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1. Introduction

Let X be a smooth projective variety over C of dimension n and S be a reduced
normal crossing divisor on X. Then the generalized Jacobian J(X — S) is a group
H" Y (X,wx(S)) /Hzn_1(X — S,Z). When X is a curve, this fits into an exact
sequence of algebraic groups:

1— (CH ! —JX-8) — JX)—0

where o is the number of points in S and J(X) is the usual Jacobian of X. Let
Div?(X — S) be the set of divisors of degree 0 on X which does not intersect with
S. Then integration determines the Abel-Jacobi homomorphism « : Div®(X — ) —
J(X — S). We will prove an analogue of Abel’s theorem (due to Rosenlicht [8]
for curves) that the kernel of « is the following subgroup Pring(X) of S-principal
divisors:

Pring(X) = {(f) € Div(X — S)|f € K(X) and f =1 on S}.

A proof is a variation of our previous work [1], which involves reinterpretation of
the Abel-Jacobi map in the language of mixed Hodge structures and their extensions.
As a further application of this technique, we prove a Torelli theorem for a non-
compact curve, which states that if X is the complement of at least 2 points in a
nonhyperelliptic curve, then it is determined by the graded polarized mixed Hodge
structure on H(X,Z).

We would like to thank the referee for thoughtful comments.

2. Hodge Structures

DEeFINITION 2.1. A (pure) Hodge structure H of weight m consists of a finitely
generated abelian group Hz and a decreasing filtration F'* of H¢ := Hz ® C such
that Hc = FP @ Fm—p+l,
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ExampLE 1. The Hodge structure of Tate Z(—1) is defined to be the Hodge
structure of weight 2 with Hz = %—\1/_—12 c C= F'Hg.

The most natural example of Hodge structure of weight k is the k-th integral
cohomology of a compact Kahler manifold. A differential form lies in FP if in
local coordinate it has at least p “dz’s”. To extend Hodge theory to any (singular
or non-projective) complex algebraic varieties X, Deligne [3] introduced the notion
of a mixed Hodge structure. He showed that the cohomology of any variety carries
such a structure.

DEeFNITION 2.2. A mixed Hodge structure (MHS) H consists of a triple
(Hz, W,, F*), where
(1) Hgz is a finitely generated abelian group. (In practice Hz will be free and we
will identify it with a lattice in Hg := Hz ® Q.)
(2) W, is an increasing filtration of Hg, called the weight filtration.
(3) F* is a decreasing filtration of H¢ := Hz ® C, called the Hodge filtration.

The Hodge filtration F'® is required to induce a (pure) Hodge structure of weight
m on each of the graded pieces

GT,VX' = Wm/Wm_1

ExaMpLE 2. Let D be a divisor on a smooth projective variety X over C.
Set U = X — D. By Hironaka, there exists a birational map 7 : X — X, with X
non-singular such that D = 7~!(D) is a normal crossing divisor. Then H(U,Z)
carries a mixed Hodge structure and the Hodge filtration is given by

F°=HYU,C), F'=H°X,Q'(logD)), F?=0.

We will denote HO(X, Q! (log D)) by H°(X, Q! (log D)). This group does not depend
on the choice of X.

Given two mixed Hodge structures A and B, we write B > A if there exists myg
such that W, Ag = Ag for all m > mgy and W,, Bg = 0 for all m < my.

Finally, we define the p-th Jacobian of a mixed Hodge structure of H to be the
generalized torus

JPH = Hz\He/FPHc.

The set of mixed Hodge structures forms an abelian category with an internal Hom.
Thus one can form the abelian group of extension classes of two objects. Carl-
son [2] described the structure of this extension group in terms of the Jacobian.
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Theorem 2.1 (Carlson). Let A and B be mixed Hodge structures with B > A
and B torsion free. Then there is a natural isomorphism.

Extlyys(B, A) = J°Hom(B, A).

3. Homologically trivial divisors

Let X be a smooth projective variety over C of dimension n and S be a reduced
normal crossing divisor on X. Let Div(X — S) be the group of divisors on X which
do not intersect S. Moreover, we set

(1 Pring(X) = {(f) € Div(X — S)|f € K(X) and f =1 on S}
@) Cls(X) = Div(X — S)/Prins(X).
The kernel of the cycle map [5, §19.1]

cl:Div(X — S) = Hopo(X — S,Z)

will be called the group of homologically trivial divisors and it will be denoted by
Div?(X — S). Note that Pring(X) C Div®(X — S).

Let K* be the sheaf of invertible rational functions on X and K*(—.S) be the
subsheaf of K£* consisting of functions which are 1 on S. Similarly, we define O*(—S)
to be the subsheaf of O* consisting of functions which are 1 on S. Consider the
following exact sequence

3) 1— 0*(=S) — K*(=8) — Q@ — 0

where Q is the quotient sheaf. Then one can prove that H°(X, K*(—S)) = Pring(X)
and H°(X,Q) = Div(X — S) as in [7, II, 6.11]. Let

Cl1%(X) = Div’(X — S)/Pring(X).
Consider the following diagram :

#dlog )
H(X, Q) HY(X,0%(~S)) —"% + H2(X,jiZ) = H(X, 5)

| |

Div(X — S) cl ~ Hano(X — $,7)

The map 1/27idlog is the connecting homomorphism associated to the exponential
sequence:

@) 0 — HZ — O(-8) "2EY 0*(-5) — 1
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where j is the natural inclusion from X — S to X. By Lefschetz duality [9, Theo-
rem 6.2.19], the right vertical arrow is an isomorphism. Moreover, the diagram is
commutative since the cycle map is compatible with Chern class map. Therefore,
Cl2(X) is isomorphic to a subgroup of the kernel of the connecting homomorphism

H'(X,0%(-5)) "5 H(X,jiZ) = H¥(X, S).
So, C1%(X) is isomorphic to a subgroup of H!(X,O(-S))/H'(X,S;Z). By dual-
ity, we can identify H'(X,0(-S))/H (X, S; Z) with H" Y(X,wx(S)) /Han_1(X —
S,Z) where wx (S) = A"Q% ® Ox (S). Thus we obtain an injection
(5) B:Clg(X) - H* 1 (X,wx(S))/Han-1(X — S,7Z),

which will be identified with the Abel-Jacobi map later.

Lemma 3.1. [n the diagram,

Div(X — S) clx-s > Hapn 2(X - 9)

Hy,_2(X)

the kernel of the map clx_s is equal to the kernel of the map clx.

Proof. Clearly, we have kerclx_s C kercly. We will prove the converse
in dual form. Let D € kerclyx. Consider a long exact sequence of Mixed Hodge
structures, so called a “Thom-Gysin” sequence, associated to a triple S C X —|D| C
X;

6) 0— H'(X,S) — H'(X —|D|,5) — H*(X,X - |D|) " H?(X, 5)
Note that H*(X, X — |D|) & H%(X). By Fujiki [4], we have
H*(X,X —|D|) = Hom(H?"~%(D), Z(~n))

as a mixed Hodge structure. Also observe that H?"~2(D) = @ Z(—n + 1) where
the sum is over all irreducible components of D. Thus H2(X, X — |D|) has a pure
Hodge structure of weight 2. On the other hand, it follows from the long exact
sequence of cohomologies associated to the pair (X, S) that Grgv *H?(X,S) injects
into H?(X). Hence if the class of D in H?(X) vanishes, then so does the class of D
in H%(X, S). O
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4. Extensions of MHS

Let D € Div®(X — S) be a homologically trivial divisor. From the sequence
(6), we get an extension of mixed Hodge structures

(7) 0— HY(X,S) — H(X -|D|,S) — K —0
where K = ker[H2(X, X — |D|) ®" H2(X, S)]. Let
¢p : Z(-1) — P Z(-1) = H*(X, X — |D|)

be a morphism of Hodge structures defined by ¢p(1/27v/—1) = 3. D; where D; are
irreducible components of D. Since D is homologically trivial, ¢ factors through
K. By pulling back the extension (7) along ¢p, we get a new extension of mixed
Hodge structures:

(8) 0 — HY(X,S) — Ep — Z(—1) — 0.

Thus this corresponds to an element in Ext'(Z(—1), H'(X,S)). By a theorem of
Carlson, Ext'(Z(—1), H'(X, S)) is isomorphic to

J°Hom(Z(-1), H*(X,S)) = H'(X, S;C)/H'(X, S;Z) + F*H*(X, S;C),

which will be denoted by J(X —S). Note that J(X —S) is independent of the choice
of a compactification of X — S.

Lemma 4.1. The Jacobian J(X — S) is naturally isomorphic to

HY(X,0(-S))/H (X, S;Z).

Proof. Consider an exact sequence of cohomologies on X.
..— H°(X,Cs) — H'(X,4C) — H*(X,C) — ...

where j is the natural inclusion from X — S to X. Since this is an exact sequence
of mixed Hodge structures and the Hodge filtrations are strictly preserved by the
maps, this induces an exact sequence:

.. — Gr¥H°(X,Cs) — Gr% H'(X,jC) — Gr% H'(X,C) — ...

Now consider the following diagram of cohomologies on X:

Gri. HY(Cx) > Gri H(Cs) —* Gry H'(jiC) — Gri.H'(Cx) — Gr%..H'(Cs)

Jon | o o e J o

HY(Ox) —* H%Os) —* H'(0(-8)) —* H'(Ox) — H'(0s)
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The vertical arrows [ and (; are isomorphisms because the spectral sequence
associated to the Hodge filtration on H*(S,Zgs) degenerates at E; [10, (1.5)] [3,
(8.2.1), (8.1.12), (8.1.9)]. The vertical arrows ag and «; are isomorphisms by the
E;-degeneration of the usual Hodge to DeRham spectral sequence. Hence by 5-
lemma, the map +; is an isomorphism. It follows that the sequence

9) 0 — H°(dO(-S)) — H'(jiC) — H'(O(=S)) — 0
is exact. Note that F*H!(jC) = H°(dO(-S)). This completes the proof. O

Thus for a homologically trivial divisor D € Div?(X — S), we can associate an
element in the Jacobian H'(X,O(-S))/H'(X, S;Z). By duality, the Jacobian can
be identified with

Hn_l(X,wx(S))v/Hgn_l(X - S,Z)
The map
a:DivY(X — 8) - H" Y (X,wx(S)) /Han-1(X — S;7Z)

obtained in this way will be called the Abel-Jacobi map. We will show that the
Abel-Jacobi map a can be realized in the following way ;

Theorem 4.2. Given a cohomology class in H*~'(X,wx(S)), choose a (n,n —
1)-form w representing this cohomology class. Then o(D) is given by

W — w
I'p

where I'p is a (2n — 1)-chain in X — S whose boundary is D.

Proof.  After a birational change of X, we may assume that the support of
D is a reduced normal crossing divisor. To each homologically trivial divisor D €
Div’(X — S), one can associate a form np € H°(X,Q%(log|D|)) = F*HY(X —
|D|,C) with Resnp = D since the map in the sequence (8) strictly preserves the
Hodge filtration F* and F*H!(X — |D|,S;C) c F*H'(X — |D|,C). To construct a
retraction 7 : Ep — H'(X, S;Z), choose a set {£1,---,&,} of differential (2n — 1)-
forms on X — S representing a basis of H?"~!(X — S, Z) such that &; vanishes in a
neighborhood N(D) of |D|. This is possible since we have a surjection H?"~!(X —
S,D) — H*™~1(X —S). Let {£},---,£™} be the dual basis of H!(X, S;Z). We now
set

r(n) = Z /X(n NE)E.
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Let B(D) be a small tubular neighborhood of |D| in X — S such that the closure
of B(D) is contained in N(D). We can write

w=ici§i+d¢

i=1

where ¢ is a C*°(2n — 2)-form on X — S. Set n = np. Via the isomorphism given
in Theorem 2.1 (cf. [1, Theorem 6.2]), a(D) is given by sending w to

/Xr(n)/\w
:/Xr(n)/\;cigz:/x(;(/Xn/\&)&’)/\ ;Cjﬁj
=/XTI/\Z:Ci§z‘=/X_B(D)U/\(W_d¢)

= / -nAdé
X—-B(D)
(since n Aw =0 on X — B(D))

= / nA¢ (by Stokes’ Theorem.)
8B(D)

= / nA /w (f w is a primitive of w on B(D))
8B(D)

:/D/w

Since D is also algebraically equivalent to zero [6, p. 462] it is enough to consider
the following case: Let T be a non-singular curve and D be an irreducible divisor
on X x T, flat over T. D is given by ps,(p;(0) — pj(1)) for some points 0, 1 € T".

DcXxT™2
p1
T

Let D be a desingularization of D and p} be the composition of D — D and py. Let
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DL x
g

X

be the Stein factorization of D — X. So f has connected fibers and g is a finite
surjective map. Now choose a path v from 0 to 1 in 7" such that p} is smooth over
~v—8v. Let T'p :p’l'l( ), ITh = f*l"D and I‘D = g.I'p. Take a division v = X;y;
of 7 so that p is trivial over ~;. Set (I‘D)z =, (), (Op)i = f*(l“D) Then each
(T'p); shrinks to a fiber, hence H>"~1((I'p);,C) = 0 and so H2"1((I'});,C) = 0.
Therefore we have

a(F' 4 (/ >)

g w) by Stokes’ theorem
(Tp)i

INE
=g*( ( )) where D' = £.(s,"(0) - " (1))
=g*(
=g*(

Note that g*([w) is extendable to I'}, since H**~}(I',,C) = 0. O

Note that when S = @, our Abel-Jacobi map agrees with the classical Abel-
Jacobi map. The initial step of the proof contains a useful method for calculating
a. Under the original definition

J(X - S8) = H(X,S;C)/H (X, S;Z) + F*H(X, S;C)

a(D) is represented by r(np), where np € FIH(X — D, S;C) is given by a log-
arithmic 1-form with Resnp = D and r an integral retraction onto H!(X,S;C).
Note that a form in H°(Q% (log |D|)) defines a class in H*(X — D, S) if and only if
it vanishes on S.

5. Abel’s Theorem

We will establish Abel’s Theorem by showing that the two definitions of the
Abel-Jacobi map a and (3 (5) agree up to sign.
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Theorem 5.1. « and 3 coincide up to sign.

Proof.  First, we will give an explicit description of the map G in (5). By
construction [ is a composite of the injection

g Clg(X) — HY(O(-S))/H' (X, S;Z)
and the duality map
HY(O(-S))/H(X,S;Z) = H" Y (X,wx(S))/Han_1(X — S, 7).

Let D be a homologically trivial divisor on X — S. Choose a finite open covering
{U;}i=0,..... of X such that D is defined by f; = 0 on U; and Uy = X — |D|.
As S and D are disjoint, there is no loss in assuming that f; = 1 on S. Then
the cohomology class [D] of D in H'(O*(—S)) can be represented by {fi/f;}.
Since D is homologically trivial, there is a cocycle ¢;; € Z*(O(—S)) such that
exp(2mig;) = fi/ f;. Then /(D) is represented by ¢;;.

Next we calculate a(D). We make use of the identification

J(X - 5) = H'(O(~5))/H"(X, 5 2)

to view a(D) as an element of the latter group. By degeneration of the Hodge to
De Rham spectral sequence, there exists 1; € H°(Q24 (U;)) such that dg;; = ¥; — ;.
Therefore n = 1/2widlog f; + 1; is a globally defined logarithmic 1-form satisfying
Resn = D which also vanishes on S. As explained in the remarks at the end of
the last section, (D) is represented by r(n), and in fact we are free to modify n
by adding an element of F*H!(X, S). Note that H(X — D, S;C) is isomorphic to
the first hypercohomology group of Q% (log D + S)(—S), and this can be described
using Cech methods. In particular (¢;;,dlog f;) is a cocycle defining a class ® €
HY(X — D, S;C). We claim that ® can be decomposed as a sum ®; + ®, where
the first term lies in L = HY(X — D, S;Z) and the second in F1H!(X — D, S).
To see this, first observe that the quotient H'(X,O(—S)) by the image of L is
isomorphic to the quotient of J (X — S) by the subgroup of homologically trivial
divisors with support in |D| (under 3’). Therefore as the image of ® in J(X — S) is
D, it follows that modulo L, ® can be represented by a form in F1H?(X —D, S). As
® has integral residues, it follows that after subtracting off an addition element of
L, the difference lies in F*H'(X, S). In other words, we have obtained the desired
decomposition of ®. Now set n’ = n—®,. Let Ep C H}(X — D, S) be the extension
defined in (8). Consider the unique retraction n : Ep — H'(X,S;Z) with kernel
Z®,. Then ' = a®; +7(n’), and by matching residues, we see that a = 1. Therefore
r(n') =n— ® = —(¢sj,%;) represents (D). But of course (D) is the image of this
class in J(X — S) and this is represented by —¢;;, or —3'(D). O



778 D. ARAPURA AND K. OH

6. Hodge Theoretic Proof of Abel’s Theorem

We give an alternative proof of Abel’s theorem based on Carlson’s theorem.
Theorem 6.1. A homologically trivial divisor D € Div®(X — S) is S-principal
if and only if there exists n € H°(X, Q% (log |D|) such that
(1) Resp=D

(2) n has integral periods for any closed loop in X — |D|.
A3) fw n € Z where v is a path in X — S connecting points of S.

By the way, the statement (2) is included in (3).
Proof. Given 7 as above, set
f(z) =exp (2#\/—1/ n) .
z0

Conversely, if D = (f) € Pring(X), let

_ 1 df
"= /=1 f°

Corollary 6.2. «(D) =0 if and only if D is S-principal.

Proof. «a(D) = 0 if and only if the extension (8) splits in the category of
Mixed Hodge Structures. Hence a(D) = 0 if and only if np represents an integral
class in H'(X —|D|, S). Thus (D) = 0 if and only if np satisfies the conditions in
Theorem 6.1. ]

7. Non-compact Curves

When X is a curve, J(X — S) is an extension of the classical Jacobian J(X) by
the complex multiplicative group.

Lemma 7.1. Let X be a smooth projective curve and S be a set of distinct
points. Then we have an exact sequence of algebraic groups:

1 — (C) ! —J(X-8) — J(X)—0

where o is the number of points in S and J(X) is the usual Jacobian of X.

Proof. Consider an exact sequence of cohomologies on X:

0 — H°(Qx) — H°(Qx(log §)) — H*(Os) - H*(®F) — H? (8% (log S)) —/
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By Serre duality, H!(X,Q% (log S)) = H°(X,0(=8)) = and h'(X,Q%) = 1. This
sequence fits into the following diagram:

0 = Hy(X,X - S)/H(X,Z)— Hi(X-S57Z) — Hi(X,Z) — 0

l l l

co! HO(X,Q%(log 8)) — H°(X,Q%) — 0

The cokernels of the vertical arrows will give the desired sequence. The cokernel
of the leftmost arrow is identified with the multiplicative group (C*)°~! via the
exponential map exp(2mi( )). 4

ExampLE 3. Let X = P! and S = {0,00}. Then H°(X,wx(S)) is generated
by dz/z. By the above Lemma, we have J(X — S) = C*. By Theorem 4.2, the
Abel-Jacobi map «a : Div®(X — §) — C* is the natural linear extension of

*d
a(x—l):exp/ ;:x, forre X - S
1

if we choose 1 € X — S as a base point. Thus kera = {d}_npp — (3-np) - 1 €
Div’(X — S)|lp™ = 1} On the other hand, a rational function f on X is in
Pring(X) iff

IR (2 —ai)
1) = H?=11(Z —b;)

with Ila; = IIb; # 0, co. As expected by our Abel-Jacobi theorem, ker & = Pring(X).

As an application, we give a version of Torelli theorem for noncompact curves.
A similar result for complete singular curves was obtained by Carlson [2]. Let
X be a smooth non-compact curve and X its unique smooth compactification.
Then the mixed Hodge structure on H'(X,Z) carries a natural graded polarization
given as follows: The polarization on G’I‘YV’H 1(X,Z) is induced by the polarized
Hodge structure on H'(X,Z), which is determined by the intersection product of
one-cycles on X. For Grgv *H'(X,Z), choose the unique symmetric bilinear form on
@._, Z(—1) so that {e;} forms an orthonormal basis. Then restrict this polarization
to Gry*H' (X, Z).

Theorem 7.2. Let X be a smooth non-compact curve and X its unique smooth
compactification. Suppose X is non-hyperelliptic of genus > 1 and the number of
points in X — X at least 2. Then X is determined by the graded polarized MHS on
HY(X,Z).
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Proof. Let X — X = {p1,...,pn}. Consider the ‘Thom-Gysin’ sequence :

0— HY(X,Z) — HY(X,Z) — é;Z(—l) — H*(X,Z) = Z(-1)

i=1

where each point p; contributes to the j-th component vector {e;} of @, Z(—1).
Note that K = ker(}_, Z(—1) — H?*(X,Z) = Z(-1)) is just Gry’* H'(X,Z) and
HY(X,Z) = Gr)’* H'(X,Z). Now we provide a polarization on H'(X,Z).

First, by the classical Torelli theorem, the polarization on Gr"* H(X,Z) de-
termines X. Second, define a map ¢;; : Z(—1) — @, Z(—1) sending 1/2m/—1 to
e; — e;. Then these maps are all possible maps from Z(—1) to @], Z(—1) which
factors through K and minimizes the length of the image of the generator 1/2m+/—1.
By pulling back along &;;, we get an element in Ext!(Z(-1), H'(X,Z)) = J(X),
which depends only on the polarized Hodge structure on Grgv’Hl(X, Z). This cor-
responds to a(p; — p;) € J(X) under the Abel-Jacobi map « [1, Theorem 6.2]. As
X is not hyperelliptic, a(p; — p;) uniquely determines p; and p;. Otherwise, there
exists a meromorphic function f on X such that (f) = p; + p — p; — g by the classi-
cal Abel’s theorem. Therefore the graded polarized MHS on H!(X,Z) determines
X. 0
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