# THE CASSON-WALKER INVARIANT FOR BRANCHED CYCLIC COVERS OF $S^{3}$ BRANCHED OVER A DOUBLED KNOT 

Katsuhiro ISHIBE

(Recieved March 10, 1995)

## 0. Introduction

In 1985, A. Casson defined an invariant $\lambda$ for oriented integral homology 3spheres by using representations from their fundamental group into $S U(2)$ [1]. It was extended to an invariant for rational homology 3 -spheres by K. Walker [11]. In 1993, C. Lescop [9] gave a formula to calculate this invariant for rational homology 3 -spheres when they are presented by framed links and showed that it naturally extends to an invariant for all 3-manifolds.

Let $L$ be a link in $S^{3}$ and let $\Sigma_{L}^{n}$ be its $n$-fold cyclic branched cover. Define $\lambda_{n}(L)=\lambda\left(\Sigma_{L}^{n}\right)$. Then $\lambda_{n}$ becomes an invariant of links. For doubles of knots, torus knots and iterated torus knots, A. Davidow (see [3], [4]) calculated Casson's integer invariant for n -fold branched covers, when $\Sigma_{K}^{n}$ is an integral homology sphere. For any links, D. Mullins [10] have succeeded in calculating Casson-Walker's rational valued invariant for 2 -fold branched covers, when $\Sigma_{L}^{2}$ is a rational homology sphere.

In this paper, using C. Lescop's formula and the result of D. Mullins, we will calculate the Casson-Walker invariant for branched cyclic covers of $S^{3}$ branched over the m-twisted double of a knot. We will show the following theorem and corollary.

Theorem 3.1. Let $K$ be a knot in $S^{3}$ and $D_{m} K$ its m-twisted double. Then $\lambda_{n}\left(D_{m} K\right)$ is determined by $d / d t V_{D_{m} K}(-1)$ and $m$ where $d / d t V_{D_{m} K}(-1)$ is the derivative of the Jones polynomial of $D_{m} K$ at $t=-1$.

Corollary 3.2. $\lambda_{n}\left(D_{m} K\right)$ is determined by $a_{1}(K)$ and $m$ where $a_{1}(K)$ is the coefficient of $z^{2}$ of the Conway polynomial of $K$.

## 1. Preliminaries

Definition 1.1. The Conway polynomial $\nabla_{L}(z)$ of an oriented link $L$ is defined by

1. $\quad \nabla_{U}(z)=1$, where $U$ is an unknot,
2. $\quad \nabla_{L^{+}}(z)-\nabla_{L^{-}}(z)=-z \nabla_{L^{o}}(z)$, where $L^{+}, L^{-}, L^{o}$ are oriented links identical except within a ball where they are as shown in Figure 1.
It is well known that the Conway polynomial is of the form

$$
\nabla_{L}(z)=z^{\sharp L-1}\left(a_{0}(L)+a_{1}(L) z^{2}+\cdots+a_{d(L)} z^{2 d(L)}\right) .
$$

This defines the coefficients $a_{i}(L)$ of $\nabla_{L}(z)$.
Let $K$ be a knot in $S^{3}$ and $D_{m} K$ its m-twisted double. It is easy to see that $\nabla_{D_{m} K}(z)=1-m z^{2}$. Thus $a_{1}\left(D_{m} K\right)=-m$ and $a_{i}\left(D_{m} K\right)=0$ for $i \geq 2$.

Definition 1.2. The Jones polynomial $V_{L}(t)$ of an oriented link $L$ is defined by

1. $V_{U}(t)=1$, where $U$ is an unknot,
2. $t^{-1} V_{L^{+}}(t)-t V_{L^{-}}(t)=\left(t^{1 / 2}-t^{-1 / 2}\right) V_{L^{\circ}}(t)$, where $L^{+}, L^{-}, L^{o}$ are oriented links identical except within a ball where they are as shown in Figure 1.



Fig. 1.

Let $W_{L}$ be a Seifert matrix for an oriented link $L$.
Definition 1.3. The signature $\sigma(L)$ of $L$ is defined as

$$
\sigma(L)=\operatorname{signature}\left(W_{L}+W_{L}^{T}\right)
$$

Definitions 1.4. Let $\mathcal{L}=\left\{\left(K_{1}, \mu_{1}\right), \ldots,\left(K_{n}, \mu_{n}\right)\right\}$ be a framed link in $S^{3}$, where each component $K_{i}$ is oriented and $\mu_{i}$ gives integer framing. The manifold obtained by surgery on $\mathcal{L}$ is denoted by $\chi(\mathcal{L})$. Let $L$ denote the underlying link of $\mathcal{L}$. Let $l_{i j}$ be the linking number $l k\left(K_{i}, K_{j}\right)$ of $K_{i}$ and $K_{j}$ if $i \neq j$ and $\mu_{i}$ if $i=j$.

- The linking matrix of $\mathcal{L}$ is defined by

$$
E(\mathcal{L})=\left(l_{i j}\right)_{1 \leq i, j \leq n} .
$$

- The sign of $\mathcal{L}$, denoted by $\operatorname{sign}(\mathcal{L})$, is equal to $(-1)^{b_{-}(\mathcal{L})}$ where $b_{-}(\mathcal{L})$ denotes the number of negative eigen values of $E(\mathcal{L})$.
- Restriction of a framed link.

If $I$ is a subset of $N=\{1, \ldots, n\}$, then $\mathcal{L}_{I}$ (resp. $L_{I}$ ) denotes the framed link obtained by $\mathcal{L}$ (resp. the link obtained by $L$ ) by forgetting the components whose subscripts do not belong to $I$.

- The circular linking of $\mathcal{L}_{I}$, denoted by $L k_{c}\left(\mathcal{L}_{I}\right)$, is defined by

$$
L k_{c}\left(\mathcal{L}_{I}\right)=\sum_{\sigma \in \sigma_{I}}\left(\prod_{k \in I} l_{k \sigma(k)}\right)
$$

where $\sigma_{I}$ denotes the set of cyclic permutations of $I$.

- The $\theta$-linking of $\mathcal{L}_{I}$.

Let $\theta_{b}\left(\mathcal{L}_{I}\right)$ be defined by

$$
\theta_{b}\left(\mathcal{L}_{I}\right)=\sum_{\left\{(K, i, j, g) \mid K \subset I,(i, j) \in K^{2}, g \in S_{I \backslash K}\right\}} L k_{c}\left(\mathcal{L}_{K}\right) l_{i g(1)} l_{g(1) g(2)} \cdots l_{g(\sharp(I \backslash K)-1) g(\sharp(I \backslash K))} l_{g(\sharp(I \backslash K)) j} .
$$

( $S_{I \backslash K}$ denotes the set of one to one maps from $\{1, \ldots, \sharp(I \backslash K)\}$ to $I \backslash K$.) This sum can be seen as the sum of the linking numbers of $\mathcal{L}_{I}$ with respect to the edes of one of the graphs in Figure 2 for all combinatorial ways of constructing such graphs.


Fig. 2.

Then, the $\theta$-linking of $\mathcal{L}_{I}$, denoted by $\theta\left(\mathcal{L}_{I}\right)$, is defined by

$$
\theta\left(\mathcal{L}_{I}\right)= \begin{cases}\theta_{b}\left(\mathcal{L}_{I}\right) & \text { if } \sharp I>2 \\ \theta_{b}\left(\mathcal{L}_{I}\right)-2 l_{i j} & \text { if } I=\{i, j\} \\ \theta_{b}\left(\mathcal{L}_{I}\right)+2 & \text { if } I=\{i\}\end{cases}
$$

- The modified linking matrix $E\left(\mathcal{L}_{N \backslash I} ; I\right)$ is defined by

$$
E\left(\mathcal{L}_{N \backslash I} ; I\right)=\left(l_{i j I}\right)_{i, j \in N \backslash I}
$$

with

$$
l_{i j I}= \begin{cases}l_{i j} & \text { if } i \neq j \\ l_{i i}+\sum_{k \in I} l_{k i} & \text { if } i=j\end{cases}
$$

We state C. Lescop's formula for the Casson-Walker invariant.
Proposition 1.5 ([9]). Let $\mathcal{L}$ and $\chi(\mathcal{L})$ be as above. Then the Casson-Walker invariant $\lambda$ of $\chi(\mathcal{L})$ is given by

$$
\begin{aligned}
& \lambda(\chi(\mathcal{L})) \\
& =\operatorname{sign}(\mathcal{L}) \sum_{\{J \mid J \neq \phi, J \subset N\}}\left(\operatorname{det}\left(E\left(\mathcal{L}_{N \backslash J} ; J\right)\right) a_{1}\left(L_{J}\right)+\frac{\operatorname{det}\left(E\left(\mathcal{L}_{N \backslash J}\right)\right)(-1)^{\sharp J} \theta\left(\mathcal{L}_{J}\right)}{24}\right) \\
& +\operatorname{sign}(\mathcal{L}) \operatorname{det}(E(\mathcal{L})) \frac{\text { signature }(E(\mathcal{L}))}{8},
\end{aligned}
$$

where the determinant of an empty matrix equals to one.
Remark 1.6. We follow C. Lescop's normalization of the Casson-Walker invariant. If $\lambda_{w}$ denotes the Walker invariant as described in [11],

$$
\lambda(M)=\frac{\left|H_{1}(M ; \mathbf{Z})\right|}{2} \lambda_{w}(M) .
$$

Finally, we state the result of D. Mullins for two-fold branched covers.
Proposition 1.7 ([10]). Let L be a link in $S^{3}$. Suppose the two-fold branched cover of $L, \Sigma_{L}^{2}$, is a rational homology sphere. Then

$$
\lambda_{2}(L)=-\frac{i^{\sigma(L)}}{12} \frac{d}{d t} V_{L}(-1)+\left|H_{1}\left(\Sigma_{L}^{2} ; \mathbf{Z}\right)\right| \frac{\sigma(L)}{8} .
$$

Note that if $L$ is a knot, then $\Sigma_{L}^{2}$ is a rational homology sphere.

## 2. Surgery description of cyclic branched covers

Let $D_{m} K$ be the m-twisted double of a knot $K$ in $S^{3}$. If we introduce one surgery curve $C$ which have the framing 1 for the crossing that must be changed to obtain an unknot, we may arrive at a surgery description of $D_{m} K$ as shown in Figure 3, where $\overline{D_{m} K}$ is an unknot corresponding to $D_{m} K$ in other version of $S^{3}$.

Applying an isotopy to $S^{3}$, we can exchange the position of $\overline{D_{m} K}$ with that of $C$ (see Figure 4).


Fig. 3.


Fig. 4.

Let $T_{D_{m} K}$ denote the tangle which is obtained by cutting $C$ (at two points) by a spanning 2 -disk for $\overline{D_{m} K}$ as in Figure 5.

Note that $T_{D_{m} K}$ has two arcs. By joining n-copies of $T_{D_{m} K}$ cyclically, we obtain an n-component link $L_{D_{m} K}^{n}=\left\{K_{1}, \ldots, K_{n}\right\}$ as in Figure 6.

Then the n-fold cyclic branched cover of $S^{3}$ branched over $D_{m} K, \Sigma_{D_{m} K}^{n}$, is obtained by a surgery on the link $L_{D_{m} K}^{n}$. Note that $l k\left(K_{1}, K_{2}\right)=l k\left(K_{2}, K_{3}\right)=$ $\cdots=l k\left(K_{n}, K_{1}\right)$ and the framing of the component $K_{i}$ is equal to $-2 l k\left(K_{1}, K_{2}\right)+1$ if $n \geq 3$ and is equal to $-l k\left(K_{1}, K_{2}\right)+1$ if $n=2$.


Fig. 5.

## Lemma 2.1.

$$
l k\left(K_{1}, K_{2}\right)= \begin{cases}-m & \text { if } n \geq 3 \\ -2 m & \text { if } n=2\end{cases}
$$

Proof. Consider the crossing of $D_{m} K$ that must be changed to obtain an unknot. From the skein relation of the Conway polynomial, we get $a_{1}\left(D_{m} K\right)=$ $-a_{0}\left(K^{o}\right)$ where $K^{o}$ is the 2 -component link obtained by splicing the crossing of $D_{m} K$. On the other hand, $-a_{0}\left(K^{o}\right)$ is equal to the linking number of the components of $K^{o}$ (see [5]). But this is equal to $l k\left(K_{1}, K_{2}\right)$ if $n \geq 3$ and is equal to $1 / 2 l k\left(K_{1}, K_{2}\right)$ if $n=2$. Noting that $a_{1}\left(D_{m} K\right)=-m$, we get the conclusion.

Then from Lemma 2.1, we can express the framing in terms of the twisting number $m$. Each $K_{i}$ has the framing $1+2 m$. Thus $\mathcal{L}_{D_{m} K}^{n}=\left\{\left(K_{1}, 1+2 m\right), \ldots,\left(K_{n}, 1+\right.\right.$ $2 m)\}$ is a framed link for $\Sigma_{D_{m} K}^{n}$.


$$
L_{D_{m} K}^{n}=\left\{K_{1}, \ldots, K_{n}\right\}
$$

Fig. 6.

## 3. Calculation of $\boldsymbol{\lambda}_{\boldsymbol{n}}$

In this section, we will prove Theorem 3.1 and Corollary 3.2 and give a formula for $\lambda_{n}$.

Theorem 3.1. Let $K$ be a knot in $S^{3}$ and $D_{m} K$ its m-twisted double. Then $\lambda_{n}\left(D_{m} K\right)$ is determined by $d / d t V_{D_{m} K}(-1)$ and $m$ where $d / d t V_{D_{m} K}(-1)$ is the derivative of the Jones polynomial of $D_{m} K$ at $t=-1$.

Corollary 3.2. $\lambda_{n}\left(D_{m} K\right)$ is determined by $a_{1}(K)$ and $m$ where $a_{1}(K)$ is the coefficient of $z^{2}$ of the Conway polynomial of $K$.

## Proof of Theorem 3.1 and Corollary 3.2

The case of $n=2$ follows from Proposition 1.7 and the fact that $\left|H_{1}\left(\Sigma_{D_{m} K}^{2} ; \mathbf{Z}\right)\right|$ $=\left|1-4 a_{1}\left(D_{m} K\right)\right|=|1+4 m|$. So, assume that $n \geq 3$. We use Proposition 1.5 and the surgery description of $\Sigma_{D_{m} K}^{n}$. Let $\mathcal{L}_{D_{m} K}^{n}=\left\{\left(K_{1}, 1+2 m\right), \ldots,\left(K_{n}, 1+2 m\right)\right\}$ be the surgery description for $\Sigma_{D_{m} K}^{n}$ as in section 2 . The linking matrix is determined
by $m$ as follows;

$$
E\left(\mathcal{L}_{D_{m} K}^{n}\right)=\left(\begin{array}{ccccc}
1+2 m & -m & & & -m \\
-m & 1+2 m & -m & & \\
& \ddots & \ddots & \ddots & \\
& & -m & 1+2 m & -m \\
-m & & & -m & 1+2 m
\end{array}\right)
$$

Then $\operatorname{sign}\left(\mathcal{L}_{D_{m} K}^{n}\right), \operatorname{det}\left(E\left(\left(\mathcal{L}_{D_{m} K}^{n}\right)_{N \backslash J} ; J\right)\right), \operatorname{det}\left(E\left(\left(\mathcal{L}_{D_{m} K}^{n}\right)_{N \backslash J}\right)\right), \theta\left(\left(\mathcal{L}_{D_{m} K}^{n}\right)_{J}\right)$, $\operatorname{det}\left(E\left(\mathcal{L}_{D_{m} K}^{n}\right)\right)$ and signature $\left(E\left(\mathcal{L}_{D_{m} K}^{n}\right)\right)$ are also determined by $m$. So we want to know whether or not $a_{1}\left(\left(L_{D_{m} K}^{n}\right)_{J}\right)$ can be expressed in terms of the original data of $D_{m} K$.

To do this we introduce the following notations and proposition. For given tangles $A$ and $B$, the tangle $A+B$ is defined as in Figure 7. Also, there are two operations that associate knots and links to a given tangle $A$. These are denoted $N(A)$ and $D(A)$ as in Figure 7.


Fig. 7.

Proposition 3.3 ([2], [7]). Let $A$ and $B$ be tangles. Then

$$
\begin{gathered}
\nabla_{N(A+B)}(z)=\nabla_{N(A)}(z) \nabla_{D(B)}(z)+\nabla_{D(A)}(z) \nabla_{N(B)}(z) \\
\nabla_{D(A+B)}(z)=\nabla_{D(A)}(z) \nabla_{D(B)}(z)
\end{gathered}
$$

Let $T_{D_{m} K}^{\prime}$ be the tangle which is obtained from $T_{D_{m} K}$ by splitting two arcs of $T_{D_{m} K}$ as in Figure 8.


Since the Conway polynomial of a split link is zero, we only consider the case that $\left(L_{D_{m} K}^{n}\right)_{J}$ is not split. Then $\left(L_{D_{m} K}^{n}\right)_{J}=N(\overbrace{T_{D_{m} K}+\cdots+T_{D_{m} K}}^{\sharp J J-1}+T_{D_{m} K}^{\prime})$ if $J \neq N$ and $\left(L_{D_{m} K}^{n}\right)_{N}=N(\overbrace{T_{D_{m} K}+\cdots+T_{D_{m} K}})$. Then it follows from Proposition 3.3 that

$$
\nabla_{\left(L_{D_{m} K}^{n}\right)_{J}}(z)= \begin{cases}\nabla_{D\left(T_{D_{m} K}\right)}(z)^{\sharp J-1} \nabla_{N\left(T_{D_{m} K}^{\prime}\right)}^{\prime}(z) & \text { if } J \neq N  \tag{1}\\ n \nabla_{D\left(T_{D_{m} K}\right)}(z)^{n-1} & \text { if } J=N .\end{cases}
$$

(Note that $D\left(T_{D_{m} K}^{\prime}\right)$ is a split link and $N\left(T_{D_{m} K}\right)$ is an unknot.)
Hence
(2) $a_{1}\left(\left(L_{D_{m} K}^{n}\right)_{J}\right)=\left\{\begin{array}{cl}a_{0}\left(D\left(T_{D_{m} K}\right)\right)^{\sharp J-2}\left\{a_{0}\left(D\left(T_{D_{m} K}\right)\right) a_{1}\left(N\left(T_{D_{m} K}^{\prime}\right)\right)\right. \\ \left.+(\sharp J-1) a_{1}\left(D\left(T_{D_{m} K}\right)\right)\right\} & \text { if } J \neq N \\ n(n-1) a_{0}\left(D\left(T_{D_{m} K}\right)\right)^{n-2} a_{1}\left(D\left(T_{D_{m} K}\right)\right) & \text { if } J=N .\end{array}\right.$

Note that $D_{m} K, \overline{D_{m} K}(=$ unknot $)$ and $D\left(T_{D_{m} K}\right)$ are related by single crossing changes as indicated in Figure 9.


Fig. 9.

Then from the skein relation of the Conway polynomial, we get

$$
\begin{equation*}
a_{0}\left(D\left(T_{D_{m} K}\right)\right)=-a_{1}\left(D_{m} K\right)=m \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{1}\left(D\left(T_{D_{m} K}\right)\right)=-a_{2}\left(D_{m} K\right)=0 \tag{4}
\end{equation*}
$$

(Recall that $\nabla_{D_{m} K}(z)=1-m z^{2}$. )
Thus only $a_{1}\left(N\left(T_{D_{m} K}^{\prime}\right)\right)$ has not been expressed in terms of the original data of $D_{m} K$ yet. To do this, we will caluculate $\lambda_{2}\left(D_{m} K\right)$ in two ways using Proposition 1.5 and Proposition 1.7.

The two-fold branched cover $\Sigma_{D_{m} K}^{2}$ is presented by the surgery description $\mathcal{L}_{D_{m} K}^{2}=\left\{\left(K_{1}, 1+2 m\right),\left(K_{2}, 1+2 m\right)\right\}$. Note that $l k\left(K_{1}, K_{2}\right)=-2 m$. The linking matrix is

$$
E\left(\mathcal{L}_{D_{m} K}^{2}\right)=\left(\begin{array}{cc}
1+2 m & -2 m \\
-2 m & 1+2 m
\end{array}\right)
$$

The eigen values of $E\left(\mathcal{L}_{D_{m} K}^{2}\right)$ are 1 and $1+4 m$. So,

$$
\begin{gathered}
\operatorname{det}\left(E\left(\mathcal{L}_{D_{m} K}^{2}\right)\right)=1+4 m \\
\operatorname{sign}\left(\mathcal{L}_{D_{m} K}^{2}\right)=\operatorname{sign}\left(\operatorname{det}\left(E\left(\mathcal{L}_{D_{m} K}^{2}\right)\right)\right)=\operatorname{sign}(1+4 m)
\end{gathered}
$$

and

$$
\operatorname{signature}\left(E\left(\mathcal{L}_{D_{m} K}^{2}\right)\right)=1+\operatorname{sign}(1+4 m) .
$$

Moreover we.get

$$
\operatorname{det}\left(E\left(\left(\mathcal{L}_{D_{m} K}^{2}\right)_{\{1,2\} \backslash J} ; J\right)\right)=1
$$

and

$$
\operatorname{det}\left(E\left(\left(\mathcal{L}_{D_{m} K}^{2}\right)_{\{1,2\} \backslash J}\right)\right)= \begin{cases}1+2 m & \text { if } \sharp J=1 \\ 1 & \text { if } \sharp J=2 .\end{cases}
$$

Note that from (2)

$$
a_{1}\left(\left(L_{D_{m} K}^{2}\right)_{\{j\}}\right)=a_{1}\left(K_{j}\right)=a_{1}\left(N\left(T_{D_{m} K}^{\prime}\right)\right) \quad(j=1,2)
$$

and from (2) and (4)

$$
a_{1}\left(\left(L_{D_{m} K}^{2}\right)_{\{1,2\}}\right)=a_{1}\left(\left\{K_{1}, K_{2}\right\}\right)=-2 a_{2}\left(D_{m} K\right)=0 .
$$

By considering all graphs appearing in Figure 2, we get

$$
\theta\left(\left(\mathcal{L}_{D_{m} K}^{2}\right)_{J}\right)= \begin{cases}4 m^{2}+4 m+3 & \text { if } \sharp J=1 \\ 4 m(2 m+1)^{2} & \text { if } \sharp J=2 .\end{cases}
$$

Then according to Proposition 1.5, we get

$$
\begin{align*}
& \lambda_{2}\left(D_{m} K\right)=\operatorname{sign}(1+4 m)\left(2 a_{1}\left(N\left(T_{D_{m} K}^{\prime}\right)\right)-\frac{(2 m+1)(2 m+3)}{12}\right. \\
&+\left.+\frac{(1+4 m)(1+\operatorname{sign}(1+4 m))}{8}\right) \tag{5}
\end{align*}
$$

On the other hand, from Proposition 1.7, we get

$$
\begin{equation*}
\lambda_{2}\left(D_{m} K\right)=-\frac{i^{\sigma\left(D_{m} K\right)}}{12} \frac{d}{d t} V_{D_{m} K}(-1)+\operatorname{sign}(1+4 m)(1+4 m) \frac{\sigma\left(D_{m} K\right)}{8} . \tag{6}
\end{equation*}
$$

(Note that $\left|H_{1}\left(\Sigma_{D_{m} K}^{2} ; \mathbf{Z}\right)\right|=\left|\operatorname{det}\left(E\left(\mathcal{L}_{D_{m} K}^{2}\right)\right)\right|=\operatorname{sign}(1+4 m)(1+4 m)$.)
Using (5), (6) and the fact that $\sigma\left(D_{m} K\right)=0$ if $m \geq 0$ and $\sigma\left(D_{m} K\right)=-2$ if $m<0$, we can express $a_{1}\left(N\left(T_{D_{m} K}^{\prime}\right)\right)$ in terms of $m$ and $d / d t V_{D_{m} K}(-1)$ as follows;

$$
\begin{equation*}
a_{1}\left(N\left(T_{D_{m} K}^{\prime}\right)\right)=-\frac{1}{24} \frac{d}{d t} V_{D_{m} K}(-1)+\frac{1}{6} m(m-1) \tag{7}
\end{equation*}
$$

Thus in the case of $\mathcal{L}_{D_{m} K}^{n}$, all terms appering in Proposition 1.5 are expressed in terms of the original data $d / d t V_{D_{m} K}(-1)$ of $D_{m} K$ and $m$. This completes the proof of Theorem 3.1.

To prove Collorary 3.2, note that $N\left(T_{D_{m} K}^{\prime}\right)$ is isotopic to $K \sharp(-K)$. Since the Conway polynomial is multiplicative under connected sum, we have

$$
\begin{equation*}
a_{1}\left(N\left(T_{D_{m} K}^{\prime}\right)\right)=a_{1}(K \sharp(-K))=2 a_{1}(K) . \tag{8}
\end{equation*}
$$

This proves Corollary 3.2.
Remark 3.4. From equations (7) and (8), we can get a relation between the Conway polynomial of $K$ and the Jones polynomial of $D_{m} K$ as follows;

$$
2 a_{1}(K)=-\frac{1}{24} \frac{d}{d t} V_{D_{m} K}(-1)+\frac{1}{6} m(m-1)
$$

or equivalently

$$
\frac{d}{d t} V_{D_{m} K}(-1)=-48 a_{1}(K)+4 m^{2}-4 m
$$

## A formula for $\boldsymbol{\lambda}_{\boldsymbol{n}}$

Note that the linking matrix $E\left(\mathcal{L}_{D_{m} K}^{n}\right)$ can be diagonalized to the following matrix;

$$
E_{n}\left(D_{m} K\right)
$$

$$
=\left(\begin{array}{ccc}
1 & & \\
& 1-2 m\left(\cos \frac{2 \pi}{n}-1\right) & 0 \\
& \cdots & \cdots \\
& & 1-2 m\left(\cos \frac{2 k \pi}{n}-1\right)
\end{array}\right]
$$

Then

$$
\operatorname{sign}\left(\mathcal{L}_{D_{m} K}^{n}\right)=\operatorname{sign}\left(\operatorname{det}\left(E_{n}\left(D_{m} K\right)\right)\right)= \begin{cases}1 & n: \text { odd } \\ \operatorname{sign}(1+4 m) & n: \text { even }\end{cases}
$$

Let $J$ be a subset of $N=\{1, \ldots, n\}$ such that $\left(L_{D_{m} K}^{n}\right)_{J}$ is not split. We only consider such $J$ since $a_{1}\left(\left(L_{D_{m} K}^{n}\right)_{J}\right)=0$ and $\theta\left(\left(L_{D_{m} K}^{n}\right)_{J}\right)=0$ if $\left(L_{D_{m} K}^{n}\right)_{J}$ is split.

Then from (2), (3), (4) and (7) we get

$$
a_{1}\left(\left(L_{K}^{n}\right)_{J}\right)= \begin{cases}m^{\sharp J-1}\left(-\frac{1}{24} V_{D_{m} K}(-1)+\frac{1}{6} m(m-1)\right) & \text { if } 1 \leq \sharp J \leq n-1 \\ 0 & \text { if } \sharp J=n .\end{cases}
$$

Let $A_{j}\left(D_{m} K\right)$ be the $j \times j$ matrix

$$
\left(\begin{array}{ccccc}
1+m & -m & & & 0 \\
-m & 1+2 m & -m & & 0 \\
& \ddots & \ddots & \ddots & \\
0 & & -m & 1+2 m & -m \\
0 & & & -m & 1+m
\end{array}\right)
$$

and $B_{j}\left(D_{m} K\right)$ be the $j \times j$ matrix

$$
\left(\begin{array}{ccccc}
1+2 m & -m & & & \bigcirc \\
-m & 1+2 m & -m & & 0 \\
& \ddots & \ddots & \ddots & \\
0 & & -m & 1+2 m & -m \\
0 & & & -m & 1+2 m
\end{array}\right)
$$

Then

$$
\operatorname{det}\left(E\left(\left(\mathcal{L}_{D_{m} K}^{n}\right)_{N \backslash J} ; J\right)\right)=\operatorname{det}\left(A_{n-\sharp J}\left(D_{m} K\right)\right)
$$

and

$$
\operatorname{det}\left(E\left(\left(\mathcal{L}_{D_{m} K}^{n}\right)_{N \backslash J}\right)\right)=\operatorname{det}\left(B_{n-\sharp J}\left(D_{m} K\right)\right) .
$$

By considering all graphs appearing in Figure 2, we can calculate $\theta\left(\left(\mathcal{L}_{D_{m} K}^{n}\right)_{J}\right)$ as follows;

$$
\theta\left(\left(\mathcal{L}_{D_{m} K}^{n}\right)_{J}\right)= \begin{cases}4 m^{2}+4 m+3 & \text { if } \sharp J=1 \\ 2 m\left(3 m^{2}+2 m+1\right) & \text { if } \sharp J=2 \\ 6 m^{4} & \text { if } \sharp J=3, \sharp N=3 \\ 2 m^{4} & \text { if } \sharp J=3, \sharp N>3 \\ 0 & \text { if } 4 \leq \sharp J \leq n-1 \\ 2 n(-m)^{n}(2+m) & \text { if } \sharp J=n .\end{cases}
$$

Then $\lambda_{n}\left(D_{m} K\right)$ can be expressed as a combination of $m$ and $d / d t V_{D_{m} K}(-1)$ as in the following theorem.

Theorem 3.5. Let $K$ be a knot in $S^{3}$ and $D_{m} K$ its $m$-twisted double. Then

$$
\begin{gathered}
\lambda_{n}\left(D_{m} K\right)=S_{n}(m) n\left(\varphi\left(D_{m} K\right) \sum_{j=1}^{n-1} m^{j-1} \operatorname{det}\left(A_{n-j}(m)\right)\right. \\
\left.\quad+\frac{1}{24} \sum_{j=1}^{n}(-1)^{j} \operatorname{det}\left(B_{n-j}(m)\right) \psi_{j}(m)\right) \\
+S_{n}(m) \frac{\operatorname{det}\left(E_{n}(m)\right) \operatorname{signature}\left(E_{n}(m)\right)}{8}
\end{gathered}
$$

with

$$
S_{n}(m)= \begin{cases}1 & n: \text { odd or } n: \text { even, } m \geq 0 \\ -1 & n: \text { even, } m<0\end{cases}
$$

the $j \times j$ matrix

$$
A_{j}(m)=\left(\begin{array}{ccccc}
1+m & -m & & & \mathbf{0} \\
-m & 1+2 m & -m & & \\
& \ddots & \ddots & \ddots & \\
0 & & -m & 1+2 m & -m \\
0 & & & -m & 1+m
\end{array}\right)
$$

the $j \times j$ matrix

$$
\begin{gathered}
B_{j}(m)=\left(\begin{array}{ccccc}
1+2 m & -m & & & \mathbf{O} \\
-m & 1+2 m & -m & & \\
& \ddots & \ddots & \ddots & \\
0 & & -m & 1+2 m & -m \\
& & -m & 1+2 m
\end{array}\right), \\
\varphi\left(D_{m} K\right)=-\frac{1}{24} \frac{d}{d t} V_{D_{m} K}(-1)+\frac{1}{6} m(m-1), \\
\psi_{j}(m)=\left\{\begin{array}{lll}
4 m^{2}+4 m+3 & \text { if } j=1 \\
2 m\left(3 m^{2}+2 m+1\right) & \text { if } j=2 \\
6 m^{4} & \text { if } j=3, n=3 \\
2 m^{4} & \text { if } j=3, n>3 \\
0 & \text { if } 4 \leq j \leq n-1 \\
2(-m)^{n}(2+m) & \text { if } j=n,
\end{array}\right.
\end{gathered}
$$

and the $n \times n$ diagonal matrix

$$
\begin{aligned}
& E_{n}(m) \\
& \quad=\left(\begin{array}{ccc}
1 & & \\
& 1-2 m\left(\cos \frac{2 \pi}{n}-1\right) & \\
& \cdots & \cdots \\
& & 1-2 m\left(\cos \frac{2 k \pi}{n}-1\right)
\end{array}\right. \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Remark 3.6. In case of $m=0$ (untwisted double), the n -fold cyclic branched cover $\Sigma_{D_{0} K}^{n}$ is an integral homology sphere. J. Hoste [6] has caluculated $\lambda_{n}\left(D_{0} K\right)$ in terms of $a_{1}(K)$ as follows;

$$
\lambda_{n}\left(D_{0} K\right)=2 n a_{1}(K)
$$

Note that $\varphi\left(D_{m} K\right)=2 a_{1}(K)$. Therefore Theorem 3.5 is a generalization of this formula.

On the other hand, $\lambda_{n}\left(D_{0} K\right)$ is expressed in terms of $d / d t V_{D_{0} K}(-1)$ as follows;

$$
\lambda_{n}\left(D_{0} K\right)=-\frac{n}{24} \frac{d}{d t} V_{D_{0} K}(-1)
$$

## References

[1] S. Akubult and J. McCarthy: Casson's invariant for oriented homology 3-spheres-an exposition, Princeton Mathematical Notes 36, 1990.
[2] J.H. Conway: An enumeration of knots and links, in "Computational proplems in Abstract Algebra," Pergamon Press, New York, 1970, 329-358.
[3] A. Davidow: On Casson's invariant of branched cyclic covers over $S^{3}$, preprint (1990).
[4] A. Davidow: Casson's invariant for branched cyclic covers over iterated torus knots, in "Knots 90," Walter de Gruyter \& Co.,Berlin • New York, 1992, 151-161.
[5] J. Hoste: The first coefficient of the Conway polynomial, Proc. Amer. Math. Soc. 95 (1985), 299-302.
[6] J. Hoste: A formula for Casson's invariant, Trans. Amer. Math. Soc. 297 (1986), 547-562.
[7] L.H. Kauffman: The Conway polynomial, Topology 20 (1981), 101-108.
[8] L.H. Kauffman: On knots, Ann. of. Math. Studies 115, Princeton University Press, 1987.
[9] C. Lescop: Global surgery formula for the Casson-Walker invariant, preprint, Ecole Normale Supérieure de LYON (1993).
[10] D. Mullins: The generalized Casson invariant for 2-fold branched covers of $S^{3}$ and the Jones polynomial, Topology 32 (1993), 419-438.
[11] K. Walker: An extension of Casson's invariant to rational homology spheres, Ann. of. Math. Studies 126, Princeton University Press, 1992.

Department of Mathematics Tokyo Metropolitan University Minami-Ohsawa 1-1, Hachioji-shi, Tokyo, 192-03, Japan

