ω(77i, . . . ,77 2 m_ 2) = det 77i, ,772m-2,

It is easy to see that α; is nowhere zero on M 2 m + i .
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For η = \ : e T(Zlt_fZ2m)M2m+u we see that

where Z2m+i M2m+ι °-> ( 5 x ) 2 m denotes the inclusion. Hence we see that dσ :

T(Zl,...,Z2rn)M2m+ι -> % l v . . ^ 2 m ) M 2 m + i is given by

(3.7) dσ(η) = -η.

Now the formulae dσ{ηι) = —77̂  and σ(xi,yi) = (x^ —yi) tell us that (σ*α;)(r/i,

. . . , η2m-2) — —&(ηi,..., ?72m-2) Hence σ*α; = — α; and the result follows.

Next we treat the case of n = 2m. Let M^m be M2 m — {singular points}. By the

same argument as in the case of n = 2m + 1, we see that σ : M2m —• M 2 m preserves

orientation. As Hξm~3(M2m] Q) = i J 2 m ~ 3 ( M 2 m ; Q) (Hc= cohomology with compact

supports), the result follows. •

4. Proof of Theorem E

First we determine i?2m-i(V2m;Z). The Poincare-Lefschetz duality tells us that

H2m-i(V2m; Z) ^ H\{Sι)2™/σ, Σ 2 m ; Z). As H^S1)2™^, Z) - 0, we have
#2m-l(^2m;Z)^ 0 Z.

2 2 m - l

As V2rn is a non-compact manifold of dimension 2m, we have Hq(V2rn\ Z) = 0

(<7 > 2m). Hence in order to complete the proof of Theorem E, we need to determine

Hq(V2rn;Z)(q<2m-2).
Recall that we have a fibration (S1)2™ - Σ 2 m -• F2m -> RP°° . Set F2rn =

(S1)2171 — Σ 2 m . The local systems of this fibration of dimensions less than or equal to

2m — 2 are easy to describe: We write the generator of πi(RP°°) by σ. Then as a σ-

module, we have

(4.1) Hq(F2m; Z) 9έ ̂ ( ( S 1 ) 2 " 1 ; Z) (q < 2m - 2).

Let {Elt} be the Z-coefficient homology Serre spectral sequence of the above fibra-

tion. It is elementary to describe E2

1 (t φ 2m — 1) by using the following fact: We define

a σ-module S to be the free abelian group of rank 1 on which σ acts by — 1. Then have that

f Z2 a : even
(4.2) Hq(RP°°;S) = \

I 0 q : odd.

REMARK 4.3. For our reference, we give E2

2πι-ι Let T be the free abelian group

of rank 2 on which σ acts by ί I . And let σ act on Z trivially. Then we can prove
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that

Vl(F2miZ)=θTθ θ Z.
2m 2 2 m - 2 r n - l

As

Z q

q>0,

f Z
HJRP°°',T) = \9 l θ

we can determine ϋ ^ m - i
We return to E^t (t Φ 2m — 1). By the dimensional reason, we have the following:

Proposition 4.4. For s + t < 2m - 2, we have that E2

st = E™t.

Hence in order to complete the proof of Theorem E, it suffices to determine the ex-

tensions of E%°t, where s + t are odd < 2m — 3. To do so, it is convenient to study

H*(V2m;Z2). '

Proposition 4.5. For q < 2m — 2, we have

Hq(V2m;Z2)= θ Z 2 .
( 2 )

From Proposition 4.5, we see that the extensions of E^t (s + t < 2m — 2) are trivial.

Hence Theorem E follows.

Thus in order to complete the proof of Theorem E, we need to prove Proposition 4.5,

which we prove for the rest of this section.

Let {Ep*} be the Z2-coefficient cohomology Serre spectral sequence of the fibration

F2m -• V2m -> RP°°. We prove the following:

Lemma 4.6. d2 : E^1 -* E%° equals to 0.

Lemma 4.6 tells us that elements of E^1 (t < 2m — 2) are permanent cycles. Hence

Proposition 4.5 follows.

Proof of Lemma 4.6. Suppose that Lemma 4.6 fails. Then we have i/1(Vr2m;

Z 2 ) = θ Z 2 . By Theorem D and the Z2-coefficient Poincare duality of M 2 m + 1 , we have
2m

H2m-3(Mim+1; Z 2 ) = φ Z 2 . Since H2m-3(M£m+1; Q) = θ Q by Theorem C (a), we
2ra 2ra

have

(4.7) / r 2 m . 3 ( M ί m + 1 ; Z ) = ΘZ.
2ra
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By Theorem C (a), we have i?2m-2(M"2m+i; Q) = 0 Hence by Theorem A (a),

^2m+i *s a non-orientable manifold of dimension 2ra — 2. Thus we have

#2m-2(M£ m + 1 ; Z) = 0. Then by (4.7), we have i J 2 m _ 2 ( M ^ m + 1 ; Z 2 ) = 0. This con-

tradicts the fact that ϋ/2m_2(M2m + 1; Z 2 ) = Z 2 , i.e., M 2 m + 1 is a compact manifold of

dimension 2m — 2.

This completes the proof of Lemma 4.6, and hence also that of Theorem E. •

5. Proof of Theorem F

In order to calculate ϋ * ( M 2 m + 1 ; Z), first we need to determine i f * ( M 2 m + 1 ; Z 2 ) .

By the Poincare duality, it suffices to determine i / ς ( M 2 m + 1 ; Z 2 ) (q <m — 1), which are

given by the following:

Proposition 5.1. For q < m — 1, we have

Hq(Km+l',Z2)= θ Z2.

Proof. First, i / ς ( M 2 m + 1 ; Z 2 ) (q < m — 2) are determined by Theorems D and E

together with the universal coefficient theorem. Then i ί m _ i ( M 2 m + 1 ; Z 2 ) is determined

by Proposition 3.4. •

REMARK 5.2. From Theorems D, E and Proposition 5.1, we see that (* 2 m + i )*

ϋ Γ m _ i ( M 2 m + 1 ; Z 2 ) -» i7m_i(V r

2 m; Z 2 ) is an isomorphism for all m.

Now we begin to determine H* ( M 2 m + 1 Z).

These modules are determined from Theorem C and the following:

Proposition 5.3. Heven (M^+x Z) are torsion free.

Proof. We can inductively prove this proposition from Theorem C and Proposition

5.1 together with the universal coefficient theorem. Π

(Π)t f O ί j a (M^ m + 1 ;Z) .

In order to determine these modules from Theorem C and Proposition 5.1, we need

to prove the non-existence of higher two-torsions, i.e., elements of order 2ί (i>2).

Let p : M ^ + i x R —• M 2 m + 1 be the real line bundle associated to the covering
σ

space M 2 m + i —> M 2 m + 1 . And let O ( M 2 m + i x R ) denote the local system of the above
σ

vector bundle. Finally, let O ( Γ M 2 m + 1 ) denote the local system of ΓΛf2m + 1, the tangent

bundle of M 2 m + 1 .

Concerning these local systems, we have the following:
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Lemma 5.4. As local systems on M 2 m + 1 , we have O ( M 2 m + i x R ) = O ( T M 2 m + 1 ) .
σ

Proof. Let R 2 —»• v —* M 2 m + i denote the normal bundle of M 2 m + i in ( 5 1 ) 2 m (cf.

(1.6)). As TM2m+1 φ ^ Γ ( ( 5 1 ) 2 m ) | M 2 m + 1 , we have

(5.5) TM^m+1 θ via <* TV2m\M!2m+1,

where vjσ —• M'2Ύn+λ denotes the vector bundle obtained from v —> M2 m +i by the action

of σ.

We study ι//σ. Recall that T M 2 m + i is given by (3.5). Similarly, for (zι,..., Z2m)

e M 2 r n + i , we have

T{zi,...,Z2m){{Sι)2m) ^

Hence by assigning : € ^(2l,...,22m) toξiZi -\ hξimZim, we have

ξ2)

(5.6) i/ ^ M 2 m + 1 x R 2 .

Under this identification, the bundle homomorphism dσ : v —> v is given by

(5.7)

(cf. (3.7)).

Then (5.6)-(5.7) tell us that

(5.8) v/σ Si M 2 m + i x R θ M ^ m + 1 x R.

Now, as V2m is orientable, we see from (5.5) and (5.8) that

(5.9) O(TM'2rn+1) ® O ( M 2 m + 1 x R ) ^ Z,

where Z denotes the simple local system on M 2 m + 1 . By taking a tensor

on both sides of (5.9), the result follows. Q

Let us denote the local systems O(M2m+ι x R ) = O ( T M 2 m + 1 ) (cf. Lemma 5.4) by
σ

z.
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(A) The case of an odd m.

We can determine i / g ( M 2 m + 1 ; Z ) (q : odd < m — 2) by Theorems D and E.

Thus we need to determine iJg(M2 m + 1 ;Z) (q : odd > m). By the Poincare dual-

ity: f f g ( M ί m + 1 ; Z ) * # 2 m - 2 - « ( Λ ^ m + 1 ; Z ) , it suffices to determine Hr(M^m+1;Z)

(r : odd < ra - 2).

Consider the Gysin sequence of p : M2 m +i x R —» M^^:

Ψ — 1 / A*

—>H r (M' 2 m J t l ' , Z)—•

Lemma 5.10. For an odd r < m — 2,

(ii) i J r ( M 2 m + i ; Z) w a/ree module.

(Hi) The order of a torsion element ofHr+1(M2m+1; Z) w exactly 2, i.e.,

ijΓ7'"1"1 ( M 2 m + 1 Z) ί/oes noί contain higher two-torsions.

Proof. This lemma is an easy consequence of Theorems D, E, 2.1 and Proposition

5.3. •

Now suppose that Hr'(Af2'm_|_1; ^ ) contains a higher two-torsion. Then by Lemma

5.10 (iii), Ker [μ : Rr{M'2rnJtl\ Z) -> # r + 1 ( M 2 m + 1 ; Z)] contains a torsion element.

But by Lemma 5.10 (i)-(ii), Im [φ : # r ( M 2 m + i ; Z) -+ i / r ( M ^ m + 1 ; 2)] is a free

module. This is a contradiction. Thus Hr (M^m+i >2) (r : odd < m — 2) does not contain

higher two-torsions.

This completes the proof of Theorem F (a).

(B) The case of an even m.

As in (A), it suffices to determine Hr(M'2rn+\\ %) (r : °dd < m — 1). For an

odd r < m — 3, Lemma 5.10 applies and, by the same argument as in (A), we see that

i / r ( M 2 m + 1 ; Z) does not contain higher two-torsions.

But Lemma 5.10 fails when r = m — 1. Thus our argument cannot apply in this case.

This completes the proof of Theorem F (b). Π
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