CYCLIC SURGERY ON GENUS ONE KNOTS

MASAKAZU TERAGAITO

(Received May 2, 1996)

0. Introduction

The real projective 3-space, denoted by RP^3 , is identified with the lens space of type (2,1). Then one can ask: when can RP^3 be obtained by Dehn surgery on a knot in the 3-sphere S^3 ? Clearly RP^3 is obtained by Dehn surgery on a trivial knot. However, it is conjectured that no Dehn surgery on a nontrivial knot Kin S^3 yields RP^3 (cf. [1,4]). It is known to be true if K is a composite knot [3], a torus knot [9], an alternating knot [10], a satellite knot [1,12,13], or a symmetric knot [1].

In this paper we prove the conjecture for genus one knots.

Theorem 0.1. Real projective 3-space RP^3 cannot be obtained by Dehn surgery on a genus one knot in S^3 .

This will be proved by applying the combinatorial techniques developed in [2,5,6,8].

1. Preliminaries

Let K be a genus one knot which is neither a torus knot nor a satellite knot. Let N(K) be a tubular neighborhood of K and let $E(K) = S^3 - \operatorname{int} N(K)$. Suppose that some surgery on K yields RP^3 , that is, $E(K) \cup J = RP^3$ where J is a solid torus. By [2], the surgery coefficient is ± 2 .

Let $P^2 \subset RP^3$ be a projective plane which intersects J in a disjoint union of meridian disks of J. We assume that $|P^2 \cap J|$ is minimal among all projective planes in RP^3 that intersect J in a family of meridian disks of J. Let $p = |P^2 \cap J|$ and $P = P^2 \cap E(K)$. Then P is incompressible in E(K) by the minimality of p. If p is even, then E(K) would contain a closed non-orientable surface by attaching tubes to ∂P . Hence p is odd. Furthermore, if p = 1 then K is either a torus knot or a $(2, \pm 1)$ -cable knot. Thus $p \neq 1$.

Let Q be a genus one Seifert surface for K. We may assume that P and Q intersect transversely, and ∂Q intersects each component of ∂P exactly twice. By the incompressibility of P and Q, we can assume that no circle component of

 $P \cap Q$ bounds a disk in P or Q.

Let \hat{P} , \hat{Q} be the closed surfaces obtained by capping off the components of ∂P and ∂Q with disks. We can identify \hat{P} with P^2 . We obtain a graph G_P in \hat{P} by taking the disks $cl(\hat{P}-P)$ as the (fat) vertices of G_P , and the arc components of $P \cap Q$ in P as the edges of G_P . Similarly, we obtain the graph G_Q in \hat{Q} .

Number the components of ∂P , $\{1, 2, \dots, p\}$, in the order in which they appear on $\partial E(K)$. The endpoints of edges of G_Q are labelled by the numbers of the corresponding components of ∂P . Thus around the only vertex v of G_Q , we will consecutively meet the labels $1, 2, \dots, p, 1, 2, \dots, p$ (repeated twice). Since each vertex of G_P has valency two, G_P consists of disjoint cycles.

2. Proof of Theorem 0.1

A trivial loop is a length one cycle which bounds a disk face of the graph.

Lemma 2.1. Neither G_P nor G_Q contains trivial loops.

Proof. Let *e* be a trivial loop in G_P , and let *D* be a regular neighborhood of *e* in *Q*. Given the orientation of ∂Q induced by some orientation of *D*, the points of intersection of ∂Q with the component of ∂P meeting *e* have opposite signs, a contradiction. If G_Q contains a trivial loop, *P* would be compressible in E(K), a contradiction.

An edge of G_Q is said to be *level* if its endpoints have the same label.

Lemma 2.2. G_o cannot contain two level edges on distinct labels.

Proof. Let e be a level edge in G_Q with label i. Then e is a loop in G_P based at the vertex V_i corresponding to the component of ∂P with label i. We see that a regular neighborhood of $e \cup V_i$ in \hat{P} is homeomorphic to a Möbius band. Since a projective plane cannot contain two disjoint Möbius bands, we have the conclusion.

A pair of edges $\{e_1, e_2\}$ in G_Q is called an *S*-cycle if it is a Scharlemann cycle of length two. That is, e_1 and e_2 are adjacent parallel edges, and have the same two labels at their endpoints. Note that in this case the two labels are successive (see Figure 1).

Lemma 2.3. G_o cannot contain an S-cycle.

Proof. Let $\{e_1, e_2\}$ be an S-cycle in G_Q with labels $\{i, i+1\}$. Let D be the disk face between e_1 and e_2 . Let H be the annulus in $\partial E(K)$ cobounded by the

146

components of ∂P with labels *i* and *i*+1, whose interior is disjoint from *P*. Set $P' = (\hat{P} - V_i \cup V_{i+1}) \cup H$, where V_i and V_{i+1} are the vertices corresponding to the components of ∂P with labels *i* and *i*+1, respectively. Then int $D \cap P' = \emptyset$ and $\partial D \subset P'$ is non-separating in *P'*. Compressing *P'* along *D* gives a new projective plane in RP^3 which intersects *J* in p-2 meridian disks of *J*. This contradicts the minimality of *p*.

Figure 1

The reduced graph \bar{G}_Q of G_Q is defined to be the graph obtained from G_Q by amalgamating each set of mutually parallel edges of G_Q to a single edge. By Lemma 2.1, \bar{G}_Q consists of essential loops in \hat{Q} . Thus \bar{G}_Q is a subgraph of the graph illustrated in Figure 2 (after a homeomorphism of \hat{Q}).

M. TERAGAITO

Figure 2

Therefore, the edges in G_Q are partitioned into at most three parallel families of edges. Let U, V, W be the parallel families of edges. We denote by |U| the number of edges in U, etc. Then |U|+|V|+|W|=p.

Suppose that $|U| \neq 0$ and |U| is even. Let e_1, e_2, \dots, e_{2t} be the edges of U, numbered consecutively, where |U| = 2t. Then e_1 and e_{2t} have the same two labels at their endpoints. Therefore, e_t and e_{t+1} form an S-cycle. But this contradicts Lemma 2.3. Thus |U| is odd, unless $U = \emptyset$. Similarly for V and W.

We now distinguish two cases.

Case 1. G_Q consists of at least two parallel families of edges.

We may assume that U and V are non-empty. Then U and V each contain a level edge, since |U| and |V| are odd. But these two level edges have distinct labels, which contradicts Lemma 2.2. Case 2. G_o consists of one parallel family of edges.

Let e_1, e_2, \dots, e_p be the edges in G_Q , numbered consecutively. We can assume that their endpoints are labelled as shown in Figure 3. Then e_i and e_{p+1-i} have the same two labels at their endpoints, for $1 \le i \le (p-1)/2$, and $e_{(p+1)/2}$ is level.

On the other hand, in G_P , e_i and e_{p+1-i} form a length two cycle, if $i \neq (p+1)/2$. Note that these cycles bound disks in \hat{P} , since G_P has a nontrivial loop $e_{(p-1)/2}$. Hence we can choose an innermost one among the cycles $\{e_i, e_{p+1-i}\}, i \neq (p+1)/2$. Let $\{e_s, e_{p+1-s}\}$ be an innermost cycle in G_P . Then e_s and e_{p+1-s} are parallel in G_P . Let $D_1 \subset P$ be the disk between e_s and e_{p+1-s} . Let $D_2 \subset Q$ be the disk between e_s and e_{p+1-s} . Let $A = D_1 \cup D_2$. Then A is a Möbius band in E(K). By moving ∂A slightly into M. TERAGAITO

general position with respect to ∂Q , we see that ∂A has algebraic (and geometric) intersection number two with ∂Q . Hence ∂A has slope 2/n on $\partial E(K)$ for some *n* (cf. [11]). Then the resulting manifold *M* obtained by (2/n)-surgery on *K* contains a projective plane, and hence *M* is either reducible or RP^3 . In any case, |n|=1 by [2,7]. But this implies that *K* is either a torus knot or a $(2, \pm 1)$ -cable knot.

This completes the proof of Theorem 0.1.

References

- [1] S. Bleiler and R. Litherland: Lens spaces and Dehn surgery, Proc. Amer. Math. Soc. 107 (1989), 1127-1131.
- [2] M. Culler, C. McA. Gordon, J. Luecke and P.B. Shalen: Dehn surgery on knots, Ann. of Math. 125 (1987), 237-300.
- [3] C. McA. Gordon: Dehn surgery and satellite knots, Tras. Amer. Math. Soc. 275 (1983) 687-708.
- [4] C. McA. Gordon: Dehn surgery on knots, Proc. of the International Congress of Mathematicians, The Mathematical Society of Japan, Tokyo, 1990, 631-642.
- [5] C. McA. Gordon: Boundary slopes of punctured tori in 3-manifolds, preprint.
- [6] C. McA. Gordon and R. Litherland: Incompressible planar surfaces in 3-manifolds, Topology and its Appl. 18 (1984), 121-144.
- [7] C. McA. Gordon and J. Luecke: Only integral Dehn surgeries can yield reducible manifolds, Math. Proc. Camb. Phil. Soc. 102 (1987), 97-101.
- [8] C. McA. Gordon and J. Luecke: Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), 371-415.
- [9] L. Moser. Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 734-745.
- [10] J.P. Neuzil: *Elementary surgery manifolds and the elementary ideals*, Proc. Amer. Math. Soc. **68** (1978), 225–228.
- [11] D. Rolfsen: Knots and Links, Mathematical Lecture Series 7, Publish or Perish, Berkeley, 1976.
- [12] S. Wang: Cyclic surgery on knots, Proc. Amer. Math. Soc. 107 (1989), 1091-1094.
- [13] Y.Q. Wu: Cyclic surgery and satellite knots, Topology and its Appl. 36. (1990), 205-208.

Department of Mathematics Faculty of Science Hiroshima University Kagamiyama 1-3-1 Higashi-Hiroshima 739 Japan teragai@top2.math.sci.hiroshima-u.ac.jp

150