AN EXTENTION OF MILNOR'S INEQUALITY

Ryoл KASAGAWA

(Received June 16, 1997)

1. Introduction

Milnor showed the following theorem.
Theorem 1.1 (Milnor [4]). Let $\rho: \pi_{1}\left(\Sigma_{g}\right) \rightarrow S L(2, \mathbb{R})$ be a representation of the surface group and let E be the corresponding flat vector bundle of rank 2 over Σ_{g}. Then the Euler number $\left\langle\chi(E),\left[\Sigma_{g}\right]\right\rangle$ satisfies the following inequality:

$$
\left|\left\langle\chi(E),\left[\Sigma_{g}\right]\right\rangle\right| \leq g-1 .
$$

Conversely any integer χ such that $|\chi| \leq g-1$ is realized as the Euler number of a flat $S L(2, \mathbb{R})$-vector bundle.

There are various generalizations of this theorem, for which see [5].
In this paper we will prove an extension of this theorem to a representation of surface group to the symplectic group $S p(2 p, \mathbb{R})$. More precisely, let $\rho: \pi_{1}\left(\Sigma_{g}\right) \rightarrow$ $S p(2 p, \mathbb{R})$ be a representation of the surface group and let V be the corresponding flat symplectic vector bundle of rank $2 p$ over Σ_{g}. Since a maximal compact subgroup of $S p(2 p, \mathbb{R})$ is isomorphic to $U(p), V$ admits a positive compatible complex structure with the symplectic structure which always exists and is unique up to homotopy. Hence the first Chern class

$$
c_{1}(V) \in H^{2}\left(\Sigma_{g} ; \mathbb{Z}\right)
$$

is uniquely defined.
The main theorem of this paper is the following.

Theorem 1.2. Let $g, p \geq 1$ be integers and Σ_{g} a closed oriented surface of genus g. For any representation $\rho: \pi_{1}\left(\Sigma_{g}\right) \rightarrow S p(2 p, \mathbb{R})$, let V be the corresponding flat symplectic vector bundle of rank $2 p$ over Σ_{g}. Then the following inequality holds:

$$
\left|\left\langle c_{1}(V),\left[\Sigma_{g}\right]\right\rangle\right| \leq p(g-1) .
$$

Conversely any integer c_{1} such that $\left|c_{1}\right| \leq p(g-1)$ is realized as the first Chern class of a flat symplectic vector bundle of rank $2 p$.

2. The signature of local coefficient systems

In this section we shall review the result due to Lusztig and Atiyah ([1, 3]) which is needed to prove the main theorem.

Let Σ_{g} be a closed oriented surface of genus $g \geq 1$. Let $E \rightarrow \Sigma_{g}$ be a flat (possibly indefinite) hermitian vector bundle with a hermitian form h. It corresponds to a homomorphism

$$
\rho: \pi_{1}\left(\Sigma_{g}\right) \rightarrow U(p, q),
$$

where $U(p, q)$ is the unitary group of the hermitian form $\sum_{i=1}^{p}\left|z_{i}\right|^{2}-\sum_{i=p+1}^{p+q}\left|z_{i}\right|^{2}$ on $\left(z_{i}\right) \in \mathbb{C}^{p+q}$. Since a flat vector bundle is identified with a local coefficient system, we have the cohomology group $H^{*}\left(\Sigma_{g} ; E\right)$. Moreover the first cohomology group $H^{1}\left(\Sigma_{g} ; E\right)$ has a skew-hermitian form A induced by the cup product and the hermitian form h. Since $\sqrt{-1} A$ is a hermitian form, we can consider its signature. Let $\operatorname{sign}\left(\Sigma_{g}, E\right)$ denote the signature of $\sqrt{-1} A$.

Take a splitting $E=E^{+} \oplus E^{-}$of E. Here a splitting of the hermitian vector bundle E is defined as a smooth decomposition $E=E^{+} \oplus E^{-}$of E which is orthogonal relative to the hermitian form and such that the form is positive on E^{+}and negative on E^{-}. Such a splitting is identified with a reduction of the structure group $U(p, q)$ of E to its maximal compact subgroup $U(p) \times U(q)$. It always exists and is unique up to homotopy.

Theorem 2.1 (Lusztig [3], Atiyah [1]). If E is a flat hermitian vector bundle over the closed surface Σ_{g} then

$$
\operatorname{sign}\left(\Sigma_{g}, E\right)=2\left(c_{1}\left(L^{+}\right)-c_{1}\left(L^{-}\right)\right),
$$

where $L^{ \pm}=\operatorname{det} E^{ \pm}$and $E=E^{+} \oplus E^{-}$is a splitting of E.

3. Proof of the main theorem

In this section we shall prove the main theorem.
Let $V \rightarrow \Sigma_{g}$ be a flat symplectic vector bundle of rank $2 p$ over Σ_{g} and ω its symplectic form.

Put $E=V \otimes \mathbb{C}$ and extend the symplectic form ω on V to a complex symplectic form on E which is also denoted by ω. The hermitian form h on E is defined by

$$
h_{x}(u, v)=-\sqrt{-1} \omega_{x}(u, \bar{v})
$$

for any $x \in \Sigma_{g}$ and $u, v \in E_{x}$.

Let $J: V \rightarrow V$ be a positive compatible complex structure with the symplectic form ω, i.e. $J: V \rightarrow V$ is a bundle homomorphism which satisfies $J^{2}=-1$ and such that $\omega(\cdot, J \cdot)$ is a Euclidean metric of V. Such a complex structure always exists and is unique up to homotopy. The complex vector bundle (V, J) of rank p over \mathbb{C} is denoted by V_{J}. Extend J to a complex linear map on E, then by $J^{2}=-1$, we have the decomposition $E=E^{\prime} \oplus E^{\prime \prime}$ of E by the eigenspaces of J, where $\left.J\right|_{E^{\prime}}=\sqrt{-1} i d_{E^{\prime}}$ and $\left.J\right|_{E^{\prime \prime}}=-\sqrt{-1} i d_{E^{\prime \prime}}$. It is well known that the complex isomorphisms $E^{\prime} \cong V_{J}$ and $E^{\prime \prime} \cong \bar{E}^{\prime} \cong \bar{V}_{J}$ hold, where ${ }^{-}$denotes the complex conjugation. Thus we have $E=V_{J} \oplus \bar{V}_{J}$. Moreover it is easy to see that this decomposition gives a splitting of E where $E^{+} \cong V_{J}$ and $E^{-} \cong \bar{V}_{J}$ (see [6]).

By Theorem 2.1, we have

$$
\operatorname{sign}\left(\Sigma_{g}, E\right)=2\left(c_{1}\left(V_{J}\right)-c_{1}\left(\bar{V}_{J}\right)\right)=4 c_{1}\left(V_{J}\right)
$$

Note that, for any complex vector bundle F, the equalities $c_{1}(F)=c_{1}(\operatorname{det} F)$ and $c_{1}(\bar{F})=-c_{1}(F)$ hold.

On the other hand, since E is a flat vector bundle, we have the following de Rham complex with local coefficients in E :

$$
d_{E}^{\bullet}: 0 \rightarrow \Omega^{0}\left(\Sigma_{g} ; E\right) \xrightarrow{d_{F}} \Omega^{1}\left(\Sigma_{g} ; E\right) \xrightarrow{d_{F}} \Omega^{2}\left(\Sigma_{g} ; E\right) \rightarrow 0 .
$$

By the Atiyah-Singer index theorem ([2]), we obtain

$$
\operatorname{ind}\left(d_{E}^{\bullet}\right)=\operatorname{rank}_{\mathbb{C}} E \cdot \chi\left(\Sigma_{g}\right)=4 p(1-g)
$$

We shall prove the inequality in the main theorem in the following two cases.
In the first case we suppose that $H^{0}\left(\Sigma_{g} ; E\right)=0$. We then have $H^{2}\left(\Sigma_{g} ; E\right)=0$ by the duality after identifications $E \cong \bar{E} \cong E^{*}$. Thus we have $\operatorname{dim}_{\mathbb{C}} H^{1}\left(\Sigma_{g} ; E\right)=$ $4 p(g-1)$, and hence obtain

$$
\left|\left\langle c_{1}\left(V_{J}\right),\left[\Sigma_{g}\right]\right\rangle\right|=\frac{1}{4}\left|\operatorname{sign}\left(\Sigma_{g}, E\right)\right| \leq p(g-1)
$$

In the second case we suppose that $H^{0}\left(\Sigma_{g} ; E\right) \neq 0$ and hence $H^{0}\left(\Sigma_{g} ; V\right)$ is also nontrivial. Thus there exists a nonzero element s of $H^{0}\left(\Sigma_{g} ; V\right)$ which does not vanish at any point of $\Sigma_{g} . W:=\mathbb{R} s$ defines an \mathbb{R}-line subbundle of V. Let $W^{\perp_{\omega}} \subset V$ be the subbundle of V orthogonal to W with respect to the symplectic form ω, then W is also a subbundle of $W^{\perp_{\omega}}$. The quotient bundle $W^{\perp_{\omega}} / W$ has the symplectic form $\underline{\omega}$ induced from ω. From the construction, it is clear that this bundle is a flat symplectic vector bundle of rank $2(p-1)$.

Put $W_{J}=\mathbb{R} s \oplus J \mathbb{R} s$, then it is a trivial complex line subbundle of V_{J}. Let $W_{J}^{\perp_{h^{\prime}}}$ be the subbundle of V_{J} orthogonal to W_{J} with respect to the hermitian form $h^{\prime}(\cdot, \cdot):=\omega(\cdot, J \cdot)-\sqrt{-1} \omega(\cdot, \cdot)$, which is also a symplectic vector bundle with a positive compatible complex structure. It is easy to see that the inclusion $W_{J}^{\perp_{h^{\prime}}} \hookrightarrow W^{\perp_{\omega}}$
induces the isomorphism

$$
\left(W_{J}^{\perp_{h^{\prime}}},\left.\omega\right|_{W_{J}^{\iota^{\prime}}}\right) \cong\left(W^{\perp_{\omega}} / W, \underline{\omega}\right)
$$

as smooth symplectic bundles. So a positive compatible complex structure with $\underline{\omega}$ on $W^{\perp_{\omega}} / W$ is induced from the one on $W_{J}^{\perp_{h^{\prime}}}$ via the isomorphism. Thus we have

$$
c_{1}\left(V_{J}\right)=c_{1}\left(W_{J}^{\perp_{h^{\prime}}} \oplus W_{J}\right)=c_{1}\left(W_{J}^{\perp_{h^{\prime}}}\right)=c_{1}\left(W^{\perp_{\omega}} / W\right)
$$

In particular if $p=1$, then we obtain $c_{1}\left(V_{J}\right)=0$. So we complete the proof of the inequality in Theorem 1.2 for $p=1$.

For $p>1$, we may suppose that $c_{1}(V) \neq 0$. If necessary, repeating the above argument, we can construct a flat symplectic vector bundle Z over Σ_{g} of rank $q<p$ such that $H^{0}\left(\Sigma_{g} ; Z \otimes \mathbb{C}\right)=0$ and $c_{1}(V)=c_{1}(Z)$. From the first case, we have

$$
\left|\left\langle c_{1}(V),\left[\Sigma_{g}\right]\right\rangle\right|=\left|\left\langle c_{1}(Z),\left[\Sigma_{g}\right]\right\rangle\right| \leq q(g-1) \leq p(g-1) .
$$

This completes the proof of the inequality.
Conversely for any integer c_{1} such that $\left|c_{1}\right| \leq p(g-1)$, since $S p(2, \mathbb{R})=$ $S L(2, \mathbb{R})$, the existence of a flat symplectic vector bundle V over Σ_{g} of rank $2 p$ with $\left\langle c_{1}(V),\left[\Sigma_{g}\right]\right\rangle=c_{1}$ is true for $p=1$ by Theorem 1.1.

For $p>1$, suppose that $c_{1}=p(g-1)$ since the other cases can easily be obtained by the same method. Let V_{1} be a flat symplectic vector bundle over Σ_{g} of rank 2 with $c_{1}\left(V_{1}\right)=g-1$. The direct sum $V \stackrel{p}{\oplus} V_{1}$ of p copies of V_{1} is a flat symplectic vector bundle of rank $2 p$ with

$$
\left\langle c_{1}(V),\left[\Sigma_{g}\right]\right\rangle=p\left\langle c_{1}\left(V_{1}\right),\left[\Sigma_{g}\right]\right\rangle=p(g-1) .
$$

This vector bundle V is a required one.
This finishes the proof of the main theorem.

Acknowledgments. The author would like to thank Professor H.Moriyoshi for correcting an earlier version of the manuscript.

References

[1] M.F. Atiyah: The logarithm of the Dedekind η-function, Math. Ann. 278 (1987), 335-380.
[2] M.F. Atiyah and I.M. Singer: The index of elliptic operators III, Ann. Math. 87 (1968), 546-604.
[3] G. Lusztig: Novikov's higher signature theorem and families of elliptic operators, J. Differ. Geometry, 7 (1972), 229-256.
[4] J. Milnor: On the existence of a connection with curvature zero, Comm. Math. Helv, 32 (1958), 215-223.
[5] A.G. Reznikov: Harmonic maps, hyperbolic cohomology and higher Milnor inequalities, Topology, 32 (1993), 899-907.
[6] I. Vaisman: Symplectic Geometry and Secondary Characteristic Classes, 72, Birkhäuser, Progress in mathematics, 1987.

Department of Mathematics
Tokyo Institute of Technology Oh-okayama, Meguro-ku Tokyo, 152-8551, Japan e-mail: kasagawa@math.titech.ac.jp

