A CONSTRUCTION OF SURFACE BUNDLES OVER SURFACES WITH NON-ZERO SIGNATURE

Hisaaki ENDO ${ }^{\dagger}$

(Received June 11, 1997)

1. Introduction

Let Σ_{g} (respectively Σ_{h}) be a closed oriented surface of genus g (respectively h), where g (respectively h) is a non-negative integer. Let Diff Σ_{h} be the group of all orientation-preserving diffeomorphisms of Σ_{h} with C^{∞}-topology. A $\Sigma_{h^{-}}$ bundle over Σ_{g} (also called a surface bundle over a surface) is fiber bundle $\xi=$ $\left(E, \Sigma_{g}, p, \Sigma_{h}\right.$, Diff $\left._{+} \Sigma_{h}\right)$ over Σ_{g} with total space E, fiber Σ_{h}, projection $p: E \longrightarrow \Sigma_{g}$ and structure group Diff ${ }_{+} \Sigma_{h}$. Our main concern is the signature $\tau(E)$ of the total space E of ξ.

It is easily seen that if ξ is a trivial bundle then $\tau(E)=\tau\left(\Sigma_{g}\right) \tau\left(\Sigma_{h}\right)=0$. Chern-Hirzebruch-Serre [5] proved that if the fundamental group $\pi\left(\Sigma_{g}\right)$ of Σ_{g} acts trivially on the cohomology ring $H^{*}\left(\Sigma_{h} ; \mathbb{R}\right)$ of Σ_{h} then $\tau(E)=0$.

Kodaira [12] and Atiyah [1] gave examples of surface bundles over surfaces with non-zero signature. For each pair (m, t) of integers $m, t \in \mathbb{Z}(m \geq 2, t \geq 3)$, Kodaira constructed a surface bundle $\xi=\xi(m, t)$ with

$$
\begin{aligned}
g & =m^{2 t}(t-1)+1, \\
h & =m t \\
\tau(E) & =\frac{4}{3} m^{2 t-1}(t-1)\left(m^{2}-1\right)
\end{aligned}
$$

By setting $m=2$ and $t=3$, we obtain a surface bundle $\xi=\xi(2,3)$ with $g=129$, $h=6$ and $\tau(E)=256$. The total space E of the bundle $\xi=\xi(m, t)$ is an m-fold branched covering of $\Sigma_{g} \times \Sigma_{t}$ and its signature $\tau(E)$ can be calculated by using G signature theorem(see [9] and [11]).

Meyer [16], [17] gave a signature formula for surface bundles over surfaces in terms of the signature cocycle τ_{h}, which is a 2-cocycle of the Siegel modular group $S p(2 h, \mathbb{Z})$ of degree h. Using the signature cocycle and Birman-Hilden's relations [3] of mapping class groups of surfaces, he showed that if $h=1,2$ or $g=1$ then

[^0]$\tau(E)=0$. But he also showed that for every $h \geq 3$ and every $n \in \mathbb{Z}$ there exist an integer $g \geq 0$ and a Σ_{h}-bundle ξ over Σ_{g} such that $\tau(E)=4 n$.

We consider the following problem:
Problem 1.1. For each $h \geq 3$ and each $n \in \mathbb{Z}$, let $g(h, n)$ be the minimum value of the genus g such that there exists a Σ_{h}-bundle ξ over Σ_{g} with $\tau(E)=4 n$. Determine the value $g(h, n)$.

In this paper, we estimate the value $g(h, n)$ by using Wajnryb's presentation[19] of the mapping class group \mathcal{M}_{h} of Σ_{h}.

Our main result is:
Theorem 1.2. For each $h \geq 3$ and each $n \in \mathbb{Z}(n \neq 0)$, the following inequality holds:

$$
\frac{|n|}{h-1}+1 \leq g(h, n) \leq 111|n| .
$$

We construct a Σ_{h}-bundle ξ over Σ_{g} with $g=111, h=3$ and $\tau(E)=-4$ to prove Theorem 1.2. The genus of the base space of this bundle and that of a fiber of it are smaller than those of any example constructed by Kodaira [12] and Atiyah [1].

In Section 2, we review Meyer's work [16], [17] on signature of surface bundles over surfaces. And in Section 3, we calculate the values of Meyer's signature cocycle for the relators of Wajnryb's presentation [19] of the mapping class group \mathcal{M}_{h} and characterize the 2 -cycles of \mathcal{M}_{h} as words in the generators of the presentation of \mathcal{M}_{h}. We prove our main theorem in Section 4 by using this characterization and a simple technique of the commutator collection process [7]. In Section 2, we review Meyer's work [16], [17] on signature of surface bundles over surfaces. And in Section 3, we calculate the values of Meyer's signature cocycle for the relators of Wajnryb's presentation [19] of the mapping class group \mathcal{M}_{h} and characterize the 2-cycles of \mathcal{M}_{h} as words in the generators of the presentation of \mathcal{M}_{h}. We prove our main theorem in Section 4 by using this characterization and a simple technique of the commutator collection process [7].

The author wishes to express his heartfelt gratitude to his adviser, Prof. Katsuo Kawakubo, for helpful comments and useful suggestions, and Kazunori Kikuchi and Toshiyuki Akita for helpful discussions.

2. Meyer's signature formula

In this section we review Meyer's signature cocycle and Meyer's signature formula [16], [17] for surface bundles over surfaces.

For a pair (α, β) of symplectic matricies $\alpha, \beta \in S p(2 h, \mathbb{Z})$, the vector space $V_{\alpha, \beta}$
is defined by:

$$
V_{\alpha, \beta}:=\left\{(x, y) \in \mathbb{R}^{2 h} \times \mathbb{R}^{2 h} \mid\left(\alpha^{-1}-I\right) x+(\beta-I) y=0\right\},
$$

where I is the identity matrix. Consider the (possibly degenerate) symmetric bilinear form

$$
\langle\quad, \quad\rangle_{\alpha, \beta}: V_{\alpha, \beta} \times V_{\alpha, \beta} \longrightarrow \mathbb{R}
$$

on $V_{\alpha, \beta}$ defined by:

$$
\begin{gathered}
\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\rangle_{\alpha, \beta}:=\left\langle x_{1}+y_{1},(I-\beta) y_{2}\right\rangle, \\
\left(x_{i}, y_{i}\right) \in V_{\alpha, \beta} \quad(i=1,2),
\end{gathered}
$$

where \langle,$\rangle is the standard symplectic form on \mathbb{R}^{2 h}$ given by:

$$
\begin{gathered}
\langle x, y\rangle={ }^{t} x J y \quad\left(x, y \in \mathbb{R}^{2 h}\right), \\
J=\left(\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right) \in M_{2 h}(\mathbb{R}) .
\end{gathered}
$$

Meyer's signature cocycle [16], [17]

$$
\tau_{h}: S p(2 h, \mathbb{Z}) \times S p(2 h, \mathbb{Z}) \longrightarrow \mathbb{Z}
$$

is defined by:

$$
\begin{gathered}
\left.\tau_{h}(\alpha, \beta):=\operatorname{sign}\left(V_{\alpha, \beta}, \zeta, \quad\right\rangle_{\alpha, \beta}\right) \\
(\alpha, \beta \in S p(2 h, \mathbb{Z})) .
\end{gathered}
$$

From the Novikov additivity, τ_{h} is a 2 -cocycle of $S p(2 h, \mathbb{Z})$ and represents a cohomology class $\left[\tau_{h}\right] \in H^{2}(S p(2 h, \mathbb{Z}), \mathbb{Z})$.

Let \mathcal{M}_{h} be the mapping class group of a surface Σ_{h} of genus h, namely it is the group of all isotopy classes of orientation-preserving diffeomorphisms of Σ_{h}. By choosing a symplectic basis on $H^{1}\left(\Sigma_{h} ; \mathbb{Z}\right) \cong \mathbb{Z}^{\oplus 2 h}$, the natural action of \mathcal{M}_{h} on $H^{1}\left(\Sigma_{h} ; \mathbb{Z}\right)$ induces a representation $\sigma: \mathcal{M}_{h} \longrightarrow S p(2 h, \mathbb{Z})$.

Next, we define a homomorphism $k: H_{2}\left(\mathcal{M}_{h} ; \mathbb{Z}\right) \longrightarrow \mathbb{Z}$ by using τ_{h} and σ. It is known that the group \mathcal{M}_{h} is finitely presentable, so there exists an exact sequence:

$$
1 \longrightarrow R \longrightarrow F \xrightarrow{\pi} \mathcal{M}_{h} \longrightarrow 1,
$$

where F is a free group of finite rank generated by a free basis $E=\left\{e_{\lambda}\right\}_{\lambda \in \Lambda}$. By well known Hopf's theorem (cf. [4]) the following isomorphism holds:

$$
H_{2}\left(\mathcal{M}_{h} ; \mathbb{Z}\right) \cong R \cap[F, F] /[R, F] .
$$

The map $c: F \longrightarrow \mathbb{Z}$ is defined by:

$$
\begin{gathered}
c(x):=\sum_{j=1}^{m} \tau_{h}\left(\sigma\left(\pi\left(\widetilde{x}_{j-1}\right)\right), \sigma\left(\pi\left(x_{j}\right)\right)\right) \\
\left(x=\prod_{j=1}^{m} x_{i}, x_{i} \in E \cup E^{-1}, \widetilde{x}_{j}=\prod_{i=1}^{j} x_{i}\right) .
\end{gathered}
$$

It can be checked that the restriction $\left.c\right|_{R}: R \longrightarrow \mathbb{Z}$ is actually a homomorphism and that $c([R, F])=0$. Hence $\left.c\right|_{R}$ naturally induces a homomorphism k : $H_{2}\left(\mathcal{M}_{h} ; \mathbb{Z}\right) \cong R \cap[F, F] /[R, F] \longrightarrow \mathbb{Z}$.

Now, we describe Meyer's signature formula for surface bundles over surfaces.
Let $\xi=\left(E, \Sigma_{g}, p, \Sigma_{h}\right.$, Diff $\left._{+} \Sigma_{h}\right)$ be a Σ_{h}-bundle over Σ_{g} and $f: \Sigma_{g} \longrightarrow$ B Diff $_{+} \Sigma_{h}$ its classifying map. The map f induces a homomorphism χ between fundamental groups:

$$
\chi:=f_{\sharp}: \pi_{1}\left(\Sigma_{g}\right) \longrightarrow \pi_{1}\left(B \text { Diff }_{+} \Sigma_{h}\right) \cong \pi_{0}\left(\text { Diff }_{+} \Sigma_{h}\right) \cong \mathcal{M}_{h},
$$

which is called the holonomy homomorphism of ξ (cf. [18]). By a theorem of Earle and Eells [6], which states that the connected component Diff Σ_{h} of the identity of Diff ${ }_{+} \Sigma_{h}$ is contractible if $h \geq 2$, the isomorphism class of ξ is completely determined by its holonomy homomorphism χ when $h \geq 2$ (see [16], [17] and [18]). From now on, we suppose that $h \geq 2$ and $g \geq 1$.

The fundamental group $\pi_{1}\left(\Sigma_{g}\right)$ of Σ_{g} is finitely presented, so we have an exact sequence:

$$
1 \longrightarrow \widetilde{R} \longrightarrow \widetilde{F} \xrightarrow{\tilde{\pi}} \pi_{1}\left(\Sigma_{g}\right) \longrightarrow 1,
$$

where

$$
\begin{gathered}
\pi_{1}\left(\Sigma_{g}\right)=\left\langle a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g} \mid \prod_{i=1}^{g}\left[a_{i}, b_{i}\right]\left(=\prod_{i=1}^{g} a_{i} b_{i} a_{i}^{-1} b_{i}^{-1}\right)=1\right\rangle, \\
\widetilde{F}=\left\langle\widetilde{a}_{1}, \cdots, \widetilde{a}_{g}, \widetilde{b}_{1}, \cdots, \widetilde{b}_{g}\right\rangle \\
\widetilde{\pi}: \widetilde{a}_{i} \longmapsto a_{i}, \widetilde{b}_{i} \longmapsto b_{i}
\end{gathered}
$$

and \widetilde{R} is the normal closure of $\widetilde{r}:=\prod_{i=1}^{g}\left[\widetilde{a}_{i}, \widetilde{b}_{i}\right]\left(=\prod_{i=1}^{g} \tilde{a}_{i} \widetilde{b}_{i} \tilde{a}_{i}^{-1} \widetilde{b}_{i}^{-1}\right)$ in \widetilde{F}. Hopf's theorem allows us to identify $H_{2}\left(\pi_{1}\left(\Sigma_{g}\right) ; \mathbb{Z}\right)$ with $\widetilde{R} \cap[\widetilde{F}, \widetilde{F}] /[\widetilde{R}, \widetilde{F}]$. For the holonomy homomorphism χ, we can choose a homomorphism $\widetilde{\chi}: \widetilde{F} \longrightarrow F$ so that $\pi \circ \widetilde{\chi}=\chi \circ \widetilde{\pi}$. Then the induced homomorphism $\chi_{*}: H_{2}\left(\pi_{1}\left(\Sigma_{g}\right) ; \mathbb{Z}\right) \longrightarrow H_{2}\left(\mathcal{M}_{h} ; \mathbb{Z}\right)$ is defined by:

$$
\chi_{*}(\widetilde{x}[\widetilde{R}, \widetilde{F}]):=\widetilde{\chi}(\widetilde{x})[R, F] \quad(\widetilde{x} \in \widetilde{R} \cap[\tilde{F}, \widetilde{F}])
$$

and is not depend on a choice of $\tilde{\chi}$.
Meyer proved the following theorem by using the Leray-Serre spectral sequence for ξ and the cohomology group $H^{1}\left(\Sigma_{g} ; H_{1}\left(\Sigma_{h} ; \mathbb{R}\right)\right)$ of Σ_{g} with local coefficients.

Theorem 2.1 (Meyer [16], [17]). Let $\xi=\left(E, \Sigma_{g}, p, \Sigma_{h}\right.$, Diff $\left._{+} \Sigma_{h}\right)$ be a $\Sigma_{h^{-}}$ bundle over $\Sigma_{g}(h \geq 2, g \geq 1)$ and $\chi: \pi_{1}\left(\Sigma_{g}\right) \longrightarrow \mathcal{M}_{h}$ its holonomy homomorphism. Then the following equality holds:

$$
\tau(E)=-k\left(\chi_{*}(\widetilde{r}[\widetilde{R}, \widetilde{F}])\right)(=-c(\widetilde{\chi}(\widetilde{r}))) .
$$

3. Explicit description of $\mathbf{2}$-cycles of $\boldsymbol{M}_{\boldsymbol{h}}$

In this section, we calculate values of the map $c: F \longrightarrow \mathbb{Z}$ for the relators of the finite presentation of \mathcal{M}_{h} due to Wajnryb and give an explicit description of the homomorphism k defined in the preceding section in order to characterize the elements of $R \cap[F, F]$ as words of F.

Let \mathcal{M}_{h} be the mapping class group of a surface Σ_{h} of genus h. A finite presentation of \mathcal{M}_{2} was obtained by Birman-Hilden [3] and that of $\mathcal{M}_{h}(h \geq 3)$ by HatcherThurston [8].

Wajnryb [19] simplified their presentation of $\mathcal{M}_{h}(h \geq 2)$ as foll ws. (We denote the commutator $x y x^{-1} y^{-1}$ of $x, y \in F$ by $[x, y]$.)

The generators, which are called the Lickorish-Humphries generators, of the presentation are:

$$
y_{1}, y_{2}, u_{1}, u_{2}, \cdots, u_{h}, z_{1}, z_{2}, \cdots, z_{h-1}
$$

and the relators of it are:

$$
\left.\begin{array}{rl}
A^{1} & :=\left[y_{1}, y_{2}\right], \\
A_{i, j}^{2} & :=\left[y_{i}, u_{j}\right] \quad(i=1,2,1 \leq j \leq h, i \neq j), \\
A_{i, j}^{3} & :=\left[y_{i}, z_{j}\right] \quad(i=1,2,1 \leq j \leq h-1), \\
A_{i, j}^{4} & :=\left[u_{i}, u_{j}\right] \quad(1 \leq i<j \leq h), \\
A_{i, j}^{5} & :=\left[u_{i}, z_{j}\right] \quad(1 \leq i \leq h, 1 \leq j \leq h-1, j \neq i, i+1), \\
A_{i, j}^{6} & :=\left[z_{i}, z_{j}\right] \quad(1 \leq i<j \leq h-1), \\
B_{i}^{1} & :=y_{i} u_{i} y_{i} u_{i}^{-1} y_{i}^{-1} u_{i}^{-1} \quad(i=1,2), \\
B_{i}^{2} & :=u_{i} z_{i} u_{i} z_{i}^{-1} u_{i}^{-1} z_{i}^{-1} \quad(1 \leq i \leq h-1), \\
B_{i}^{3} & :=z_{i} u_{i+1} z_{i} u_{i+1}^{-1} z_{i}^{-1} u_{i+1}^{-1} \quad(1 \leq i \leq h-1), \\
C^{1} & :=\left(y_{1} u_{1} z_{1}\right)^{-4} y_{2}\left(u_{2} z_{1} u_{1} y_{1}^{2} u_{1} z_{1} u_{2}\right)^{-1} y_{2}\left(u_{2} z_{1} u_{1} y_{1}^{2} u_{1} z_{1} u_{2}\right), \\
D^{1} & :=y_{1} z_{1} z_{2} t_{1} t_{2}\left(y_{2} t_{2} y_{2} t_{2}^{-1} t_{1} t_{2} y_{2}\right)^{-1}\left(w u_{1} z_{1} u_{2} z_{2} u_{3}\right)^{-1} v w u_{1} z_{1} u_{2} z_{2} u_{3}, \\
E^{1} & :=\left[d, u_{h} z_{h-1} u_{h-1} \cdots z_{1} u_{1} y_{1}^{2} u_{1} z_{1} \cdots u_{h-1} z_{h-1} u_{h}\right.
\end{array}\right],
$$

where

$$
\begin{aligned}
t_{1} & :=u_{1} y_{1} z_{1} u_{1}, \\
t_{i} & :=u_{i} z_{i-1} z_{i} u_{i} \quad(2 \leq i \leq h-1), \\
v & :=y_{1} u_{1} z_{1} u_{2} y_{2}\left(y_{1} u_{1} z_{1} u_{2}\right)^{-1}, \\
w & :=z_{2} u_{3} t_{2} y_{2}\left(z_{2} u_{3} t_{2}\right)^{-1}, \\
v_{1} & :=\left(u_{2} z_{1} u_{1} y_{1}^{2} u_{1} z_{1} u_{2}\right)^{-1} y_{2}\left(u_{2} z_{1} u_{1} y_{1}^{2} u_{1} z_{1} u_{2}\right), \\
v_{i} & :=t_{i-1} t_{i} v_{i-1}\left(t_{i-1} t_{i}\right)^{-1} \quad(2 \leq i \leq h-1), \\
w_{1} & :=u_{1} z_{1} u_{2} v_{1}\left(u_{1} z_{1} u_{2}\right)^{-1}, \\
w_{i} & :=u_{i} z_{i} u_{i+1} v_{i}\left(u_{i} z_{i} u_{i+1}\right)^{-1} \quad(2 \leq i \leq h-1), \\
d & :=\left(w_{1} w_{2} \cdots w_{h-1}\right)^{-1} y_{1} w_{1} w_{2} \cdots w_{h-1} .
\end{aligned}
$$

Elements y_{i}, u_{i}, z_{i} can be interpreted as Dehn twists with respect to curves Y_{i}, U_{i}, Z_{i} in Fig. 1 of [3] (see also [13] and [10]). For $h=2$ we can omit the relator D^{1}.

By choosing a symplectic basis of $H^{1}\left(\Sigma_{h} ; \mathbb{Z}\right)$ as in [17], we fix an explicit representation $\sigma: \mathcal{M}_{h} \longrightarrow S p(2 h, \mathbb{Z})$ by:

$$
\begin{aligned}
\sigma: y_{i} & \longmapsto\left(\begin{array}{cc}
I & 0 \\
-E_{i i} & I
\end{array}\right) \quad(i=1,2), \\
\sigma: u_{i} & \longmapsto\left(\begin{array}{cc}
I & E_{i i} \\
0 & I
\end{array}\right) \quad(1 \leq i \leq h), \\
\sigma: z_{i} & \longmapsto\left(\begin{array}{cc}
I & 0 \\
-E_{i i}-E_{i+1, i+1}+E_{i, i+1}+E_{i+1, i} & I
\end{array}\right) \quad(1 \leq i \leq h-1),
\end{aligned}
$$

where $E_{i j} \in M_{h}(\mathbb{Z})$ is the (i, j)-matrix unit.
We also fix an exact sequence:

$$
1 \longrightarrow R \longrightarrow F \xrightarrow{\pi} \mathcal{M}_{h} \longrightarrow 1
$$

where

$$
F:=\left\langle y_{1}, y_{2}, u_{1}, \cdots, u_{h}, z_{1}, \cdots, z_{h-1}\right\rangle
$$

and R is the normal closure of the set of all relators $A_{i, j}^{l}, B_{i}^{l}, C^{1}, D^{1}, E^{1}$ in F. Let $c: F \longrightarrow \mathbb{Z}$ be the map defined as in Section 2 by using explicit homomorphisms σ and π fixed above.

Now we calculate values of the map $c: F \longrightarrow \mathbb{Z}$ for relators $A_{i, j}^{l}, B_{i}^{l}, C^{1}, D^{1}, E^{1}$ of the presentation and describe the homomorphism $\left.c\right|_{R}: R \longrightarrow \mathbb{Z}$.

To compute values of c, Meyer showed the following lemma:

Lemma 3.1 (Meyer[16], [17]). The map $c: F \longrightarrow \mathbb{Z}$ satisfies the following properties:
(1) $\quad c(x y)=c(x)+c(y)+\tau_{h}(\sigma(\pi(x)), \sigma(\pi(y))) \quad(x, y \in F)$;
(2) $c\left(x^{-1}\right)=-c(x) \quad(x \in F)$;
(3) $c\left(x y x^{-1}\right)=c(y) \quad(x, y \in F)$;
(4) $\quad c\left(x z y z^{-1}\right)=c(x)+c(y)$ if $\pi\left(x z y z^{-1}\right)=1 \in \mathcal{M}_{h} \quad(x, y, z \in F)$.

Values of c for relators are computed by using Lemma 3.1

Lemma 3.2. The values of c for the relators of Wajnryb's presentation of $\mathcal{M}_{h}(h \geq 3)$ are calculated as follows:
(1) $\quad c\left(A_{i, j}^{l}\right)=0 \quad($ for every $l, i, j)$;
(2) $c\left(B_{i}^{l}\right)=0 \quad($ for every $l, i)$;
(3) $c\left(C^{1}\right)=-6$;
(4) $c\left(D^{1}\right)=1$;
(5) $c\left(E^{1}\right)=0$.

Proof. We denote $\tau_{h}(\sigma(\pi(x)), \sigma(\pi(y)))$ by $\widetilde{\tau}_{h}(x, y)$ for $x, y \in F$. By virtue of Lemma 3.1, it follows immediately that $c\left(A_{i, j}^{l}\right)=c\left(B_{i}^{l}\right)=c\left(E^{1}\right)=0$. For example,

$$
\begin{aligned}
c\left(B_{1}^{1}\right) & =c\left(y_{1} \cdot u_{1} \cdot y_{1} u_{1}^{-1} y_{1}^{-1} \cdot u_{1}^{-1}\right) \\
& =c\left(y_{1}\right)+c\left(y_{1} u_{1}^{-1} y_{1}^{-1}\right) \\
& =c\left(y_{1}\right)+c\left(u_{1}^{-1}\right)=c\left(y_{1}\right)-c\left(u_{1}\right) \\
& =0
\end{aligned}
$$

Using Lemma 3.1 and calculating signature of symmetric bilinear forms concretely, we obtain values $c\left(C^{1}\right)$ and $c\left(D^{1}\right)$.

$$
\begin{aligned}
c\left(C^{1}\right)= & c\left(\left(y_{1} u_{1} z_{1}\right)^{-4} y_{2}\left(u_{2} z_{1} u_{1} y_{2}^{2} u_{1} z_{1} u_{2}\right)^{-1} y_{2}\left(u_{2} z_{1} u_{1} y_{2}^{2} u_{1} z_{1} u_{2}\right)\right) \\
= & c\left(\left(y_{1} u_{1} z_{1}\right)^{-4} y_{2}\right) \quad\left(c\left(y_{2}\right)=0\right) \\
= & c\left(\left(y_{1} u_{1} z_{1}\right)^{-4}\right)+\widetilde{\tau}_{h}\left(\left(y_{1} u_{1} z_{1}\right)^{-4}, y_{2}\right) \quad\left(c\left(y_{2}\right)=0\right) \\
= & 2 c\left(\left(y_{1} u_{1} z_{1}\right)^{-2}\right)+\widetilde{\tau}_{h}\left(\left(y_{1} u_{1} z_{1}\right)^{-2},\left(y_{1} u_{1} z_{1}\right)^{-2}\right)+\widetilde{\tau}_{h}\left(\left(y_{1} u_{1} z_{1}\right)^{-4}, y_{2}\right) \\
= & 4\left(\widetilde{\tau}_{h}\left(1, z_{1}^{-1}\right)+\widetilde{\tau}_{h}\left(z_{1}^{-1}, u_{1}^{-1}\right)+\widetilde{\tau}_{h}\left(z_{1}^{-1} u_{1}^{-1}, y_{1}^{-1}\right)\right) \\
& \quad+2 \widetilde{\tau}_{h}\left(\left(y_{1} u_{1} z_{1}\right)^{-1},\left(y_{1} u_{1} z_{1}\right)^{-1}\right) \\
& \quad+\widetilde{\tau}_{h}\left(\left(y_{1} u_{1} z_{1}\right)^{-2},\left(y_{1} u_{1} z_{1}\right)^{-2}\right)+\widetilde{\tau}_{h}\left(\left(y_{1} u_{1} z_{1}\right)^{-4}, y_{2}\right) \\
= & 4(0+0+0)+2 \cdot(-3)+(-1)+1 \\
= & -6 .
\end{aligned}
$$

$$
\begin{aligned}
c\left(D^{1}\right)= & c\left(y_{1} z_{1} z_{2} t_{1} t_{2}\left(y_{2} t_{2} y_{2} t_{2}^{-1} t_{1} t_{2} y_{2}\right)^{-1}\left(w u_{1} z_{1} u_{2} z_{2} u_{3}\right)^{-1} v w u_{1} z_{1} u_{2} z_{2} u_{3}\right) \\
= & c\left(y_{1} z_{1} z_{2} t_{1} t_{2}\left(y_{2} t_{2} y_{2} t_{2}^{-1} t_{1} t_{2} y_{2}\right)^{-1}\right) \\
\quad & \quad\left(c(v)=c\left(y_{1} u_{1} z_{1} u_{2} y_{2}\left(y_{1} u_{1} z_{1} u_{2}\right)^{-1}\right)=c\left(y_{1}\right)=0\right) \\
= & c\left(y_{1} z_{1} z_{2}\right)+c\left(t_{1} t_{2}\left(y_{2} t_{2} y_{2} t_{2}^{-1} t_{1} t_{2} y_{2}\right)^{-1}\right) \\
\quad & \quad+\widetilde{\tau}_{h}\left(y_{1} z_{1} z_{2}, t_{1} t_{2}\left(y_{2} t_{2} y_{2} t_{2}^{-1} t_{1} t_{2} y_{2}\right)^{-1}\right) \\
= & \widetilde{\tau}_{h}\left(y_{1}, z_{1}\right)+\widetilde{\tau}_{h}\left(y_{1} z_{1}, z_{2}\right)+c\left(t_{1} t_{2} y_{2}^{-1} t_{2}^{-1} t_{1}^{-1}\right)+c\left(t_{2} y_{2}^{-1} t_{2}^{-1} y_{2}^{-1}\right) \\
\quad & \quad+\widetilde{\tau}_{h}\left(t_{1} t_{2} y_{2}^{-1} t_{2}^{-1} t_{1}^{-1}, t_{2} y_{2}^{-1} t_{2}^{-1} y_{2}^{-1}\right)+\widetilde{\tau}_{h}\left(y_{1} z_{1} z_{2}, t_{1} t_{2}\left(y_{2} t_{2} y_{2} t_{2}^{-1} t_{1} t_{2} y_{2}\right)^{-1}\right) \\
= & \widetilde{\tau}_{h}\left(y_{1}, z_{1}\right)+\widetilde{\tau}_{h}\left(y_{1} z_{1}, z_{2}\right)+\widetilde{\tau}_{h}\left(t_{2} y_{2}^{-1} t_{2}^{-1}, y_{2}^{-1}\right) \\
& \quad+\widetilde{\tau}_{h}\left(t_{1} t_{2} y_{2}^{-1} t_{2}^{-1} t_{1}^{-1}, t_{2} y_{2}^{-1} t_{2}^{-1} y_{2}^{-1}\right)+\widetilde{\tau}_{h}\left(y_{1} z_{1} z_{2}, t_{1} t_{2}\left(y_{2} t_{2} y_{2} t_{2}^{-1} t_{1} t_{2} y_{2}\right)^{-1}\right) \\
\quad & \quad\left(c\left(t_{1} t_{2} y_{2}^{-1} t_{2}^{-1} t_{1}^{-1}\right)=c\left(y_{2}^{-1}\right)=-c\left(y_{2}\right)=0,\right. \\
\quad c\left(t_{2} y_{2}^{-1} t_{2}^{-1} y_{2}^{-1}\right)= & c\left(t_{2} y_{2}^{-1} t_{2}^{-1}\right)+c\left(y_{2}^{-1}\right)+\widetilde{\tau}_{h}\left(t_{2} y_{2}^{-1} t_{2}^{-1}, y_{2}^{-1}\right) \\
& \left.=\widetilde{\tau}_{h}\left(t_{2} y_{2}^{-1} t_{2}^{-1}, y_{2}^{-1}\right)\right) \\
= & 0+0+0+0+1 \quad
\end{aligned}
$$

Remark 3.3. All values of Meyer's signature cocycle τ_{h} calculated in Lemma 3.2 are independent of the genus $h(\geq 3)$ because all generators which appear in C^{1} and D^{1} are $y_{1}, y_{2}, u_{1}, u_{2}, u_{3}, z_{1}$ and z_{2}. We can easily check by using a computer that the values are correct in the case $h=3$. (We used Mathematica).

Defintion 3.4. Let F_{n} be a free group of rank n. Algebraic m copies of an element $x \in F_{n}$ are m_{+}copies of x and m_{-}copies of x^{-1}, where $m_{+}, m_{-} \geq 0$ and $m_{+}-m_{-}=m$. The integer m is called the algebraic number of these algebraic copies.

For each generator $e=y_{1}, y_{2}, u_{1}, \cdots, u_{h}, z_{1}, \cdots, z_{h-1}$, the homomorphism e^{*} : $F \longrightarrow \mathbb{Z}$ is defined by:

$$
e^{*}(x):= \begin{cases}+1 & (x=e) \\ 0 & (x: \text { other generators })\end{cases}
$$

An element $x \in F$ belongs to $[F, F]$ if and only if $e^{*}(x)=0$ for every generator e. Combining this with Lemma 3.2, we characterize the elements of $R \cap[F, F]$ as words in y_{i}, u_{i}, z_{i} and calculate the value of c for each element $x \in R \cap[F, F]$.

Proposition 3.5. Suppose that $h \geq 3$. For an element $x \in F$, the following two conditions are equivalent:
(1) $x \in R \cap[F, F]$ and $c(x)=4 n(n \in \mathbb{Z})$;
(2) x is equal to a product of conjugates of algebraic copies of relators and the
algebraic number $m\left(R^{1}\right)$ of algebraic copies of a relator R^{1} included in x is determined as follows:

R^{1}	$A_{i, j}^{l}$	B_{1}^{1}	B_{2}^{1}	B_{1}^{2}	B_{2}^{2}	$B_{i}^{2}(i \geq 3)$
$m\left(R^{1}\right)$	\forall	$-6 n$	$18 n$	$-2 n$	$10 n$	0
	B_{1}^{3}	$B_{i}^{3}(i \geq 2)$	C^{1}	D^{1}	E^{1}	
	$-8 n$	0	n	$10 n$	\forall	

where \forall stands for arbitrary number of algebraic copies of R^{1}.
Proof. (1) $\Longrightarrow(2)$: Since R is the normal closure of the set $\left\{A_{i, j}^{l}, B_{i}^{l}, C^{1}\right.$, $\left.D^{1}, E^{1}\right\}$ of all relators, any $x \in R$ is a product of conjugates of algebraic copies of relators. For $x \in R \cap[F, F]$, let $a_{i, j}^{l}$ (respectively $b_{i}^{l}, c^{1}, d^{1}, e^{1}$) be the algebraic number of algebraic copies of $A_{i, j}^{l}$ (respectively $B_{i}^{l}, C^{1}, D^{1}, E^{1}$) included in x. These numbers must satisfy the following system of equations because x belongs to $[F, F]$.

$$
\begin{gathered}
\sum_{i=1}^{2} b_{i}^{1} e^{*}\left(B_{i}^{1}\right)+\sum_{i=1}^{h-1} b_{i}^{2} e^{*}\left(B_{i}^{2}\right)+\sum_{i=1}^{h-1} b_{i}^{3} e^{*}\left(B_{i}^{3}\right)+c^{1} e^{*}\left(C^{1}\right)+d^{1} e^{*}\left(D^{1}\right)=0 \\
\left(e=y_{1}, y_{2}, u_{1}, \cdots, u_{h}, z_{1}, \cdots, z_{h-1}\right)
\end{gathered}
$$

$\left(e^{*}\left(A_{i, j}^{l}\right)=e^{*}\left(E^{1}\right)=0\right.$ for every generator e because $A_{i, j}^{l}$ and E^{1} belong to $[F, F]$. Values of e^{*} and c for other relators are exhibited in Table 3.6 below). Solving this, we get

$$
\begin{gathered}
b_{1}^{1}=-6 n, b_{2}^{1}=18 n, b_{1}^{2}=-2 n, b_{2}^{2}=10 n, b_{i}^{2}=0(3 \leq i \leq h-1), \\
b_{1}^{3}=-8 n, b_{i}^{3}=0(2 \leq i \leq h-1), c^{1}=n, d^{1}=10 n,
\end{gathered}
$$

where n is an integer, while $a_{i, j}^{l}$ and e^{1} are arbitrary integers.
$(2) \Longrightarrow(1)$: Such an element x belongs to $R \cap[F, F]$ because $e^{*}(x)=0$ for every generator e. The value $c(x)$ can be calculated by using Lemma 3.2:

$$
\begin{aligned}
c(x) & =n c\left(C^{1}\right)+10 n c\left(D^{1}\right) \\
& =-6 n+10 n \\
& =4 n .
\end{aligned}
$$

This completes the proof of Proposition 3.5.

Remark 3.7. Proposion 3.5 implies that the 'signature' $c(x)$ of a '2-cycle' $x \in$ $R \cap[F, F]$ of \mathcal{M}_{h} is concentrated on relators $B_{1}^{1}, B_{2}^{1}, B_{1}^{2}, B_{2}^{2}, B_{1}^{3}, C^{1}, D^{1}$ of Wajnryb's

(The blanks in the table above mean that the corresponding value is equal to zero.)
Table 3.6.
presentation and the algebraic number $m\left(R^{1}\right)$ of a relator R^{1} is independent of the genus $h(\geq 3)$.

4. A construction of holonomy homomorphisms

We now construct the holonomy homomorphism $\chi: \pi_{1}\left(\Sigma_{g}\right) \longrightarrow \mathcal{M}_{h}$ of a surface bundle ξ over a surface Σ_{g} with non-zero signature. We use a simple technique of the commutator collection process (see [7], [15]) to construct χ.

Defintion 4.1. Let F_{n} be the free group on the n free generators e_{1}, \cdots, e_{n} and let a, b, u, v and w be words in e_{1}, \cdots, e_{n}. Two words u and v are called freely equal (denoted $u \approx v$) if they determine the same element of F_{n}.

The α-skip is the following sequence of free equalities:

$$
\begin{aligned}
u a v a^{-1} w & \approx u\left(a v a^{-1} v^{-1}\right) v w \\
& =u[a, v] v w
\end{aligned}
$$

and the β-skip is the following sequence of free equalities:

$$
\begin{aligned}
u a v b a^{-1} b^{-1} w & \approx u\left(a v b a^{-1} b^{-1} v^{-1}\right) v w \\
& =u[a, v b] v w
\end{aligned}
$$

where $[a, b]:=a b a^{-1} b^{-1}$. (We used the commutator relation $b a \approx[b, a] a b$.)
We apply α - and β-skips to elements of the free group F on the generators $y_{1}, y_{2}, u_{1}, \cdots, u_{h}, z_{1}, \cdots, z_{h-1}$ defined in the preceding section and prove the following lemma.

Lemma 4.2. Suppose that $h \geq 3$. There exists a word W in $y_{1}, y_{2}, u_{1}, \cdots, u_{h}$, z_{1}, \cdots, z_{h-1} with the following properties:
(1) W is a product of 111 commutators;
(2) W belongs to $R \cap[F, F]$ as an element of F;
(3) $c(W)=4$.

Proof. We set

$$
\begin{aligned}
\widetilde{W}_{1} & :=\left(B_{1}^{2}\right)^{-1}\left(B_{1}^{1}\right)^{-3} B_{2}^{1} B_{2}^{2} D^{1}, \\
\widetilde{W}_{2} & :=B_{2}^{1}\left(B_{1}^{3}\right)^{-1} B_{2}^{1} B_{2}^{2} D^{1}, \\
\widetilde{W} & :=C^{1} \widetilde{W}_{8}^{2} \widetilde{W}_{2}^{8} .
\end{aligned}
$$

Since the word \widetilde{W} satisfies the condition (2) of Proposition 3.5 in case $n=1$, \widetilde{W} has the properties (2) and (3) above. We decompose \widetilde{W} to a product W of 111 commutators by using α - and β-skips repeatedly.

We rewrite some of Wajnryb's relators as follows:

$$
\begin{aligned}
& B_{1}^{1}=y_{1} R_{1} u_{1}^{-1} \quad\left(R_{1}=\left[u_{1}, y_{1}\right]\right) \\
& B_{2}^{1}=y_{2} R_{2} u_{2}^{-1} \quad\left(R_{2}=\left[u_{2}, y_{2}\right]\right), \\
& B_{1}^{2}=u_{1} R_{3} z_{1}^{-1} \quad\left(R_{3}=\left[z_{1}, u_{1}\right]\right) \\
& B_{2}^{2}=u_{2} R_{4} z_{2}^{-1} \quad\left(R_{4}=\left[z_{2}, u_{2}\right]\right), \\
& B_{1}^{3}=z_{1} R_{5} u_{2}^{-1} \quad\left(R_{5}=\left[u_{2}, z_{1}\right]\right) \\
& C^{1}=\left(y_{1} u_{1} z_{1}\right)^{-4} y_{2}^{2} R_{6} \quad\left(R_{6}=\left[y_{2}^{-1},\left(u_{2} z_{1} u_{1} y_{1}^{2} u_{1} z_{1} u_{2}\right)^{-1}\right]\right), \\
& D^{1}=y_{1} z_{1} z_{2} t_{1} t_{2} y_{2}^{-1} t_{2}^{-1} t_{1}^{-1} y_{2}^{-1} t_{2}^{-1} R_{7} R_{8} \\
& \quad\left(R_{7}=\left[y_{2}^{-1}, y_{1} u_{1} z_{1} u_{2}\right], \quad R_{8}=\left[v^{-1},\left(w u_{1} z_{1} u_{2} z_{2} u_{3}\right)^{-1}\right]\right),
\end{aligned}
$$

where $R_{1}, \cdots R_{8}$ are commutators.
$\widetilde{W}_{i}(i=1,2)$ is transformed into another word $W_{i}(i=1,2)$ by using α - and β skips in the following way:

$$
\begin{aligned}
& \widetilde{W}_{1}=\left(B_{1}^{2}\right)^{-1}\left(B_{1}^{1}\right)^{-3} B_{2}^{1} B_{2}^{2} D^{1} \\
& \approx z_{1} R_{3}^{-1} R_{1}^{-1} y_{1}^{-1}\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} y_{2} R_{2} R_{4} z_{2}^{-1} y_{1} z_{1} z_{2} t_{1} t_{2} y_{2}^{-1} t_{2}^{-1} t_{1}^{-1} t_{2} y_{2}^{-1} t_{2}^{-1} R_{7} R_{8} \\
& \widetilde{\widetilde{\beta})} z_{1} R_{3}^{-1} R_{1}^{-1} y_{1}^{-1}\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} S_{1} R_{2} R_{4} z_{2}^{-1} y_{1} z_{1} z_{2} t_{2} y_{2}^{-1} t_{2}^{-1} R_{7} R_{8} \\
& \text { (} \left.S_{1}:=\left[y_{2}, R_{2} R_{4} z_{2}^{-1} y_{1} z_{1} z_{2} t_{1} t_{2}\right]\right) \\
& \text { (} \widetilde{\alpha}) z_{1} R_{3}^{-1} R_{1}^{-1} S_{2}\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} S_{1} R_{2} R_{4} z_{2}^{-1} z_{1} z_{2} t_{2} y_{2}^{-1} t_{2}^{-1} R_{7} R_{8} \\
& \left(S_{2}:=\left[y_{1}^{-1},\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} S_{1} R_{2} R_{4} z_{2}^{-1}\right]\right) \\
& =: W_{1} \text {; } \\
& \widetilde{W}_{2}=B_{2}^{1}\left(B_{1}^{3}\right)^{-1} B_{2}^{1} B_{2}^{2} D^{1} \\
& \approx y_{2} R_{2} R_{5}^{-1} z_{1}^{-1} y_{2} R_{2} R_{4} z_{2}^{-1} y_{1} z_{1} z_{2} t_{1} t_{2} y_{2}^{-1} t_{2}^{-1} t_{1}^{-1} t_{2} y_{2}^{-1} t_{2}^{-1} R_{7} R_{8} \\
& \widetilde{\widetilde{\beta})} y_{2} R_{2} R_{5}^{-1} z_{1}^{-1} S_{3} R_{2} R_{4} z_{2}^{-1} y_{1} z_{1} z_{2} t_{2} y_{2}^{-1} t_{2}^{-1} R_{7} R_{8} \\
& \left(S_{3}:=\left[y_{2}, R_{2} R_{4} z_{2}^{-1} y_{1} z_{1} z_{2} t_{1} t_{2}\right]\right) \\
& \text { (} \widetilde{\widetilde{\beta})} S_{4} R_{2} R_{5}^{-1} z_{1}^{-1} S_{3} R_{2} R_{4} z_{2}^{-1} y_{1} z_{1} z_{2} R_{7} R_{8} \\
& \text { (} \left.S_{4}:=\left[y_{2}, R_{2} R_{5}^{-1} z_{1}^{-1} S_{3} R_{2} R_{4} z_{2}^{-1} y_{1} z_{2} t_{2}\right]\right) \\
& \text { (} \widetilde{\alpha}^{\alpha} S_{4} R_{2} R_{5}^{-1} S_{5} S_{3} R_{2} R_{4} z_{2}^{-1} y_{1} z_{2} R_{7} R_{8} \\
& \text { (} \left.S_{5}:=\left[z_{1}^{-1}, S_{3} R_{2} R_{4} z_{2}^{-1} y_{1}\right]\right) \\
& =: W_{2} \text {. }
\end{aligned}
$$

The word W_{1} obtained above naturally includes 10 commutators and the word W_{2} 9 ones. Hence the word $C^{1} W_{1}^{2} W_{2}^{8}$ naturally includes 93 commutators.

Furthermore we perform 6α-skips and 4β-skips to $C^{1} W_{1}^{2}$ and get a word \widehat{W} in the following way:

$$
\begin{aligned}
& C^{1} W_{1}^{2}=\left(y_{1} u_{1} z_{1}\right)^{-4} y_{2} y_{2} R_{6} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2}\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} \\
& \quad \cdot S_{1} R_{2} R_{4} z_{2}^{-1} z_{1} z_{2} t_{2} y_{2}^{-1} t_{2}^{-1} R_{7} R_{8} W_{1} \\
& \widetilde{\widetilde{\beta})}\left(y_{1} u_{1} z_{1}\right)^{-3} z_{1}^{-1} u_{1}^{-1} y_{1}^{-1} y_{2} S_{6} R_{6} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2}\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} \\
& \quad \cdot S_{1} R_{2} R_{4} z_{2}^{-1} z_{1} z_{2} R_{7} R_{8} W_{1} \\
& \quad\left(S_{6}:=\left[y_{2}, R_{6} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2}\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} S_{1} R_{2} R_{4} z_{2}^{-1} z_{1} z_{2} t_{2}\right]\right) \\
& \widetilde{\widetilde{\beta})}\left(y_{1} u_{1} z_{1}\right)^{-3} S_{7} u_{1}^{-1} y_{1}^{-1} y_{2} S_{6} R_{6} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2}\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} \\
& \quad S_{1} R_{2} R_{4} R_{7} R_{8} W_{1} \\
& \left(S_{7}:=\left[z_{1}^{-1}, u_{1}^{-1} y_{1}^{-1} y_{2} S_{6} R_{6} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2}\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} S_{1} R_{2} R_{4} z_{2}^{-1}\right]\right) \\
& \widetilde{\widetilde{\alpha})}\left(y_{1} u_{1} z_{1}\right)^{-2} z_{1}^{-1} u_{1}^{-1} y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} y_{2} S_{6} R_{6} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} \\
& \\
& \quad u_{1} R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} W_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} S_{8}:=\left[u_{1}^{-1}, y_{1}^{-1} y_{2} S_{6} R_{6} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2}\right] \text {) } \\
& \underset{(\widetilde{\alpha})}{\approx}\left(y_{1} u_{1} z_{1}\right)^{-2} S_{9} u_{1}^{-1} y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} y_{2} S_{6} R_{6} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} \\
& \text { - } u_{1} R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} W_{1} \\
& \text { (} S_{9}:=\left[z_{1}^{-1}, u_{1}^{-1} y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} y_{2} S_{6} R_{6}\right] \text {) } \\
& \widetilde{\widetilde{\alpha})}\left(y_{1} u_{1} z_{1}\right)^{-2} S_{9} S_{10} y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} y_{2} S_{6} R_{6} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} \\
& \text { • } R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} \\
& \cdot z_{1} R_{3}^{-1} R_{1}^{-1} S_{2}\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} S_{1} R_{2} R_{4} z_{2}^{-1} z_{1} z_{2} t_{2} y_{2}^{-1} t_{2}^{-1} R_{7} R_{8} \\
& \text { (} S_{10}:=\left[u_{1}^{-1}, y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} y_{2} S_{6} R_{6} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1}\right] \text {) } \\
& \widetilde{\widetilde{\mathcal{B}})}\left(z_{1}^{-1} u_{1}^{-1} y_{1}^{-1}\right)^{2} S_{9} S_{10} y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} S_{11} S_{6} R_{6} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} \\
& \cdot R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2}\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} S_{1} R_{2} R_{4} z_{2}^{-1} z_{1} z_{2} R_{7} R_{8} \\
& \text { (} S_{11} \text { : }=\left[y_{2}, S_{6} R_{6} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8}\right. \\
& \left.\left.\cdot z_{1} R_{3}^{-1} R_{1}^{-1} S_{2}\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} S_{1} R_{2} R_{4} z_{2}^{-1} z_{1} z_{2} t_{2}\right]\right) \\
& \widetilde{\widetilde{\beta})} z_{1}^{-1} u_{1}^{-1} y_{1}^{-1} S_{12} u_{1}^{-1} y_{1}^{-1} S_{9} S_{10} y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} S_{11} S_{6} R_{6} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} \\
& \text { • } R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2}\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} S_{1} R_{2} R_{4} R_{7} R_{8} \\
& \text { (} S_{12} \text { : }=\left[z_{1}^{-1}, u_{1}^{-1} y_{1}^{-1} S_{9} S_{10} y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} S_{11} S_{6} R_{6} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1}\right. \\
& \left.\left.\cdot R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2}\left(u_{1} R_{1}^{-1} y_{1}^{-1}\right)^{2} S_{1} R_{2} R_{4} z_{2}^{-1}\right]\right) \\
& \text { (} \widetilde{\widetilde{\alpha}}) z_{1}^{-1} u_{1}^{-1} y_{1}^{-1} S_{12} S_{13} y_{1}^{-1} S_{9} S_{10} y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} S_{11} S_{6} R_{6} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} \\
& \cdot R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} u_{1} R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} \\
& \text { (} S_{13}:=\left[u_{1}^{-1}, y_{1}^{-1} S_{9} S_{10} y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} S_{11} S_{6} R_{6} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1}\right. \\
& \left.\left.\cdot R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2}\right]\right) \\
& \text { (} \widetilde{(\alpha)} z_{1}^{-1} S_{14} y_{1}^{-1} S_{12} S_{13} y_{1}^{-1} S_{9} S_{10} y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} S_{11} S_{6} R_{6} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} \\
& \cdot R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} \\
& \text { (} S_{14}:=\left[u_{1}^{-1}, y_{1}^{-1} S_{12} S_{13} y_{1}^{-1} S_{9} S_{10} y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} S_{11} S_{6} R_{6} R_{3}^{-1}\right. \\
& \left.\left.\cdot R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} z_{1} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1}\right]\right) \\
& \underset{(\underset{\alpha}{ })}{\approx} S_{15} S_{14} y_{1}^{-1} S_{12} S_{13} y_{1}^{-1} S_{9} S_{10} y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} S_{11} S_{6} R_{6} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} \\
& \cdot R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} R_{3}^{-1} R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8} \\
& \text { (} S_{15}:=\left[z_{1}^{-1}, S_{14} y_{1}^{-1} S_{12} S_{13} y_{1}^{-1} S_{9} S_{10} y_{1}^{-1} S_{7} S_{8} y_{1}^{-1} S_{11} S_{6} R_{6} R_{3}^{-1}\right. \\
& \left.\left.\cdot R_{1}^{-1} S_{2} R_{1}^{-1} y_{1}^{-1} R_{1}^{-1} y_{1}^{-1} S_{1} R_{2} R_{4} R_{7} R_{8}\right]\right) \\
& \text { =: } \widehat{W}
\end{aligned}
$$

The word \widehat{W} is a product of 31 commutators and 8 copies of y_{1}^{-1}. The word W_{2}^{8} is a product of 72 commutators and 8 copies of $z_{1}^{-1} y_{1} z_{1}$.

We perform 8β-skips to the word $\widehat{W} W_{2}^{8}$ repeatedly by setting $a=y_{1}^{-1}$ and $b=$ z_{1}^{-1} in Definition 4.1. Then we obtain a word W which is a product of $111(=31+$ $72+8$) commutators and is freely equal to \widetilde{W}. This completes the proof of Lemma 4.2.

By virtue of Lemma 4.2, we can show the following theorem.
Theorem 4.3. There exists a Σ_{h}-bundle $\xi=\left(E, \Sigma_{g}, p, \Sigma_{h}\right.$, Diff $\left._{+} \Sigma_{h}\right)$ over Σ_{g} with $g=111, h=3$ and $\tau(E)=-4$.

Proof. Set $g=111$ and $h=3$. We choose a word W which satisfies conditions (1)-(3) of Lemma 4.2 and write

$$
W=\prod_{i=1}^{g}\left[\alpha_{i}, \beta_{i}\right] \quad\left(\alpha_{i}, \beta_{i} \in F(i=1, \cdots, g)\right)
$$

Let $\tilde{\chi}: \widetilde{F} \longrightarrow F$ the homomorphism defined by:

$$
\widetilde{\chi}\left(\widetilde{a}_{i}\right)=\alpha_{i}, \quad \tilde{\chi}\left(\widetilde{b}_{i}\right)=\beta_{i} \quad(i=1, \cdots, g)
$$

where $\widetilde{F}=\left\langle\widetilde{a}_{1}, \cdots, \widetilde{a}_{g}, \tilde{b}_{1}, \cdots, \widetilde{b}_{g}\right\rangle$. Since $\tilde{\chi}(\widetilde{r})=W \in R \cap[F, F], \widetilde{\chi}$ induces the homomorphism $\chi: \pi_{1}\left(\Sigma_{g}\right) \longrightarrow \mathcal{M}_{h}$ (i.e., $\pi \circ \tilde{\chi}=\chi \circ \widetilde{\pi}$) as in Section 2. For the Σ_{h}-bundle ξ over Σ_{g} which has χ as its holonomy homomorphism, we calculate the signature of its total space E :

$$
\begin{aligned}
\tau(E) & =-c(\widetilde{\chi}(\widetilde{r})) \\
& =-c(W) \\
& =-4
\end{aligned}
$$

We have thus proved the theorem.
Finally, we prove our main theorem (Theorem 1.2) by using Lemma 4.2 and results of Lück [14] concerning about L^{2}-Betti numbers of groups.

Proof of Theorem 1.2. Let W be the word constructed in the proof of Lemma 4.2. For every $h \geq 3$ and each $n \in \mathbb{Z}(n \neq 0)$, we can construct a Σ_{h}-bundle $\xi=$ $\hat{\xi}(h, n)$ with $g=111|n|$ and $\tau(E)=4 n$ by using the word W^{-n} as in the proof of Theorem 4.3 (see Remark 3.7). Therefore we have

$$
g(h, n) \leq 111|n| .
$$

On the other hand, for every Σ_{h}-bundle ξ over Σ_{g} with $g \geq 1, h \geq 3$ and $\tau(E)=$
$4 n$, the associated exact sequence:

$$
1 \longrightarrow \pi_{1}\left(\Sigma_{h}\right) \longrightarrow \pi_{1}(E) \xrightarrow{p_{\sharp}} \pi_{1}\left(\Sigma_{g}\right) \longrightarrow 1
$$

of fundamental groups satisfies the assumption of [14], Theorem 4.1. Then the first L^{2}-Betti number $b_{1}\left(\pi_{1}(E)\right)$ of $\pi_{1}(E)$ is equal to zero and the Winkelnkemper-type inequality $\chi(E) \geq|\tau(E)|$ holds from [14], Theorem 5.1. By substituting

$$
\chi(E)=\chi\left(\Sigma_{h}\right) \chi\left(\Sigma_{g}\right)=4(h-1)(g-1), \quad \tau(E)=4 n
$$

for the inequality, we obtain

$$
g(h, n) \geq \frac{|n|}{h-1}+1
$$

and this completes the proof of our theorem.
Remark 4.4. The Σ_{h}-bundle $\xi=\hat{\xi}(h, n)$ over Σ_{g} constructed in the first half of the proof of Theorem 1.2 has $g=111|n|, \tau(E)=4 n, b_{1}(E)=2(111|n|+h-3)$, $b_{2}(E)=2(222|n| h-5)$ and $\chi(E)=4(111|n|-1)(h-1)$, where $h(\geq 3)$ and $n \in \mathbb{Z}(n \neq 0)$. If the total space E admits a complex structure, E is an algebraic surface of general type and satisfies the Noether condition, the Noether inequality and the Bogomolov-Miyaoka-Yau inequality (cf. [2]). But E cannot be a geometric 4-manifold in the sense of Thurston [20], in particular, a compact Kähler surface covered by the unit ball in \mathbb{C}^{2}.

Let $\Gamma(h, n)$ be the fundamental group of the total space of $\xi=\hat{\xi}(h, n)(h \geq 3, n \geq$ 1) constructed in the first half of the proof of Theorem 1.2. Computing an invariant defined by Johnson [11], we obtain the following result.

Corollary 4.5. The family $\{\Gamma(h, n)\}_{h \geq 3, n \geq 1}$ contains infinitely many commensurability classes of discrete groups. In particular, $\{\Gamma(h, n)\}_{n \geq 1}$ is a family of infinitely many non-commensurable discrete groups for each $h(\geq 3)$.

Proof. The commensurability invariant $\gamma(\Gamma)$ [11] for $\Gamma=\Gamma(h, n)$ is

$$
\gamma(\Gamma(h, n))=\frac{n}{(111 n-1)(h-1)} \quad(h \geq 3, n \geq 1)
$$

which runs over infinitely many rational numbers.
Remark 4.6. Although the author attempted to show that the value $g(h, n)$ does not depend on the genus $h(\geq 3)$ of fiber Σ_{h} for each $n \in \mathbb{Z}(n \neq 0)$, it was not achieved because of some serious transformation problems on words in free generators.

References

[1] M.F. Atiyah: The signature of fibre-bundles, Global Analysis, Papers in Honor of K. Kodaira, Tokyo Univ. Press, (1969), 73-84
[2] W. Barth, C. Peters and A. Van de Ven: Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete 3 Folge, Bd 4, Springer-Verlag, Berlin-Heidelbelg-New YorkTokyo, 1984.
[3] J. Birman and H. Hilden: On mapping class groups of closed surfaces as covering spaces, Advances in the Theory of Riemann Surfaces, Ann. Math. Stud. 66, Princeton Univ. Press, (1971), 81-115.
[4] K.S. Brown: Cohomology of Groups, Graduate Texts in Math. 87, Springer-Verlag, 1982.
[5] S.S. Chern, F. Hirzebruch and J.P. Serre: On index of a fibred manifold, Proc. Amer. Math. Soc. 8 (1957), 587-596.
[6] C.J. Earle and J. Eells: The diffeomorphism group of a compact Riemann surface, Bull. Amer. Math. Soc. 73 (1967), 557-559.
[7] A.M. Gaglione and H.V. Waldinger: The commutator collection process, Contemp. Math. 109 (1990), 43-58.
[8] A. Hatcher and W. Thurston: A presentation for the mapping class group of a closed oriented surface, Topology, 19 (1980), 221-237.
[9] F. Hirzebruch: The signature of ramified coverings, Global Analysis, Papers in Honor of K. Kodaira, Tokyo Univ. Press, (1969), 253-265.
[10] S. Humphries: Generators for the mapping class group of a closed orientable surface, Topology of Low-dimensional Manifolds, Lecture Notes in Mathematics 722, Springer Berlin, (1979), 44-47.
[11] F.E.A. Johnson: A rational invariant for certain infinite discrete groups, Math. Proc. Camb. Phil. Soc. 113 (1993), 473-478.
[12] K. Kodaira: A certain type of irregular algebraic surfaces, J. Anal. Math. 19 (1967), 207215.
[13] W.B.R. Lickorish: A finite set of generators for the homotopy group of 2-manifold, Proc. Camb. Phil. Soc. 60 (1964), 769-778.
[14] W. Lück: L^{2}-Betti numbers of mapping tori and groups, Topology, 33 (1994), 203-214.
[15] W. Magnus, A. Karrass and D. Solitar: Combinatorial Group Theory, Interscience Publ, 1966.
[16] W. Meyer: Die Signatur von lokalen Koeffizientensystemen und Faserbündeln, Bonner Mathematische Schriften, 53 (1972).
[17] W. Meyer: Die Signatur von Flächenbündeln, Math. Ann. 201 (1973), 239-264.
[18] S. Morita: Characteristic classes of surface bundles, Invent. Math. 90 (1987), 551-577.
[19] B. Wajnryb: A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1989), 157-174.
[20] C.T.C. Wall: Geometric structures on complex analytic surfaces, Topology, 25 (1986), 119153.

[^1]
[^0]: ${ }^{\dagger}$ The author is partially supported by JSPS Research Fellowships for Young Scientists.

[^1]: Department of Mathematics
 Osaka University
 Toyonaka Osaka
 560-0043, Japan
 email: endo@math.sci.osaka-u.ac.jp

