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1. Introduction

Let ¥, (respectively ¥,) be a closed oriented surface of genus g (respec-
tively h), where g (respectively h) is a non-negative integer. Let Diff {3, be the
group of all orientation-preserving diffeomorphisms of ¥, with C'°°-topology. A -
bundle over X, (also called a surface bundle over a surface) is fiber bundle { =
(E,X,,p, X, Diff 3) over X, with total space E, fiber Xy, projection p: E — X,
and structure group Diff{¥,. Our main concern is the signature 7(E) of the total s-
pace E of &.

It is easily seen that if £ is a trivial bundle then 7(E) = 7(X,)7(Xs) = 0. Chern-
Hirzebruch-Serre [S] proved that if the fundamental group 7(X,) of X, acts trivially
on the cohomology ring H*(X,;R) of X then 7(E) = 0.

Kodaira [12] and Atiyah [1] gave examples of surface bundles over surfaces with
non-zero signature. For each pair (m,t) of integers m,t € Z (m > 2,t > 3), Kodaira
constructed a surface bundle ¢ = £(m,t) with

g=m*(t-1)+1,
h = mt,
T(E) = %m%—l(t —1)(m? -1).

By setting m = 2 and ¢t = 3, we obtain a surface bundle £ = £(2,3) with g = 129,
h = 6 and 7(E) = 256. The total space E of the bundle £ = £(m,t) is an m-fold
branched covering of ¥, x ¥, and its signature 7(E) can be calculated by using G-
signature theorem(see [9] and [11]).

Meyer [16], [17] gave a signature formula for surface bundles over surfaces in
terms of the signature cocycle T, which is a 2-cocycle of the Siegel modular group
Sp(2h,Z) of degree h. Using the signature cocycle and Birman-Hilden’s relations [3]
of mapping class groups of surfaces, he showed that if h = 1,2 or ¢ = 1 then
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7(E) = 0. But he also showed that for every h > 3 and every n € Z there exist
an integer g > 0 and a X,-bundle £ over X, such that 7(E) = 4n.
We consider the following problem:

Problem 1.1. For each h > 3 and each n € Z, let g(h,n) be the minimum value
of the genus g such that there exists a £,-bundle £ over ¥, with 7(E) = 4n. Deter-
mine the value g(h,n).

In this paper, we estimate the value g(h,n) by using Wajnryb’s presentation[19]
of the mapping class group M, of Xj.
Our main result is:

Theorem 1.2. For each h > 3 and each n € Z(n # 0), the following inequality
holds:
n|

—_— < < .
P +1 < g(h,n) <111|n|

We construct a £p-bundle ¢ over ¥, with ¢ = 111, h = 3 and 7(E) = —4 to
prove Theorem 1.2. The genus of the base space of this bundle and that of a fiber of
it are smaller than those of any example constructed by Kodaira [12] and Atiyah [1].

In Section 2, we review Meyer’s work [16], [17] on signature of surface bundles
over surfaces. And in Section 3, we calculate the values of Meyer’s signature cocy-
cle for the relators of Wajnryb’s presentation [19] of the mapping class group M,
and characterize the 2-cycles of Mj as words in the generators of the presentation
of M. We prove our main theorem in Section 4 by using this characterization and
a simple technique of the commutator collection process [7]. In Section 2, we review
Meyer’s work [16], [17] on signature of surface bundles over surfaces. And in Section
3, we calculate the values of Meyer’s signature cocycle for the relators of Wajnryb’s p-
resentation [19] of the mapping class group M, and characterize the 2-cycles of M,
as words in the generators of the presentation of Mj. We prove our main theorem
in Section 4 by using this characterization and a simple technique of the commutator
collection process [7].

The author wishes to express his heartfelt gratitude to his adviser, Prof. Katsuo
Kawakubo, for helpful comments and useful suggestions, and Kazunori Kikuchi and
Toshiyuki Akita for helpful discussions.

2. Meyer’s signature formula

In this section we review Meyer’s signature cocycle and Meyer’s signature formula
[16], [17] for surface bundles over surfaces.
For a pair (a,3) of symplectic matricies a, 8 € Sp(2h,Z), the vector space V, g
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is defined by:
Vas = {(z,y) € R** x R*" | (a! = D)z + (8- )y = 0},

where I is the identity matrix. Consider the (possibly degenerate) symmetric bilinear
form

( y >a,ﬁ : Va,ﬁ X Va,g — R
on V, 5 defined by:

((21,11), (22,92))a,8 = (21 +y1, (I = B)y2),
(@i,y:) € Vag (i =1,2),
where ( , ) is the standard symplectic form on R%" given by:
(@,y) ="'eJy (z,y € R*),
J= (_OI é) € Mz, (R).
Meyer’s signature cocycle [16], [17]
Tn + Sp(2h,Z) x Sp(2h,Z) — Z
is defined by:

Th(aa /6) = Sign(va,ﬂ 7( ) >a,ﬁ)
(o, B € Sp(2h,Z)).

From the Novikov additivity, 75, is a 2-cocycle of Sp(2h,Z) and represents a co-
homology class [7,] € H?(Sp(2h,Z),Z).

Let M, be the mapping class group of a surface ¥, of genus h, namely it is
the group of all isotopy classes of orientation-preserving diffeomorphisms of ¥;. By
choosing a symplectic basis on H'(Z,;Z) = Z®2* the natural action of Mj on
H'(X4;Z) induces a representation o : M, — Sp(2h,Z).

Next, we define a homomorphism k : Hy(Mpy;Z) — Z by using 74 and o. It is
known that the group My, is finitely presentable, so there exists an exact sequence:

1—R—F 5 My, — 1,

where F' is a free group of finite rank generated by a free basis E = {ex}xea. By
well known Hopf’s theorem (cf. [4]) the following isomorphism holds:

Hy(Mn;Z) = RN [F, F)/[R, F).
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The map ¢ : F — Z is defined by:

=3 (o (n(E)), 0(n(z)))

j=1

m J
T = Hazi, z; € EUE™Y, z; = Hz,
=1

=1

It can be checked that the restriction ¢|g : R — Z is actually a homomor-
phism and that c¢([R,F]) = 0. Hence c|g naturally induces a homomorphism k
Hy(My;Z) = RN [F,F|/[R,F] — L.

Now, we describe Meyer’s signature formula for surface bundles over surfaces.

Let ¢ = (E,X,,p, X, Diff 1)) be a Xp-bundle over £, and f : X, —
BDiff . &}, its classifying map. The map f induces a homomorphism x between fun-
damental groups:

X = fy :m(2,y) — 71 (BDiff £ Tp) = mo(Diff 1 1) = My,

which is called the holonomy homomorphism of & (cf. [18]). By a theorem of Earle
and Eells [6], which states that the connected component Diffy¥, of the identity of
Diff . Xy, is contractible if A > 2, the isomorphism class of ¢ is completely determined
by its holonomy homomorphism x when h > 2 (see [16], [17] and [18]). From now
on, we suppose that h > 2 and g > 1.

The fundamental group m;(X,) of X, is finitely presented, so we have an exact

sequence:

1—R—F —i+7rl(29)—+1,
where
71'1(29)_—_ <a1,4..,ag’bl,...

i i ( Ha,b a—lb;l) = 1>,

Fz(al""’ag,bl""abg>7
_%:aii—)a,‘,bi'——-)b,‘

and R is the normal closure of 7 := [J_ l[a,,b](— I, a1b6 5:71) in F. Hopf’s
theorem allows us to identify Hy(m; (X,); Z) with Rﬂ[F F 1/[R, F). For the holonomy
homomorphism , we can choose a homomorphism  : F — F so that TOX = XOT.
Then the induced homomorphism x, : Ho(m (24); Z) — Ha(Mpy;Z) is defined by:

X+(Z[R, F)) := X&)[R,F] (Z € RN[F,F))
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and is not depend on a choice of Y.
Meyer proved the following theorem by using the Leray-Serre spectral sequence
for ¢ and the cohomology group H'(Z,; Hi(Zn;R)) of £, with local coefficients.

Theorem 2.1 (Meyer [16], [17]). Let £ = (E,Xg,p, X4, Diff {1 X4) be a Tp-
bundle over £, (h > 2,9 > 1) and x : m(Xy) — My, its holonomy homomorphism.
Then the following equality holds:

7(E) = —k(x«(F[R, F))) (= —c(X(7))).

3. Explicit description of 2-cycles of M,

In this section, we calculate values of the map ¢ : F' — Z for the relators of
the finite presentation of M,; due to Wajnryb and give an explicit description of the
homomorphism & defined in the preceding section in order to characterize the elements
of RN [F, F] as words of F.

Let M, be the mapping class group of a surface ¥, of genus h. A finite presen-
tation of M, was obtained by Birman-Hilden [3] and that of M, (h > 3) by Hatcher-
Thurston [8].

Wajnryb [19] simplified their presentation of M, (h > 2) as foll ws. (We denote
the commutator zyz~'y~! of z,y € F by [z,y].)

The generators, which are called the Lickorish-Humphries generators, of the pre-
sentation are:

yl,y27U1,U2,"',Uhvzl,z%'",Zh—l
and the relators of it are:

Al = [yl,y2],

A= o] (=1,21<5 <hi#d),
Al = lpom) (=121<5<h-1),
Al = [ug,u;] (1<i<j<h),

2,
A= luz) (1Si<h1<i<h=L1j#ii+1),
A= laz] (1<i<j<h-1),

B} = yawiyiu; 'y tut (1= 1,2),
B? .= uiziu,’zflui_lzi‘l 1<i<h-1),

3 -1 -1 -1 .
B; = ziuiv12z:u,2; ui; (1<i<h-1),

1._ —4 2 -1 2
C" = (yur121) Y2 (ueziwnryiur 21u2) ™ Y2 (U2 z1u1yyus 21 42),
1. -1 -1 -1
D" = y1z120t1t2(yatayats titaye) (Wur21u222us) T vWUL 21 U2 Z2U3,
1. . 2
E' = [d,unzh_1un_1 - 21U YjU1 2] - - - Up—1Zh—1Un),
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where

t1 = wmy121,

= uiziaziu; (2<i<h-1),
y1urz1u2ys (y1us 21u2)

w = zugtays(22usts) !,

= (upz1ug Y ur 21Un) " 2 (U 21 U1 YT ur 21 Un),
v; = tigtviog (b))t (2<i<h-1),

ug 21u2v1 (Ug 21u2) 77,

St
|

<
I

<
=
Il

g
i

w; = u,-ziuiﬂv,'(uiz,-u,-.,,l)—l 2<i<h- 1),

QL
i

(wiws -+ wh—1) T yrwrwe - Wh_1.

Elements y;,u;,2; can be interpreted as Dehn twists with respect to curves
Y;,U;, Z; in Fig.1 of [3] (see also [13] and [10]). For h = 2 we can omit the rela-

tor D!,
By choosing a symplectic basis of H!(Xy;Z) as in [17], we fix an explicit repre-

sentation ¢ : My — Sp(2h,Z) by:

I 0 ,
oY v—-)(_Eii I) (t=1,2),

I E; .
o ) asisw,
I

o:z2; +—>
‘ <—Eii —FEinimi+Ei i1+ Eip1

o :Uu; '—)(
?) (1<i<h-1),

where E;; € My(Z) is the (i, j)-matrix unit.
We also fix an exact sequence:

1-—>R—F S M, —1,
where
F = (y1,y2,u1," -, Un, 21, ", Zh-1)

and R is the normal closure of the set of all relators Al ;, B!,C',D',E" in F. Let
c¢: F — Z be the map defined as in Section 2 by using explicit homomorphisms o
and 7 fixed above.

Now we calculate values of the map ¢ : ' — Z for relators Al ;, B},C', D', E!
of the presentation and describe the homomorphism c|g : R — Z.

To compute values of ¢, Meyer showed the following lemma:
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Lemma 3.1 (Meyer[16], [17]). The map ¢ : F — Z satisfies the following
propetrties:
(1) c(zy) = c(z) + c(y) + Ta(o(n(z)),0(n(y))) (z,y € F);
@) cfz™') = —c(z) (z€F)
B3) clzyz™') =cly) (z,y € F);
@) c(zzyzt) = c(z) +cly) if (zeyz™') =1€ My (2,9,2 € F).

Values of ¢ for relators are computed by using Lemma 3.1
Lemma 3.2. The values of c for the relators of Wajnryb’s presentation of

My (h > 3) are calculated as follows:
(1) c(AL;) =0 (for every L,i,j);

() o(B})=0 (for everyl,i);
3)  ¢(Ch) = —6;
@ D) =1
(5) c(BY)=0

Proof. We denote 71, (o(m(z)),o(w(y))) by Ta(z,y) for z,y € F. By virtue of
Lemma 3.1, it follows immediately that c(A} ;) = ¢(B!) = ¢(E") = 0. For example,

c(B}) = e(yr - u1 - yrugtyrtourt)
= c(y1) + c(yrus 'y )
c(yr) + c(urt) = c(y1) — c(ur)
= 0.

Using Lemma 3.1 and calculating signature of symmetric bilinear forms concrete-
ly, we obtain values c¢(C') and c(D%).

e(Ch) = c((yrurz1) "2 (uez1uryiur z1uz) " Y2 (U221 ua Yo ur 21u2))
c((yrwmz)y2)  (e(y2) = 0)
((nrwz1) ™) + Fa((rwrz1) ™, 92) (c(y2) = 0)
2c((yrur21) %) + ?h((lhulzl)_z (Z/1U121)—2) + Tn((yrurz1) ™4, y2)
= 4@ (1,20 + Tz hurh) + Taler tug ur )

+27n (1w 21) 7, (yruwaz1) ™)

+7n((rur21) 72, (yrurz1) 72) + Ta((rurz1) 7, y2)
40+0+0)+2-(-3)+(-1)+1
= —6.
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¢(DY) = c(y12122t1ta (Yotayaty "titaye) "t (wus 21u220u3) ~ vwug 21uz 22u3)
= C(ylleZtltZ(y2t2y2t2_1t1t2y2)_1)
(c(v) = c(yrur z1uzy2 (1w z1u9) ™') = c(y1) = 0)
c(yr12122) + c(trta(yatayaty trtays) ")
+70 (Y121 22, trta (yatayaty titays) ™)
Ta(y1, 21) + Ta (Y121, 22) + c(trtays 15 47 Y) + clbays 85 ys ')
+H7n(titays 'ty 4T tays 1ty Yy ) + Ta(y12122, tita (yatayaty titays) )
Ta(yr, 21) + Th(Y121, 22) + Taltoys 't y5 ")
+7n(trtays 85 4T tays 5 s ) + Ta(yn 2122, tata (yatayats T titays) )
(c(trtayy 'ty t7") = clyy ') = —clya) = 0,
cltays 13 'y2 ") = cltayy 't3) +elys) + Taltays 'ty 'y )
Th(tays 505 1))

0+0+0+0+1
=1. O

Remark 3.3. All values of Meyer’s signature cocycle 73, calculated in Lemma
3.2 are independent of the genus h (> 3) because all generators which appear in C1
and D! are y;,y2,u1,u2,us3,2; and 2. We can easily check by using a computer that
the values are correct in the case h = 3. (We used Mathematica).

DerintTiON 3.4, Let F), be a free group of rank n. Algebraic m copies of an el-
ement x € F, are m, copies of z and m_ copies of z=!, where m,,m_ > 0 and
my — m_ = m. The integer m is called the algebraic number of these algebraic
copies.

For each generator e = y;,y2,u1, " ,Up,21, **,2r—1, the homomorphism e* :
F — Z is defined by:

e*(z) = { +1 (z=¢e),

0  (z : other generators).

An element z € F belongs to [F, F] if and only if e*(z) = 0 for every generator e.
Combining this with Lemma 3.2, we characterize the elements of RN [F, F] as words
in y;,u;,2; and calculate the value of ¢ for each element z € RN [F, F)].

Proposition 3.5. Suppose that h > 3. For an element x© € F, the following two
conditions are equivalent:
(1) z € RNJ[F,F] and c(z) =4n(n € Z);
(2) <z is equal to a product of conjugates of algebraic copies of relators and the
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algebraic number m(R") of algebraic copies of a relator R* included in x is
determined as follows:

R' Al Bj B, Bf B} B}i>3)
m(RY) v —6n 18n —2n 10n 0

B} B?(i >2) Ct D! El
—8n 0 n 10n v

where Y stands for arbitrary number of algebraic copies of R'.

Proof. (1) => (2): Since R is the normal closure of the set {A!;, B!, C?,
D, E'} of all relators, any z € R is a product of conjugates of algebraic copies of
relators. For z € RN[F, F), let a! ; (respectively b}, c!,d',e') be the algebraic number
of algebraic copies of A} ; (respectively Bf,C', D!, E') included in z. These numbers

]

must satisfy the following system of equations because z belongs to [F, F.

2 h—1 h—1
Y bie*(B) + D _bie'(B}) + ) _ble*(B}) +c'e*(C') + d'e’ (D) =0
=1 =1 =1

(e =y1,y2,U1,---,uh,zl,'“,zh_1).

(e*(AL;) = e*(E") = 0 for every generator e because A} ; and E' belong to [F, F].
Values of e* and c¢ for other relators are exhibited in Table 3.6 below). Solving this,
we get

b} = —6n, b} = 18n, b2 = —2n, b2 =10n, b2 =03 <i < h-1),
' b=-8n,b=012<i<h-1),c =n,d =10n,

where n is an integer, while a} ; and e' are arbitrary integers.
(2) = (1): Such an element z belongs to R N [F, F] because e*(x) = O for
every generator e. The value c(z) can be calculated by using Lemma 3.2:

c(z) = nc(C*) + 10nc(D?)
= —6n + 10n
= 4n.

This completes the proof of Proposition 3.5. O

RemMARk 3.7. Proposion 3.5 implies that the ‘signature’ c(z) of a ‘2-cycle’ x €
RN[F, F] of My, is concentrated on relators B}, B, B, B2, B}, C, D' of Wajnryb’s
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YI Yz ul Uy vt Up_y Upoy Uy 2] 23t Zh_g Zhy €
Bl 1 -1 0
B} 1 -1 0
B? 1 -1 0
B2 1 -1 0
B2 _, 1 -1 0
BZ_, 1 -1 0
B} -1 1 0
B3 1 0
B3, -1 1 0
B}_, -1 1 0
ct -4 2 -4 0 --- 0 0 0 -4 0 --- 0 0 -6
Dt 1 -2 0 0 --- 0 0 o 1 1 --- 0 0 1
(The blanks in the table above mean that the corresponding value is equal to zero.)
Table 3.6.

presentation and the algebraic number m(R!) of a relator R! is independent of the
genus h(> 3).

4. A construction of holonomy homomorphisms

We now construct the holonomy homomorphism x : 71 (2¥,) — M}, of a surface
bundle £ over a surface ¥, with non-zero signature. We use a simple technique of the
commutator collection process (see [7], [15]) to construct x.

DerFintTION 4.1.  Let F,, be the free group on the n free generators ey, ---,e, and
let a,b,u,v and w be words in e;,---,e,. Two words u and v are called freely equal
(denoted u = v) if they determine the same element of F,.

The a-skip is the following sequence of free equalities:

uava™'w ~ u(ava"lvvw

= ufa, vjow
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and the (-skip is the following sequence of free equalities:

uavba b7 w ~ u(avba b lv " vw

= ufa, vbjvw,
where [a,b] := aba~'b~!. (We used the commutator relation ba ~ [b, aab.)

We apply a- and [-skips to elements of the free group F' on the generators
Y1,Y2,U1, "+, Up, 21, -, 2p—1 defined in the preceding section and prove the follow-
ing lemma.

Lemma 4.2. Suppose that h > 3. There exists a word W in y1,ys,u1,- -, Upn,
z1,-++,2n—1 With the following properties:
(1) W is a product of 111 commutators;
(2) W belongs to RN [F, F] as an element of F;
3) c(W)=4

Proof. We set

W, = (B?)"Y(B})*BiBD',
W, := BY(B3)"'BlB2D!,
W= CIW§W§.
Since the word W satisfies the condition 2) of Proposmon 35incase n = 1,
W has the properties (2) and (3) above. We decompose W to a product W of 111

commutators by using a- and (-skips repeatedly.
We rewrite some of Wajnryb’s relators as follows:

B} = yiRiui! (R = [w,m1)),

B; = y3Rou;'  (Ry = [up,32)),

B = uyR3z7'  (R3 = [21,w1]),

B} = waRaz;' (R4 =[22,us)),

B} = lesugl (Rs = [uz2, z1]), .

C' = (wz) *y3Rs  (Re = [y; ", (waz1wayiuszyuz) '),

D' = yiz1zotatay; 'ty 'ty Yy 'ty Ry R

(Rr = [y7 ", yimziua], Rs = [v7, (wuy 21u222u3) ")),

where R;,--- Rg are commutators.

Wi(i = 1,2) is transformed into another word W;(i = 1,2) by using a- and -
skips in the following way:
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Q

3

Q

3
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= (B)™'(Bi)’ByBiD!

2Ry Ry T (wi Ry )2 y2 RoRazy tyn 21 zotatoy 185 47 Hayy 15 Ry Rs
2Ry Ry (w Ry )2 S1Re Razy ' yn 21 2225 ' t5 Ry Rs
(S1 = [y, RoRazy 'yr 21 20t1 82))
21 Ry Ry So(uy Ry )2 S1 ReRyzy ' 2 20tay; 't ' Ry Ry
(S2 := [y ", (w1 R 'y 1) S1RaRaz; ')
Wi

B;(BY)™'ByBiD'
y2RoR; ' 27 'ya RoRyzy My 21 2ot tayy Mt 't M toys 't ' Ry R
Yo Ro R 1271 S3 RoRyzy M y1 21 20t0yy 1t ' Ry Ry

(S5 := [y2, RaRazy 'yr 21 20t1 t2))
S4R2R5'121_153R2R4z{1y12122R7Rg

(S := [y2, RaRy ' 27 ' S3Ra Ryzy ' y1 20t5))
SyRyR;"S5Ss RyRyzy  yr 2o Ry Rs

(Ss := [27", SsRyR425 1))
Wa.

The word W, obtained above naturally includes 10 commutators and the word W,

9 ones.

Hence the word C'W2W$ naturally includes 93 commutators.

Furthermore we perform 6 a-skips and 4 (3-skips to C'W? and get a word W in
the following way:

Cw?

= (y1w121) *y2y2Rez1 R5 'Ry Sa (w1 Ry 'y )2
-S1RyR4zy ' 21 29t2y5 'ty ' Ry Rs W,
& (yiwz) 2wy vaSeRezs Ry Ry S (w Ry 'y )?
~51R2R4z2—121z2R7R8W1
(S6 := [y2, Rez1 Ry ' R ' So (us Ry 'y7 1) S1 Ry Rz ' 21 20t5])
& (nwz) ®Srur 'y Y2 SeRez1 Ry ' R So (wa Ry 'y t)?
-S1RoR4R7 RgW,
(S7:= o7 uy 'yr 'y2SsRez1 Ry R Sa(ur Ry 'y ) S1Ra Razy )
(y1waz1) 227 "ug Yy S1Sayr ' vaSe Rz Ry Ry Sa Ry yy !
ur Ry 'y ' S1 Ry Ry Ry Ry W

(@)
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(Ss := [u;*, y7 'y2Se Re 21 R3 ' R Sa])

X (y1u1z1) "2 Sou;y 'yr ' S7Ssy; 'y2SeRe Ry ' Ry ' SaRy 'y; !
wuy Ry 'y; ' S1Re R4 Ry Rs W,

(So :=l27",ui 47" S755u7 ' Y256 Re))

& (y1ur21) "2SeS10y; ' S7Ssy; 'y2Ss ReRy ' Ry ' Sa Ry y1
‘R7'y7'S1R2R4R7 R
-le;]Rflsg(ulRl_lyfl)251R2R4z2_1z1z2t2y2_1t2_1R7R8

(S10 = [u; ", y7 'S Ssyy 'y2Ss Re Rs ' R S2 Ry 'yi ')

& (27 gy )2 SeS10yr 7.8y S11Se Re Ry ' Ry 1 S Ry My !

Ry S1RyRy Ry Rgz1 Ry * RSy (u1 Ry Yy 1) 2S) Ry Razy Y2120 Ry Ry
(S11 := [y2,SeReR3 "Ry ' So R 'y ' Ry y ' S1 Ry Ry R7 Ry
21 R R Sy (ur Ry ' yr 1) S1 Re Ryzg 21 20t5))
& 2w YT Sour YTt Se Sty tS7Ssyy t S11Se Re Ry Ry ' So Rty
Ry 'y7'S1RyRyR7 Rz Ry ' Ry 1Sy (ui Ry 'y Y)2S1 RyRa R Ry
(S12 := [27 ", w7 YT " SoS10y; 1 S7Ssy; ' S11SeReR; ' Ry ' S2 Ry 'yt
‘R{'y7'S1R2RaR7Rsz1 Ry ' Ry So (w1 Ry Yy 1) S1Ra Ryz5Y))
R 27 urtyr 12813y SoS10yy S Ssyr t S11Ss Re Ry P Ry P So Ry Myt
‘R7'y7'S1RaRyR7Rs s Ry Y Ry So Ry Yy ui Ry My 1 S1Ra Ry Ry R
(S13 == [u7", 97 ' SoS10y7 ' S7Ssyr ' S11S6 Re Ry ' R ' S Ry My
‘Ri'y;'S1RyR4 Ry Rgzy Ry ' RT 1 Ss))
27 S1ayi ' S12S13y7 F SeS10y1 ' S7Ssyr  S11SeRe Ry ' Ry ' S Ry My
‘RT'y;'S1R2R4R7Rez1 R ' Ry Sy R Yy ' Ry Yy ' S1 Re Ry Ry Ry
(S1a == [u7", 7 ' S12513y1 " SeS10y;y ' S7Ssyi ' S115s Re R3 !
‘R7'S Ry 'y 'Ry ' S1Re Ry Ry Rsz1 Ry ' Ry 'SRy 'y ')

& S15514y7 1 S12813y7  So S10y7 1 S7Ssyy 1 S11S6 Re Ry ' Ry ' Sa Ry 'y

‘R7'y;'S1R2R4R7Rs Ry ' R So Ry Yy ' Ry Yy ' S1 R Ry Ry R
(S15 == [27", S1ay7 ' S12S13y7 ' SeS10y1 * S7Ssy1  S11S6s R Ry
‘R{'S>R7 'y 'Ry 'y ' S1Re Ry Ry Rg))

—_

—~

= W

The word W is a product of 31 commutators and 8 copies of y; *.The word W}
is a product of 72 commutators and 8 copies of z; Yy 2y
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We perform 8 (-skips to the word Wer repeatedly by setting a = y;! and b=
27! in Definition 4.1. Then we obtain a word W which is a product of 111 (= 31+
72 + 8) commutators and is freely equal to W. This completes the proof of Lemma
4.2. O

By virtue of Lemma 4.2, we can show the following theorem.

Theorem 4.3.  There exists a Xp-bundle { = (E,X,,p, Ly, Diff X)) over X,
with g =111, h =3 and 7(E) = —4.

Proof. Set g =111 and h = 3. We choose a word W which satisfies conditions
(1)-(3) of Lemma 4.2 and write

W= H[ai’ﬂi] (a;,B: € F(i=1,---,9)).
i=1

Let x: F — F the homomorphism defined by:
i(al) = a4, i(gl) = ﬁi (7' = 1a e 79)3

where F = (61,---,69,51,---,59). Since x(7) = W € RN [F,F], X induces the
homomorphism x : m(X,) — M, (i.e, mox = x o) as in Section 2. For the
Yr-bundle ¢ over Xy which has x as its holonomy homomorphism, we calculate the
signature of its total space E:

r(E) = ~c(X()
= —c(W)
= —4.

We have thus proved the theorem. O

Finally, we prove our main theorem (Theorem 1.2) by using Lemma 4.2 and re-
sults of Liick [14] concerning about L?-Betti numbers of groups.

Proof of Theorem 1.2. Let W be the word constructed in the proof of Lemma
4.2. For every h > 3 and each n € Z(n # 0), we can construct a ¥;-bundle { =
£(h,n) with g = 111|n| and 7(E) = 4n by using the word W™ as in the proof of
Theorem 4.3 (see Remark 3.7). Therefore we have

g(h,n) < 111n).

On the other hand, for every X;-bundle { over ¥, with g > 1,h > 3 and 7(E) =
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4n, the associated exact sequence:

1— wl(Eh) ——')WI(E) —ﬂ')ﬂ'l(zg) —1

of fundamental groups satisfies the assumption of [14], Theorem 4.1. Then the first
L2-Betti number b; (71 (E)) of m;(E) is equal to zero and the Winkelnkemper-type in-
equality x(E) > |7(FE)| holds from [14], Theorem 5.1. By substituting

X(E) = x(Zn)x(Zg) =4(h - 1)(g - 1), 7(E)=4n

for the inequality, we obtain

n|

L
h_1 '

g(h,n) >
and this completes the proof of our theorem. O

REMARK 4.4. The Xj-bundle ¢ = £(h,n) over ¥, constructed in the first half of
the proof of Theorem 1.2 has g = 111|n|, 7(E) = 4n, b;(E) = 2(111|n| + h — 3),
b (E) = 2(222|n|h — 5) and x(E) = 4(111|n| — 1)(h — 1), where h(> 3) and
n € Z(n # 0). If the total space E admits a complex structure, E is an algebraic sur-
face of general type and satisfies the Noether condition, the Noether inequality and the
Bogomolov-Miyaoka-Yau inequality (cf. [2]). But E cannot be a geometric 4-manifold
in the sense of Thurston [20], in particular, a compact Kahler surface covered by the
unit ball in C2.

Let I'(h,n) be the fundamental group of the total space of £ = £(h,n)(h > 3,n >
1) constructed in the first half of the proof of Theorem 1.2. Computing an invariant
defined by Johnson [11], we obtain the following result.

Corollary 4.5. The family {I'(h,n)}r>3n>1 contains infinitely many commensu-
rability classes of discrete groups. In particular, {I'(h,n)}n>1 is a family of infinitely
many non-commensurable discrete groups for each h(> 3).

Proof. The commensurability invariant v(I") [11] for ' = I'(h,n) is

”Nmnnz(nupﬁxh_n (h>3,n>1),

which runs over infinitely many rational numbers. O

REMARK 4.6. Although the author attempted to show that the value g(h,n) does
not depend on the genus h (> 3) of fiber X for each n € Z (n # 0), it was not
achieved because of some serious transformation problems on words in free generators.
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