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1. Introduction

In 1956, Hunt [3] characterized all possible homogeneous convolution
semigroups of probability distributions on a Lie group through the representations
of their infinitesimal generators. Let {4},., be a convolution semigroup of
probability distributions defined on a Lie group G of dimension d. It defines a
semigroup of linear operators {7,},», on ¥ by setting T,f(c)=f(o7)p,(dr), where
% is the Banach space consisting of bounded continuous functions f on G (such that
lim,_, , f(o) exists if G is noncompact). Then the domain 2(A) of its infinitesimal
generator 4 contains %, (a space consisting of &,-functions on G) and Af, fe¥,
is represented by

(1.1) Af(o) =%Zaifxixj f(0)+ L bX.f (o)

+ j (f(61)—f(0) - L X)) XS (o)Mdv).
G i

Here X,,---,X,; constitute a basis of the Lie algebra of G regarding them as left
invariant first order differential operators (vector fields), 4 =(a") is a symmetric
nonnegative definite matrices, b=(b") is a vector and v is a measure on G such
that v({e})=0 and [¢(o)v(ds)<oco, where e is the unit element of G. Further,
x!,--,x% ¢ are €,-functions on G satisfying (3.1) and (3.2). Conversely the above
operator determines a unique convolution semigroup.

In this paper we study nonhomogeneous convolution semigroups {f ,}o<s<t<w
of probability distributions on a Lie group. In the first part (Sections 2-4), we
characterize them by representing their infinitesimal generators A(f),>0, similarly
as (1.1), where the triple (4,b,v) in the representation on A(f) depends on t. We
remark that a similar representation of the infinitesimal generator has been obtained
by Maksimov [7] in the case where the underlying Lie group is compact. However,
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we are particularly interested in the nonhomogeneous convolution semigroup on
a noncompact Lie group. Further, our Condition (D) needed for the representation
theorem is milder than his.

In the second part of this paper (Sections 5-6), we study nonhomogeneous
convolution semigroups having the self-similar property. A convolution semigroup
{u,,} is called self-similar with respect to {y,}, if y,us,=H,s, holds for any s<t¢
and r>0, where {y,},-, is a one parameter group of automorphisms of G called
a dilation. Applying the representation theorem of the first part, we characterize
all self-similar nonhomogeneous convolution semigroups through their infinitesimal
generators. As a further application, we study selfdecomposable distributions on
a Lie group.

Operator-stable distributions and operator-stable Lévy processes on Euclidean
spaces or infinite dimensional vector spaces have been studied with details. See
Jurek-Mason [4], Sato [10] and references therein. Recently the author [5] [6]
studied stable distributions and stable (homogeneous) convolution semigroups on
a simply connected nilpotent Lie group, which correspond to strictly operator-stable
distributions and strictly operator-stable Lévy processes, respectively, on Euclidean
space. The present self-similar nonhomogeneous convolution semigroup on a Lie
group is a nonhomogeneous extension of the stable (homogeneous) convolution
semigroup.

Our selfdecomposable distribution on a Lie group corresponds to an operator
selfdecomposable distribution or a distribution of the class OL in Sato [10] on
an Euclidean space. We shall imbed it into a nonhomogeneous self-similar
convolution semigroup of distributions and then characterize the former through
the infinitesimal generator of the latter. We remark that in the case of Euclidean

space, the imbedding was done by Sato [10], where the latter is called a process
of class L.

2. Nonhomogeneous convolution semigroups on a Lie group and their
infinitesimal generators

Let G be a connected Lie group of dimension d. Elements of G are denoted
by o, 1, etc,, and its unit element is denoted by e. Let ¥ (or %) be its left
invariant (or right invariant) Lie algebra. Elements of ¢ (or ') are regarded as
left invariant (or right invariant) first order differential operators (vector fields) and
are denoted by X, Y, etc. (or X', Y',etc.) We fix its basis {Xy,---, X} (or {X1,---, X3}).

Let u be a distribution on G. For a bounded continuous function f on G,
we set u(f)= j fdu. For two distributions u and v on G, their convolution is a
distribution on G defined by p*v(A4)=[gu(do)(c™'A4). A distribution yu is called
infinitely divisible in the generalized sense if for any £¢>0, there exist distributions
vy, V, such that pu=v, *v,*-..v, and v(U;)<e for any j<n, where U, is an
e-neighborhood of the unit e of G.  In particular, if we can choose vy,-++,v, as identical
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distributions, the distribution u is called infinitely divisible. 1In the case where G
is a Euclidean space, it is known that any infinitely divisible distribution in the
generalized sense is infinitely divisible. However, the author does not know whether
a similar fact is valid for distributions on Lie groups.

Let {4;,}o<s<i<o be a family of probability distributions on a Lie group
G. 1t is called a nonhomogeneous convolution semigroup if it satisfies the following
two properties.

(i) (Semigroup property) p,,* i, ,= ps, holds for any 0<s<t<u<oo.

(i) (Continuity) For any #,>0, lim,_oSUpPo<y<s<ios—s<nlls(f)—f(€)|=0 holds
for any bounded continuous function f.

Clearly each p,, is an infinitely divisible distribution in the generalized sense.

A convolution semigroup {u,,} is called homogeneous if for any s<t, u,,
depends only on t—s. We denote it by u,_,. Then one parameter family of
distributions {u,},~, satisfies u * p,=p,, for any s5,¢>0 and p, —» 5, weakly as
h — 0, where ¢, is the unit measure concentrated at e. It is called a (homogeneous)
convolution semigroup.

Let €=%(G) be the set of all bounded continuous functions f on G (such

that lim,_,  f(o) exists if G is noncompact). It is a separable Banach space with
the supremum norm | ||.

We define
2.1 Py flo)= ff(ﬂ)us,t(dr), fe%.

Then {P,,}o<s<i<o is a family of linear operators on € and satisfies P, ,P,,=P;,
for all s<t<u. Further lim, P, f=f holds for all fe4%.

We denote by &, the totality of fe® such that it is twice continuously
differentiable. Let €, (or ¥,) be the totality of fe &, such that Xf and YZf (or
X'f and Y'Z’f) belong to ¥ for any X,Y,Ze% (or X',Y',Z'€¥’). Set

d d
22 IA=1A1+ 21X+ X IXXS -

Jk=1

Then %, is a Banach space with this norm. It holds X'P,,f=P, X'f, etc., so that
P,, maps ¥’ into itself and satisfies || P, fl5<IfIl>-

For the study of nonhomogeneous convolution semigroups, it is convenient
to introduce the associated space-time homogeneous semigroups. We need some
notations. Let G=G x[0,00) be the product manifold. Let €=%(G) be the set
of all bounded continuous functions f on G such that lim,_, . f(0,?) exists uniformly
in 1€[0,N] for any N if G is noncompact. Let f=f(s,/)eé. When we fix the
variable ¢ and consider it as a function of o, we denote it by f}(c). Then € is a
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locally convex linear topological space with seminourms: || f||¥=supo ., nllfill. If
a sequence {f,} of € converges to f of € with respect to these seminorms, the
sequence is said to converge in the space ¥.

Let &, ;be the set of all f(,7)eé which are twice continuously differentiable
with respect to ¢ and continuously differentiable with respect to . Here and in
the sequel, by the derivative at 1=0, we mean the right derivative: lim, o(f(0,h)
—f(a,0))/ h. (Z“ is the subspace of feégz,, such that Xf, YZf, (3/0dt)f belong
to € for any X,Y,Ze%. The space ‘3’2,1 is defined similarly. Obviously, the
spaces €, €,, etc., are imbedded in the spaces €, €, ,, etc., respectively.

Now, define

(23) 7‘1rf‘(0-’ t)=Pr,t+r(./;+r)(O-)'

Then {7,},., are continuous linear operators on ¢ and satisfy T,7,=T,,, for
r,s>0 and T,f—fas r—0in €. Consider the Laplace transform of {7,}. For
A>0, set

)

R,f(0,5)= Jw e *T.f(o,5)dr= f e VP, o1 (for NO)dr.
0

0

Then R, are continuous linear operators on 4 and satisfy the resolvent equation
R,f=R,f—(A—yR,R,f, for any A,y>0 and AR,f—fin € as 1> oo. Therefore
the map R,:@ — & is one to one and the range {R,f: fe®¥} is independent of A,
which we denote by 2. The infinitesimal generator of the semigroup {7} is
defined by

,Zf(o)zlimT_hf_(f);f@,

h—0 h

if the right hand side converges in the space 4. The domain of the operator 4
is the set of all fe & such that the above limit exists. It coincides with & and it
holds Af=(A—R;")f for any fe 9.

We introduce a differentiability condition for the resolvent R, with respect to ¢.

Condition (D). For any ge‘g’z,t , R,g(0,1) is continuously differentiable with
respect to te[0,00) and (0/01)R,g(s,7) belongs to €.

Assuming the above condition, R, fbelongs €5 , if fe ;. Indeed, we have

X’R)_f(O',S) = R;‘X’f-(O',S), Y’Z’R'Af(ﬂ',S) = iil YIZ,f(O-,s)'

Further, we have AX'R,f— X'f, A\Y'Z'R,f— Y'Z'f. Therefore |AR,f),—f,l>—0
uniformly in 1€ [0,N] as 4 — oo for any N>0,if fe 4, ,. However, {AR,f} may not
converge to f with respect to the strong topology of €, ,, since (9/0)AR,f may
not converge to (0/01)f.

We set
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(2.4) 972,1={R',1g2g€(2'2,1}-

It does not depend on A because of the resolvent equation of R, .
The infinitesimal generator {A(t)},,, of {P;,} or the convolution semigroup
{us,} is defined by

@5) A)f(0)=lim T/ (0)=1(0)

h=0 h

if the right hand side converges in the spae € as a function of (o,7). Its domain
2({A(1)}) is the set of all fe® such that the above limit exists.

The following proposition describes a relation between the infinitesimal
generator {A(7)} of the convolution semigroup {x,,} and the infinitesimal generator
A of the associated space-time semigroup {7.}.

Proposition 2.1. Assume Condition (D). Then for any fe D, ,, the limit

(2.6) A(1)f (o) E:im %(P,,m.f,(a) —f{0)

-0
exists in the space € as a function of (0,t). Further, we have
2.7) Af(o,0)= A1) f(0)+ ‘g(a, ).

Proof. Let f=R,g. Note that T,f(0,0)=P,,,,(f;+4)(0). Then,
1 1~ 1
Z(Pt,t + hft _f;)(o') = }_l(Thf(Ga ] —f(O', ) _ZPt,t +h(ft +h _ft)(a)

0
- Af(o,0)— a—{(a, )

in the space 4. The proof is complete.

3. Representation of the infinitesimal generators

We shall represent the infinitesimal generator of the convolution semigroup.
The following theorem has been proved by Hunt [3] in the case where the
convolution semigroup is homogeneous. Maksimov [7] proved, in the case where
the convolution semigroup is nonhomogeneous but the underlying Lie group is
compact, a similar result under the differentiability condition of P,, with respect to
a<t<b, which is stronger than our Condition (D).

In the following theorem, we shall fix x',---,x% ¢ of &, satisfying
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(3.1) x(e)=0, i=1,-d, Xxi(e)=6,, ij=1,"-d,

(3.2) ¢(e)=0, ¢(a)>0 (6#e), lim@(6)>0, if G is noncompact,

g

¢ =) (x)* near e.

Theorem 3.1. Assume Condition (D). Then €, < 2({A(?)}). Further, for any
fe¥€,, A(t)f(o) are represented by integro-differential operators L(t)f :

1 . ;
(33) L)/ (0)=3T.a XX,/ (0) + L b X, (0)

+ J (fe1)—f(0) = LX) X.f (o)),
G i

where A(t)=(a"(1)), b(t)=(b'(£)) and v, satisfy the following properties.

(@) A(t)=(a"(?)), =0, are symmetric nonnegative definite matrices continuous in t,

(b) b(H)=(b(1), t=0, are continuous functions of t,

(©) v, t=0, are positive measures on G such that v({e})=0 and the integrals
v(@) = [p(t)v(dr) are finite for any t >0 and v (¢ f) is continuous in t >0 for any fe €.
The matrices A(t) and the measures v, are uniquely determined from the
nonhomogeneous convolution semigroup {u,,}, but the vectors b(f) may depend on
the choice of the functions x',---,x".

The proof of the theorem will be given after three lemmas. Our argument
in these lemmas is close to Hunt [3].

Lemma 3.2. For fe¥, set
1
(3.4) A0S (0)= A (Pr,+1f(0)—f(0)).

If fe¥,, A(),f(e) converges uniformly in te[O,N] as h -0 for any N>O0.

Proof. Let t,>0. We show the uniform convergence of {A(t),f(e)};>o With
respect to t as h— 0 on a certain neighborhood of #,. For each ¢, there exists
Y® of &, such that

¥ Ae,n=0, Xy“e=0, X7Yye1)=2

and y9(t,0)>0 if t#e, lim,_, ,Y?(z,/)>0 if G is noncompact. Indeed, on a certain
neighborhood U(t,) of t,, the family of functions {y®;te U(t,)} can be chosen in
the form Y©=ZXjc(0)g", where g*€J,, and c(f) are continuous functions of
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t. Then, since A(f),g¥e) converges uniformly in te U(t,) as h — 0 by Proposition
2.1, the family of functions {A(1),Y"(e), te U(t,), h>0} is uniformly bounded.

Let 0<d<1. In the sequel, we shall choose, on a certain neighborhood
Vto)(= Ulty)) of t,, a family of functions {g®e, ,:te Wt,)} satisfying

(3.5) /=Sl —gP+gPe <oy, Ve W)
Since Y(r,/)=X,x(r)*> holds near e, there exists an & neighborhood U,

={1:Zx(r)> <e?} of e (0<e<1) and W(t,) such that for any te V(t,),

1
W")(t,t)zisz, if te US,
1 . )
ZEZx‘(r)z, if te U,.
Set c=06¢2/4. Choose 1,>0 such that g, = A,R, f satisfies || f—(g,),|l><c for any
te V(t,). Then we can choose g’ € J, , satisfying the following (i)-(iii).
(i) N1EDlz<c and |05/ ot <1 for te Vt,).
(i) g¥=g,+g?¥ satisfies
gle)=f(e), Xg'e)=Xfle), YZgP(e)=YZfle) VX,Y,Ze%.

(iii) The functions g® are represented in the form g®=ZXkc|(f)g’, where g'e F, ,
and c|(¢) are continuous in € V(¢,).
We shall prove that g satisfies (3.5). If te U, it holds

|/ (x)—f(e)— &) + & e)l
<I/—gPla<If= @)l + &9l < 2¢ =66 | 2< 0Y{(x)
for any te V(t,). Further, if te U, and te V(¢,), by the mean value theorem, the
left hand side of the above is dominated by
1 Lo
EIZ XXX X{(f— g N ¥)
LJ

<|1/—gO Y X(0)? s%éalzx"(r)z <50(0),

where txe U,.
Now integrate both sides of (3.5) by the measure A~ 'y, ,,,. Then we obtain

the inequality:
A1), S (€)— A(t)gi(e)| < SAO"(e),
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since Yy(e)=0. We have further,

P, Wi ale)= Th'p(')(e, )= Jh T,J.p("f(e, tdr
0

+h 5!//("
= f P, (AW +——Ne)du,
. ou
by Proposition 2.1. Therefore,
() L 0, WY 1o ®
AWy (e)=; P, (A +E;‘)(e)du_Pt,t+h ’—l(‘/’t+h"/’¢ ) e)
t

which converges uniformly in te V(t,) as h— 0, since Yy =Zc,(Ng* and c,(f) are
continuous in ¢. This implies

|A(D).f(€)— A (e < O3), Ve Vto),

ie., A(),f(e) and A(1),g"(e) differ by O(d) (uniformly in k). Further, A(¢),g"(e)
converges uniformly on WV{(t,) as h — 0 by property (iii). Since this is valid for any
0>0, A(?),f(e) should also converge. The proof is complete.

Lemma 3.3. Let x',--,x% ¢ be the functions of €, satisfying (3.1) and

(3.2). Then, for any t>0, A(t)f(e)=lim,_ oA(),f(€), f€ €, is represented by L(f)f(e),
where L(f) are integro-differential operators represented by

(3.6) L(t)f(o)= % 2, dU0X.X;f(0)+ Y. DX, f(0)

+ J_ (flen)—f(0)— LX(@X.f (0))7{dv).
G i

Here (a'(t)) is a symmetric nonnegative definite matrix, (b'(t)) is a vector. 7, is a
measure on G such that v({e})=0 and V($,) < 0, where G=G if G is compact and
G=Gu{w} (a one point compactification of G) if G is noncompact.

Proof. Consider the family of positive measures
= 1 -
Ft,h(E) = Z ¢(T)#t,t + h(dT)'
E

Then F, ,(G) is equal to A(t),d(e), which converges to a finite value as 4 — 0 because
$e®,. Therefore, for each t>0, {F,,;h>0} is a family of a uniformly bounded
measures on G. Furthemore, since [f (0)F, (dv)= A(t)(f ®)e), it converges as h — 0
for any fe®%,. Therefore the family of the measures {F,,} converges weakly as
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h—0. We denote the limit measure by F,.
Now for a given fe¥),, set

c=fle), c=Xfle), «c;= XiXJ(f—Z i )e).
k

Then the function g=f—c—X % —Z¢;¥%/ is of the form Y with y €4 vanishing
at e. Therefore we have,

A0 f(@)=A(t)c+ Y cF + ) c;0'%)e) + lim ;J¢$,ﬂt,t +(dr)
h—0

=S ANl + LA NI+ | WP
G

Set
bi(t)=A@tXxNe),  a(H)=A()(X'%)Ne),

and define measures v,,>0, on G by
ﬁ,(E)zf d) 'F(dr) if EcG—{e}, ({e})=0.
E

Then A(f)f(e) is represented by (3.6) at o =e.

REMARK. By the definition, @(¢), b'(f) and v,(f¢,) (fe %) are continuous with
respect to the parameter ¢.

Lemma 34. Let fe%,. If it is of compact supports, A(t),f(o) converges in
the space € as functions of (o,t). Let A(t)f(o) be its limit. Then it is represented
by L()f(c) of (3.6) for any c€G.

Proof. Apply the result of Lemma 3.3 to the function foL,, where L, is the
left translation by ¢. Since A(f),f(c)=A(t),(f - L,)e), it converges to L(£)(f o L,Xe)
by Lemma 3.3. Further, L(t)(f o L,)e)=L(t)f(c) holds since we have X(f o L,)e)
=Xf(0), etc. Therefore for each oeG,A(t),f(c) converges to L(t)f(os) as h— 0.

We want to show that if the support of f is compact, A(¢),f(c) converges to
L(t)f (o) boundedly. Let t,, 6, ¢ be as in the proof of Lemma 3.2. For each
(t,6)e G, we can choose g§" 7€, ,, satisfying the following (i')-(iii").

(i) E%¥)ls<c and |(8g5™ /ot <1 for te Wt,), where c=d¢e*/4.
(i) g*7=g,+g%? satisfies

gN)=f(0),  XetNo)=X[(0), YZg'O)=YZ[(0), VX.Y,ZeH.
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(iii") There exist a finite open covering {U,,---,U,} of K=supp(f) and a
neighborhood ¥(t,) of ¢, such that for each (t,0)e V() x U;, g"? is written as
Tke(t,0)g', where g'e D, and c(t,0) are continuous in (f,0)€ Vty)x U;. For
(t,0)€ V(1) x K¢, g is written as Zl'ci(g’), where (g)'e %, .

Then it holds

(3.7 [f oL, —f o L,{e)—g”+ g N <oyi”,  Vie V1),

as in the proof of Lemma 3.2. Further, we have

(3.8) sup supl|lA(f)gi"” | =M < oo,

teV(to) o

by property (iii'). Integrate both sides of (3.7) by the measure h~'y,,,,. Then
we obtain

| A0S © L,)e) — A(D)gi"(e)| = 0(9),

similarly as in the proof of Lemma 3.2. Note that g“” belongs to ¥, ,. Then,

t+h

1
A(Digi""(e) =ZJ

t

(t,0) ag(t ) 1 o) oy
tu Awgy” +—— )(e)du— tt+h Z(gﬁh“gt ) )(e).
Therefore,

(t o)

|08 < sup iIA(u)g‘“”\IJrZIl

t<u<t+h

i|<M+2+|| l|<oo

holds for any oeG and t+heV(t,). Consequently, A(2),[f(0)=AO)(f > L,)Ne)
converges to L(f)f(c) boundedly as h — 0.
Now note

(Pst+hf Ps tf)/h Ps tA(t)hf

Let h—»0. Then we obtain 3P, f=P, L()f, since A(f),f converges to L(1)f
boundedly.
Integrating the last equality with respect to ¢, we obtain

(39 Py f=f+ J Py, L(w)fdu.

Then we have

t+h

A=, j P, L) fdu.

t
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Since L(u) fe % and |L(u) f—L()f|| = 0 as u — t, || A(t).f— L(?)f ]| = 0 holds uniformly
in te[0,N] as h— 0 for any N>0. The proof is complete.

Proof of Theorem 3.1. We have seen in the proof of Lemma 3.4 and its
proof that if fe€,n¥, is of compact support, then (3.9) holds. Now for any
f€%,, there exists a sequence {f,} of ¥,N%, of compact supports, such that
fo—f, Xf,, = Xfand YZf, —» YZ fhold uniformly on compact sets for any X, Y,Ze¥%
and further the convergences are bounded convergences. Then L(1)f, — L({)f
boundedly. Therefore, equality (3.9) is valid for any fe%,. Then A(¢),f(o)
converges to L(t) f(o) in the space € as functions of (6,7). This proves €, = 2({A(t)})
and A(t)f=L())f.

We will prove that ¥(00)=0 in the case where G is noncompact. Let {f,}
be a sequence of %, such that f,(c0)=1 for all n, and f,(0)—>0, Xf,(0)—0,
YZf,(6) » 0 boundedly for any oceG. Then L(f)f,(c) converge to a constant
function ~A=7v,(c0) boundedly. Since (3.9) is valid for any f,, we have .[;Ps,uhdu=0,
proving A=0.

Now let x!,---,x% ¢ be functions of %, satisfying (3.1) and (3.2). These
functions belong to 2({A(t)}). Then we can apply Lemma 3.3 with these
functions. Then we get A(¢) f=L(f)f, where the coefficients of L(f) is determined
by bi(f) = A(t)(x)e), a'’()=A(D)(x'x’)e), etc.

The uniqueness of a“(f) is obvious, since a*/(t) = A(f)(x'x’)(e) holds, where x!,---,x
are any functions satisfying (3.1). It is clearly symmetric. Further, for any complex
numbers z',---,z%, we have

Y ai(t)z'z = A(t)(l i x"z"l2>(e) = 'l'mé %P,,, h <I i xizilz)(e) >0.

ij i i=1

d

Therefore (a”(t)) is nonnegative definite. Next, let f€e%, be a function such that
fle)=X,fle)=X.X;f(e)=0 for any i, j. Then, A(?)f(e)=[/f(x)v(dr). Therefore, the
uniqueness of the Lévy measure v, follows.

In applications, it is sometimes convenient to extend the domain of the
infinitesimal generators of the convolution semigroups. We first introduce some
notations. Let # be the set of all bounded continuous functions on G and let
2, be the set of all twice continuously differentiable functions on G such that X7,
XYf belong to 4 for any X,Y,Ze€¥. Let # be the set of all bounded continuous
functions on G and let &, ; be the set of all functions f(s,f)e # which is twice
continuously differentiable with respect to ¢ and continuously differentiable with
respect to ¢ such that Xf, XY/, (3/0t)f belong to & for any X,Y,Ze%. Then it
holds € < 4, etc.

The semigroups {P,,} and {7,} associated with a convolution semigroup {u,}
can be extended to the spaces # and %, respectively. For fe#,, we define
integro-differential operators {L(f)} by (3.3).
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Corollary 3.5. Let fe#,. For any s>0, P,,f is continuously differentiable
with respect to te(s,00), and satisfies

oP
3.10 —
(3.10) 5

=P, L(0)f, Vt>s.

4. Problems related to the infinitesimal generators

4.1. Stochastic differential equation. Existence of the nonhomogeneous
convolution semigroup

Let {ft,,}o<s<t< D€ a nonhomogeneous convolution semigroup on a Lie
group G. Then on a certain probability space (Q,#, P), we can define a stochastic
process {@,;1>0} with values in G satisfying the following equality:

4.1) P(po=e, ¢, €Ay, ¢,€A3, -+, ¢, €4,)
= J‘ t j .u(),tl(dal)utl,lz(al_ 1d62) sy, 1,1..(0'11—-11dan)
Ag X oo X A

for any 0<t¢,<--- <t,<oo and Borel sets 4,,---,4, of G. The stochastic process
{¢,t=0} has independent increments, ie., G-valued random variables ¢, ¢, ,
i=1,---,n are independent for any O=t,<t,<--- <t,<o0. Indeed the equality
(4.1) implies

4.2) P, @y € By, i=1,m) =[] sy, 1(B)
i=1

for any Borel sets B;, i=1,---,n. The process {¢,,t>0} is called a process with
independent increments on the Lie group G associated with the nonhomogeneous
convolution semigroup {u,,}. Conversely let {¢,t>0} be a stochastic process
with values in G continuous in probability such that it has independent increments
and ¢,=e. The process {¢,t>0} is called a process with independent
increments. Define u,(B)=P(p; '¢,€B). Then {u,,} is a nonhomogeneous
convolution semigroup. It is said to be associated with the process with independent
increments {¢,,t>0}.

The process with independent increments {¢,¢>0} has a modification such
that it is right continuous with the left hand limit with respect to time ¢, provided
that the associated nonhomogeneous convolution semigroup {u,} satisfies Condition
(D). Indeed, if f€¥,, f(p,)—f (e)—j{,L(s) f(p,)ds is a martingale with mean O because
of the equality (3.10). Then the stochastic process f(¢,),t>0, has a modification
which is right continuous with left hand limits. Since this is valid for any fe €, the
existence of such a modification for the process ¢,,t>0, follows.

Now suppose we are given integro-differential operators {L(#)} represented by
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(3.3), where the coefficients a'(t), b(t), v, satisfies condtions (a)-(c) of Theorem
3.1. We show the existence of the convolution semigroup whose infinitesimal
generator is represented by the integro-differential operators {L(f)}, constructing a
process with independent increments by solving a stochastic differential equation
on the Lie group.

Let (A(2),b(f),v,) be an arbitrary triple satisfying conditions (a)-(c) of Theorem
3.1. Then there exists a nonhomogeneous Brownian motion B,=(B},---,B% such
that the mean of B,—B, is [\b()dr and the covariance is [Y(a"(r))dr and a
nonhomogeneous Poisson random measure N((s,t] x E) on G with intensity measure
dtdv(7) independent of B,.

We consider a stochastic differential equation on the Lie group G driven by
B, and N((s,/]x E):

4.3) f@)=f0)+% f Xif(¢,-)-dB,
+J f (f(@u-0)~(9,-)N(dudr)
s G

+ f f (@u-1—S(@u-) = X Xif (@, )X (D)V(dr)du,

where N((s,t]xE)=N((s,t]xE)—jgvu(E)du and f is a test function of #,. The
integral [---odB, is the Stratonovich integral.

Theorem 4.1. For any s>0 and o€ G, there exists a unique solution of the
stochastic differential equation (4.3) driven by B, and N((s,t] x E). Denote the solution
by ¢, (o) and set ¢,, =@, (e). Then it has the following properties:

(1) 0@ (r)=,(o7) holds as. for any ¢, © and s<t.

(2 @5 P u=s, holds as. for any s<t<u.
(3) @, =@y, is a process with independent increments.

The proof can be carried out similarly as in Applebaum-Kunita [1]. We
omit the details of the proof. The above theorem implies:

Theorem 4.2. Suppose we are given a family of triple (A(t),b(t),v,), t=0,
satisfying conditions (a)-(c) of Theorem 3.1. Then there exists a unique
nonhomogeneous convolution semigroup {j,,} such that the domain 2({A(1)}) of the
infinitesimal generator {A(t)} includes €, and A(1)f, f€€, is represented by L(1)f

of (3.3).

4.2. An extension of the convolution semigroup
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We have so far considered the convolution semigroup {u,,} defined for
0<s<t<oo. However, in some applications, we encounter a convolution
semigroup {yu,,} defined only for 0<s<t<oo, ie, po, is not defined. Thus the
limit py,=lim,,opu,, may or may not exists. Even so, we can obtain the
representation of the infinitesimal generator under a condition similar to Condition
(D).

Let {is}o<s<t<» b€ @ convolution semigroup on a Lie group G. Then for
any s> 0, there exists a stochastic process ¢, ,, ¢ >s with values in G with independent
increments such that ¢, ,=e and p, (4)=P(p,,' ¢,.€ 4) holds for all s<z<u. The
semigroup of linear operators {P,,}o<s<i<o, its infinitesimal generator {A(1)},-,
and the domain 2({A(r)}) are defined in the same way as in Section 2.

Denote G x(0,00) by G°. Let é° be the set of all continuous functions on
G° such that sup;s nll fill <oo and lim,_, , f(o,?) exists uniformly in te[1/N, N]
for any N>0. It is a locally convex linear topological space with seminorms
I £l 5*=supyn<.<nllfill. The resolvents R, are defined on the space 4°. Let 5%/,
be the set of all fe%°, which is twice continuously differentiable with respect
to ¢ and continuously differentiable with respect to t>0 and X'f, Y'Z'f, (0/dt)f
belong to €° for any X',Y’,Z'e%, where X', etc., are right invariant vector
fields.

Let (Z‘;,l be a dense subspace of ‘3‘5’,’,. We introduce a differentiability
condition of the resolovent R,, which is slightly weaker than Condition (D)
introduced in Section 2.

Condition (D,). For any ge‘g‘;l, R ,g(0,1) is continuously differentiable with
respect to t€(0,00) in the space %°.

Now if we restrict the time set of the convolution semigroup {u,,} to [¢,00),
where £¢>0, then we can apply Theorem 3.1 and its Corollary for this convolution
semigroup. Therefore the assertions of the theorems are valid if “¢>0” is replaced
by “t>0” in the corresponding statement.

We are interested in the case where u,,=lim, u,, exists. If the limit exists,
the extended family of distributins {j,}o<s<:< . DeCOmes a convolution semigroup
in the sense of Section 2. The existence of p,, is equivalent to the convergence
(in probability) of ¢,, as s > 0. Further, if the limit exists, ¢, =lim,_,,¢,, becomes
a process with independent increments associated with the extended semigroup.

Theorem 4.3. Assume Condition (D) for the convolution semigroup
{UsJo<s<t<w- Then €, = D({A(t)}). Further, A(1)f, f€ ¥, is represented by L(t)f
of (3.3).

Furthermore, if p,, exists, the triple (A(t),b(t),v,),>o satisfies the following
integrability condition:

(d) The triple (A(),b(¢),v,) is integrable on the interval (0,1), i.e.,
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4.4 Jl |A(H)ldt < o0, Jl |b(#)ldt < o0,

0 0

1

4.5) J v(¢p)dt < o0,
0

where ¢ is a function of €, satisfying (3.2).

Conversely, suppose that we are given a triple (A(t),b(t),v,),>o Satisfying (a)-(c)
of Theorem 3.1 and (d). Then there exists a unique nonhomogeneous convolution
semigroup {Us }o<s<i<o SUch that the domain D({A(!)}) of the infinitesimal
generator {A(t)} includes €, and A(t)f, fe¥,, is represented by L({)f of
(3.3). Further, p,, exists for any t>0.

In order to prove the theorem, we shall apply the orthogonal representation
theory of the Lie group.

Let g:G — O(n) be a C*-homomorphism, where O(n) is the linear Lie group
of orthogonal »n xn-matrices. We call g an orthogonal representation of G of
degree n. For an orthogonal representation g of degree n, we define an

n x n-matrix u(g) by pu(g)=(u(g;})). Then we have

Lemma 4.4. (1) It holds ux* v(g)= u(g)v(g) for any distributions u, v on G and
orthogonal representation g.

(2) If p is an infinitely divisible distibution on G in the generalized sense, the
matrix w(g) is invertible for any orthogonal representation g.

Proof. For any distributions p, v and any orthogonal representation g,
we have

pxv(g)= '[ j pdo)v(o™ 'dr)g(c)= ”#(da)"(dr)g(ﬂ)

= Hu(da)V(dr)g(o)g(r) = u(g)v(g),

proving the first assertion.

We prove the second assertion. Since pu is infinitely divisible in the
generalized sense, for any &>0, there exists p,---,pu, such that pu=p, *---xp,
and pu(Uf)<e for any j<n, where U, is an e-neighborhood of the unit e of
G. Then it holds pu(g)=u,(g)---u,(g). Since g(e) is the identity and g(o) is
continuous in g, y,(g) are invertible for any j<n for a sufficiently small &. Therefore
u(g) is also invertible. The proof is complete.

We shall modify the Peter-Weyl theory concerning the completeness of
representations of a compact Lie group, so that it can be applied to a noncompact
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Lie group. Set
(4.6) A,={gif0):g(0)=(g;j(0)) are orthogonal representations of degree n}

and define A=u,A,. It is a system of bounded C®-functions.

Lemma 4.5 (cf. Pontryagin [9]). The system A is locally uniformly complete
in 9, ie., any element of B can be approximated uniformly on each compact subset
of G by a sequence of linear sums of elements of A.

Proof. We will follow the argument of [9]. Let K be the set of all real
C*-functions k(o) with compact supports such that k(o)=k(c~!) holds for all
geG. For ke K, we consider an integral equation

4.7 o(0)= Afk(o ~ 1) (1)dr,

on the real L,(dr) space, where dt is a (left) Haar measure. Any nontrivial solution
@ #0 of (4.7) belonging to L,(dr) is called an eigen function of the kernel k and
A is called an eigen value of the kernel k.

Let A'(k) be the set of all eigen functions of the above integral equation with
all possible eigen values. Define A'=u, (A'(k). Then A’ is a locally uniformly
complete system in . See [9], Section 29.

For a given keK, let ¢,,---,¢p, be a complete system of orthonormal eigen
functions with an eigen value A. These are C*-functions since k is a C*-function
with a compact support. Let a be any fixed element of G. Then, since dr is a
Haar measure, ¢, x0), i=1,---,n are also eigen functions with the same eigen
value A. Then there exists a matrix g(a) such that

(48) (,Di((XO') = Z gij{a)(pj(a)’ i= 1, EREN (X

Noting that {¢,,---,¢,} are orthonormal, it is easy to verify that the matrix g(x)
is orthogonal. It is a C®-function of a and satisfies g(af)=g(x)g(B) for all
a,feG. Therefore g is an orthogonal representation of G, i.e., g;;€A.

Now, setting o=e in (4.8), we have @(a)=Zg;(x)pfe) for all aeG. This
shows that each ¢, is a linear sum of elements of A. Therefore, any fe % can be
approximated uniformly on each compact sebset of G by a sequence of linear
sums of elements of A. The proof is complete.

Proof of Theorem 4.3. Suppose first that u, , exists. Consider the n x n-matrix
function L(r)g(c)=(L(r)g;{0)). Note that g;; belongs to #,. A direct computation
yields L(r)g(o)=g(o)L(r)g(e). Then we have (d/df)p, {g) = 1, (g)L(¢)g(e) by Corollary
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3.5. Then we obtain p(g)~'(d/diu,(g)=L(f)gle). Let s—0. Then p,(g)~"
(d/dt)uo {g)=L(g(e). The left hand side is integrable near 0 since uq (g) "' — I as
t - 0. Therefore L(f)g(e) is integrable on (0,1).

We take a component of g =(g"'), say g*' and denote it by . We show that

||t ). siom, o1+ [ [ (ton—sionsiaie< o
0JG

o

4.9) Z (

i,j \«
Let ¢,,, t=s, be a process with independent increments such that ¢, ,=e and the
law of ¢, is ps,. We may assume that it is a solution of the stochastic differential
equation (4.3), where B, is a Brownian motion with mean 0 and Cov(B,— B,)= [ A(u)du
and N((s,7] x E) is a Poisson random measure with intensity measure v,df. Equation
(4.3) is written as

t

(4.10) S(@s,)= 01+ (k,l)-component of f 8@, )Lwgle)du + M, (),

s

where M, (f) is a martingale, whose bracket process is given by

(41 1) <Ms,t(f)> = Z aij(u)Xif(q)s,u)Xjf((Ps,u)du

+ J‘J‘ (f((ps,ur) —f((ps’"))ZV“(d‘L')du.
sYG

Since ¢, = @0, in probability, [ig(¢, )L(u)g(e)du — [4g(p,.)L(u)g(e)du. Therefore,
limg oM, (f) exists boundedly. This proves limg o{(M,(f))<oo as. Then
we obtain (4.9).

The above argument implies

4.12) j t |la*i(u)|du < oo,
(0]

(4.13) J‘IJ (f(01)—f(0))*v,(dr)du < .

Then we get [§|b'(u)|du < oo, since [,|L(u)gldu<oo. We can repeat a similar argument
for fe#, instead of g. Then we obtain (4.13) for any fe#,. Then we have
o(Jp(r)v(dr)du<co. We have thus obtained (4.4) and (4.5).

Conversely suppose we are given a triple (A(¢),b(t),v,),> o satisfying (a)-(d). Then
there exists a Brownian motion B, starting from 0 at time 0 with mean [(b(u)du
and covariance [(A(u)du, and a Poisson random measure N((s,f]x E) with the
intensity measure v,dt independent of B,. Then the stochastic differential equation
(4.3) has a unique solution ¢, (o) for any 0<s<?<oo. It defines a convolution
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semigroup {1, ,}o<s<r<a OY setting p, (E)=P(¢,,€ E), where ¢,, =@, (e). It admits
the required property. The proof is complete.

4.3. The case where the Lie group is simply connected and nilpotent

We shall obtain another representation of the infinitesimal generator in the
case where the Lie group G is simply connected and nilpotent. An important
fact on a simply connected, nilpotent Lie group is that any o€ G is represented
uniquely as o=exp(Xx;X;), where X,---,X, is a fixed basis of % and
x=(x,--,x;) € R%. Further, the exponential map exp:¥ — G is a diffeomorphism.
See Hochschild [2].

We shall restrict our attension to the convolution semigroup satisfying Condition
(D).

Theorem 4.6. Let G be a simply connected and nilpotent Lie group. Let
{Hs,:}0<s<t<o b€ a nonhomogeneours convolution semigroup on G satisfying Condition
(Do).  Let {A(t)},~ o be its infinitesimal generators. Set {(x)=expXx;X;. Then for
fe¥€,, A(t)f is represented by the integro-differential operator L(f)f, where

I .
(4.14) L(n)f(o)= EZ al()X.X;f(0)+ L b (O X.f (o)

Xi
3 1 W@,

+f {fle&e)~f(0)- Y.

where A(t)=(a'(t)) and b(t)=(b'(t)) satisfy (a) and (b) of Theorem 3.1, respectively
(replacing “t>0” by “t>0") and
(¢) v, t>0, are Lévy measures on R® i.e., they satisfy

|x?

WVt(dX) <o

@19) ({0})=0, f

for any t>0. Further, [ga(x|>/(1+|x|?)f(x)v{(dx) is continuous in t>0 for any
bounded continuous function f on R“.

Further, if po,=limg op,, exists, the following (d') is satisfied.
(d") The triple (A(2),b(2),v,) is integrable on the interval (0,1), i.e., A(f), b(t) satisfies
(4.4) and v, satisfies

1 |x|2
4.16) J; < f Ny wv,(dx))dt < 00.

Conversely, suppose that we are given triple (A(t),b(t),v,),>o satisfying (a), (b),
(¢") and (d"). Then there exists a unique nonhomogeneous convolution semigroup
{Isi}o<s<i<w Such that the domain D({A(1)}) of the infinitesimal generator {A(f)},>o
includes €, and A(Y)f, fe¥,, is represented by L(t)f of (4.14). Further, p,,
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exists.

Proof. We shall apply Theorem 3.1 and Theorem 4.3. Let x=(x,,---,x,) be
the global canonical coordinate of G, i.e., for 6 =exp(Xx,X;), we set x(d)=x;. Define
the functions x',---,x% ¢ of €, by x{(6)=x4(0)/(1+|x(0)*) and ¢(o)=|x(0)]*/(1
+|x(0)]*). We define a measure ¢~ 'v, on R? by ¢~ 'v(E)=v,(&(E)) for any Borel
sets £ of R%. For simplicity of the notation, we denote the measure ¢~ !v, by
v,. Then (3.3) is written as (4.14). Properties (c') and (d’) follow from properties
(c) and (d) of Theorems 3.1 and 4.3, immediately.

The triple (A(2),b(f),v,) of Theorem 4.6 determines the operators L(f), so that
it determines and characterizes the convolution semigroup {u,}. It is called the
characteristics of the convolution semigroup {u,}.

5. Infinitesimal generators of self-similar nonhomogeneous convolution
semigroups

As an application of Theorem 4.6, we shall determine the infinitesimal generators
of all self-similar nonhomogeneous convolution semigroups. It will turn out that
the infinitesimal generator A(f) can not be defined at t=0 in many cases.

Let f be an automorphism of the Lie group G, i.e., it is a difffomorphism of
G and satisfies f(t0)=p(1)f(s) for any t,6eG. For a distribution u on G, we
denote by Bu the distribution such that Bu(A4)=u(B~'(A4)) holds for any Borel set
A of G. Then it holds (Bu)(f)=p(f - p), where fop is the composition of the
function f and the map B. Further, the equality f(u * v)=(Bp) *(Bv) holds for any
distributions u, v.

Let {u,,} be a nonhomogeneous convolution semigroup of distributions on
G. Set pu#)=PBu,,. Then {u¥)} is a nonhomogeneous convolution semigroup.
Indecd, we have Bu,,* Bieu=PBlks,* i) =Bitys for any s<t<u and Bu, (/)
= (f o P) > f(e) as [t—s| > 0 for any fe B. We discuss the infinitesimal generator
of {u®} in connection with that of {u,,}.

Let df be the differential of the automorphism f. Then df defines an
automorphism of the Lie algabre ¥, i.e., df is an invertible linear map of ¥ onto
itself satisfying the relation dB[X,Y]=[dfX,dpY] for all X,Ye¥, where [,] is
the Lie bracket. It holds (dBX)f=X(f-p)oB~ ! for any Xe¥ and fe¥,. Now
if we fix a basis {X,,---,X;} of the Lie algebra ¢, dp induces naturally an invertible
linear tranformation of RY, which we denote by the same notation dp.

For a measure v on RY we denote by dfv the measure such that
(dpv)(A)=v(dp~*(A4)) holds for any Borel set A.

Lemma 5.1. Let {u,,} be a nonhomogeneous convolution semigroup on a simply
connected nilpotent Lie group G satisfying Condition (D,). Let B be an automorphism
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of G. Then {u¥)=Pu,,} is a nonhomogeneous convolution semigroup satisfying
Condition (D). Let {AP(1)} be its infinitesimal generator. Then it is represented
by

6.1 LO0S0) =Y 0dpXdpX,f(0)
J (08 ~/(0)~ % 5 XS @)} @pvNa
+ Y bi(OdpX.f (o)

;< {1+|x|2 i

i lz}(dﬁ ,)(dX)) Xif(0),

where ((a“(1)),(b'(?),v,) is the characteristics of the convolution semigroup {p}.

Proof. Let {P¥)} be the semigroup of linear operators associated with
{u)}. Then it satisfies PE)f=P,(fp)op~", where {P,,} is the semigroup of
{is.). Then, the corresponding resolvents R’ and R, are related by R{f
=R,(f-P)oB~'. Therefore RY satisfies Condition (D,) if R, satisfies it. Let
{A®1)} be its infinitesimal generator. It satisfies A7) f=A(1)(f o f)o B~ for any
fe%,. Since A(f)f is represented by L(2)f of (4.14), AP(¢)f is represented as LPX¢)f
of (5.1). The proof is complete.

Let {y,},-0 be a one parameter group of automorphisms of the Lie group G,
i.e., (i) for each r>0, y, is an automorphism of G, (ii) y,y,=7,; holds for any r,s >0,
(iii) y, is continuous in re(0,00). It is called a dilation if it satisfies (iv) y,(0) — e
uniformly on compact sets as r - 0. A dilation can not be defined on an arbitrary
Lie group. Indeed, if a dilation exists on the Lie group G, the Lie group is
necessarily simply connected and nilpotent.

Given a dilation {y,}, we set 6,=y,., —o0 <t<oo. Then {d,} is a one parameter
group of difftomorphisms of G. Let Y be its infinitesimal generator (a complete
C>-vector field):

/G =7(0)

(5.2) Yf(o)=
z—vO
Then, it holds
0 1
(5.3) af")’:—zy(f”’z)-

Note that Y is not necessarily an element of 4.
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A nonhomogeneous convolution semigroup {4 ,}o<s<i<s is called self-similar
with respect to a dilation {y,},., if yu;,=Hy, holds for any r>0 and
0<s<t<oo. Let {¢,t>0} be a G-valued stochastic process with independent
increments associated with {y,}. Then it is self-similar with respect to {y,}, if
and only if the law of the process {@"”=y,(¢p,),t>0} is equal to the law of the
process {¢p"=¢,,t>0,} for any r>0.

In this section we will characterize all self-similar nonhomogeneous convolution
semigroups through the representation of the infinitesimal generators. We first
show that any self-similar convolution semigroup satisfies Condition (D,) of Section 4
so that the infinitesimal generator admits the representation (4.14).

Lemma 5.2. Let {u,,} be a nonhomogeneous convolution semigroup on a simply
connected nilpotent Lie group G. Suppose that it is self-similar with respect to a
dilation {y,}. Then its resolvent R, satisfies Condition (Dy).

Proof. The associated semigroup {P;,} satisfies P, (f >y, oy, (6)=P,,.f(0).
Therefore,

(* oo

Rif(o,)=| e ™P,,{fis0)ds

o 0

)

=| e M 7UP (S No)dr

J1

)

= e M= 1)tPI ,r(f;r ° vt) ° yt_ I(G)dr'

J1

Set @4, ={fe%%,: YfeH}. Itisadensesubsetof §5',. Forfe®4,,the above is
continuously differentiable with respect to t>0. The proof is complete.

We shall study the infinitesimal generator of a self-similar nonhomogeneous
convolution semigroup. Let dy, be the differential of the automorphism y,. Then
{dy,},>0 is a one parameter group of automorphisms of ¥. It satisfies dy, X — 0
as r >0 for any Xe¥. The linear map dy, is represented by dy,=exp(logr)Q,
where Q is a linear map of ¢ such that all of its eigen values have positive real
parts. Further it satisfies Q[X,Y]=[QX,Y]+[X,QY] for all X,Ye%. The map
dy, is often written as r¢ and the linear map Q is called the exponent of the
dilation {y,},>,. The adjoint (transpose) of Q is denoted by Q'.

Theorem 5.3. Let {i,,}o<s<i< be a nonhomogeneous convolution semigroup
on a simply connected nilpotent Lie group G. Suppose that it is self-similar with
respect to a dilation {y,} with exponent Q. Then its infinitesimal generator
{A()},> o admits the representation {L(t)},- o of (4.14). Further, the triple (A(t),b(?),v,)
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satisfies the following equalities:
(5.4) A()=1t"11%A(1)%, Vi>0.
(5.5) v=t"'t%,), V>0,

where v, is a Lévy measure satisfying

(5.6) j log(1 + |x|?)v,(dx) < co.
R4

7  by=12" ‘b(1)+f { }em (%, Xdx),  Ve>0.

X
1+|x|2 1+t %2

Conversely suppose that we are given an arbitrary triple (A(1),b(1),v,) of a
symmetric nonnegative definite matrix A(1), a vector b(1) and a Lévy measure
v, satisfying (5.6). Let {y,} be an arbitrary dilation and let Q be its exponent. Then
there exists a unique convolution semigroup {i; }o < <¢ < » Whose infinitesimal generator
{A(t)};>o admits the representation {L(t)} of (4.14) with characteristics (5.4), (5.5),
(5.7). It is self-similar with respect to {y,}.

Proof. Let {4”(¢)} be the infinitesimal generator of {u!)}, where u{)=pu.,,.
Then it holds A”(¢)=rA(rt), where {A(¢)} is the infinitesimal generator of {y,,}. Next
let {A4°(1)} be the infinitesimal generator of the nonhomogeneous convolution
semigroup {p07}. Since p{P=p!) holds for any s<t and r>0, we have
A f=rA(rt)f, fe€, for any r>0 and ¢>0. This implies, in particular,
A f=t"1AY(1)f, fe€,. Now A"(1)f is represented by L(1)f of (5.1). Since
dy,=1? holds, we get equalities (5.4), (5.5) and (5.7) by comparing the coefficients
of operators L(f) of (4.14) and ¢~ 'L(1).

We shall prove the integrability condition (5.6) by making use of the integrability
condition (d’) of Theorem 4.6. Setting t=e~" in (4.16), the left hand side of (4.16)
equals

- IX* 5 ﬁj.m J IX* o
(5.8) Lt {jndl+|x|2(t vidx)}di=| { e ’z(e vy Xdx)}du

0

J {J e T )

1+| —uQ |2
Since,

0 |e'"Q |2
log(1+|x|)< | —————du<c,log(l+|x|?
¢y log(1 +|x|%) L I le"ex? u<c,log(l+|x|%)
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holds with some positive constants c,, ¢, (Urbanik [13]), the integral (5.8) is finite
if and only if integrability (5.6) holds.

Conversely suppose that the triple (A(1),b(1),v,) satisfies the conditions
mentioned in the theorem. Define the triple (A(#),b(¢),v) by (5.4), (5.5 and
(5.7). Then it satisfies (a), (b), ('), (d) of Theorems 3.1 and 4.6 because of
(5.6). Therefore there exists a nonhomogeneous convolution semigroup {u,,} with
characteristics (A(?),b(¢),v). We will show that it is self-similar with respect to
{y,}. It is enough to prove u{P=u’) for all r>0 and s<t. It is easy to verify
that the triple (A(2),b(¢),v,) satisfies

A(rt)=r"r2Ay%,  v,=r"'%,),

X X
re LHIXP 14]r %

b(r)=r2~ 'h(1) + Jr= 1 (v )(dx),

for any >0 and r>0. Therefore the infinitesimal generator {A4"7(1)} of {u?}
satisfies A9(1)=A"()=rA(rt) for any r>0 and >0, where {A“(r)} and {A(?)}
are infinitesimal generators of {u{)} and {u,,}, respectively. This implies puy = puf)

for any s<t and r>0. The proof is complete.

Theorem 5.3 tells us that an arbitrary integro-differential operator L(1) (or
the characteristics (A(1),6(1),v,)) satisfying the integrability condition (5.6) and an
arbitrary dilation {y,} give us a unique nonhomogeneous {y, }-self-similar convolution
semigroup. However, if we restrict our attention to homogeneous ones, it is much
more restrictive.

In Kunita [6], a homogeneous convolution semigroup {u,} is called stable
with respect to a dilation {y,}, if y,u,=p,, holds for all t>0 and r>0. Therefore
for a homogeneous convolution semigroup, the self-similar property and the stable
property are identical. The following Corollary indicates how strongly the
characteristics and the dilation are related for the stable convolution semigroups.

Corollary 5.4 (cf. Kunita [6]). Let {u,} be a homogeneous convolution semigroup
on a simply connected nilpotent Lie group G. It is self-similar (stable) with respect
to a dilation {y,} with exponent Q, if and only if its characteristics (A,b,v) satisfies
the following equalities:

(5.9) QA+AQ =4,
(5.10) WE) =J A(da)r 1x(r20)r~2dr,
S 0

where S={0eR";|0|=1, |r20|>1 for all r>1} and 1 is a bounded measure on S,
and b satisfies



256 H. KuNITA

2{@x,x>
5.11 —Db=
(5.11) (Q@-Np= La(1+l 27" xv(dx).

Proof. Theorem 5.3 tells us that the homogeneous convolution semigroup is
self-similar with respect to r¢ if and only if its characteristics (4,b,v) satisfies

A=t"1241%, v=t"1(t%),

b=12"'p+ {

X),
1+|x|2 1+|z 0 |2}( )

for all £>0. These three equalities are equivalent to (5.9), (5.10) and (5.11),
respectively. See the proof of Theorem 2.1 in [6].

REMARK. The equality (5.11) indicates the following two cases:
a) If 1 is not an eigen value of Q, the vector b is determined by v and Q. It
is given by the following b, :

2{Q0x,x)
5.12 b,= -~ 'xv(dx
(5.12) 1= Ld(lﬂ |2)2(Q )™ ' xv(dx).
b) If 1 is an eigen value of Q, the measure v satisfies an additional equality:
2 o
(5.13) J —<Qx’—):>2TW1xv(dx)e w,,
ra(1+|x[%)

where W, is the invariant subspace of R? generated by eigen vectors associated with
eigen value 1, Ty, is the projector to the space W, and W, ={(Q—1I)x;xe W,}.
Further the vector b is given by b, +b,, where b, is the vector of (5.13) and b,
is an element of W, ={x:Qx=x)}.

Finally, we give some examples of stable, and nonstable self-similar Brownian
motions on a Heisenberg group. Let G be a Heisenberg group. It is difftomorphic
to R® and is a simply connected nilpotent Lie group of step 2. There exists a
basis {X;,X,,X;} of the Lie algebra ¥ of G satisfying [X,,X,]=X; and
[X,X5]=[X,,X3]=0. Consider a differential operator:

(5.14) LO=c, X?+c,X?+c3X32,

where c¢=(c;,c,,c3) are nonnegative constants. Then there exists a unique
homogeneous convolution semigroup {u®} with the infinitesimal generator L. Let
Q be a 3 x3 diagonal matrix with diagonal elements a,, «, and a3 where o, «,,
a3 are positive constants. Then for any r>0, r? defines an automorphism of ¢
if and only if ay=a,+a,. If the equality holds, there exists an automorphism
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7, of G such that dy,=r% Then {y,},., is a dilation with the exponent Q. The
homogeneous convolution semigroup {u?} is self-similar with respect to the dilation,
if and only if c;=0 and the exponent satisfies a; =a,=1/2 and a;=1. See
Kunita [6].

However, if ¢ is a time dependent function c¢=c(f), then the situation is
completely different. Denote the right hand side of (5.14) by L“Xs). Then there
exists a unique nonhomogeneous convolution semigroup {x{)} with the infinitesimal
generator L')¢). Further, it is self-similar with respect to the dilation with exponent
0 such that ay=a, +a,, if and only if L(r) is represented by

(5.15) L= (c, > " HXT +(ct> 7 X3 +(cat* ™ 7 H)XE,
where ¢,, ¢,, ¢, are arbitrary nonnegative constants.

6. Selfdecomposable distributions and the associated self-similar non-
homogeneous convolution semigroups

6.1. Selfdecomposable distributions

Let f be an automorphism of the Lie group G. A distribution u on G is
called B-decomposable if there exists a distribution u; such that p=fuxp,. Let
{y,} be a dilation on G. A distribution p is called {y,}-selfdecomposable if it is
y,-decomposable for any 0<r<1. If {u,,} is self-similar with respect to {y,}, so,
is {y,}-selfdecomposable for any ¢>0.

The following theorem is a generalization of Sato [10], where a Q-
selfdecomposable distribution on R? is imbedded into a nonhomogeneous
convolution semigroup on R

Theorem 6.1. Let u be a distribution on a simply connected nilpotent Lie group
G equipped with a dilation {y,}. Suppose that u is infinitely divisible in the generalized
sense and {y,}-selfdecomposable. Then there exists a unique nonhomogeneous
convolution semigroup {y, ,} on G, self-similar with respect to {y,} such that po , = .

For the proof of the theorem, we need a lemma.

Lemma 6.2. (1) Let yand v be infinitely divisible distributions in the generalized
sense. Suppose that there exists a distribution & such that p=v*¢. Then ¢ is
uniquely determined.

(2) Let p be infinitely divisible in the generalized sense. Let {v,} be a sequence
of infinitely divisible distributions in the generalized sense converging weakly to
an infinitely divisible distribution v in the generalized sense. Suppose there exists
a sequence of distributions {£,} such that u=v,*&,. Then the sequence {&,} converges
weakly to a distribution & such that p=vx*¢.
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Proof. Let g be an orthogonal representation of G. Then we have the equality
wg)=w(g)é(g). Since v(g) is invertible, we obtain &(g)=v(g) 'u(g). Let A be the
system of bounded C®-functions on G introduced by (4.6). Since A is locally
uniformly complete in Z by Lemma 4.5, ¢ is uniquely determined by v and p. This
proves the first assertion of the lemma.

We shall prove the second assertion.  Since pu(g) =v,(g)¢,(g) and {v,(g)} converges
to the invertible matrix v(g), {£,(g)} converges for any orthogonal representation
g. We shall prove that the sequence &,,n=1,2,--- converges weakly to a distribution
& Let G=Guoo be a one point compactification of G. It is a semigroup by
setting goo =c06=00 for any geG. All distributions wu,v,¢,,n=1,2,--- can be
regarded as distributions on G by setting p({c0})=0, etc. Then there exists a
subsequence {¢, } of {£,} converging weakly to a distribution & on the space G,
since G is a compact space. It satisfies u=v* £ ie., for any continuous function
f on G, we have

u(f)=v* &) +](e0)i({0}),

where ¢ is a measure on G such that £=& on G. We shall prove &{o0})=0. Let
X(«) D€ the indicator function of the set {oo} and f, be a sequence of continuous
functions over G such that f, | x.,. Then u(f)=vx*&f)+f(0)&({o}). Let n
tend to infinity. Both of u(f,) and v+ &(f,) converges to 0. Since lim f(c0)=1,
we obtain &({0})=0. We have thus proved the equality u=v#*¢. Since ¢ is
unique by (1), the sequence {,} converges weakly to ¢ ori the space G. The
proof is complete.

Proof of Theorem 6.1. Set py,=ypu. If 0<t<1, we have p=py,*p,. We
set po=p and p, ; =p,. Then it holds pg y=pe, *p,,. For 0<s<t<oo, we set
Mer="Vilge,1- Then we have pug,=p, *p,, if s<t<1. Indeed, since

Hos * Moo * et = Veblo,sje * Velsie 1 * Me,t = Ve(Ho,sje * Bsje, 1) * Pt = Velb * My 1 = [y

we have po  * (s * By,1)=Ho,s * s,y - This proves pg * i,y =p,  in view of Lemma
6.2 (1). Next for any 0<s<t<u<oo, we have

us,l * ”!,u = yu(”s/u,t/u * ut/u, l) = yuu’slu, 1= ﬂs,u .

Therefore {y,,} is a nonhomogeneous convolution semigroup.

We will prove the continuity of the semigroup {u,,}. Note the equality
Mou=Hos* Pse- SINCE fo s=Yglo,r > Mo s CONvVerges weakly to p, , ass — 1. Therefore
us, converges weakly to d, as s—¢ by Lemma 6.2 (2). Furthermore, noting
Hse="Vilksje,1 » WE Obtain supg, |y, (f)—f(e)) =0 as ¢ -0, and for any £>0,

sup | (/)—f(e) >0 as h—0.

s;t>¢g,|s—t|<h
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These two convergences imply the continuity of the semigroup.

We will next prove the uniqueness of the convolution semigroup. Let {f,,}
be another convolution semigroup satisfying y,f,,=f,, and f,,=p. Then we
have fiy ;=ysu=po, for any s>0. Since fo *fs,=y=pos* U5, and flo =po
hold, we have fi;,=p,, for any s<t by Lemma 6.2 (1. The proof is complete.

We do not discuss the existence of the density function of the selfdecomposable
distribution. But we derive a partial differential equation satisfied by the density
function. Let Y be the infinitesimal generator (=a complete C* vector field) of
0, =7+, —00<t<oo, defined by (5.2). Then it holds

iy 040D /(o)

(6.1) ¥ fio)=lim
It is represented by
(6.2) Yf(0) =_Zk ijx j(G)X ofs

where o =exp Zx;(0)X;.

Theorem 6.3. Suppose that p,, has a density function g(o) with respect to
the Haar measure do. Then it satisfies

63) (L0 ¥)%=0,
where (L({)—LY)* is the formal adjoint represented as
64 €O— VYE=, za”(t)x Jf(0)-ZHOX,S @
FLY0)+ Q)
L (f(oé( D~10+ T ,f(a)> ).

Proof. Let fe%,. Then P,,f satisfies &P, /=P, L()f. Since Pg,ipf
=Pof 71+, We have

d P 1
“2p,, f=1lim Py (f ° Vien)— o:f Po:Yf
d h—-0 h
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Therefore we have
1
Mo, (L(D) "; Y)f)=0,

for any fe®,. Then the density function g, satisfies (6.3). The proof is
complete.

6.2. The case of Euclidean space. Operator-self-similar convolution semigroups
and operator-selfdecomposable distributions

We shall consider the case where G=R“. Let {u,,} be a nonhomogeneous
convolution semigroup on R? satisfying Condition (D,). Then u,, are infinitely
divisible distributions for all O<s<it We shall compute their characteristic
functions. Set f,(x)=expi{z,x). Then pu,(f,)0)=j, (z) coincides with the chara-
cteristic function (Fourier transform) of the distribution p,,. Further we have
L(t) f(x)=®(t,2) f,(x), where

K2y, (dx).

1 i X 2 i 11—
(I)(t,z)=—§g{a (t)zizj+z";b(t)zi+J(exp'<Z,x> 1 1+ xP

Therefore, if 0 <s <t we have from (3.10), A, (z) — 1 = ['®(r,2), (z)dr. Differentiating
both sides with respect to f, we obtain #4 (2)=®(t,2)4,(z). Integrating the
differential equation, we arrive at Lévy-Khinchine’s formula:

t

(6.5) ﬁs,,(z)=expf o, dr
i{z,x)
1+4x|2

= exp< -—%(z,(f A(r)dr)z) + i(f b(r)dr,z) + J(exp iz,x)—1— )Ns’,(dx)> ,

where N,,=[iv,dr. Consequently, the generating elements of the infinitely divisible
distribution p,, is given by

(6.6) ( J t A(r)dr, J t b(r)dr, f v,dr) .

Conversely, suppose we are given a triple (A(¢),b(¢),v,) which satisfies (a), (b),
(c') and (d) of Theorem 3.1 and Theorem 4.6. Then there exists a unique convolution
semigroup {u,,} on R such that the characteristic functions of {u,,} are given by
the Lévy-Khinchine’s formula (6.5).

An automorphism B of R? is nothing but an invertible linear transformation.
Then the dilation {y,},>, is represented by y,=exp(logrQ)=r%r>0, where Q is
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a linear transformation such that the real parts of its eigen values are all positive. A
distribution u on R? is {r%}-selfdecomposable if and only if u is exp(—tQ)-
selfdecomposable in Jurek-Mason [4] or Q-selfdecomposable in Sato [10].

We give a simple proof of Urbanik’s characterization of selfdecomposable
distribution by means of the generating elements. A merit of our proof is that
we get more informations for each term in the representations of the generating

elements.
Let Q be a given dxd-matrix such that the real parts of eigen values of Q

are all positive.

Theorem 6.4 (Urbanik [13]). Let u be a distribution on R® with the generating
elements (A,b,v). It is selfdecomposable with respect to {r} if and only if A and
v satisfy the following properties (i) and (ii):

(1) Thr matrix A is represented by

6.7) A= f e "2 A(1)e "2 du,

0

with a symmetric nonnegative definite matrix A(1).
(ii) The Lévy measure v is represented by

(6.8) v= Jm (e™"%v,)du,
0

with a Lévy measure v, satisfying (5.6).

Proof. Let p be a distribution, selfdecomposable with respect to {r¢}. There
exists a unique nonhomogeneous convolution semigroup {u,,} on R?, self-similar
with respect to {r2} such that o ; =p. Then in view of Theorem 5.3, the generating
elements of the infinitely divisible distribution u,, are given by

t t
(6.9) flr'QA(l)rQ'dr, f 1(erl)a'r,
s 7

s

t 1 x x
0-1 ! _ 0
J;r b(l)dr+£ r(j(l WPETNE 1+|x|2)(r vl)(dx))dr.

Consider the case s=0and t=1. Setting u= —logr in (6.9), we obtain (6.7), (6.8) and

I ” X __x -uQ
(6.10) b—(Le a’u)b(l)+f0 (_[<1+|e'“Qx|2 1+|x|2>(e vl)(dx))du.

Conversely suppose that the generating elements (4,b,v) of the distribution p
satisfies (i) and (ii). Define b(1) by the relation (6.10). Next define the triple
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(A(1),b(2),v,) by (5.4), (5.5) and (5.7) using the triple (4(1),b(1),v,). Then it satisfies
the integrability condition (d’) of Theorem 4.6, because of (5.6). Therefore there
exists a nonhomogeneous convolution semigroup {u,,} with characteristics
(A(?),v,,b(1)), which is self-similar with respect to {r¢} by Theorem 5.3. Then the
distribution p, , is selfdecomposable with respect to {r?}, whose generating elements
are given by (6.7), (6.8) and (6.10). Therefore p=p,,, proving that pu is
selfdecomposable with respect to {r?}. The proof is complete.

Here is another representation of the Lévy measure v in Theorem 6.4. The
following is due to Yamazato, Wolfe, Jurek and others. We refer to Yamazato
[14] and Sato-Yamazato [11].

Theorem 6.5. Let p be a distribution on R® with the generating elements
(A4,v,b). It is selfdecomposable with respect to {r®} if and only if A and v satisfy
the following properties (i') and (ii'):

(i) A(1)= QA+ AQ' is a nonnegative definite matrix, where Q' is the transpose of Q.
(i) The Lévy measure v is represented by

(6.11) V(E)= J‘ A(d0) J. ? xe(re0)ko(r)rdr,
s 0

where A is a bounded measure on S={0;|0|=1, |r20|>1 for all r>0} and kyr) is
nonincreasing in re(0,00), measurable in 0€ S and satisfies

(6.12) J A(d0) J N ﬂ:k ()~ tdr< oo
' s o 1+1r2012°° '

Proof. It is sufficient to prove that properties (i) and (ii’) are equivalent to
the properties (i) and (i) of the previous theorem, respectively. Suppose (i) is
satisfied. Then,

~ d , d _o
= — (e~ tQ tQ -tQ (o tQ
QA+ AQ J;) {dt(e VA(1)e' +e A(l)dt(e )}dt
= —eCA(1)e " |3 = A(1).

Conversely suppose that the matrix A(1)=QA4 + AQ' is nonnegative definte. Define
A=[re "®A(1)e™"%dt. It satisfies A(1)=QA+AQ. Then we must have 4=A4,
proving the equivalence of (i) and (i').

Suppose next that (ii) of Theorem 6.4 is satisfied. Let us remark that every
xe R*—{0} is represented by x=s%0, where s€(0,00) and feS. Define a measure
A on S by AF)=v,({s%0;s>1, 0eF}). It is a bounded measure. There exists a
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family of (conditional) measures {y,:0€S} on (0,00), measurable with respect to
0 such that

6.13) vi(E)= f (do) r 1(520)p(ds)
S 0

holds for all Borel sets E. Then we have

J R4 0

(6.14) J‘w (e "W )E)dt=| v,(dx) f ? xele ™ 9x)dt
0

~

(‘ f':n o0
=| A0 f po(ds)dty g((se™")°0)
N

JO JO

= | A(d0) ? r- ldrfw Uo(ds)yp(r20)
N J

V] r

= | Aa0)|” 2r20)pslr, 0N~ .

JSs 0

(We set se™'=r in the above computation.) Therefore, setting kg(r)= py([r, 20)), we
obtain the representation (6.11). Further, we have by (6.13),

(6.15) f log(1 + |x|*)v(dx)= — f A(d())f00 log(1 + |r260|*)dk(r)
R4 s 0

B © {Qr?=10,r20)

The last equality follows from integration by parts. See Lemma 2.2 in
[11]. Therefore (5.6) holds if and only if the last member of the above is finite,
or equivalently, (6.12) is satisfied

Conversely suppose that (ii’) is satisfied . Set

vy(E)= — f Xdo) f " (r20)dfr).
S 0

It is a Lévy measure satisfying (5.6). Then a computation similar to (6.14) implies
the equality (6.8). The proof is complete.
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