AN EXTENTION OF MILNOR'S INEQUALITY

Ryoji KASAGAWA

(Received June 16, 1997)

1. Introduction

Milnor showed the following theorem.

Theorem 1.1 (Milnor [4]). Let $\rho: \pi_1(\Sigma_g) \to SL(2,\mathbb{R})$ be a representation of the surface group and let E be the corresponding flat vector bundle of rank 2 over Σ_g . Then the Euler number $\langle \chi(E), [\Sigma_g] \rangle$ satisfies the following inequality:

$$|\langle \chi(E), [\Sigma_g] \rangle| \leq g - 1.$$

Conversely any integer χ such that $|\chi| \leq g-1$ is realized as the Euler number of a flat $SL(2,\mathbb{R})$ -vector bundle.

There are various generalizations of this theorem, for which see [5].

In this paper we will prove an extension of this theorem to a representation of surface group to the symplectic group $Sp(2p,\mathbb{R})$. More precisely, let $\rho:\pi_1(\Sigma_g)\to Sp(2p,\mathbb{R})$ be a representation of the surface group and let V be the corresponding flat symplectic vector bundle of rank 2p over Σ_g . Since a maximal compact subgroup of $Sp(2p,\mathbb{R})$ is isomorphic to U(p), V admits a positive compatible complex structure with the symplectic structure which always exists and is unique up to homotopy. Hence the first Chern class

$$c_1(V) \in H^2(\Sigma_q; \mathbb{Z})$$

is uniquely defined.

The main theorem of this paper is the following.

Theorem 1.2. Let $g, p \geq 1$ be integers and Σ_g a closed oriented surface of genus g. For any representation $\rho: \pi_1(\Sigma_g) \to Sp(2p, \mathbb{R})$, let V be the corresponding flat symplectic vector bundle of rank 2p over Σ_g . Then the following inequality holds:

$$|\langle c_1(V), [\Sigma_g] \rangle| \leq p(g-1).$$

28 R. KASAGAWA

Conversely any integer c_1 such that $|c_1| \le p(g-1)$ is realized as the first Chern class of a flat symplectic vector bundle of rank 2p.

2. The signature of local coefficient systems

In this section we shall review the result due to Lusztig and Atiyah ([1, 3]) which is needed to prove the main theorem.

Let Σ_g be a closed oriented surface of genus $g \geq 1$. Let $E \to \Sigma_g$ be a flat (possibly indefinite) hermitian vector bundle with a hermitian form h. It corresponds to a homomorphism

$$\rho: \pi_1(\Sigma_q) \to U(p,q),$$

where U(p,q) is the unitary group of the hermitian form $\sum_{i=1}^p |z_i|^2 - \sum_{i=p+1}^{p+q} |z_i|^2$ on $(z_i) \in \mathbb{C}^{p+q}$. Since a flat vector bundle is identified with a local coefficient system, we have the cohomology group $H^*(\Sigma_g; E)$. Moreover the first cohomology group $H^1(\Sigma_g; E)$ has a skew-hermitian form A induced by the cup product and the hermitian form h. Since $\sqrt{-1}A$ is a hermitian form, we can consider its signature. Let $sign(\Sigma_g, E)$ denote the signature of $\sqrt{-1}A$.

Take a splitting $E=E^+\oplus E^-$ of E. Here a splitting of the hermitian vector bundle E is defined as a smooth decomposition $E=E^+\oplus E^-$ of E which is orthogonal relative to the hermitian form and such that the form is positive on E^+ and negative on E^- . Such a splitting is identified with a reduction of the structure group U(p,q) of E to its maximal compact subgroup $U(p)\times U(q)$. It always exists and is unique up to homotopy.

Theorem 2.1 (Lusztig [3], Atiyah [1]). If E is a flat hermitian vector bundle over the closed surface Σ_g then

$$sign(\Sigma_g, E) = 2(c_1(L^+) - c_1(L^-)),$$

where $L^{\pm} = \det E^{\pm}$ and $E = E^{+} \oplus E^{-}$ is a splitting of E.

3. Proof of the main theorem

In this section we shall prove the main theorem.

Let $V \to \Sigma_g$ be a flat symplectic vector bundle of rank 2p over Σ_g and ω its symplectic form.

Put $E = V \otimes \mathbb{C}$ and extend the symplectic form ω on V to a complex symplectic form on E which is also denoted by ω . The hermitian form h on E is defined by

$$h_x(u,v) = -\sqrt{-1}\omega_x(u,\bar{v})$$

for any $x \in \Sigma_q$ and $u, v \in E_x$.

Let $J:V \to V$ be a positive compatible complex structure with the symplectic form ω , i.e. $J:V \to V$ is a bundle homomorphism which satisfies $J^2 = -1$ and such that $\omega(\cdot,J\cdot)$ is a Euclidean metric of V. Such a complex structure always exists and is unique up to homotopy. The complex vector bundle (V,J) of rank p over $\mathbb C$ is denoted by V_J . Extend J to a complex linear map on E, then by $J^2 = -1$, we have the decomposition $E = E' \oplus E''$ of E by the eigenspaces of E', where $E' = \sqrt{-1}id_{E'}$ and $E'' = \sqrt{-1}id_{E''}$. It is well known that the complex isomorphisms $E' \cong V_J$ and $E'' \cong \bar{E}' \cong \bar{V}_J$ hold, where $\bar{E}' = V_J \oplus \bar{V}_J$. Moreover it is easy to see that this decomposition gives a splitting of E where $E' \cong V_J$ and $E'' \cong \bar{V}_J$ (see [6]).

By Theorem 2.1, we have

$$sign(\Sigma_q, E) = 2(c_1(V_J) - c_1(\bar{V}_J)) = 4c_1(V_J).$$

Note that, for any complex vector bundle F, the equalities $c_1(F) = c_1(\det F)$ and $c_1(\bar{F}) = -c_1(F)$ hold.

On the other hand, since E is a flat vector bundle, we have the following de Rham complex with local coefficients in E:

$$d_E^{\bullet}: 0 \to \Omega^0(\Sigma_g; E) \stackrel{d_E}{\to} \Omega^1(\Sigma_g; E) \stackrel{d_E}{\to} \Omega^2(\Sigma_g; E) \to 0.$$

By the Atiyah-Singer index theorem ([2]), we obtain

$$\operatorname{ind}(d_E^{\bullet}) = \operatorname{rank}_{\mathbb{C}} E \cdot \chi(\Sigma_g) = 4p(1-g).$$

We shall prove the inequality in the main theorem in the following two cases.

In the first case we suppose that $H^0(\Sigma_g; E) = 0$. We then have $H^2(\Sigma_g; E) = 0$ by the duality after identifications $E \cong \bar{E} \cong E^*$. Thus we have $\dim_{\mathbb{C}} H^1(\Sigma_g; E) = 4p(g-1)$, and hence obtain

$$|\langle c_1(V_J), [\Sigma_g] \rangle| = \frac{1}{4} |\operatorname{sign}(\Sigma_g, E)| \le p(g-1).$$

In the second case we suppose that $H^0(\Sigma_g;E) \neq 0$ and hence $H^0(\Sigma_g;V)$ is also nontrivial. Thus there exists a nonzero element s of $H^0(\Sigma_g;V)$ which does not vanish at any point of Σ_g . $W:=\mathbb{R} s$ defines an \mathbb{R} -line subbundle of V. Let $W^{\perp_\omega}\subset V$ be the subbundle of V orthogonal to W with respect to the symplectic form ω , then W is also a subbundle of W^{\perp_ω} . The quotient bundle W^{\perp_ω}/W has the symplectic form ω induced from ω . From the construction, it is clear that this bundle is a flat symplectic vector bundle of rank 2(p-1).

Put $W_J=\mathbb{R}s\oplus J\mathbb{R}s$, then it is a trivial complex line subbundle of V_J . Let $W_J^{\perp_{h'}}$ be the subbundle of V_J orthogonal to W_J with respect to the hermitian form $h'(\cdot,\cdot):=\omega(\cdot,J\cdot)-\sqrt{-1}\omega(\cdot,\cdot)$, which is also a symplectic vector bundle with a positive compatible complex structure. It is easy to see that the inclusion $W_J^{\perp_{h'}}\hookrightarrow W^{\perp_{\omega}}$

induces the isomorphism

$$(W_J^{\perp_{h'}}, \omega|_{W_J^{\perp_{h'}}}) \cong (W^{\perp_{\omega}}/W, \underline{\omega})$$

as smooth symplectic bundles. So a positive compatible complex structure with $\underline{\omega}$ on $W^{\perp_{\omega}}/W$ is induced from the one on $W_J^{\perp_{h'}}$ via the isomorphism. Thus we have

$$c_1(V_J) = c_1(W_J^{\perp_{h'}} \oplus W_J) = c_1(W_J^{\perp_{h'}}) = c_1(W^{\perp_{\omega}}/W).$$

In particular if p = 1, then we obtain $c_1(V_J) = 0$. So we complete the proof of the inequality in Theorem 1.2 for p = 1.

For p>1, we may suppose that $c_1(V)\neq 0$. If necessary, repeating the above argument, we can construct a flat symplectic vector bundle Z over Σ_g of rank q< p such that $H^0(\Sigma_g; Z\otimes \mathbb{C})=0$ and $c_1(V)=c_1(Z)$. From the first case, we have

$$|\langle c_1(V), [\Sigma_g] \rangle| = |\langle c_1(Z), [\Sigma_g] \rangle| \le q(g-1) \le p(g-1).$$

This completes the proof of the inequality.

Conversely for any integer c_1 such that $|c_1| \leq p(g-1)$, since $Sp(2,\mathbb{R}) = SL(2,\mathbb{R})$, the existence of a flat symplectic vector bundle V over Σ_g of rank 2p with $\langle c_1(V), [\Sigma_g] \rangle = c_1$ is true for p=1 by Theorem 1.1.

For p>1, suppose that $c_1=p(g-1)$ since the other cases can easily be obtained by the same method. Let V_1 be a flat symplectic vector bundle over Σ_g of rank 2 with $c_1(V_1)=g-1$. The direct sum $V=\overset{p}{\oplus}V_1$ of p copies of V_1 is a flat symplectic vector bundle of rank 2p with

$$\langle c_1(V), [\Sigma_g] \rangle = p \langle c_1(V_1), [\Sigma_g] \rangle = p(g-1).$$

This vector bundle V is a required one.

This finishes the proof of the main theorem.

ACKNOWLEDGMENTS. The author would like to thank Professor H.Moriyoshi for correcting an earlier version of the manuscript.

References

- [1] M.F. Atiyah: The logarithm of the Dedekind η-function, Math. Ann. 278 (1987), 335–380.
- [2] M.F. Atiyah and I.M. Singer: The index of elliptic operators III, Ann. Math. 87 (1968), 546-604.
- [3] G. Lusztig: Novikov's higher signature theorem and families of elliptic operators, J. Differ. Geometry, 7 (1972), 229-256.

- [4] J. Milnor: On the existence of a connection with curvature zero, Comm. Math. Helv, 32 (1958), 215-223.
- [5] A.G. Reznikov: Harmonic maps, hyperbolic cohomology and higher Milnor inequalities, Topology, 32 (1993), 899–907.
- [6] I. Vaisman: Symplectic Geometry and Secondary Characteristic Classes, 72, Birkhäuser, Progress in mathematics, 1987.

Department of Mathematics Tokyo Institute of Technology Oh-okayama, Meguro-ku Tokyo, 152–8551, Japan e-mail: kasagawa@math.titech.ac.jp