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Introduction

The main purpose of this paper is to prove finiteness theorems for some families
of meromorphic mappings that are transcendental in general. The finiteness problem
for meromorphic mappings under the condition on the preimages of divisors was first
studied by H. Cartan and R. Nevanlinna and they obtained a finiteness theorem for
meromorphic functions on the complex plane C ([2] and [19]). The finiteness theo-
rem of Cartan-Nevanlinna states that there exist at most two meromorphic functions
on C that have the same inverse images with multi-plicities for distinct three values
in P;(C). In 1981, H. Fujimoto generalized the theorem of Cartan-Nevanlinna to the
case of meromorphic mappings of C™ into complex projective spaces P,,(C) by mak-
ing use of Borel’s identity ([9], IV and [10]). He proved the finiteness of families of
linearly nondegenerate meromorphic mappings of C™ into P, (C) with the same in-
verse images for some hyperplanes. In his results, the number of hyperplanes in gen-
eral position is essential and must be larger than a certain number depending on the
dimension of the projective spaces. Furthermore, the finiteness theorem of Fujimoto
has been extended to the case of meromorphic mappings into a projective algebraic
manifold ([10] and [12]). In this paper, we mainly deal with the finiteness problem
for meromorphic mappings f of C™ into a compact complex manifold M and for a
divisor D on M.

Let L —+ M be a fixed line bundle over M, and let oy, ---, o5 be linearly in-
dependent holomorphic sections of L — M with s > 2. Throughout this paper, we
assume that (0;) = dD;(1 < j < s) for some positive integer d, where D; are effec-
tive divisors on M. Set

w =101+ -+ Cs05,

where c¢; € C*. Let D be a divisor defined by w = 0. We define a meromorphic
mapping ¥ : M = P,_;(C) by

W:(al,--—,as).
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DermniTioN 0.1, Let p be a nonnegative integer. For divisors E; and E; on C™,

we write
E1 = E2 (mod p)

if there exists a divisor E' on C™ such that E; — E; = pE’; in the special case of
p=0, E; = E> (mod 0) if and only if E; = Es.

Let E be a nonzero effective divisor on C™. We denote by

F(p; (C™, E), (M, D))

the set of all meromorphic mappings f : C™ — M such that

ffD=FE (mod p).

DerNiTION 0.2. A meromorphic mapping f : C™ — M is said to be analytically
nondegenerate if f(C™) is not included in any proper analytic subset of M.
Let
F*(p; (C™, E), (M, D))
denote the subset of all f € F(p;(C™,E),(M,D)) that are analytically non-

degenerate. The main result of the present paper is as follows:

Main Theorem 0.3. Ifrank¥ = dim M and d > (s+1)!{(s+1)!—2}, then the
number of mappings in F*(d; (C™, E), (M, D)) is bounded by a constant depending
only on D.

We prove Main Theorem 0.3 in §5. For the proof of this theorem, we need to
generalize Fujimoto’s finiteness theorem as follows.

DermiTioN 0.4. A meromorphic mapping f : C™ — P, (C) is said to be linear-
ly nondegenerate if f(C™) is not included in any proper linear subspace of P, (C).

Let Ey, ---, En4+2 be effective divisors on C™ and let Hy, ---, H,42 be hyper-
planes in general position in P,(C). Let

E(p; (C™, {Ej})v (Pn(C), {HJ}))

be the set of all linearly nondegenerate meromorphic mappings f of C™ into P,(C)
such that

f*H; = E; (mod p)
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for 1 < j < n+2. Then we have the following theorem that is a generalization of the
finiteness theorem of Fujimoto (see §4):

Theorem 0.5.  Suppose that p > (n + 2)!{(n + 2)! — 2}. Then the number of
mappings in E(p; (C™,{E;}), (Pn(C),{H,})) is bounded by by a constant depending
only on n.

The unicity problem for meromorphic mappings may be considered as a special
case where the finite set of a family of meromorphic mappings reduces to one point
set. The classical unicity theorem for meromorphic functions due to G. Pélya and R.
Nevanlinna is well known ([18] and [22]). There have been many researches about the
unicity of meromorphic functions on C as well in the multidimensional case (cf. [1],
[41, [51, [7], [8], [9], [15], [23], [25] and [27]). In §6, we prove the following unicity
theorem:

Theorem 0.6.  Assume that there exist big line bundles L; - M(1 < j < s)
such that L = L?d, 1<j<s andoj = ‘rf)d for some holomorphic sections 1; of
L; - M. Let f,g: C™ — M be analytically nondegenerate meromorphic mappings
whose ranks are not less than p. Suppose that the following conditions are satisfied:
(1) rank¥ = dim M.

) (Nj=1 Supp(o;) = 0.

3) f YD) =g"Y D) as point sets (say Z).

@ f=gonZ-(I(f)ul(g)).

Then there exists a positive integer dy depending only on L;(1 < j < s) such that if
d> (s~ p)(s+do), f=gonC™

In §1 we explain some known facts in Nevanlinna theory and in §2 we prove two
lemmas. In §3 we give some remarks on analytic dependence of meromorphic map-
pings. In §§4-6, we give the proofs of the above theorems. In the proofs, we use the
second main theorem for meromorphic mappings into complex projective spaces and
the generalized Borel identity.

ACKNOWLEDGEMENT.  The author is grateful to Professor Junjiro Noguchi for his
valuable advice. He gave useful comments and remarks to the first draft of this paper.

1. Preliminaries

Let z = (21, -+, 2m) be the natural coordinate system in C™, and set

21 = "2z, B(r) ={zeC™|zll<r},
=1
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gy
8B(r) = {ze Cmillzl =1}, o = Y_1(@-0),
o = dd[a], n = d°log||z|[* A (dde log }=][2)™.

For a (1,1)-current ¢ of order zero on C™ we set
n(’r, (P) = T2~2m (QO A am—l’ XB(T))

and
" dt
Nero) = [ nt) -

where x p(r) denotes the characteristic function of B(r).

Let M be a compact complex manifold and L — M a line bundle over M. We
denote by I'(M,L) the space of all holomorphic sections of L — M. Let |L| =
P(I'(M,L)) be the complete linear system defined by L. When |L| # 0, we define
the base locus of |L| by

Bs|L| = ﬂ SuppD.
De|L|

Let {¢o,--*,¥n} be a basis for I'(M, L). We define a meromorphic mapping &, :
M — P,(C) by

P1(2) = (po(2), "+, pn(2)), 2 € M —Bs|L|.

Let | - | be a hermitian fiber metric in L and let w be its Chern form. Let f :
C™ — M be a meromorphic mapping. We set

Ty(r,L) = N(r, f*w)

and call it the characteristic function of f with respect to L. In the case where M =
P,(C) and L = [H] is the hyperplane bundle, we simply write Ts(r) for T¢(r,[H]).
Let D = (o) € |L| with |o| <1 on M. Assume that f(C™) Z SuppD. We define the
proximity function of D by

1
o= [, v ()

Then we have the following first main theorem for meromorphic mappings (cf. [27]):

Theorem 1.1. Let L — M be a line bundle over M and let f : C™ — M be
a meromorphic mapping. Then

N(r, f*D) + my(r,D) = T¢(r, L) + O(1)
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for D € |L| with f(C™) € SuppD, where O(1) stands for a bounded term as r —
~+o00.

Let E be an effective divisor on C™ and let [ be a positive integer. If
E = Z I/J’Ej
J
for irreducible hypersurfaces E; in C™ and for nonnegative integers v;, then we set
Ny(r,E) =) min{l,v;}N(r, Ej).
J
For a meromorphic mapping f : C™ — M, we denote by I(f) the indeterminacy
locus of f. Set
rank f = max{rankdf(z);z € C™ - I(f)}.

By making use of “Lemma on the logarithmic derivative” on C™, which was first
proved by A. Vitter ([28]) and was refined by B. Shiffman ([24, Lemma 3.11]), we
have the following second main theorem for meromorphic mappings f : C™ — P,(C)
that plays an essential role in this paper (cf. [11] and [21]):

Theorem 1.2. Let f : C™ — P,(C) be a meromorphic mapping with rank p,
and let | be the dimension of the smallest linear subspace of P, (C) including f(C™).
Let Hy, ---, Hy be hyperplanes in P,(C) located in general position. Then

q
(@=2n+1=1D)Ts(r) <Y Nicppa(r, f*Hj) + S;(r),
=1
where
S¢(r) = O(log T¢(r)) + o(log )
except on a Borel subset E C [1,+00) with finite measure.
2. Two lemmas

Let f : C™ — P,(C) be a nonconstant meromorphic mapping and let H be a
hyperplane in P,,(C) with f(C™) € H.

DerNiTION 2.1. We say that f is ramified to order at least d(> 0) over H if

f*H > dSuppf*H.
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In the case Suppf*H = ), we may say that f is ramified to order +oo.
We first show the following (cf. H. Cartan [3]):

Lemma 2.2. Let f : C™ — P,(C) be a linearly nondegenerate meromorphic
mapping with rank p. Let Hy, ---, Hy be hyperplanes in general position in P,(C).
Suppose that f is ramified to order at least dj over H; (1 < j < gq). Then

q
(1_"_#“)5”“.

J

Proof. Let k =n — p+ 1. By Theorem 1.1 and Theorem 1.2, it follows that

. Ni(r, f*Hj))
1-limsup ——————=
( r—)+cxr>) Tf('r)

. k d‘Nl(raf*H'))
1—1 & &N, J7H;5)
( ot d;  Ty(r)

. kN(r,f*Hj)>
1-1 LG )]
(1~ tmaup X0

M-

n+12>
1

<.
I

M-

1

<.
I

M-

1
k
1-—). U
1( d,-)

The following lemma is a generalization of the classical theorem of E. Borel due
to H. Fujimoto and M. Green (cf. [6, Corollary 6.4] and [13, p. 70]):

<.
1l

M-

J

Lemma 2.3. Let @1, -+, @t be nonzero meromorphic functions on C™ satisfy-
ing the functional equation

2.4) pr+-+p =0.

Suppose that (p;) =0 (mod d) for all 1 < j <t and d > t(t — 2). Then there exists
a decomposition of indices, {1,---,t} = UI,, such that

(1) every I, contains at least two indices

(2)  the ratio of p; and ; is nonzero constant if and only if i, j € I,

) Yjer, i =0 for every v.

Proof. @ We prove Lemma 2.3 by induction on ¢. The case of ¢t = 2 is triv-
ial. Suppose that our assertion holds up to ¢ — 1. We introduce an equivalence re-
lation in {1,---,t} as follows: @; ~ ; if ¢;/p; is constant. Let {I1,---,I,,} =
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{1,---,t}/ ~. By definition, we have (2). For the proof of (1), we assume that there
exists I, that contains only one index, say t. We show that ¢;, - -+, ;1 are linearly
dependent over C. We define a meromorphic mapping F : C™ — P;_»(C) by

F= (‘pl""aﬂot—l)'

Suppose that F' is linearly nondegenerate. Take the following hyperplanes in general
position:

H, = {Cl =0}""’{Ct—1 =O}’
Hy={G++G1=0}

Then F' is ramified to order at least d over H; for all 1 < j < ¢. By Lemma 2.2, it
follows that

t

t—2
2(1—7) <t-—1.
Jj=1

Hence d < t(t — 2). This contradicts the assumption. Thus there exists a nontrivial
linear relation

(2.5) arpr+--+a_1p0:-1 = 0.
We may assume that a; = 1. By (2.4) and (2.5), we have
(]. - a2)<p2 +---+ (1 - at_1)<pt_1 + ¢ = 0.

By the induction hypothesis, there exists an index ¢(2 < ¢ < t—1) such that 1—a; #0
and (1 — a;)p;/p: is constant. Thus 4, ¢ € I,. This is absurd. Hence we have (1).
Finally we show (3). We choose an index i, € I, and set

Z Y; = buﬁoi,,,

iel,

where b, € C. Then (2.4) can be written as

vo
Z b,,(p,'u =0.
v=1
By (1), we infer that all b, = 0. This shows (3). O

3. Analytic dependence of meromorphic mappings

In this section we deal with analytic dependence of meromorphic mappings be-
longing to a certain class. Let

F.(d; (C™, E),(M, D)) = {f € F*(d; (C™, E), (M, D)); rank f > pu}.
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Set M? = M x M. For meromorphic mappings f, g : C™ — M, we define a mero-
morphic mapping f x g : C™ — M? by

(f x 9)(2) = (f(2),9(2))
for z € C™ — (I(f) UI(g)).

DermnTiON 3.1. Nonconstant meromorphic mappings f, g : C™ — M are said
to be analytically dependent if there exists a proper analytic subset S of M? such that
S is not of the type S; x S; with analytic subsets S; C M (j = 1,2) and (f x
g)(C™) cS.

For a positive integer p, we denote by M7 the set of all meromorphic functions
f on C™ such that f = gP for some nonzero meromorphic functions g on C™. For
p = 0, let M denote the set of all nonvanishing holomorphic functions on C™. We
first give the following proposition:

Proposition 3.2. Let L — M? be a holomorphic line bundle over M? such that

L=n{L®mn;L,
where m; : M®> — M(j = 1,2) are the natural projections. Let f and g be arbitrary

mappings in F(d; (C™, E), (M, D)). If d > 4s(s — 1), then there exists D € |L| such
that D is not of the type Dy x M + M x D, with Dy, Dy € |L| and

(f x g)(C™) C SuppD.

Proof. Let f, g € F(d;(C™,E),(M,D)). By the definition of F(d;(C™, E),
(M, D)), there exists a meromorphic function @ in M} such that

(3.3) @(f) = aw(g).

We note that w(f) # 0 and w(g) # 0. There exist subsets {ji, - *,Ja}
{ja+1, " sJatb} Of {1,---,s} and nonzero constants c;. such that the relation (3.3)
can be written as

a a+b
3.4 z ;05,0 f —a E ¢}, 05,09 =0,
p=1 p=a-+1
where {0}, o f,---,05, o f} and {0j,,, ©g,--,0j,,, © g} are linearly independent

over C respectively. Since d > 4s(s — 1), applying Lemma (2.3) to (3.4), we have a
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decomposition {1,---,a+ b} = UI, of indices such that each I,, contains two indices
and
(3.5) oj, o f = aanoj og,

where ay; € C* and I, = {k,l}. Thus, by (3.3) and (3.5), we can eliminate & and
obtain at least one relation 7(f;g) = 0, where 7(£;¢) is a holomorphic section of
L — M?2. Since {01,---,03} is linearly independent over C, it follows that 7 # 0.
Let D = (7). Then we have (f x g)(C™) C SuppD. It is clear that D # D; x M +
M x D, for any Dy, Dy € |L|. ]

For the family 7 (d; (C™, E), (M, D)), we have the following:

Proposition 3.6.  Let L be as in Proposition 3.2. Suppose that rank¥ =
dim M. Let f and g be arbitrary mappings in F(d;(C™, E),(M,D)). If d >
25(2s — p — 1), then there exists D € |L| such that D is not of the type D1 x M +
M x Dy with Dy, Dy € |L| and

(f x g)(C™) C SuppD.

Proof. Let f, g € F(d;(C™,E),(M,D)). As in the proof of Proposition 3.2,
we have a relation

(3.7 w(f) = aw(g),
where o € M. We define a meromorphic mapping F': C™ — Py,_5(C) by
F=(o10f:---:0s0f:a0109g: - :a0s-10g).

Since rank ¥ = dim M, it follows that rank F' > pu. Assume that F' is linearly nonde-
generate. Take the following hyperplanes in general position:

Hy ={( =0}, -+, Hae_1 = {C25—1 = 0},
Hys = {c1Ci + -+ + cas—1{2s—1 = 0},

where {(i,---,{2s—1} is a homogeneous coordinate system in Py,_5(C). Then, by
Lemma 2.1, we have

2s<1—23—_:—"1> <25—1

and hence d < 2s(2s — p — 1). This is absurd. Thus there exists a nontrivial linear
relation

(38) ajo1of+---+as0s0f+af{bhorog+---+bs_10s_109}=0,
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where (a1,---,as) # (0,---,0) and (b1,---,bs—1) # (0,---,0). By (3.7) and (3.8),
we eliminate o and obtain a relation 7(f; g) = 0, where 7 is a holomorphic section of
L — M defined by

s s s s—1
T(60) =4 D a05(6) p 4 Y cioi(Q) p+ 4D cioi(€) p & D biai(Q)
j=1 j=1 j=1 =1

Since f and g are analytically nondegenerate, ijl a;ojof #0 and Zj;} bjojog #

0. Since ¢; # 0 and {01, -,05} is linearly indepegdent over C, we infer that 7 # 0.
Let D = (7). Then we have (f x g)(C™) C SuppD and D # D; x M + M x D, for
any Dy, Dy € |L|. ]

4. A finiteness theorem for meromorphic mappings into P,,(C)

In this section we give a finiteness theorem for the family of meromorphic map-
pings £(p; (C™,{E;}), (Pn(C),{H;})) as follows:

Theorem 4.1.  Suppose that p > (n + 2)!{(n + 2)! — 2}. Then the number of
mappings in £ (p; (C™,{E;}), (Pn(C),{H,})) is bounded by a constant depending
only on n.

This theorem is a generalization of the following finiteness theorem for the family
E((C™ {E;}), (Pa(C), {H;})) := £(0; (C™,{E;}), (Pa(C), {H;}))
proved by H. Fujimoto ([10, Theorem 2.1]):

Theorem 4.2 (Fujimoto). = The number of mappings in E((C™,{E;}), (P.(C),
{H,})) is bounded by a constant depending only on n.

RemArRk 4.3.  In general, the number of mappings in £((C™,{E;}), (P.(C),
{H,})) is not less than (n + 1)! for all n (cf. [9, IV, p. 153]).

The proof of Theorem 4.1 is obtained by a modification of the proof of the finite-
ness theorem of Fujimoto. We give the proof of Theorem 4.1 step by step in what
follows.

Suppose that £(p; (C™,{E;}),(P»(C),{H;})) contains mutually distinct mero-
morphic mappings fi,---, f;- We have to show that there exists a positive integer g,
depending only on n such that ¢ < g, if p > (n+2)!/{(n +2)! — 2}. We show this by
induction on n. In the case n = 1, we can take g¢; = 2 by the following lemma:

Lemma 4.4. Let ai,as,a3 be distinct three points in P1(C) and let fi, fa,
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f3 be nonconstant meromorphic functions on C™ such that ffa; = fya; = f3a;
(mod p) for j =1, 2, 3. If p> 24, then f = fo, fo = fs or f3 = f1.

This lemma is a generalization of the finiteness theorem of Cartan-Nevanlinna. We
give here a proof based on the idea of [20, p. 126] and suggested by J. Noguchi.

Proof. Without loss of generality, we may assume that a; = 0, a; = 1 and
az = o0. Put
fi fi—1 fi fi-1
4.5 =L = by = h ahy = .
4.5) (4 A (2 Ho1 Y3 7 (2 o
Then it is clear that (¥;)o = (¥j)e0 = (¥j — 1)0 = (¢ — 1)oo (mod p). Eliminating
fi, f2, fa3 in (4.5), we have a relation

4.6) Y1213 + Y2rh3ths — Y3arhr — Yah1ve + Y1vbs — P23 = 0.

We define meromorphic functions ¢; (1 <7 < 6) on C™ by

{¥1, 02,93, P4, 5,96} = {19293, Y2tp3vha, Y3vathr, Yath1t2, Y1ba, atfs}-
Since p > 24, applying Lemma (2.3) to (4.6), we have a decomposition {1,---,6} =

U, I. of indices with I, > 2. We note that i, j € I, if and only if ¢;/p; is nonzero
constant. From this, we can easily verify our assertion. O

Assume that Theorem 4.1 is true for 1,---,m» — 1. Hence we have constants
q1, " ,qn—1 that have the above property. We identify P, (C) with the hyperplane

H:={G+" "+ (2 =0}
in P,,;1(C), where {(1,--,{nt+2} is a homogeneous coordinate system in P, (C).
Then we may assume that H; = {&G=0}nHfor1<i<n+2 Forj=1,---,q,
let (f{,---,f),2) be a reduced representation of f;. We take holomorphic functions
k; on C™ such that (k;) = E; for 1 < i < n+ 2. Put h;; = f]/k;. Then we have
h,’j € M; and

hljkl + -+ hny2jkny2 =0
for 1 < j <gq. Thus we have

4.7 det (hij,; 1<4,l<py)=0

for every 1 < ji1 < --+ < jp, < q, where pp =n + 2.
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We note here that we can perform the following operation without loss of gener-
ality: multiplying a row or column of the matrix A := (h;;;1 <1 < py,1 <j <q) by
a common elements in M.

Lemma 4.8 ([10, Lemma 2.2]). Suppose that there exists v with 2 < r < po
such that h;; are constant for 1 <i<r, 1<j<gqandrank(h;;;1<i<r1<j<
q) <7r. Then q < gn—1.

In [10], the proof of Lemma 4.8 is given in the case where h;; are holomorphic
functions without zero. We give here a proof after [10] for a convenience.

Proof.  After changing indices, we may assume that

(4-9) hlj = Z)\ihij
=2
for 1 < j <gq, where Ao, -, \. € C*. Put g; = k; + \;k; fori =2,---,7 and g; = k;
fori=r+1,---,po. We may assume that all g; # 0. We identify P,_,(C) with the
subspace
H' :={(&::&nt2) EPA(C);&a + - + &nqz = 0}

in P,(C). We define meromorphic mappings f; :C™ -5 P,_1(C) by

fi = (hajga s+ hejgr t hrg1jGrgr s+t hny2;gnia)
fgr J=1,---,q Itis easy to see that fj are linearly nondegenerate. Moreover, f~] #
fj» for j # j'. Indeed, if f; = f;, then there exists a nonzero meromorphic function
a on C™ such that
(4.10) hijgi = ahij g;
for i = 2,---,n + 2. Multiplying (4.10) by k;/g;, we have
4.11) fi=aff
for i =2,---,n+2. By (4.9) and (4.11), it is easy to see that flj = af{l. This shows
fi=fp . For2<i<n+2let H = {{, =0}NH' and E] = (g;). Then it is clear
that f; € &' == E(p; (C™,{E}}), (Pn-1(C), {H}})). By the hypothesis of induction,
we have #€' < gn—1. Thus ¢ < gn_1. O

Next we show the following lemma (cf. [7, Proposition 4.5]):
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Lemma 4.12.  Let hy,--+,hy € M and let

!
P(’LU],"‘,’UIt) = chMj(wlv"'awt)

=1

be a nonzero Laurent polynomial in wy,---,w;, where c; € C* and M; are distinct
monomials. Suppose that h* ---hl ¢ C* for any (I,---,l;) € Zt — {0} and | <
(n +2)\. Then P(hy,---,h) Z0.

Proof.  Assume that P(hy,---,h;) =0. By Lemma 2.3, it follows that the ratio
Mj(hy, -« - he) [ Mji (hy, - -+, )
is constant for some distinct j, j' and hence
LAY SO R S8
0

is constant for some (V{,---,v?) # (v},---,v}). Thus we have h{'---hl* € C*,
where p; = v) —vj for 1 < j <t. This contradicts the assumption. O

Now we consider a multiplicative group G = M;/C*. It is clear that G is a tor-
sion free abelian group. For h € M?*, we denote by [h] the equivalence class con-
taining h. Let Go be a finitely generated subgroup of G with all [h;;] € Go and
[m],---,[ne] a basis for Go over Z. Then h;; can be written as

1 It

L j
(4.13) hij = cijm” ---my"7,

where ¢;; € C* and 1}, --,l}; € Z. For integers my, - --,m;, we set

l,‘j = l}jml + -+ lfjmt.

We choose my, - --,m; such that li; # lij whenever (If;,---, 1) # (Ui, -, Uhj).
We show the existence of such integers my,---, m; by induction on ¢ (cf. [7, p. 2]).
The case t = 1 is trivial. Assume that our assertion holds up to ¢t — 1 and we can
take integers mi,---,m—; with the property that I; # Ii, if (l}j,~-~,lfj_l) #
(U4, 155)), where

,LIJ'I
l, l,m]+"'+ _|l1’
s = (. myg .

Then it is easy to see that there exist only finitely many integers m; such that
my, -+, m; do not satisfy the above property. Thus we have the desired conclusion.
Without loss of generality, after multiplying a row or column of the matrix A by a
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common elements in My, we may assume that l;; > 0 for all ¢, j. By (4.7) and
(4.13), we have

1 t
(4.14) det(cijny” -+n,751 < i, j < po) = 0.

The relation (4.14) can be written as

!
chMj(nl""ant) = 07
Jj=1

where
1
P(wy, -, wy) = ZCJ‘MJ‘(U)I,"',wt)
J=1
is a Laurent polynomial in wy,---,w; with | := (n + 2)!. By Lemma 4.12, it follows

that P = 0 as polynomial. Hence (4.14) remains valid if we substitute monomials 7; =
w!™* in one variable w(1l < i < po). Thus we have

dEt’(-Pz](w):Z = 1,"'P0»j = jla' o 7jpo) =0

for all ji,- -, jp,, Where Pij(w) := c;jwhis.

We now state a lemma on monomials due to H. Fujimoto. We consider py X ¢
matrices IT = (P;j(w)) with monomials P;;(w) = c;;w' as entries. By rank IT we
mean the rank of matrix in the field C(w) of rational functions.

Lemma 4.15 ([10, Main Lemma)). For each qo (> 1), there exists a positive in-
teger Q(po; go) depending only on po and go with the following property:

Suppose that ¢ > Q(po; go) and rank IT < po. Then there exists a positive integer
r depending on II with 2 < r < pg such that, after changing indices,

(4.16) lin—lin=lip—lyg =+ =ligy — lirg,
forall i, i with1<i<i <r and

4.17) rank (P;j(w);1<i<r,1<j<gq)<r

For the proof, see §3 in [10].

Let go = gn—1 + 1 and set ¢, = Q(po;qo). Suppose that ¢ > ¢,. By Lemma
4.15, we have (4.16) and (4.17). Hence h;j(1 < i < po,1 < j < qo) satisfy the
assumption of Lemma 4.8. Thus we have g9 < ¢,—1. This contradicts the choice of
go(= qn-1 + 1). Therefore we have g < g,. This completes the proof of Theorem 4.1.
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ReMARK 4.18.  The proof of Main Lemma in [10} and the above argument give
us a way of actually finding an upper bound for &£(p; (C™,{E;}), (P.(C),{H;})).
Indeed, we first note that the constant Q(po; qo) is defined as follows. For each go(>
1), we set Q(2;go) = go — 1. Assume that there exist Q(2; o), -, Q(po — 1;q0) with
the conclusion of Lemma 4.15. Set

¢" = max{go, @(2;90), - -, Q(po — 1;90)}-
Moreover we set ¢.(1 < s < pg) by
a=q¢ and g, =q" +po+q,_;(p!)’

inductively. Then we define Q(po;qo) = ¢, (see [10, p. 534]). On the other hand, by
the above proof of Theorem 4.1, we have the constants

q =2 and g =Q(n+2;gn—1+1)
such that §&€(p; (C™, {E;}), (Pn(C),{H;})) < gn for each n. For instance, we have
$€(p; (C™,{E;}), (P2(C), {H;})) < g2 = 786800531602.

We do not know whether the upper bound g,, is sharp or not in the case of n > 2. It
is an interesting problem to determine the least upper bound for the numbers of map-

pings in £(p; (C™, {E;}), (Pn(C),{H}})).
5. A finiteness theorem for meromorphic mappings into M

In this section we give the proof of our main theorem. Namely, we prove the fol-
lowing finiteness theorem:

Theorem 5.1. If rank¥ = dimM and d > (s + 1)!{(s + 1)! — 2}, then the
number of mappings in F*(d; (C™, E),(M, D)) is bounded by a constant depending
only on D.

Proof. Let f, g € F*(d;(C™,E),(M,D)). Then we have a relation

s 2s
5.2) chajof—a Z cjo;09 =0,
j=1 j=s+1
where o € M} and ¢y := ¢j,044j :=0; for j =1,---,s. Applying Lemma 2.3 to
the relation (5.2), we have a decomposition {1,---,2s} = UI, of indices. Since f and

g are analytically nondegenerate, we have that I, = {j,s + k} (1 < j,k < s) for all
v. Thus we obtain

(5.3) ojof=oaajo ;09 (aj€C*)
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for 1 < j < s, where 7 is a permutation of {1,---,s}. Let I" be the subgroup
of Aut(P,;_1(C)) generated by all diagonal matrices, that is, an automorphism T of
P,_1(C) belongs to I' if and only if

T((Gz:6)) =M1 AsGs)

for some Ay, ---, A € C*, where {(1,---,(s} is a homogeneous coordinate system in
P,_1(C). We set

(!p o g)T = (a‘r(l) 008G, " ",0r(s) © g)
Then the relation (5.3) yields that
(P o f)(z) =T((¥o9)(2))

for some T' € I'" and for z € C™ — (I(f) U I(g)) with f(z), g(z) & I(¥). We note
that

E= o f)*H (mod d),

where H := {c;(1 + -+ + ¢s(s = 0}.

The above argument shows that there exist finitely many linearly nondegenerate
meromorphic mappings ¢1,---,p: : C™ — P,_;(C) with ¢t < s! that satisfy the
following property: For arbitrary f € F*(d; (C™, E), (M, D)), there exists j (1 < j <
t) and T € I" such that ¥ o f =T o ;. For 1 < j <t, we define

Fi={f € F*(d;(C™ E),(M,D));®o f=Toyp, for some T € I'}.

To prove that F*(d; (C™, E), (M, D)) is finite, it suffices to show that F; is finite
for each j. Let j (1 < j <t) be fixed. We define effective divisors Ey,---,FEs41 on
C™ as follows. Let E}, be the zero divisor of ‘Pi for 1 <k <sand E;; = E,
where (go{, -+, pJ) is a reduced representation of ;. Take the following hyperplanes
in general position in P,_;(C):

Hl = {Cl :0}7"'7HS = {CS :0}7
Hs+1 = H
Let £ := £(d; (C™,{E;}),(Ps-1(C),{H,})) be the set of all linearly nondegenerate
meromorphic mappings ¢ : C™ — P,_;(C) such that p*Hy, = Ej (mod d) for
1 < k < s+ 1. Thanks to Theorem 4.1, §€ is bounded by a constant depending only

on s. For f € F;, by the definition of F;, we have W o f € £. Let fo be an arbitrary
meromorphic mapping in F;. Then it is easy to see that

Fi(fo) ={f € Fjs¥of=Vofo}
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is finite. Indeed, since the restriction of ¥ to an open dense subset W of M is a local-
ly biholomorphic mapping, there exists a positive integer eg such that @~ 1¥(w) < eg
for each point w in W. Suppose that there exist mutually distinct meromorphic map-
pings fo, -, fp € F;(fo). Set

W' ={z€ C™; fj(z) € W for all j and f;(z) # fy(2) for 0 < j < j' < p}.
Then W' is an open dense subset of C™. For zo € W', we have fo(20) € W and

{fo(20), -, fp(20)} C & 1¥(fo(20)).

Hence p+ 1 < eg and §F;(fo) < ep. Therefore §F*(d; (C™, E), (M, D)) is bounded
by a constant depending only on D. O

By Theorem 5.1, we have the following corollary (cf. [9, IV, Theorem 4.3]):

Corollary 5.4. Let v be an automorphism of C™ and let f : C™ — M be an
analytically nondegenerate meromorphic mapping. Suppose that rank¥ = dim M and
Y*f*D = f*D (mod d). If d > (s + 1)!{(s + 1)! — 2}, then there exists a positive
integer jo depending only on D such that fo~® = f, where 4% =yo---o~ (j-times)
for a positive integer j.

Proof. Take E = f*D. By the assumption, we have f oy’ € F*(d;(C™, E),
(M, D)) for any positive integers j. Since §F*(d; (C™, E), (M, D)) is bounded by a
constant depending only on D, it follows that f o 4/t = f o 4’2 for some j;, jo with
j1 < j2. We take the smallest j;, j, with the above property. Hence we see foy” = f
for jo = j2 — Jja. O

For the family
F*((C™, E),(M,D)) := F*(0;(C™, E), (M, D)),

we have the following theorem by making use of Theorem 4.2:

Theorem 5.5. Suppose that rankW = dim M. If d > 4s(s—1), then the number
of mappings in F*((C™, E), (M, D)) is bounded by a constant depending only on D.

We give here examples of pairs (M, D) satisfying the assumption of the above
theorems. We first consider in the case where M = P,,(C). In the following two ex-
amples, let M = P,(C) and {wy, -+, wn4+1} a homogeneous coordinate system in
P,(C). As usual, we denote by [H] the hyperplane bundle over P,(C).

ExampLE 5.6. Let D be a Fermat hypersurface defined by

w‘li+~~+wfi+1 =0.
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Put 0; = w¢ and H; = {w; = 0} for 1 < j < n+ 1. Then o; € I'(P,(C),[H]®?)
and (0;) = dHj. It is easy to see that rank¥ = n.

ExampLe 5.7.  Let {M;(w1, -+, wn41)}5=; be a set of monomials with nonneg-
ative rational exponents that is (n + 1)-admissible (for the definition, see [17]). Let
! be the smallest positive integer such that all exponents of M!,--- M! are integers.
Put 0; = M}* and D; = {M} = 0} for 1 < j < s. Then 0; € I'(P,(C),[H]®")
and (0;) = dDj. Since {Mj(w1,- -, wn41)}5=; is (n+1)-admissible, we may assume
that M; = w; for 1 < j < n + 1. Hence rank¥ =n.

Next we give an example of (M, D) such that M is other than P,(C). The fol-
lowing example is due to J. Noguchi:

ExampLE 5.8. Let E; and E; be smooth elliptic curves. We denote by e; (resp.
e2) the identity of an abelian group E; (resp. E2). Let p; (resp. p2) be a d-torsion
point in E; (resp. Es). Let L; = [pi]®d be the line bundle over E; determined by
a divisor de; for ¢ = 1, 2. By Abel’s theorem, de; and dp; are linearly equivalent.
Hence there exist holomorphic sections g, w1 € I'(Ey, Ly) and g, ¥y € ['(Es, L2)
such that (¢o) = dei, (¢1) = dp1, (o) = de2 and (1) = dps. Set M = E; x E5. We
define a line bundle L — M by L = nfL;®75 Lo, where 7; : M — E; are the natural
projections. Put o1 = 7o ® T390, 02 = T Yo @ TMyY1,03 = TFY1 @ My and 04 =
711 ® ma1pr. Then o; € I'(M, L) for all j. By the construction of o, it is easy to
see that (0;) = dD; for some effective divisors D; on M and rank ¥ = 2.

6. A unicity theorem
In this section we give a unicity theorem for meromorphic mappings. We first re-
call the definition of big line bundle.
DeFmNiTION 6.1. A line bundle L — M is said to be big provided that
dimg I'(M, L®) > Cvdi™ M

for some positive constant C and for all sufficiently large positive integers v.
We now show the following unicity theorem (cf. [1] and [4]):

Theorem 6.2.  Assume that there exist big line bundles L; -+ M(1 < j < s)
such that L = L?d,l <j<s andoj = T_;@d for some holomorphic sections T; of
L; - M. Let f, g: C™ = M be analytically nondegenerate meromorphic mappings
whose ranks are not less than p. Suppose that the following conditions are satisfied:
(1) rankV¥ = dim M.

() =1 Supp(g;) = 0.
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(3) f7YD)=g"Y(D) #0 as point sets (say Z).
@4 f=gonZ-I(f)UuI(g)).
Then there exists a positive integer dy depending only on L; (1 < j < s) such that if

d> (s —p)(s+do), f=gonC™

For the proof of Theorem 6.2, we need two lemmas. The following lemma is well
known (cf. [16, p. 42]):

Lemma 6.3 (Kodaira’s Lemma). Let L; and Ly be line bundles over M. Sup-
pose that Ly is big. Then there exists a positive integer v such that

I'(M,L% ® L) # {0}.

We next prove an inequality of second main theorem type as follows:

Lemma 64. Let L; be as in Theorem 6.2. Let f : C™ — M be an
analytically nondegenerate meromorphic mapping with rank f > p. Put Ty(r) =
maxi <;<s Is(r, L;). Suppose that rank¥ = dim M and ﬂ;zl Supp(a;) = 0. Then

{d~ s(s = W}Ty(r) < Nuoy(r, *D) + 84(r),
where
S¢(r) = O(log T¢(r)) + o(log )
except on a Borel subset E C [1,+00) with finite measure.

Proof. ~We first note that I(¥) = (). We define a meromorphic mapping F' :
C™ — P,_1(C) by FF = ¥ o f. Since f is analytically nondegenerate, it is clear
that F is linearly nondegenerate. Since rank¥ = dim M, it is easy to see that rank
F=rank f. Let :

Hl ={CI=O},"',H8={CG=O}7
Hyp = {CICI + -+ csCs =0}

be hyperplanes in general position in P,_; (C), where {(1,---,(s} is a homogeneous
coordinate system of P,_;(C). By Theorem (1.2), we obtain

s+1
Tr(r) < Y Ne_pu(r, F*H;) + Sp(r)

=1
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< éNs—u(Ta (0j 0 f)o) + Ns—p(r, f*D) + Sp(r)
< Zsl(s ~ )N (r, (72 0 £)o) + Ne—p(r, f*D) + Sp(r)
<(s—-m .Z:Nl (r; (75 © f)o) + Ne—p(r, f*D) + Sk(r)

< (s = u) Y _Ty(r,L;) + No_p(r, f*D) + Sp(r)

j=1
< s(s — w)Ts(r) + Ne_p(r, f*D) + Sp(r).

We set h = Y_, |oi|. Since (:_, Supp(c;) = 0, it follows that h gives a metric in
the line bundle L — M. Then we have

o \1/2 )
Ty(r L) = /3 e (lffﬁ) 0+ N(r, *(03)) + O(1).

On the other hand, taking the Fubini-Study metric in [H], we see

|f*o;l?
Hence T¢(r,L) = Tr(r) + O(1). Since L = L?d for 1 < j <s, it follows that

8 * |12 1/2
Te(r) = /6 o e (Z='—f"') 0+ Nr, *(07)) + OQ1).

dT(r,L;) < s(s — p)T'(r) + Ne—p(r, f*D) + S(r)
for 1 < j <'s. Thus we have the desired conclusion. |
Proof of Theorem 6.2. Put &, = sbL?., for 1 < k < sand v € Z*. Since Ly,
(1 <k < s) are big,
dik,,,: M — Wk,,,

are bimeromorphic mappings for all sufficiently large integers v, where W, =
&y, (M) for 1 < k < s (see [14, Theorem 5]). For each 1 < k < s, let v(k) be
the smallest positive integer such that

g = Qk,u(k) M — Wk,u(k)

is bimeromorphic. Assume that Wy, ,(xy € Py, (C). We denote by [H]; the hyperplane
bundle over P,, (C). By Lemma 6.3, for each pair (j,k) with 1 < j, k < s, there
exists a positive integer [ such that

r(M,L¥ ® [H]; ') # {0}
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Let I, be the smallest positive integer that has the above property for each pair (j, k)
and let

lo = min l'k.
1<) k<s 7

Without loss of generality, we may assume that [ = l;;. Set n = n;,t = ¢; and
[H] = [H];. Then it is easy to see that

(6.5 Ty(r,*[H]) <loTs(r) +0(1) and  T,(r,*[H]) < loT,(r) + O(1).

Indeed, there exists a holomorphic section 7 € I'(M,L®" ® (*[H]~!) with f*r # 0.
By Theorem 1.1, it follows that

0 < N(r,f*(1))
< Ty(r, LE" ®@ *[H] ™) + O(1)
= loTy(r,L1) — T¢(r, " [H]) + O(1)
< Ty (r) — Ts(r,o*[H]) + O(1).

Thus we have (6.5).

Let A be the diagonal of P,(C)? = P,(C) x P,(C). We define a meromorphic
mapping ¢ : C™ — P, (C)?2 by ¢ = 1o f x 1o g. For the proof of Theorem 6.2, it
suffices to show p(C™) C A. Assume the contrary. Let 7; : P,(C)? —» P,(C) be
the projections on the j-th factor. Set

L = n}[H] ® ni[H].

Then there exists a holomorphic section & of L — P, (C)? such that ¢*5 % 0 and
A C Supp(d) (cf. [4, p. 354]). It is easy to see that

(6.6) N(r,¢*(3)) < Ty(r, " [H]) + T,(r, «*[H]) + O(1).

By the assumption (4), we have

(6.7)  Ni(r,f*"D)<N(r,¢*(G)) and  Ni(r,g"D) < N(r,¢"(7)).
By (6.6), (6.7) and Lemma 6.4, we obtain

(6.8) {d—s(s — w)}T(r) < 2(s — w{Ty(r, " [H]) + Ty(r, " [H])} + S(r),

where T'(r) = ff(r) + Tg(r) and S(r) = gf(r) + §g(r). Thus, by (6.5) and (6.8), we
have

(6.9) {d—s(s = w)}T(r) < do(s — p)T(r) + S(r),
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where dy = 2ly. Since L; (1 < j < s) are big, we have
Clogr < T;(r) +0(1) and Clogr < Tg(r) +0(1)

for some positive constant C' (cf. [1, Proposition 1.2]). Thus, by (6.9), it follows that
d < (s — p)(s + dp). This is absurd. Therefore p(C™) C A. ]

REMARK 6.10.  We note that the condition (4) in Theorem 6.2 can not be re-
moved. Let M = Py(C) and L = [H]®?, where [H] is the hyperplane bundle over
P, (C). Let D be a curve defined by

wi +wj +w§ =0,

where {w;,ws, w3} is a homogeneous coordinate system in P5(C). Then D satisfies
the assumptions in Theorem 6.2. Let f, g : C™ — P5(C) be meromorphic mappings
defined by f = (p: % : 1) and g = (¢ : ¢ : 1), where ¢ and ¢ are holomorphic
functions on C™ with ¢ # . Then it is clear that f~*(D) = g~!(D) as point sets
and f # g. We also note that f*D = ¢g*D as divisors. It is an interesting problem to
find more natural condition other than the condition (4).

We can also prove some theorems on propagation of analytic dependence as in [5]
and [27] by making use of Lemma 6.4. For example, we have the following theorem
by an argument similar to the proof of Theorem 6.2.

Theorem 6.11. Let L and L; be as in Theorem 6.2. Let S be a hypersurface
in M? such that the line bundle F over M? defined by S is of the type n}Fy @ 73 Fs,
where m, : M? — M(k = 1,2) are the natural projections and F(k = 1,2) are
line bundles over M. For each k, let I}, be the smallest positive integer | such that
r'(M,L$ ® F7') # {0} for some j. Set do = Iy + lo. Let f, g : C™ — M be
analytically nondegenerate meromorphic mappings whose ranks are not less than p.
Suppose that the following conditions are satisfied:

(1) rankV = dim M.

(2) =1 Supp(o;) = 0.

(3) there exists a hypersurface Z of C™ such that f~(D) = g~*(D) = Z.
@ (fxg)2)cs.

Ifd> (s—p)(s+dp), then (f x g)(C™) C S.

We note that Theorem 6.2 is also deduced from Theorem 6.11. We omit here the
details in this direction.
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