THE CASSON-WALKER INVARIANT FOR BRANCHED CYCLIC COVERS OF S³ BRANCHED OVER A DOUBLED KNOT

KATSUHIRO ISHIBE

(Recieved March 10, 1995)

0. Introduction

In 1985, A. Casson defined an invariant λ for oriented integral homology 3spheres by using representations from their fundamental group into SU(2) [1]. It was extended to an invariant for rational homology 3-spheres by K. Walker [11]. In 1993, C. Lescop [9] gave a formula to calculate this invariant for rational homology 3-spheres when they are presented by framed links and showed that it naturally extends to an invariant for all 3-manifolds.

Let L be a link in S^3 and let Σ_L^n be its n-fold cyclic branched cover. Define $\lambda_n(L) = \lambda(\Sigma_L^n)$. Then λ_n becomes an invariant of links. For doubles of knots, torus knots and iterated torus knots, A. Davidow (see [3], [4]) calculated Casson's integer invariant for n-fold branched covers, when Σ_K^n is an integral homology sphere. For any links, D. Mullins [10] have succeeded in calculating Casson-Walker's rational valued invariant for 2-fold branched covers, when Σ_L^2 is a rational homology sphere.

In this paper, using C. Lescop's formula and the result of D. Mullins, we will calculate the Casson-Walker invariant for branched cyclic covers of S^3 branched over the m-twisted double of a knot. We will show the following theorem and corollary.

Theorem 3.1. Let K be a knot in S^3 and $D_m K$ its m-twisted double. Then $\lambda_n(D_m K)$ is determined by $d/dt V_{D_m K}(-1)$ and m where $d/dt V_{D_m K}(-1)$ is the derivative of the Jones polynomial of $D_m K$ at t = -1.

Corollary 3.2. $\lambda_n(D_mK)$ is determined by $a_1(K)$ and m where $a_1(K)$ is the coefficient of z^2 of the Conway polynomial of K.

1. Preliminaries

DEFINITION 1.1. The Conway polynomial $\nabla_L(z)$ of an oriented link L is defined by

1. $\nabla_U(z) = 1$, where U is an unknot,

K. ISHIBE

∇_{L+}(z) − ∇_{L−}(z) = −z∇_{L^o}(z), where L⁺, L⁻, L^o are oriented links identical except within a ball where they are as shown in Figure 1.

It is well known that the Conway polynomial is of the form

$$\nabla_L(z) = z^{\sharp L-1}(a_0(L) + a_1(L)z^2 + \dots + a_{d(L)}z^{2d(L)}).$$

This defines the coefficients $a_i(L)$ of $\nabla_L(z)$.

Let K be a knot in S^3 and $D_m K$ its m-twisted double. It is easy to see that $\nabla_{D_m K}(z) = 1 - mz^2$. Thus $a_1(D_m K) = -m$ and $a_i(D_m K) = 0$ for $i \ge 2$.

DEFINITION 1.2. The Jones polynomial $V_L(t)$ of an oriented link L is defined by

- 1. $V_U(t) = 1$, where U is an unknot,
- 2. $t^{-1}V_{L^+}(t) tV_{L^-}(t) = (t^{1/2} t^{-1/2})V_{L^o}(t)$, where L^+ , L^- , L^o are oriented links identical except within a ball where they are as shown in Figure 1.

Fig. 1.

Let W_L be a Seifert matrix for an oriented link L.

DEFINITION 1.3. The signature $\sigma(L)$ of L is defined as

$$\sigma(L) = signature(W_L + W_L^T).$$

DEFINITIONS 1.4. Let $\mathcal{L} = \{(K_1, \mu_1), \dots, (K_n, \mu_n)\}$ be a framed link in S^3 , where each component K_i is oriented and μ_i gives integer framing. The manifold obtained by surgery on \mathcal{L} is denoted by $\chi(\mathcal{L})$. Let L denote the underlying link of \mathcal{L} . Let l_{ij} be the linking number $lk(K_i, K_j)$ of K_i and K_j if $i \neq j$ and μ_i if i = j.

• The linking matrix of \mathcal{L} is defined by

$$E(\mathcal{L}) = (l_{ij})_{1 \le i,j \le n}.$$

- The sign of \mathcal{L} , denoted by $sign(\mathcal{L})$, is equal to $(-1)^{b_{-}(\mathcal{L})}$ where $b_{-}(\mathcal{L})$ denotes the number of negative eigen values of $E(\mathcal{L})$.
- Restriction of a framed link.

If I is a subset of $N = \{1, ..., n\}$, then \mathcal{L}_I (resp. L_I) denotes the framed link obtained by \mathcal{L} (resp. the link obtained by L) by forgetting the components whose subscripts do not belong to I.

• The circular linking of \mathcal{L}_I , denoted by $Lk_c(\mathcal{L}_I)$, is defined by

$$Lk_c(\mathcal{L}_I) = \sum_{\sigma \in \sigma_I} \left(\prod_{k \in I} l_{k\sigma(k)} \right),$$

where σ_I denotes the set of cyclic permutations of *I*.

The θ-linking of L_I.
 Let θ_b(L_I) be defined by

$$\theta_b(\mathcal{L}_I) = \sum_{\{(K,i,j,g)|K \subset I, (i,j) \in K^2, g \in S_{I\setminus K}\}} Lk_c(\mathcal{L}_K) l_{ig(1)} l_{g(1)g(2)} \cdots l_{g(\sharp(I\setminus K)-1)g(\sharp(I\setminus K))} l_{g(\sharp(I\setminus K))j}.$$

 $(S_{I\setminus K}$ denotes the set of one to one maps from $\{1, \ldots, \sharp(I \setminus K)\}$ to $I \setminus K$.) This sum can be seen as the sum of the linking numbers of \mathcal{L}_I with respect to the edes of one of the graphs in Figure 2 for all combinatorial ways of constructing such graphs.

Fig. 2.

Then, the θ -linking of \mathcal{L}_I , denoted by $\theta(\mathcal{L}_I)$, is defined by

$$\theta(\mathcal{L}_I) = \begin{cases} \theta_b(\mathcal{L}_I) & \text{if } \sharp I > 2\\ \theta_b(\mathcal{L}_I) - 2l_{ij} & \text{if } I = \{i, j\}\\ \theta_b(\mathcal{L}_I) + 2 & \text{if } I = \{i\}. \end{cases}$$

• The modified linking matrix $E(\mathcal{L}_{N\setminus I}; I)$ is defined by

$$E(\mathcal{L}_{N\setminus I};I) = (l_{ijI})_{i,j\in N\setminus I}$$

with

$$l_{ijI} = \begin{cases} l_{ij} & \text{if } i \neq j \\ l_{ii} + \sum_{k \in I} l_{ki} & \text{if } i = j. \end{cases}$$

We state C. Lescop's formula for the Casson-Walker invariant.

Proposition 1.5 ([9]). Let \mathcal{L} and $\chi(\mathcal{L})$ be as above. Then the Casson-Walker invariant λ of $\chi(\mathcal{L})$ is given by

$$\begin{split} \lambda(\chi(\mathcal{L})) \\ &= sign(\mathcal{L}) \sum_{\{J \mid J \neq \phi, J \subset N\}} \left(\det(E(\mathcal{L}_{N \setminus J}; J))a_1(L_J) + \frac{\det(E(\mathcal{L}_{N \setminus J}))(-1)^{\sharp J}\theta(\mathcal{L}_J)}{24} \right) \\ &+ sign(\mathcal{L})\det(E(\mathcal{L}))\frac{signature(E(\mathcal{L}))}{8}, \end{split}$$

where the determinant of an empty matrix equals to one.

REMARK 1.6. We follow C. Lescop's normalization of the Casson-Walker invariant. If λ_w denotes the Walker invariant as described in [11],

$$\lambda(M) = \frac{|H_1(M; \mathbf{Z})|}{2} \lambda_w(M).$$

Finally, we state the result of D. Mullins for two-fold branched covers.

Proposition 1.7 ([10]). Let L be a link in S^3 . Suppose the two-fold branched cover of L, Σ_L^2 , is a rational homology sphere. Then

$$\lambda_2(L) = -rac{i^{\sigma(L)}}{12}rac{d}{dt}V_L(-1) + |H_1(\Sigma_L^2;\mathbf{Z})|rac{\sigma(L)}{8}.$$

Note that if L is a knot, then Σ_L^2 is a rational homology sphere.

2. Surgery description of cyclic branched covers

Let $D_m K$ be the m-twisted double of a knot K in S^3 . If we introduce one surgery curve C which have the framing 1 for the crossing that must be changed to obtain an unknot, we may arrive at a surgery description of $D_m K$ as shown in Figure 3, where $\overline{D_m K}$ is an unknot corresponding to $D_m K$ in other version of S^3 .

Applying an isotopy to S^3 , we can exchange the position of $\overline{D_m K}$ with that of C (see Figure 4).

Fig. 3.

Fig. 4.

Let T_{D_mK} denote the tangle which is obtained by cutting C (at two points) by a spanning 2-disk for $\overline{D_mK}$ as in Figure 5.

Note that T_{D_mK} has two arcs. By joining n-copies of T_{D_mK} cyclically, we obtain an n-component link $L_{D_mK}^n = \{K_1, \ldots, K_n\}$ as in Figure 6. Then the n-fold cyclic branched cover of S^3 branched over D_mK , $\Sigma_{D_mK}^n$, is

Then the n-fold cyclic branched cover of S^3 branched over $D_m K$, $\sum_{D_m K}^n$, is obtained by a surgery on the link $L_{D_m K}^n$. Note that $lk(K_1, K_2) = lk(K_2, K_3) = \cdots = lk(K_n, K_1)$ and the framing of the component K_i is equal to $-2lk(K_1, K_2) + 1$ if $n \ge 3$ and is equal to $-lk(K_1, K_2) + 1$ if n = 2.

K. ISHIBE

tangle $T_{D_m K}$

Fig. 5.

Lemma 2.1.

$$lk(K_1, K_2) = \begin{cases} -m & \text{if } n \ge 3\\ -2m & \text{if } n = 2. \end{cases}$$

Proof. Consider the crossing of $D_m K$ that must be changed to obtain an unknot. From the skein relation of the Conway polynomial, we get $a_1(D_m K) = -a_0(K^o)$ where K^o is the 2-component link obtained by splicing the crossing of $D_m K$. On the other hand, $-a_0(K^o)$ is equal to the linking number of the components of K^o (see [5]). But this is equal to $lk(K_1, K_2)$ if $n \ge 3$ and is equal to $1/2lk(K_1, K_2)$ if n = 2. Noting that $a_1(D_m K) = -m$, we get the conclusion.

Then from Lemma 2.1, we can express the framing in terms of the twisting number m. Each K_i has the framing 1+2m. Thus $\mathcal{L}_{D_mK}^n = \{(K_1, 1+2m), \ldots, (K_n, 1+2m)\}$ is a framed link for $\sum_{D_mK}^n$.

Fig. 6.

3. Calculation of λ_n

In this section, we will prove Theorem 3.1 and Corollary 3.2 and give a formula for λ_n .

Theorem 3.1. Let K be a knot in S^3 and $D_m K$ its m-twisted double. Then $\lambda_n(D_m K)$ is determined by $d/dt V_{D_m K}(-1)$ and m where $d/dt V_{D_m K}(-1)$ is the derivative of the Jones polynomial of $D_m K$ at t = -1.

Corollary 3.2. $\lambda_n(D_mK)$ is determined by $a_1(K)$ and m where $a_1(K)$ is the coefficient of z^2 of the Conway polynomial of K.

Proof of Theorem 3.1 and Corollary 3.2

The case of n = 2 follows from Proposition 1.7 and the fact that $|H_1(\Sigma_{D_m K}^2; \mathbf{Z})| = |1 - 4a_1(D_m K)| = |1 + 4m|$. So, assume that $n \ge 3$. We use Proposition 1.5 and the surgery description of $\Sigma_{D_m K}^n$. Let $\mathcal{L}_{D_m K}^n = \{(K_1, 1+2m), \dots, (K_n, 1+2m)\}$ be the surgery description for $\Sigma_{D_m K}^n$ as in section 2. The linking matrix is determined

K. ISHIBE

by m as follows;

$$E(\mathcal{L}_{D_mK}^n) = \begin{pmatrix} 1+2m & -m & & -m \\ -m & 1+2m & -m & & \\ & \ddots & \ddots & \ddots & \\ & & -m & 1+2m & -m \\ -m & & -m & 1+2m \end{pmatrix}$$

Then $sign(\mathcal{L}_{D_mK}^n)$, $det(E((\mathcal{L}_{D_mK}^n)_{N\setminus J}; J))$, $det(E((\mathcal{L}_{D_mK}^n)_{N\setminus J}))$, $\theta((\mathcal{L}_{D_mK}^n)_J)$, $det(E(\mathcal{L}_{D_mK}^n))$ and $signature(E(\mathcal{L}_{D_mK}^n))$ are also determined by m. So we want to know whether or not $a_1((\mathcal{L}_{D_mK}^n)_J)$ can be expressed in terms of the original data of D_mK .

To do this we introduce the following notations and proposition. For given tangles A and B, the tangle A + B is defined as in Figure 7. Also, there are two operations that associate knots and links to a given tangle A. These are denoted N(A) and D(A) as in Figure 7.

Fig. 7.

Proposition 3.3 ([2], [7]). Let A and B be tangles. Then

 $\nabla_{N(A+B)}(z) = \nabla_{N(A)}(z)\nabla_{D(B)}(z) + \nabla_{D(A)}(z)\nabla_{N(B)}(z),$ $\nabla_{D(A+B)}(z) = \nabla_{D(A)}(z)\nabla_{D(B)}(z).$

Let $T'_{D_m K}$ be the tangle which is obtained from $T_{D_m K}$ by splitting two arcs of $T_{D_m K}$ as in Figure 8.

Since the Conway polynomial of a split link is zero, we only consider the case that $(L_{D_mK}^n)_J$ is not split. Then $(L_{D_mK}^n)_J = N(\overline{T_{D_mK} + \cdots + T_{D_mK}} + T'_{D_mK})$ if $J \neq N$ and $(L_{D_mK}^n)_N = N(\overline{T_{D_mK} + \cdots + T_{D_mK}})$. Then it follows from Proposition 3.3 that

(1)
$$\nabla_{(L_{D_mK}^n)_J}(z) = \begin{cases} \nabla_{D(T_{D_mK})}(z)^{\sharp J-1} \nabla_{N(T_{D_mK})}(z) & \text{if } J \neq N \\ n \nabla_{D(T_{D_mK})}(z)^{n-1} & \text{if } J = N. \end{cases}$$

(Note that $D(T'_{D_m K})$ is a split link and $N(T_{D_m K})$ is an unknot.) Hence

(2)
$$a_1((L_{D_mK}^n)_J) = \begin{cases} a_0(D(T_{D_mK}))^{\sharp J-2} \{a_0(D(T_{D_mK}))a_1(N(T_{D_mK}')) \\ + (\sharp J-1)a_1(D(T_{D_mK}))\} & \text{if } J \neq N \\ n(n-1)a_0(D(T_{D_mK}))^{n-2}a_1(D(T_{D_mK})) & \text{if } J = N. \end{cases}$$

Note that $D_m K$, $\overline{D_m K}$ (= unknot) and $D(T_{D_m K})$ are related by single crossing changes as indicated in Figure 9.

Fig. 9.

Then from the skein relation of the Conway polynomial, we get

(3)
$$a_0(D(T_{D_m K})) = -a_1(D_m K) = m$$

and

(4)
$$a_1(D(T_{D_mK})) = -a_2(D_mK) = 0.$$

(Recall that $\nabla_{D_m K}(z) = 1 - mz^2$.)

Thus only $a_1(N(T'_{D_m K}))$ has not been expressed in terms of the original data of $D_m K$ yet. To do this, we will caluculate $\lambda_2(D_m K)$ in two ways using Proposition 1.5 and Proposition 1.7.

The two-fold branched cover $\Sigma_{D_m K}^2$ is presented by the surgery description $\mathcal{L}_{D_m K}^2 = \{(K_1, 1+2m), (K_2, 1+2m)\}$. Note that $lk(K_1, K_2) = -2m$. The linking matrix is

$$E(\mathcal{L}_{D_m K}^2) = \begin{pmatrix} 1+2m & -2m \\ -2m & 1+2m \end{pmatrix}.$$

The eigen values of $E(\mathcal{L}^2_{D_m K})$ are 1 and 1 + 4m. So,

$$\begin{aligned} \det(E(\mathcal{L}^2_{D_mK})) &= 1+4m,\\ sign(\mathcal{L}^2_{D_mK}) &= sign(\det(E(\mathcal{L}^2_{D_mK}))) = sign(1+4m), \end{aligned}$$

and

$$signature(E(\mathcal{L}_{D_m K}^2)) = 1 + sign(1+4m).$$

Moreover we get

$$\det(E((\mathcal{L}^2_{D_m K})_{\{1,2\}\setminus J};J)) = 1$$

and

$$\det(E((\mathcal{L}^{2}_{D_{m}K})_{\{1,2\}\setminus J})) = \begin{cases} 1+2m & \text{if } \sharp J = 1\\ 1 & \text{if } \sharp J = 2. \end{cases}$$

Note that from (2)

$$a_1((L^2_{D_m K})_{\{j\}}) = a_1(K_j) = a_1(N(T'_{D_m K})) \quad (j = 1, 2)$$

and from (2) and (4)

$$a_1((L^2_{D_m K})_{\{1,2\}}) = a_1(\{K_1, K_2\}) = -2a_2(D_m K) = 0.$$

By considering all graphs appearing in Figure 2, we get

$$\theta((\mathcal{L}_{D_m K}^2)_J) = \begin{cases} 4m^2 + 4m + 3 & \text{if } \sharp J = 1\\ 4m(2m+1)^2 & \text{if } \sharp J = 2. \end{cases}$$

Then according to Proposition 1.5, we get

(5)
$$\lambda_2(D_m K) = sign(1+4m) \left(2a_1(N(T'_{D_m K})) - \frac{(2m+1)(2m+3)}{12} + \frac{(1+4m)(1+sign(1+4m))}{8} \right).$$

On the other hand, from Proposition 1.7, we get

(6)
$$\lambda_2(D_m K) = -\frac{i^{\sigma(D_m K)}}{12} \frac{d}{dt} V_{D_m K}(-1) + sign(1+4m)(1+4m)\frac{\sigma(D_m K)}{8}.$$

(Note that $|H_1(\Sigma^2_{D_m K}; \mathbf{Z})| = |\det(E(\mathcal{L}^2_{D_m K}))| = sign(1+4m)(1+4m).)$

Using (5), (6) and the fact that $\sigma(D_m K) = 0$ if $m \ge 0$ and $\sigma(D_m K) = -2$ if m < 0, we can express $a_1(N(T'_{D_m K}))$ in terms of m and $d/dt V_{D_m K}(-1)$ as follows;

(7)
$$a_1(N(T'_{D_mK})) = -\frac{1}{24}\frac{d}{dt}V_{D_mK}(-1) + \frac{1}{6}m(m-1).$$

Thus in the case of $\mathcal{L}_{D_mK}^n$, all terms appering in Proposition 1.5 are expressed in terms of the original data $d/dt V_{D_mK}(-1)$ of D_mK and m. This completes the proof of Theorem 3.1.

To prove Collorary 3.2, note that $N(T'_{D_m K})$ is isotopic to $K \sharp (-K)$. Since the Conway polynomial is multiplicative under connected sum, we have

(8)
$$a_1(N(T'_{D_m K})) = a_1(K\sharp(-K)) = 2a_1(K).$$

This proves Corollary 3.2.

REMARK 3.4. From equations (7) and (8), we can get a relation between the Conway polynomial of K and the Jones polynomial of $D_m K$ as follows;

$$2a_1(K) = -\frac{1}{24}\frac{d}{dt}V_{D_mK}(-1) + \frac{1}{6}m(m-1)$$

or equivalently

$$\frac{d}{dt}V_{D_mK}(-1) = -48a_1(K) + 4m^2 - 4m.$$

A formula for λ_n

Note that the linking matrix $E(\mathcal{L}_{D_mK}^n)$ can be diagonalized to the following matrix;

 $E_n(D_m K)$

Then

$$sign(\mathcal{L}^n_{D_mK}) = sign(\det(E_n(D_mK))) = \begin{cases} 1 & n: \text{ odd} \\ sign(1+4m) & n: \text{ even.} \end{cases}$$

Let J be a subset of $N = \{1, ..., n\}$ such that $(L_{D_m K}^n)_J$ is not split. We only consider such J since $a_1((L_{D_m K}^n)_J) = 0$ and $\theta((L_{D_m K}^n)_J) = 0$ if $(L_{D_m K}^n)_J$ is split. Then from (2), (3), (4) and (7) we get

$$a_1((L_K^n)_J) = \begin{cases} m^{\sharp J-1} \left(-\frac{1}{24} V_{D_m K}(-1) + \frac{1}{6} m(m-1) \right) & \text{if } 1 \le \sharp J \le n-1 \\ 0 & \text{if } \sharp J = n. \end{cases}$$

Let $A_j(D_m K)$ be the $j \times j$ matrix

$$\left(egin{array}{ccccccc} 1+m&-m&&&\mathbf{0}\ -m&1+2m&-m&&&\ &\ddots&\ddots&\ddots&&\ &&\ddots&\ddots&\ddots&&\ &&&&&&&&&\ \mathbf{0}&&&&&&&&-m&&&&&\ \mathbf{0}&&&&&&&&-m&&&&&\ \mathbf{0}&&&&&&&&&&&&&\ \mathbf{0}&&&&&&&&&&&&&&\ \mathbf{0}&&&&&&&&&&&&&&&&\ \end{array}
ight)$$

and $B_j(D_m K)$ be the $j \times j$ matrix

Then

$$\det(E((\mathcal{L}^n_{D_m K})_{N\setminus J};J)) = \det(A_{n-\sharp J}(D_m K))$$

and

$$\det(E((\mathcal{L}^n_{D_mK})_{N\setminus J})) = \det(B_{n-\sharp J}(D_mK)).$$

By considering all graphs appearing in Figure 2, we can calculate $\theta((\mathcal{L}_{D_m K}^n)_J)$ as follows;

$$\theta((\mathcal{L}_{D_mK}^n)_J) = \begin{cases} 4m^2 + 4m + 3 & \text{if } \sharp J = 1\\ 2m(3m^2 + 2m + 1) & \text{if } \sharp J = 2\\ 6m^4 & \text{if } \sharp J = 3, \sharp N = 3\\ 2m^4 & \text{if } \sharp J = 3, \sharp N > 3\\ 0 & \text{if } 4 \le \sharp J \le n - 1\\ 2n(-m)^n(2+m) & \text{if } \sharp J = n. \end{cases}$$

Then $\lambda_n(D_m K)$ can be expressed as a combination of m and $d/dt V_{D_m K}(-1)$ as in the following theorem.

Theorem 3.5. Let K be a knot in S^3 and $D_m K$ its m-twisted double. Then

$$\lambda_n(D_m K) = S_n(m) n \left(\varphi(D_m K) \sum_{j=1}^{n-1} m^{j-1} \det(A_{n-j}(m)) + \frac{1}{24} \sum_{j=1}^n (-1)^j \det(B_{n-j}(m)) \psi_j(m) \right) + S_n(m) \frac{\det(E_n(m))signature(E_n(m))}{8}$$

with

$$S_n(m) = \begin{cases} 1 & n: \text{ odd or } n: \text{ even, } m \ge 0 \\ -1 & n: \text{ even, } m < 0, \end{cases}$$

the $j \times j$ matrix

$$A_{j}(m) = \begin{pmatrix} 1+m & -m & & \mathbf{0} \\ -m & 1+2m & -m & & \\ & \ddots & \ddots & \ddots & \\ & & -m & 1+2m & -m \\ \mathbf{0} & & & -m & 1+m \end{pmatrix}$$

,

the $j \times j$ matrix

$$B_{j}(m) = \begin{pmatrix} 1+2m & -m & \mathbf{0} \\ -m & 1+2m & -m & \\ & \ddots & \ddots & \ddots & \\ \mathbf{0} & & -m & 1+2m & -m \\ \mathbf{0} & & -m & 1+2m \end{pmatrix},$$

$$\varphi(D_{m}K) = -\frac{1}{24} \frac{d}{dt} V_{D_{m}K}(-1) + \frac{1}{6}m(m-1),$$

$$\varphi(D_{m}K) = -\frac{1}{24} \frac{d}{dt} V_{D_{m}K}(-1) + \frac{1}{6}m(m-1),$$

$$\psi_{j}(m) = \begin{cases} 4m^{2} + 4m + 3 & \text{if } j = 1 \\ 2m(3m^{2} + 2m + 1) & \text{if } j = 2 \\ 6m^{4} & \text{if } j = 3, n = 3 \\ 2m^{4} & \text{if } j = 3, n > 3 \\ 0 & \text{if } 4 \le j \le n-1 \\ 2(-m)^{n}(2+m) & \text{if } j = n, \end{cases}$$

and the $n \times n$ diagonal matrix

$$E_{n}(m) = \begin{pmatrix} 1 & & & & \\ 1 - 2m\left(\cos\frac{2\pi}{n} - 1\right) & & & \\ & \ddots & & \ddots & \\ & & 1 - 2m\left(\cos\frac{2k\pi}{n} - 1\right) & \\ & & \ddots & & \ddots \\ & & & & 1 - 2m\left(\cos\frac{2(n-1)\pi}{n} - 1\right) \end{pmatrix}$$

REMARK 3.6. In case of m = 0 (untwisted double), the n-fold cyclic branched cover $\sum_{D_0K}^{n}$ is an integral homology sphere. J. Hoste [6] has caluculated $\lambda_n(D_0K)$ in terms of $a_1(K)$ as follows;

$$\lambda_n(D_0K) = 2na_1(K).$$

Note that $\varphi(D_m K) = 2a_1(K)$. Therefore Theorem 3.5 is a generalization of this formula.

On the other hand, $\lambda_n(D_0K)$ is expressed in terms of $d/dtV_{D_0K}(-1)$ as follows;

$$\lambda_n(D_0K) = -\frac{n}{24}\frac{d}{dt}V_{D_0K}(-1).$$

References

- [1] S. Akubult and J. McCarthy: Casson's invariant for oriented homology 3-spheres-an exposition, Princeton Mathematical Notes 36, 1990.
- [2] J.H. Conway: An enumeration of knots and links, in "Computational proplems in Abstract Algebra," Pergamon Press, New York, 1970, 329–358.
- [3] A. Davidow: On Casson's invariant of branched cyclic covers over S^3 , preprint (1990).
- [4] A. Davidow: Casson's invariant for branched cyclic covers over iterated torus knots, in "Knots 90," Walter de Gruyter & Co., Berlin · New York, 1992, 151–161.
- [5] J. Hoste: The first coefficient of the Conway polynomial, Proc. Amer. Math. Soc.95 (1985), 299-302.
- [6] J. Hoste: A formula for Casson's invariant, Trans. Amer. Math. Soc. 297 (1986), 547-562.
- [7] L.H. Kauffman: The Conway polynomial, Topology 20 (1981), 101-108.
- [8] L.H. Kauffman: On knots, Ann. of. Math. Studies 115, Princeton University Press, 1987.
- C. Lescop: Global surgery formula for the Casson-Walker invariant, preprint, Ecole Normale Supérieure de LYON (1993).
- [10] D. Mullins: The generalized Casson invariant for 2-fold branched covers of S³ and the Jones polynomial, Topology 32 (1993), 419–438.
- [11] K. Walker: An extension of Casson's invariant to rational homology spheres, Ann. of. Math. Studies 126, Princeton University Press, 1992.

Department of Mathematics Tokyo Metropolitan University Minami-Ohsawa 1-1, Hachioji-shi, Tokyo, 192-03, Japan