
Kasagawa, R.
Osaka J. Math.
36 (1999), 27-31

AN EXTENTION OF MILNOR'S INEQUALITY

RYOJI KASAGAWA

(Received June 16, 1997)

1. Introduction

Milnor showed the following theorem.

Theorem 1.1 (Milnor [4]). Let p : πι(Σg) -> SL(2,E) be a representation of

the surface group and let E be the corresponding flat vector bundle of rank 2 over

Σg. Then the Euler number (χ(E), [Σg]} satisfies the following inequality:

\(χ(E),\Σg])\<g-l.

Conversely any integer \ such that |χ | < g — 1 is realized as the Euler number of a

flat SL{2, R)-vector bundle.

There are various generalizations of this theorem, for which see [5].

In this paper we will prove an extension of this theorem to a representation of

surface group to the symplectic group Sp(2p, E). More precisely, let p : π i ( Σ 5 ) —»

Sp(2p, E) be a representation of the surface group and let V be the corresponding

flat symplectic vector bundle of rank 2p over Σ^. Since a maximal compact subgroup

of Sp(2p, E) is isomorphic to U(p), V admits a positive compatible complex struc-

ture with the symplectic structure which always exists and is unique up to homotopy.

Hence the first Chern class

Cl(V) G H2(Σg;Z)

is uniquely defined.

The main theorem of this paper is the following.

Theorem 1.2. Let g, p > 1 be integers and Σ9 a closed oriented surface of

genus g. For any representation p : πi(Σ ί,) -> Sp(2p,R), let V be the correspond-

ing flat symplectic vector bundle of rank 2p over Σ9. Then the following inequality

holds:
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Conversely any integer c\ such that \c\\ < p(g — 1) is realized as the first Chern class

of a flat symplectic vector bundle of rank 2p.

2. The signature of local coefficient systems

In this section we shall review the result due to Lusztig and Atiyah ([1, 3]) which

is needed to prove the main theorem.

Let Σg be a closed oriented surface of genus g > 1. Let E -» Σ^ be a flat (pos-

sibly indefinite) hermitian vector bundle with a hermitian form ft. It corresponds to a

homomorphism

p:πi{Σg)->U(p,q),

where U(p,q) is the unitary group of the hermitian form Σ?=1 \z{\2 — Σ f = p + 1 \%i\2

on (zi) G Cp+q. Since a flat vector bundle is identified with a local coefficient sys-

tem, we have the cohomology group H*(Σg;E). Moreover the first cohomology group

Hι(Σg',E) has a skew-hermitian form A induced by the cup product and the her-

mitian form ft. Since y/^ΛA is a hermitian form, we can consider its signature. Let

sign(Σg,E) denote the signature of \/^ΛA.

Take a splitting E = E+ θ E " of E. Here a splitting of the hermitian vector bun-

dle E is defined as a smooth decomposition E — E+ 0 E~ of E which is orthogonal

relative to the hermitian form and such that the form is positive on E+ and negative

on E~. Such a splitting is identified with a reduction of the structure group U(p,q)

of E to its maximal compact subgroup U(p) x U(q). It always exists and is unique up

to homotopy.

Theorem 2.1 (Lusztig [3], Atiyah [1]). If E is a flat hermitian vector bundle

over the closed surface Σg then

where L± - det E± and E = E+ θ E~ is a splitting of E.

3. Proof of the main theorem

In this section we shall prove the main theorem.

Let V —» Σ^ be a flat symplectic vector bundle of rank 2p over Σg and ω its

symplectic form.

Put E — V (8) C and extend the symplectic form ω on V to a complex symplectic

form on E which is also denoted by ω. The hermitian form ft on E is defined by

hx{u,υ) = -y/^

for any x e Σg and u, v G Ex.
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Let J:V -> V be a positive compatible complex structure with the symplectic

form ω, i.e. J: V -» V is a bundle homomorphism which satisfies J 2 = - 1 and such

that ω(',J ) is a Euclidean metric of V. Such a complex structure always exists and

is unique up to homotopy. The complex vector bundle (V, J) of rank p over C is de-

noted by Vj. Extend J to a complex linear map on E, then by J 2 = - 1 , we have the

decomposition E = E1 Θ £J" of i? by the eigenspaces of J, where J|#/ = \[^ΛidE<

and J | # " = — \/^Tzd£/'. It is well known that the complex isomorphisms E' = Vj

and £ " = Ef = Vj hold, where ~ denotes the complex conjugation. Thus we have

E = Vj ΘΫJ. Moreover it is easy to see that this decomposition gives a splitting of

E where £ + Ξ Vj and £ T S V> (see [6]).

By Theorem 2.1, we have

sigμ(Σg,E) = 2(ci(yj) - Ci(V») - 4d(Kf).

Note that, for any complex vector bundle F, the equalities c\(F) — c i(detF) and

C l ( F ) = - c i ( F ) hold.

On the other hand, since E is a flat vector bundle, we have the following de

Rham complex with local coefficients in E:

d'E:0-> n°(Σg'yE) H (l1(Σg;E) dΛ Γί2(Σg;E) -> 0.

By the Atiyah-Singer index theorem ([2]), we obtain

ind(d^) - ranked χ(Σg) = 4p(l - g).

We shall prove the inequality in the main theorem in the following two cases.

In the first case we suppose that H°(Σg;E) = 0. We then have H2(Σg;E) = 0

by the duality after identifications E = E = E*. Thus we have dimc ^(Σg E) =

4p(g - 1), and hence obtain

= \\sign(Σg,E)\<p(g-l).

In the second case we suppose that H°(Σg;E) φ 0 and hence H°(Σg;V) is also

nontrivial. Thus there exists a nonzero element s of H°(Σg;V) which does not vanish

at any point of Σg. W:= Rs defines an E-line subbundle of V. Let W±ω C V be

the subbundle of V orthogonal to W with respect to the symplectic form ω, then W

is also a subbundle of W±ω. The quotient bundle W±ω /W has the symplectic form ω

induced from ω. From the construction, it is clear that this bundle is a flat symplectic

vector bundle of rank 2(p — 1).

Put Wj — Rs Θ JRs, then it is a trivial complex line subbundle of Vj. Let

Wfh> be the subbundle of Vj orthogonal to Wj with respect to the hermitian form

Λ'( , •): = ω(-, J-) — y/^Λω( , •), which is also a symplectic vector bundle with a posi-

tive compatible complex structure. It is easy to see that the inclusion WJ~h> c->
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induces the isomorphism

as smooth symplectic bundles. So a positive compatible complex structure with ω on

W±ω /W is induced from the one on Wfh> via the isomorphism. Thus we have

Cl(Vj) = Cl{WΪh' Θ Wj) = Cl(WJ-h>) = aiW^/W).

In particular if p = 1, then we obtain ci(Vj) = 0. So we complete the proof of

the inequality in Theorem 1.2 for p — 1.

For p > 1, we may suppose that ci(V) ^ 0. If necessary, repeating the above

argument, we can construct a flat symplectic vector bundle Z over Σg of rank q < p

such that H°(Σg; Z <S> C) = 0 and ci(F) = ci(Z). From the first case, we have

| < c i ( n [Σ,]>| - |<C l(Z), [Σ,])| < g(^ - 1) < p(g - 1).

This completes the proof of the inequality.

Conversely for any integer c\ such that |ci | < p{g - 1), since 5p(2, E) =

5L(2,E), the existence of a flat symplectic vector bundle V over Σg of rank 2p with

(ci(V), [Σg]) = a is true for p = 1 by Theorem 1.1.

For p > 1, suppose that ci = p ( # - 1) since the other cases can easily be obtained

by the same method. Let V\ be a flat symplectic vector bundle over Σg of rank 2 with
p

cι(Vι) — g — 1. The direct sum V = 0 V\ of p copies of V\ is a flat symplectic vector

bundle of rank 2p with

, [Σ9]> = ^ ( V O , [Σ,]> = p ( 5 - 1).

This vector bundle V is a required one.

This finishes the proof of the main theorem.
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