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0. Introduction

Azumaya [2], Osofsky [20] and Utumi [26] considered various properties of QF
rings, e.g., the completely faithfulness (i.e., generator) of modules, the injective co-
generator and Morita duality. They introduced and studied one new class of, so-called,
right PF (pseudo-Frobenius) rings, i.e., rings R whose every faithful right R-module
is a generator for Mod-R, the category of all right R-modules. Afterward, Endo [6]
and Tachikawa [25] naturally studied (commutative noetherian or perfect) rings R sat-
isfying the condition that every finitely generated faithful right R-module is a gener-
ator for Mod-R. Rings satisfying this condition are called right FPF (finitely pseudo-
Frobenius) rings whose general studies were made, at first over semiperfect rings, by
Faith [7], [8]. The study of commutative or semiperfect FPF rings was improved in
more detail ([9], [10] [11], [13], [14], [21]). Most of the basic results on FPF rings
may be found in Faith and Page [12].

We now consider, for each positive integer n, the condition “right n-PF" on a
ring R that every n-generated (i.e., generated by at most n elements) faithful right R-
module is a generator for Mod-R ([27]). Thus the rings that are right n-PF for all
positive integers n are just the right FPF rings, and there exists a chain of conditions:

FPF = .- = (n+1)-PF = n-PF = ..- = 1-PF.

Concerning this, it was shown in [4], [17] that a right self-injective ring is right FPF if
and only if it is right 1-PF, while a commutative semiprime or von Neumann regular
ring is right FPF if and only if it is right 2-PF. We then ask generally whether the
chain of conditions from FPF to n-PF for some positive integer n collapses to a single
condition, i.e., n-PF = FPF. Obviously, 1-PF does not imply FPF in general (for every
commutative ring is 1-PF). Thus it is natural to ask whether 2-PF implies FPF. We do
not know whether this is true in general case.

In this paper, we shall study semiperfect or commutative FPF rings in connection
with the noted above. In Section 1, we present a characterization of semiperfect FPF
rings, which shows that 2-PF = FPF for semiperfect rings. Section 2 is concerned
with commutative FPF rings. In the section, we characterize these rings R by over-
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modules of R in its injective hull and the stalks of R, from which 2-PF = FPF for
commutative rings. In the last section, by using the theorem of Section 2 we present
additional results on commutative FPF rings, e.g., the “invertibility” of finitely gener-
ated overmodules in the injective hull, the integrally closedness and flat epimorphisms
of overrings in the maximal quotient rings.

NoratioN and TerMINOLOGY. Throughout this paper, all rings considered are as-
sociative rings with identity and all modules are unitary.

Let R be a ring. For an R-module M and a positive integer n, we denote by
E(M), J(M) and Z(M) the injective hull, the Jacobson radical and the singular sub-
module of M, respectively, and by M (™) the direct sum of n copies of M. The no-
tations N < M and N S, M mean that N is an R-module isomorphic to a sub-
module and a direct summand of M, respectively. For subsets A, B of M, we set
(A: B) = {r € R| Br C A}. For finitely-many z;,...,z, € M, we abbreviate
(A:{z1,...,zn}) o (A:z1,...,20).

Recall that a ring R is right FPF if every finitely generated faithful right R-
module is a generator for Mod-R.

1. Semiperfect FPF rings

In this section, we shall prove the following.

Theorem 1.1. Let R be a semiperfect ring with basic idempotent e. Then the
following conditions are equivalent:
(1) R is right FPF;
(2)  Every faithful factor module of (eR)(®) is a generator for Mod-R;
(3) () IfI is a submodule of eR such that eR/I is faithful, then I = 0;
(ii) For every z € E(eR), eR + zeR is a generator for Mod-R;
(4) eR is the unique faithful factor module of eR and the unique finitely generated
faithful submodule of E(eR), to within isomorphism.

The theorem above immediately implies the following result.

Corollary 1.2. A semiperfect ring R is right FPF if and only if every 2-
generated faithful right R-module is a generator for Mod-R.

Concerning the corollary, we note that in [25, (the proof ‘of) Proposition 2.4 and
Theorem 2.5], Tachikawa proves the following strong theorem for perfect rings.

Theorem ([25]). A left perfect ring R is right PF if and only if every 2-
generated faithful right R-module is a generator for Mod-R.
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To prove Theorem 1.1, we use the following lemmas. The first one is well-known
(e.g. [3, Lemma I, 3.5]).

Lemma 1.3. (1) Let M and M,,..., M, be right R-modules such that
Endg(M) is a local ring. If

M Sy My @& M,

then there exists an i € {1,...,n} such that M S M;.
(2) Let R be a semiperfect ring with basic idempotent e. If G is a generator for
Mod-R, then eR Sg G.

For an R-module M, we denote by T'(M) (= the top of M) the factor module
of M modulo its Jacobson radical.

Lemma 1.4. Let P be a finitely generated projective right R-module whose top
is semisimple. If X is a submodule of P such that P S P/X, then X = 0.

Proof. Note by the semisimpleness of T'(P) that the top of every factor module
of P is semisimple. Now, assume that

P/ X>2PoY
for some right R-module Y, and set J(P/X) = X'/X. Then,
P/X' = T(P/X) 2 T(P®Y) = (P/J(P)) & (Y/J(Y)).

Comparing the (composition) length of the semisimple R-modules above, we obtain
X'=JP)and Y = J(Y), ie., Y = 0. Thus, P/X = P, whence by the projectivity
of P, X is a direct summand of P. But then, X C J(P), from which we conclude
that X = 0. O

Recall that a right R-module is co-faithful if Rp < M (™) for some positive in-
teger n, or equivalently there exist finitely-many z;,...,z, € M such that (0 :
Zi,...,Zn) = 0. Note also an easy fact that for right R-modules M and N with

N < M, there exists a homomorphic image of M in E(N) containing N.

Lemma 1.5. For a ring R, the following conditions are equivalent:
(1) R is right FPF;
(2) (@) Every cyclic faithful right R-module is co-faithful,
(ii)  Every finitely generated submodule of E(RR) containing R is a generator
for Mod-R.
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Proof. (1) = (2). Obvious.

(2) = (1). Let M =3, z;R be a finitely generated faithful right R-module.
Set I = (0 : z1,...,%,). Then, R/I is faithful and R/I < M ™), whence by (2)(i),
Rr < M{™™ for some integer m. Thus, M(™™) has a homomorphic image F in
E(R) containing R. It then follows from (2)(ii) that F', and hence M, is a genera-
tor for Mod-R. Therefore, R is right FPF. O

In general, infinite direct products of FPF rings are not FPE. For example, the di-
rect product of simple artinian rings R,, (n = 1,2,...) of length n is not FPF. Howev-
er, as a consequence of the lemmas above, we have the following results for semiper-
fect rings (c.f. [9, Corollary 18]).

Proposition 1.6. Let Ry be a semiperfect ring with basic idempotent ey for A €
A. Then, the ring H)‘e A B is right FPF if and only if (i) each Ry is right FPF,
and (ii) there exists a positive integer n such that Ry Sq (exRy)™ for all X € A.

Proof. Set R = [[Rx, E\ = E(R,\Rx) and E = [] E), the injective hull of
Rg.

“If part”. Assume (i) and (ii). To prove that R is right FPF, we show Lemma
1.5(2). First, let I be a right ideal of R such that R/I is faithful. For each A € A,
let p : R = R, be the A-th projection, and set Iy = p)(I). Then each Rj)-module
Ry /I, is faithful, whence by the assumption and Lemma 1.3, Ry < (Rx/I»)™. Thus,
R < (R/T11,)™, and hence R < (R/I)™, ie., R/I is co-faithful. Next, let M be a
finitely generated submodule of E containing R. Then, M = [] M), where each M,
is a finitely generated submodule of E) containing R). By the assumption and Lemma
1.3, Ry 5@9 Mi") so that R 5® M®™ je, M is a generator for Mod-R. Therefore,
R is right FPE.

“Only if part”. This part immediately follows from the fact that any direct sum-
mand of an FPF ring is FPF, and the one that the condition (ii) is equivalent to the
condition that the cyclic faithful R-module (e))R is a generator for Mod-R. O

Lemma 1.7 (c.f. [7, Theorem 1], [21, Theorem 2.1]). Let R be a semiperfec-
t ring with basic idempotent e such that for every x € E(eR), eR+zeR is a generator
for Mod-R. Then,
(1) R has finite uniform dimension as a right R-module.
(2) Every finitely generated submodule of E(eR) containing eR is isomorphic to
eR.

Proof. Set E = E(eR), and let the basic idempotent e be expressed as

e=e; + -+ e,
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where ej, ..., e is a basic set of primitive idempotents of R.
(1) It suffices to show that the right R-module e;R is uniform for each i =
1,...,k. So, let I, J be submodules of ¢;R with ITNJ =0, and set
X =(eR/I)® (eR/J).
Then the R-homomorphism
¢:eR>X:a— (a+1,a+J)
is monic and

X = p(eR) + (e + I,0)R.

Extending the inclusion map eR — E to an R-homomorphism 9 : X — E through ¢,
we have

Imy =eR+ (e + I,0)eR.

By hypothesis, Im ¢, and hence X, is a generator, whence by Lemma 1.3 we obtain
either e;R S eR/I or e;R S eR/J. We may assume the first case so that

e;R S;{B CR/I = (elR/I) (&) (€1R€B P ei_lRéBe,-.HRGB s EBekR),

from which e;R < e;R/I, because e;R is not isomorphic to e;R for i # j. It then
follows from Lemma 1.4 that I = 0. Thus, e;R is uniform, as desired.

(2) Let M be a finitely generated submodule of E containing eR. Since eR is a
generator for Mod-R, there exist x;,...,x, € M such that

M =z1eR+--- + z,eR,where ; = e.

If n = 1, then the result is obvious. Assume that n > 1 and that there exists an R-
isomorphism

p:zeR+---+x,_1eR — eR.
Then we may extend ¢ to an R-monomorphism M — E so that
p(M) = eR + p(zne)eR.

Since by hypothesis, (M) = M is a generator, it follows from Lemma 1.3 that
eR 569 M. But then, by (1), eR and M have the same finite uniform dimension, from
which we obtain eR = M. O
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Now, we prove Theorem 1.1.

Proof of Theorem 1.1. Set E = E(eR).

(1) = (2). Obvious.

(2) = (3). Assuming (2), we see that (3)(i) immediately follows from Lemma
1.3 and 1.4, while (3)(ii) is obvious.

(3) = (4). Assume (3). Then one only needs to prove that eR is the unique
finitely generated faithful submodule of E(eR), to within isomorphism. So, let M be
a finitely generated faithful submodule of E. Then there exist z;,...,z, € M such
that

M =z1eR+---+ z,eR.
We set
I=eRNO0:z1,...,Zn)-
Since eR/I is faithful, (3)(i) implies that I = 0, from which the R-homomorphism
eR— M™ :q s (z1a,...,z0a)

is monic. Thus, M (" has a homomorphic image N in E containing eR. By (3)(ii)
and Lemma 1.7(2), N, and hence M, is a generator, i.e., eR 5@ M, while by Lemma
1.7(1), E has finite uniform dimension. This shows that eR = M.

(4) = (1). To this end, we use Lemma 1.5. The condition (2)(i) of the lemma
follows from the proof of (3) = (4) combined with Lemma 1.4, while (2)(ii) does
from noting that every R-module containing R has a homomorphic image in E con-
taining eR. i

Remark. Over semiperfect rings, 1-PF condition (i.e., every cyclic faithful mod-
ule is a generator) does not imply FPF one in general. For example, any non-
semihereditary local commutative domain is 1-PF, but not FPF (see [10, Corollary Part
I1, 1.9]).

2. Commutative FPF rings

Faith [10] has already given the following decisive characterization of commuta-
tive FPF rings.

Theorem ([10, Theorem Part II, 5.1]).  For a commutative ring R, the following
conditions are equivalent:
(1) R is FPF;
(2) The classical quotient ring of R is self-injective, and every finitely generated
faithful ideal of R is a generator for Mod-R;
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(3)  Every finitely generated submodule of E(R) containing R and every finitely gen-
erated faithful ideal of R is a generator for Mod-R;

(4)  Every finitely generated submodule of E(R) containing R and every finitely gen-
erated faithful ideal of R is projective.

In this section, we present a characterization of commutative FPF rings, which
sharpens a part of the theorem above and is concerned with the noted in § 0.

For a ring R, we denote by B(R) the set of all central idempotents in R, which
forms a Boolean algebra with the join eV f = e+ f —ef and the meet eA f = ef, and
by X(R) the set of all maximal ideals of the Boolean algebra B(R). Let X be an R-
module and z an element of X. For each m € X(R), we denote by X, the (Pierce)
stalk of X at m, i.e., the factor R-module X/Xm of X, and by z,, the image of z
in X/Xm. If Y is a submodule of X, then we may naturally identify Y, with the
submodule (Y +Xm)/Xm of X, . Elementary results on B(R), X(R) and the stalks
may be found in [22, Part I, § 1 ~ 4].

Our aim in this section is to prove the following theorem.

Theorem 2.1. Let R be a commutative ring with E = E(R). Then the following
conditions are equivalent:
(1) Ris FPF;
(2) For every x € E, R+ xR is a generator for Mod-R;
(3) For every x € E, R+ zR is projective;
(4)  For every x € E, there exist a € (R :x) and b € R such that a + zb=1;
(5) For every m € X(R) and z,, € E,,, there exist am € (R,, : Tm) and by, €
R, such that am + Tmbm = 1p,.

m

The theorem immediately implies the following result, which is shown in [17,
Corollary 2] for commutative semiprime rings.

Corollary 2.2. A commutative ring R is FPF if and only if every 2-generated
* faithful R-module is a generator for Mod-R.

To prove the theorem, we provide several lemmas.

The following facts are elementary and well-known (e.g. [10, Part II, Chapt. 2, 3],
[24, Chapt. XIV]).

Let R be a ring with Q the maximal right quotient ring, and set E = E(RRg),
S = Endg(E) and J = J(S). Then:
(1) J={p €S| Keryp is essential in Eg}, and S/J is a (von Neumann) regular

and right self-injective ring.

2) Jig=JE=Z(E).
(3) Q= {xe€E| forevery a € R,(R: za) has zero left annihilator in R}.
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(4 Q is right self-injective if and only if @ = E if and only if for every = € E,
(R : z) has zero left annihilator in R.

(5) If Ris a commutative ring and M is a finitely generated R-module that is gen-
erated by n elements z1,...,z,, then M is a generator for Mod-R if and only
if there exist ¢1, ..., ¢, € Homg(M, R) such that ., ¢;(z;) = 1.

Lemma 2.3. Let R be a commutative ring such that Z(R) = Z(E(R)). If M is
a submodule of E(R) containing R, then

M(R: M) =Trr(M),
where Trp(M) is the trace ideal of M.

Proof. Set E = E(R), S = Endg(E) and J = J(S). It is then immediate that
M(R: M) C Trr(M). To the converse, let ¢ € Homg(M, R), and set

a=(1) and ¢ = —a’,

where ¢ is extended to an R-endomorphism of E, and a* : E — E is the multiplica-
tion map of a. Since R C Ker1, it follows that ¢ € J, from which

Y(M) C JE = Z(E) = Z(R),
Ma C o(M) — (M) CR, ie., a€ (R:M).

Thus we have
e(M)Cc M(R: M)+ Z(R).
On the other hand,
MZ(R) C Z(E) = Z(R), ie., Z(R) C (R: M).

Therefore we obtain (M) C M(R : M), which shows that Trg(M) C M(R : M),
as desired. 0

Lemma 24. Let E be a (right) R-module extension of a ring R such that for
every x € E, there exist a € (R : z) and b € R for which a + zb = 1. Let F be a
submodule of E such that ELRNF) C F. Set R= (R+ F)/F and E = E/F, and
denote by T the image of each element x of E in E. Then,

(1) For every T € E, there exist € (R:T) and b € R such that G+ 7b = 1.

(2) R is essential in E as an R-module.

(3) If E is a ring extension of R and F is an ideal of E, then all idempotents of
the ring E are contained in R.
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Proof. (1) Immediate.

(2) and (3) Let T be a nonzero element of E. Then, by (1) there exist @ € (R : T)
and b € R such that @ + Zb = 1. If Tb = 0, then 0 # % = Za € R. If otherwise, then
0#7b =1-a€ R. Thus, R is essential in Ex.

If 7 is an idempotent of E, then T = Ta + Tb € R. O

For a ring R and e € B(R), we set
N(e) ={m € X(R) | e ¢ m}.
Then it is well-known that X(R) is a Boolean space in which
{N(e) | e € B(R)}

is the set of all clopen (= closed and open) sets, and that X(R) has the following,
so-called (see [22, p.12-13]), partition property.

Partition Property. For every open covering {Ox}xca of X(R), there exist
finitely-many clopen sets Ni,..., Ny of X(R) such that:
(i) for each i =1,...,k, there exists a \; € A for which N; C O,_;
Gi) X(R)=MNMU---UN;
(i) N;NN; =0 fori#j.

We use the following “sheaf theoretical" result as in [22, Proposition 3.4]. We
briefly give its direct proof.

Lemma 2.5. Let M,,..., M, be submodules of a (right) R-module M, and let
Ty, ..., Ty € M. Let f1,..., fn be integral polynomials in noncommuting variables
X1, .. Xs Y1, ..., Vi such that for each m € X(R), there exists a

(Y1y---rYs) € My X -+ X M,
for which
[i(@1s oy Ty Ylms - 1Yt ) = Om (in M, for j=1,...,n).
Then there exists a
(y1,---,yt) € My X - x M,

for which

fixi,. . Ts,y15...,9) =0 (in M for j =1,...,n).
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Proof. For each m € X(R), there exist a neighborhood Z{(m) of m and

(Y151 Y1) € My x - x My

such that for each j and m’' € U(m),
i@ s s ®s s Yl s o2 Yims) = Omr.

Indeed, by hypothesis there exists a

(Y1s--->Ys) € My X - x Mg
such that for each j,

fi(@1s s Zsmy Ylms -3 Ypm) = O,y
which means that there exist z; € M and e; € m such that
fi(Z1, . Ts, Y1y -y Ys) = 2j€5.

We then only set U(m) = N7_ N (1 - e;).
By Partition Property of X(R), there exist finitely-many

€1,---,€k EB(R)a
(yll)”'7ylt)’~-"(yk17"~,ykt) e]\41 X "'XMt

such that:
(i) foreachi=1,...,k fi(Z1,.,- -1 &s,,Yilpns- - Yitn) = Om for each j and
m GN(ei);

(i) X(R)=N(e1)U---UN(er);
(>iii) N(ei) ﬂN(eir) =0 for i #i'.
Note by (ii) and (iii) that e; V--- Ve, =1 and e; A ey = 0 for 7 # i'. Now, for each
h=1,...,t we set
Yn = Y1ne1 + -+ + Ykhek.
Then it is easy to see that for each j and m € X(R),
fi@i, s sy Yls- - Ytr,) = Om.

Therefore we conclude that for each j,

fj(xla---azsvylﬁ-“ayt) :Oy
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as desired. O

Lemma 2.6. Let R C Q be a ring extension such that B(R) C B(Q). If for
each m € X(R), the ring Q,, is the classical (right) quotient ring of R, , then Q is
the classical (right) quotient ring of R.

Proof. First, let ¢ be a regular element of R. Then it is immediate that for each
m € X(R), the element c,, is regular in R, and hence invertible in Q,,. Now, ap-
plying Lemma 2.5 (in which M; = M = @) to the element ¢ and the polynomials

LX) =X -1, (X, 1) =X, -1,

we see that ¢ is invertible in Q.

Next, to see that every element of @ is of the form ab™! for some a, b € R, one
only needs to apply Lemma 2.5 (in which M; = My = R and M3 = M = @) to any
element z € () and the following three polynomials (in variables X, Y7, Y, Y3):

XY, - Ys, V1Y —1, Y3Y; — 1. 0

We denote by Q. (R) the classical quotient ring of R.

Lemma 2.7. Let R C Q be a commutative ring extension such that for every
T € Q, there exist a € (R: z) and b € R for which a + zb = 1. Then,
(1) If I is an ideal of @ such that Q/I is a regular ring, then Q/I = Q.((R +
n/I.
2) IfQu(R) C Q and Q is a regular ring modulo its Jacobson radical, then QQ =

Qa(R).

Proof. (1) According to Lemma 2.4 and 2.6, it suffices by passing through I to
show that in case @ is a regular ring, Q,,, = Qu(R,,) for every m € X(R). By the
regularity of () and Lemma 2.4, the ring @,,, is a field and R, is essential in Q,,
as an R, -module. Therefore, @, is the quotient field of R,_,.

(2) Set J=J(Q), R=(R+J)/J and Q = Q/J, and denote by T the image
of each element z of Q in Q. If z € J, then by hypothesis there exist a € (R : z)
and b € R such that a+ xb = 1. Since a = 1 — zb is invertible in (), the element a (€
(R : z)) is regular in R, which shows that z € Q.(R). Thus we obtain J C Q. (R).

Now, let y € Q be arbitrary. By (1), Q@ = Q. (R), whence there exist ¢, d € R
and ¢ € @) such that yc—d, cg— 1 € J. Since cq is invertible in @, c is regular in R.
Thus, y € dc™! + Je=! C Q. (R). Therefore we conclude that Q = Q. (R). O

The following lemma is well-known (see [2, Theorem 8] and [1, Proposition
17.9)).
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Lemma 2.8. Every finitely generated faithful projective module over a commuta-
tive ring R is a generator for Mod-R.

An ideal of a ring R is called a regular ideal if it contains a regular element of
R.

Griffin [15] characterized commutative rings in which every finitely generated reg-
ular ideal is invertible, i.e., projective (see [24, Proposition II, 4.3]). The following
lemma may be obtained by the proof of (10) = (1) of his theorem.

Lemma 2.9 ([15, Theorem 13]). For a commutative ring R, the following con-
ditions are equivalent:
(1)  Every finitely generated regular ideal of R is projective;
(2) For every a, b € R such that a is regular in R, the ideal aR + bR is projective.

Now, we are in position to prove Theorem 2.1.

Proof of Theorem 2.1. Throughout the proof, let () denote the maximal quotient
ring of R.

(1) = (2). Obvious.

(2) = (3) and (4). First we show the following.

CLamM.  (Q is a self-injective ring, i.e., ) = E.

Proof of Claim. First note that E = E(Qg), and by (2) that for every = €
E, the Q-module @ + z@ is a generator for Mod-(), because every R-homomorphism
R + zR — R may be extended to a ()-homomorphism @ + z() — Q. Thus, to prove
the claim, we may assume that R = (). This then implies that

Indeed, obviously, Z(R) C Z(E). To the converse, let z € Z(E). Then there exists a
0 € J(Endg(E)) such that z = (1), while by hypothesis, the R-module R + zR is
a generator; hence there exist ¢, 1 € Homg(R + =R, R) such that

e(1) +9(z) = 1.

Extending ¢ and ¢ to R-endomorphisms of E, we see that ¢(1) = (1 — ¢6)(1) and
1 -0 is invertible in Endr(E). Consequently, Ker p N R = 0, i.e., ¢ is monic. Since
p(zp(1) — p(z)) = 0 and hence zp(1) = p(z) € R, it follows that (R : =) contains
the regular element (1). In particular, (R : z) has zero annihilator in R, i.e, z € R
(because R = ). Thus, we conclude that Z(R) = Z(E), as desired.

Now, let y € E be arbitrary. Then, the R-module R + yR is a generator, whence
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by Lemma 2.3 we obtain (R+yR)(R : y) = R. Therefore, (R : y) has zero annihilator
in R, i.e, y € R, which completes the proof of Claim. O

To show (4), let z € E. Then by (2) there exist ¢;, 2 € Homg(R+zR, R) such
that

¢1(1) + p2(z) = 1.

Since by Claim each ¢; may be extended to a Q-endomorphism of @, it follows that
zp;(1) = p;(z) € R, ie.,

@i(1) € (R:z) and (1) +zp2(1) = 1,

which means (4).

To show (3), one only needs to use Dual Basis Lemma for projective modules.

(3) = (2). This follows from Lemma 2.8.

(4) = (1). It follows immediately from (4) that for every z € E, the annihilator
of (R: x) is zero, i.e., E = @, a self-injective ring, and that R satisfies (2) and hence
(3). Thus by Lemma 2.7 we have Q = Q. (R), while we see by Lemma 2.9 that every
finitely generated regular ideal of R is projective.

Now, to show that R is FPF, it suffices by Lemma 1.5 to show that every finitely
generated submodule of E = Q. (R) containing R is a generator. So, let M be such
a submodule. Then there exists a regular element ¢ of R such that Mc C R; hence
Mc is a finitely generated regular ideal of R. As mentioned above, Mc is projective,
whence by Lemma 2.8, M = Mc is indeed a generator. Therefore, R is an FPF ring.

(4) = (5). This follows from Lemma 2.4.

(5) = (4). One only needs to apply Lemma 2.5 (in which M; = My = M3 = R
and M = E) to any element z € E and the polynomials

(X1, Y1,Y2,Y3) =1 + X1, — 1, fo(X1,Y1,Y2,Y3) = X 1Y) - Vs, O

Recall that a domain R is Priifer if every finitely generated ideal of R is pro-
jective. Note also that every commutative semiprime ring R has the regular and self-
injective maximal quotient ring that is the injective hull of R.

As consequences of Theorem 2.1, we obtain the following corollaries.

Corollary 2.10. Let R be a commutative ring with () the maximal quotient ring.
Then the following conditions are equivalent:
(1) R is a semiprime FPF ring;
(2) For every m € X(R), R,, is a Priifer domain with Q,,, the quotient field.

m

Proof. Note by Lemma 2.8 and Dual Basis Lemma that a domain is FPF if and
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only if it is Priifer.

(1) = (2) follows from Theorem 2.1 and the proof of Lemma 2.7(1).

(2) = (1) follows from Theorem 2.1 and an easy fact that if R_, is a domain
for every m € X(R), then R is a semiprime ring. 0

RemArk 1. In the corollary above, we may not drop the condition “with Q.
the quotient field" of (2). For example, let R be a non-self-injective commutative (von
Neumann) regular ring. Then, R, is a field for every m € X(R), but R is not FPF.

ReMARK 2. Let R be a commutative ring with £ = E(R) and consider the fol-
lowing two conditions for R:
(1) R is FPF;
(2) For every m € X(R), R,,, is an FPF ring with E, the R, -injective hull.
Then, Theorem 2.1 shows that (2) = (1), while we do not know whether the converse
holds in general. However, we see by Theorem 2.1 and [24, Proposition XI, 3.11] that
this is equivalent to the following:
(*) Every stalk Q,,, of an arbitrary self-injective commutative ring Q is also a self-

injective ring.
The condition (4) of Theorem 2.1 immediately implies the following.

Corollary 2.11 ([9, Corollary 18], [10, Proposition Part II, 2.9]).
(1) Let Ry be a commutative ring for A € A. Then, the ring [[,c Rx is FPF if
and only if each R) is FPE
(2) Let R be a commutative FPF ring with () the maximal quotient ring. Then every
subring of @ containing R is FPF.

3. Additional results on commutative FPF rings

In this section, by using Theorem 2.1 we present another characterization of com-
mutative FPF rings.

Recall that a ring homomorphism ¢ : R — S is a (right) flat epimorphism if ¢ is
an epimorphism in the category of rings and S is flat as a (left) R-module.

The following is well-known (c.f. [24, Theorem XI, 2.1}).

Lemma 3.1 ([23, Théoreme 2.7]). For a ring extension R C S, the following
conditions are equivalent:
(1)  The inclusion map R — S is a right flat epimorphism;
() ForeveryzeS, (R:z)S=2S.

We obtain the following theorem, which somewhat generalizes [11, § 8, Proposi-
tion, (the first) Corollary].
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Theorem 3.2. For a commutative ring R, the following conditions are equiva-

lent:
(1) R is FPF;
(2)  Every finitely generated submodule M of E(R) containing R is invertible, i.e.,

M(R: M) =R;

(3) The maximal quotient ring () of R is self-injective, and for every subring S of
Q containing R, the inclusion map R — S is a flat epimorphism;

(4) The maximal quotient ring QQ of R is self-injective, and every subring of @) con-
taining R is integrally closed in Q.

Proof. (1) = (2). Let M be a finitely generated submodule of E(R) (= Q, the
maximal quotient ring of R by (1)) containing R. Since M is a generator, there exist
Zy,...,Tn €M, @1,...,0n, € Homg(M, R) such that

p1(z1) + -+ pn(zn) = 1.
Extending each ¢; to a (?-endomorphism of @), we obtain
l1=z101(1) + - + znpn(l) € M(R: M).

Thus, M(R: M) = R.

(2) = (3). Given any z € E, we see by (2) that (R + zR)(R : z) = R. This
combined with Lemma 3.1 implies (3).

(3) = (4). Let S be a subring of Q containing R and S its integral closure in
Q. Let z € S be arbitrary. Applying Lemma 3.1 to the inclusion map R — S, we
have (R : z)S =S, from which

(S:z)sS =38, where (S:z)s={s€S|zs€ S}

It then follows from the Lying Over Theorem (e.g. [16, Theorem 44]) that (S : z)s =
S, ie., ¢ € S. Therefore, S = S is integrally closed in Q.
(4) = (1). This follows from [5, Theorem 2] and Theorem 2.1. O

Remark. Let R be a commutative ring with () the maximal quotient ring. For
each prime ideal P of R, we set

Rp={z€Q|(R:z)N(R-P)#0},
[Pl={yeQ|(P:y)n(R-P)#0}.
It then follows from Theorem 3.2 and [5, Theorem 2] that the following conditions for

R are equivalent:
(1) R is FPF;
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Q is a self-injective ring on which each (Rip),[P]) is a valuation pair in the
sense of Manis [18], [19].

The theorem above implies the following corollary in which (1) < (3) is [11, §

8, (the second) Corollary].

Corollary 3.3. Let R be a commutative semiprime ring with Q) the maximal

quotient ring. Then the following conditions are equivalent:

¢))
€))

3

(1]
(21

(3]
4

(51
(6]
g
(8]
9]

(10]

[11]
(12]

(13]

[14]
[15]

(16] .

[17]

(18]

R is FPF;

For every subring S of @ containing R, the inclusion map R — S is a flat
epimorphism;

Every subring of @) containing R is integrally closed in Q.
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