EQUIVARIANT ALGEBRAIC VECTOR BUNDLES OVER A PRODUCT OF AFFINE VARIETIES

Kayo MASUDA

(Received April 7, 1996)

0. Introduction

Let G be a reductive complex affine algebraic group and Z a complex affine G-variety with a G-fixed base point $z_{0} \in Z$. Throughout this paper, the base field is the field C of complex numbers. Let Q be a G-module. We denote by $\operatorname{Vec}_{G}(Z, Q)$ the set of algebraic G-vector bundles over Z whose fiber at z_{0} is Q and by $\operatorname{VEC}_{G}(Z, Q)$ the set of G-isomorphism classes in $\operatorname{Vec}_{G}(Z, Q)$. We denote by $[E]$ the isomorphism class of $E \in \operatorname{Vec}_{G}(Z, Q)$.

There are many interesting problems concerning $\operatorname{VEC}_{G}(Z, Q)$, especially when the base space Z is a G-module P. One of them is the Equivariant Serre Problem, which asks whether $\operatorname{VEC}_{G}(P, Q)$ is the trivial set consisting of the isomorphism class of the product bundle $P \times Q$. When G is trivial, the Quillen-Suslin Theorem says that $\operatorname{VEC}_{G}(P, Q)$ is the trivial set. More generally, Masuda-Moser-Petrie [9] recently have shown that $\operatorname{VEC}_{G}(P, Q)$ is trivial for any abelian group G. However, when G is not abelian, $\operatorname{VEC}_{G}(P, Q)$ is non-trivial in general. Schwarz [13] (see Kraft-Schwarz [5] for details) first presented counter examples to the Equivariant Serre Problem by proving that $\operatorname{VEC}_{G}(P, Q) \cong C^{p}$ when the algebraic quotient space $P / / G$ is one dimensional i.e. isomorphic to affine line A. When $\operatorname{dim} P / / G \geq 2$, there are many non-trivial examples of $\operatorname{VEC}_{G}(P, Q)([11],[4])$ but it remains open to classify elements in $\mathrm{VEC}_{G}(P, Q)$ in general.

The results of [13] extend to the case where the base space is a weighted G-cone with smooth one dimensional quotient (for a precise definition, see $\S 1$; a G-module with one dimensional quotient is an example of such a cone):

Theorem A ([8]). Let X be a weighted G-cone with smooth one dimensional quotient and Q be a G-module. Then $\operatorname{VEC}_{G}(X, Q) \cong C^{p}$ for a non-negative integer p. Moreover, there is a G-vector bundle \mathfrak{B} over $X \times C^{p}$ such that the map $C^{p} \ni z \mapsto\left[\left.\mathfrak{B}\right|_{X \times\{z]}\right] \in \operatorname{VEC}_{G}(X, Q)$ gives a bijection.

Masuda-Petrie have made the following observation. Let X and p be as above and Y an irreducible affine variety with trivial G-action. We denote by $\operatorname{Mor}\left(Y, C^{p}\right)$ the set of morphisms from Y to \boldsymbol{C}^{p}. Then there is a map

$$
\Phi: \operatorname{Mor}\left(Y, C^{p}\right) \rightarrow \operatorname{VEC}_{G}(X \times Y, Q)
$$

defined by $\Phi(f)=\left[\left(i d_{X} \times f\right)^{* B}\right]$ for $f \in \operatorname{Mor}\left(Y, C^{p}\right)$. It is bijective when Y is a point by Theorem A. Moreover, Theorem A implies that Φ is injective. Masuda-Petrie have shown that Φ is bijective in some examples. We prove

Main Theorem. Let X be a weighted G-cone with smooth one dimensional quotient and Y an irreducible affine variety such that every vector bundle over Y and $(A-\{0\}) \times Y$ is trivial. If a G-module Q is multiplicity free with respect to a principal isotropy group of X, then

$$
\begin{aligned}
\Phi: \operatorname{Mor}\left(Y, C^{p}\right) & \rightarrow \operatorname{VEC}_{G}(X \times Y, Q) \\
f & \mapsto\left[\left(i d_{X} \times f\right)^{*} B\right]
\end{aligned}
$$

is bijective and hence $\operatorname{VEC}_{G}(X \times Y, Q) \cong \operatorname{Mor}\left(Y, C^{p}\right)$ where p and \mathfrak{B} are given in Theorem A.

Here a G-module Q is called multiplicity free with respect to a reductive subgroup H if in the decomposition of Q as a direct sum of irreducible H-modules, each irreducible H-module occurs with multiplicity at most 1 . G-modules which satisfy the multiplicity free condition with respect to some reductive subgroup are abundant. Moreover, the integer p in Theorem \mathbf{A} is computed or estimated mainly in the case where Q is multiplicity free with respect to a principal isotropy group of X ([5], [10]).

When Y is m-dimensional affine space A^{m}, the assumptions on Y in the Main Theorem are satisfied by Swan's Theorem ([15]). So we have

Corollary. Let X, Q and p be the same as in the Main Theorem. Then

$$
\operatorname{VEC}_{G}\left(X \times \boldsymbol{A}^{m}, Q\right) \cong \operatorname{Mor}\left(\boldsymbol{A}^{m}, C^{p}\right) .
$$

We show the Main Theorem by calculating $\operatorname{VEC}_{G}(X \times Y, Q)$. For the calculation of $\operatorname{VEC}_{G}(X \times Y, Q)$, we apply the techniques of Kraft-Schwarz [5] (or [8]). In order to extend the glueing argument of Kraft-Schwarz we need the hypotheses on Y (cf. remark after Theorem 3.4). But it is still difficult to apply their method directly to $\operatorname{VEC}_{G}(X \times Y, Q)$ for any G-module Q since the dimension of the algebraic quotient space of the base space is greater than 1 (unless Y is a point). However, when Q is multiplicity free with respect to a principal isotropy group of X, the argument in [5] and [8] becomes drastically simplified and even in the case where the base space is $X \times Y$ the argument does not become difficult so much. For example, thanks to the multiplicity free condition, the approximation property established in [5] (or [8]) becomes obvious. It is not hard to check that
a similar argument to that in [5] and [8] works in our case.
The organization of this paper is as follows. In §1 we recall the definition of a weighted G-cone with smooth one dimensional quotient and discuss its properties. In $\S 2$, under the multiplicity free condition, we investigate the action of a cyclic group Γ and prove the vanishing of a group cohomology of Γ (Lemma 2.2) which is needed to show the key fact that every G-vector bundle over $X \times Y$ is trivial when restricted to $\left(X-\pi_{X}^{-1}(0)\right) \times Y$ where $\pi_{X}: X \rightarrow X / / G \cong A$ denotes the algebraic quotient map (Theorem 3.3 (1)). Its proof is elementary by virtue of the multiplicity free condition. In §3 we show that every G-vector bundle over $X \times Y$ has a trivialization over $\left(X-\pi_{X}^{-1}(0)\right) \times Y$ which reduces $\operatorname{VEC}_{G}(X \times Y, Q)$ to a double coset of transition functions. Furthermore, from the multiplicity free condition, the double coset turns out to be a quotient group of some abelian group. In order to analyze the quotient group, we prove the decomposition property established in [5] (or [8]) in §4. Thanks to the multiplicity free condition, its proof also becomes elementary. In $\S 5$ we give a proof of the Main Theorem.

I thank Professor Mikiya Masuda for helpful discussions. I also thank Professor K.H. Dovermann, Professor T. Petrie and Professor L. Moser-Jauslin for comments. I am grateful to Professor M. Miyanishi for giving me a lot of information on algebraic vector bundles.

1. Weighted G-cone with one dimensional quotient

Let G be a reductive algebraic group and Z an affine G-variety (reduced but not necessarily irreducible). We denote by $\mathcal{O}(Z)$ the ring of regular functions on Z and by $\mathcal{O}(Z)^{G}$ the ring of G-invariants. The quotient space $Z / / G$ is the affine variety corresponding to $\mathcal{O}(Z)^{G}$ and the quotient map $\pi_{z}: Z \rightarrow Z / / G$ is the morphism corresponding to the inclusion $\mathcal{O}(Z)^{G} G \mathcal{O}(Z)$.

We recall the definition of a weighted G-cone with smooth one dimensional quotient ([10]). Let X be a $G \times C^{*}$-affine variety. The C^{*}-action defines an integer-valued grading on $\mathcal{O}(X)$.

Definition. An affine $G \times C^{*}$-variety X is called a weighted G-cone with smooth one dimensional quotient if it satisfies the following conditions:
(1) $\mathcal{O}(X)^{\boldsymbol{C}^{*}}=\boldsymbol{C}$ and $\mathcal{O}(X)$ is positively graded with respect to the C^{*}-action.
(2) $\mathcal{O}(X)^{\boldsymbol{G}}=C[t]$ where $t \in \mathcal{O}(X)^{\boldsymbol{G}}$ is homogeneous.

Remark. A G-module P with $\operatorname{dim} P / / G=1$ is a weighted G-cone with smooth one dimensional quotient. In fact, the C^{*}-action corresponds to the scalar multiplication, so that condition (1) is clearly satisfied. It is known that $P / / G \cong \boldsymbol{A}$
when $\operatorname{dim} P / / G=1([5, p .13])$, this implies that condition (2) is also satisfied.

From now on, X will denote a weighted G-cone with smooth one dimensional quotient. It follows from condition (1) that X has a unique closed C^{*}-orbit, in fact a $G \times C^{*}$-fixed point, which we denote by x_{0}. Condition (2) means that the quotient space $X / / G$ is isomorphic to the affine line $A=\operatorname{Spec} C[t]$. We identify $X / / G$ with A. Then the quotient map $\pi_{X}: X \rightarrow X / / G \cong A$ is given by the function $t \in \mathcal{O}(X)^{G} \subset \mathcal{O}(X)$. Since t is homogeneous, every fiber of π_{X} over $\dot{A}:=A-\{0\}$ is isomorphic to each other.

Let H be a principal isotropy group of X, that means it is the minimal one among isotropy groups of points of closed orbits in X up to conjugation (cf. [7]). Since every fiber over $\dot{\boldsymbol{A}}$ is isomorphic to each other, isotropy groups of points of closed orbits in $X-\pi_{X}^{-1}(0)$ are all conjugate to H. Let $x \in X-\pi_{X}^{-1}(0)$ be a point whose isotropy group is H. Set $X_{c l}:=\overline{\left(G \times C^{*}\right) x}$. It is a closed $G \times C^{*}$-subvariety of X. Hence clearly, $\mathcal{O}\left(X_{c l}\right)^{\boldsymbol{c}^{*}}=\boldsymbol{C}$. Since π_{X} maps a G-closed set to a closed set ([3]), $\pi_{x}\left(X_{c l}\right)=\overline{\pi_{X}\left(\left(G \times C^{*}\right) x\right)}=\overline{\dot{A}}=A$. Thus $X_{c l} / / G=X / / G=A$, i.e. $\mathcal{O}\left(X_{c l}\right)^{G}=\mathcal{O}(X)^{G}$ $=C[t]$. Hence $X_{c l}$ is also a weighted G-cone with smooth one dimensional quotient. We denote the restriction map of π_{X} to $X_{c l}$ by $\pi_{c l}: X_{c l} \rightarrow X_{c l} / / G=X / / G$. We set $F:=\pi_{c l}^{-1}(1)$. Then $F \cong G / H$ ([10]).

Let Y be an irreducible affine variety with trivial G-action. Then $(X \times Y) / / G=\left(X_{c l} \times Y\right) / / G=A \times Y$.

Lemma 1.1. Let Q be a G-module. If every vector bundle over Y is trivial then for every $E \in \operatorname{Vec}_{G}(X \times Y, Q)$ there exists $f \in \mathcal{O}(X \times Y)^{\boldsymbol{G}}=\mathcal{O}(\boldsymbol{A} \times Y)$ such that $f(0, y)=1$ and E is trivial over $(X \times Y)_{f}:=\{(x, y) \in X \times Y \mid f(x, y) \neq 0\}$.

Proof. Let $E \in \operatorname{Vec}_{G}(X \times Y, Q)$. Since $\left\{x_{0}\right\} \times Y$ is fixed under the G-action and every vector bundle over Y is trivial by assumption, E restricts to a trivial G-vector bundle $\left\{x_{0}\right\} \times Y \times Q$ ([2]). The Equivariant Nakayama Lemma ([1]) implies that the G-isomorphism $\left.E\right|_{\left\{x_{0}\right\} \times Y} \rightarrow\left\{x_{0}\right\} \times Y \times Q$ extends to a G homomorphism $E \rightarrow X \times Y \times Q$ which is an isomorphism over a G-invariant open neighborhood U of $\left\{x_{0}\right\} \times Y$. Note that $U \supset \pi_{X}^{-1}(0) \times Y$ since the set of G-closed orbits in $\pi_{X}^{-1}(0) \times Y$ is just $\left\{x_{0}\right\} \times Y$. Let V be the complement of U in $X \times Y$. Since V is a G-invariant closed set, $V / / G$ is also closed in $\boldsymbol{A} \times Y$. Let $f_{i} \in \mathcal{O}(\boldsymbol{A} \times Y)$, $1 \leq i \leq r$ be the generators of the defining ideal of $V / / G$. Since $V / / G \cap(\{0\} \times Y)=\emptyset$, the ideal $\left(f_{1}, \cdots, f_{r}, t\right)$ is equal to $\mathcal{O}(A \times Y)$. Restricting the functions to $\{0\} \times Y$, we obtain $\left(f_{1}(0, y), \cdots, f_{r}(0, y)\right)=\mathcal{O}(Y)$. Hence there exist $g_{i}(y) \in \mathcal{O}(Y), 1 \leq i \leq r$ such that $\sum_{i=1}^{r} g_{i}(y) f_{i}(0, y)=1$. Let $f:=\sum_{i=1}^{r} g_{i} f_{i} \in \mathcal{O}(\boldsymbol{A} \times Y)$. Then f is contained in the defining ideal of $V / / G$ and $f(0, y)=1$. This means that the image of U under the quotient map $X \times Y \rightarrow(X \times Y) / / G \cong A \times Y$ contains $(A \times Y)_{f}$, hence $U \supset(X \times Y)_{f}$.

Note that $X_{c l} \times Y$ contains all closed G-orbits in $X \times Y$. Hence it follows from the Equivariant Nakayama Lemma that the restriction map $\operatorname{VEC}_{G}(X \times Y, Q)$ $\rightarrow \operatorname{VEC}_{G}\left(X_{c l} \times Y, Q\right)$ is an injection (cf. [1]).

2. The multiplicity free condition and the action of Γ

Let Q be a G-module and H be a principal isotropy group of X. Note that H is a reductive subgroup of G by the Theorem of Matsushima. Decompose Q as a direct sum of irreducible H-modules

$$
Q \cong \oplus_{i=1}^{q} n_{i} W_{i}
$$

where W_{i} are mutually non-isomorphic irreducible H-modules and n_{i} is the multiplicity of W_{i} in Q. Recall that $F=\pi_{c l}^{-1}(1)$. We set $M:=\operatorname{Mor}(F, \mathrm{GL} Q)^{G}$ which is the group of G-equivariant morphisms from F to GLQ. Since $F \cong G / H$,

$$
M=\operatorname{Mor}(F, \mathrm{GL} Q)^{G} \cong \mathrm{GL}(Q)^{H} \cong \prod_{i=1}^{q} G L_{n_{i}} .
$$

Let $d:=\operatorname{deg} t$. Note that $d>0$ since $\mathcal{O}(X)$ is positively graded. The C^{*}-action on $X_{c l}$ induces a C^{*}-action on $X_{c l} / / G=A$. The induced C^{*}-action on \boldsymbol{A} is scalar multiplication with the d-th power. Let Γ be the group of d-th roots of unity. Then Γ acts trivially on A, so $F=\pi_{c l}^{-1}(1)$ is invariant under the Γ-action. Let $\boldsymbol{B}=\operatorname{Spec} \boldsymbol{C}[s]$ where $t=s^{d}$. The group Γ acts on \boldsymbol{B} by scalar multiplication and $\boldsymbol{B} / \Gamma \cong \boldsymbol{A}$. We define an action of $\gamma \in \Gamma$ on M by

$$
(\gamma m)(f)=m\left(\gamma^{-1} f\right) \quad \text { for } m \in M, f \in F
$$

and on $M(\boldsymbol{B} \times Y):=\operatorname{Mor}(\boldsymbol{B} \times Y, M)$ by

$$
(\gamma \mu)(b, y)=\gamma(\mu(b \gamma, y)) \quad \text { for } \quad \mu \in M(\boldsymbol{B} \times Y), b \in \boldsymbol{B}, y \in Y .
$$

Definition. A G-module Q is called multiplicity free with respect to a reductive subgroup K if $n_{i}=1$ for all i in the decomposition of Q as a direct sum of irreducible K-modules as above.

When Q is multiplicity free with respect to H, M is isomorphic to a q-dimensional torus. From now on, we assume that Q is multiplicity free with respect to H and identify M with $\left(C^{*}\right)^{q}$ unless otherwise stated.

Lemma 2.1. The group Γ acts on the torus $M \cong\left(C^{*}\right)^{q}$ by permutation of $C^{*} s$.

Proof. Let $\gamma \in \Gamma$ be a generator. We make an observation about the isomorphisms between $M=\operatorname{Mor}(F, \mathrm{GL} Q)^{G}$ and a torus. Choose $f_{0} \in F$ whose
isotropy group is H. Evaluating an element of $\operatorname{Mor}(F, \mathrm{GL} Q)^{G}$ at f_{0} induces an isomorphism $M=\operatorname{Mor}(F, \mathrm{GL} Q)^{G} \rightarrow \mathrm{GL}(Q)^{H}$. Since the Γ-action on $F \cong G / H$ is G-equivariant and the isotropy group of f_{0} is $H, \gamma^{-1} f_{0}=g f_{0}$ for some g in the normalizer of H in G. We fix such a $g \in G$. For $m \in M$ we have

$$
(\gamma m)\left(f_{0}\right)=m\left(\gamma^{-1} f_{0}\right)=m\left(g f_{0}\right)=\rho(g) m\left(f_{0}\right) \rho(g)^{-1}
$$

where $\rho: G \rightarrow \mathrm{GL} Q$ is the rational representation associated with Q. Hence the action of γ on M corresponds to conjugation by $\rho(g) \in \mathrm{GL} Q$ on $\mathrm{GL}(Q)^{H}$. Since g is in the normalizer of H in $G, \rho(g): \mathrm{Q} \rightarrow Q$ maps an H-submodule to an H-submodule (but $\rho(g)$ is not necessarily H-equivariant). Let $Q=Q_{1} \oplus \cdots \oplus Q_{q}$ where Q_{i} are mutually non isomorphic irreducible H-submodules. Since Q_{i} is an irreducible H-submodule, $\rho(g) Q_{i}$ is also an irreducible H-submodule and $Q=\oplus_{i=1}^{q} \rho(g) Q_{i}$ since $\rho(g) \in \mathrm{GL} Q$. From the assumption that irreducible H submodules Q_{i} are mutually non isomorphic, it follows that irreducible H-submodules $\rho(g) Q_{i}$ are not isomorphic to each other. Hence the conjugation by $\rho(g)$ on $\mathrm{GL}(Q)^{H}=\Pi_{i} \mathrm{GL}\left(Q_{i}\right)^{H}$ is a permutation of $\mathrm{GL}\left(Q_{i}\right)^{H} \cong C^{*}$. This shows that γ acts on $M \cong\left(C^{*}\right)^{q}$ by permuting C^{*} s.

Let $\dot{\boldsymbol{B}}_{Y}:=\dot{\boldsymbol{B}} \times Y$ where $\dot{\boldsymbol{B}}=\boldsymbol{B}-\{0\}$. Since M is a torus, $M\left(\dot{\boldsymbol{B}}_{Y}\right)=\operatorname{Mor}\left(\dot{\boldsymbol{B}}_{Y}, M\right)$ is considered as a direct product of copies of $\mathcal{O}\left(\dot{\boldsymbol{B}}_{Y}\right)^{*}$ (the group of invertible elements in $\mathcal{O}\left(\dot{\boldsymbol{B}}_{Y}\right)$). Note that an element of $\mathcal{O}\left(\dot{\boldsymbol{B}}_{Y}\right)=\mathcal{O}(\dot{\boldsymbol{B}}) \otimes_{\boldsymbol{c}} \mathcal{O}(Y)$ is a Laurent polynomial in s with coefficients in $\mathcal{O}(Y)$. Since Y is irreduceble, i.e. $\mathcal{O}(Y)$ is an integral domain, one easily sees that $\mathcal{O}\left(\dot{\boldsymbol{B}}_{Y}\right)^{*}=\mathcal{O}(\dot{\boldsymbol{B}})^{*} \mathcal{O}(Y)^{*}$. We denote by $H^{1}\left(\Gamma, M\left(\dot{\boldsymbol{B}}_{Y}\right)\right)$ the group cohomology of Γ with values in $M\left(\dot{\boldsymbol{B}}_{Y}\right)$ (for the definition of a group cohomology, see [14] for example). For later use, we prove the next lemma.

Lemma 2.2

$$
H^{1}\left(\Gamma, M\left(\dot{\boldsymbol{B}}_{Y}\right)\right)=\{*\} .
$$

Proof. Let $\gamma \in \Gamma$ be a generator. From Lemma 2.1, γ acts on the q-dimensional torus M by permuting components. It is sufficient to show that the cohomology group vanishes when M consists of a single Γ-orbit of one component C^{*}. Hence we may assume that the action of γ on M is a cyclic permutation of q components. Note that $d=q k$ for some positive integer k since $\gamma^{d}=1$. Let $\{A(\gamma)\}_{\gamma \in \Gamma}$ be a 1 -cocycle of Γ with values in $M\left(\dot{\boldsymbol{B}}_{\boldsymbol{Y}}\right)$. It follows from the 1 -cocycle condition that

$$
I=A\left(\gamma^{d}\right)=A\left(\gamma^{q}\right) \cdot \gamma^{q} A\left(\gamma^{q}\right) \cdots \gamma^{q(k-1)} A\left(\gamma^{q}\right)
$$

where I denotes the constant map to the identity element of M. Let $A\left(\gamma^{q}\right)(s, y)=\left(f_{1}(s, y), \cdots, f_{q}(s, y)\right)$ where $f_{i}(s, y) \in \mathcal{O}\left(\dot{\boldsymbol{B}}_{Y}\right)^{*}=\mathcal{O}(\dot{\boldsymbol{B}})^{*} \mathcal{O}(Y)^{*}$. Since the action of γ^{q} on M is trivial, it follows from the above identity that

$$
f_{i}(s, y) f_{i}\left(\gamma^{q} s, y\right) \cdots f_{i}\left(\gamma^{q(k-1)} s, y\right)=1 \quad \text { for } 1 \leq i \leq q
$$

This implies that f_{i} is independent of s, so $f_{i} \in \mathcal{O}(Y)^{*}$ and $f_{i}^{k}=1$. Since $\mathcal{O}(Y)$ is an integral domain, f_{i} must be a k-th root of unity. Hence $A\left(\gamma^{q}\right)$ is a constant map to an element of M with entries of k-th roots of unity. Let $A(\gamma)(s, y)=\left(a_{1}(s, y), \cdots\right.$, $\left.a_{q}(s, y)\right)$ where $a_{i}(s, y) \in \mathcal{O}(\dot{B})^{*} \mathcal{O}(Y)^{*}$. Since $A(\gamma) \cdot \gamma A(\gamma) \cdots \gamma^{q-1} A(\gamma)=A\left(\gamma^{q}\right)$ from the 1-cocycle condition, we obtain

$$
\begin{equation*}
a_{i}(s, y) a_{i+1}(\gamma s, y) \cdots a_{q}\left(\gamma^{q-i} s, y\right) a_{1}\left(\gamma^{q-i+1} s, y\right) \cdots a_{i-1}\left(\gamma^{q-1} s, y\right)=\gamma^{q r_{i}} \tag{1}
\end{equation*}
$$

for a positive integer $r_{i}, \quad 1 \leq i \leq q$. Note that $a_{i}^{-1}(s, y) a_{i}\left(\gamma^{q} s, y\right)=\gamma^{q\left(r_{i}+r_{i}\right)}$ for $1 \leq i \leq q-1$.

We will construct $\phi=\left(\phi_{1}(s, y), \cdots, \phi_{q}(s, y)\right) \in M\left(\dot{B}_{Y}\right)$ such that $A(\gamma)=\phi^{-1} \cdot \gamma \phi$. The elements ϕ_{i} must satisfy

$$
\begin{align*}
& a_{i}(s, y)=\phi_{i}^{-1}(s, y) \phi_{i+1}(\gamma s, y) \quad \text { for } \quad 1 \leq i \leq q-1 \tag{2}\\
& a_{q}(s, y)=\phi_{q}^{-1}(s, y) \phi_{1}(\gamma s, y) .
\end{align*}
$$

We rewrite (1) using (2). Then the condition which ϕ_{i} must satisfy is

$$
\begin{equation*}
\phi_{i}^{-1}(s, y) \phi_{i}\left(\gamma^{q} S, y\right)=\gamma^{q_{i}} \quad 1 \leq i \leq q . \tag{3}
\end{equation*}
$$

Take $\phi_{1}(s, y)=s^{r_{1}}$ and define $\phi_{j}(s, y)=\phi_{j-1}\left(\gamma^{-1} s, y\right) a_{j-1}\left(\gamma^{-1} s, y\right)$ for $2 \leq j \leq q$. Then ϕ_{i} satisfies (2) clearly, and (3) also since $a_{i}^{-1}(s, y) a_{i}\left(\gamma^{q} s, y\right)=\gamma^{q\left(r_{i+1}-r_{i}\right)}$. Hence $\phi=\left(\phi_{1}(s, y), \cdots, \phi_{q}(s, y)\right)$ is the required element.

3. Triviality over the principal stratum

Let $\dot{X}_{c l}:=X_{c l}-\pi_{c l}^{-1}(0)$. In this section, we show that for every $E \in \operatorname{Vec}_{G}\left(X_{c l} \times Y\right.$, $Q),\left.E\right|_{\dot{X}_{c l} \times Y}$ is trivial when Y satisfies the assumptions in the Main Theorem in the introduction. Since E is trivial over a G-invariant open neighborhood of $\pi_{c l}^{-1}(0) \times Y$ by Lemma 1.1, it follows that $\operatorname{VEC}_{G}\left(X_{c l} \times Y, Q\right)$ is isomorphic to a double coset of a group of transition functions and $\operatorname{VEC}_{G}(X \times Y, Q) \cong \operatorname{VEC}_{G}\left(X_{c l} \times Y\right.$, $Q)$ (Theorems 3.3 and 3.4).

We denote by $\boldsymbol{B} *{ }^{\Gamma} \boldsymbol{F}$ the quotient of $\boldsymbol{B} \times \boldsymbol{F}$ by Γ where $\gamma \in \Gamma$ acts on $\boldsymbol{B} \times \boldsymbol{F}$ by $(b, f) \gamma=\left(b \gamma, \gamma^{-1} f\right)$ for $b \in \boldsymbol{B}, f \in F$. The group G acts on $\boldsymbol{B} * \Gamma F$ by $g[b, f]=[b, g f]$ for $g \in G$. There is a morphism $\dot{\boldsymbol{B}} *{ }^{\Gamma} F \rightarrow X_{c l}$ mapping $[b, f]$ to $b f$ where $\dot{\boldsymbol{B}}$ is identified with C^{*} so that $b f$ makes sense. This morphism can be extended to a map $\varphi: B *^{\Gamma} F \rightarrow X_{c l}$ by defining $\varphi([0, f])=x_{0}$.

Lemma 3.1 ($[8,3.1])$. The map $\varphi: \boldsymbol{B} *^{\Gamma} F \rightarrow X_{\text {cl }}$ is a G-morphism, and it restricts to an isomorphism from $\dot{\boldsymbol{B}}^{\mathrm{\Gamma}} \boldsymbol{\Gamma}$ to $\dot{X}_{c l}$.

Let $E \in \operatorname{Vec}_{G}\left(X_{c l} \times Y, Q\right)$. We denote by \tilde{E} the pull-back of $\left.E\right|_{\dot{X}_{c l} \times Y}$ under the
map $\dot{\boldsymbol{B}} \times F \times Y \rightarrow\left(\dot{\boldsymbol{B}} *{ }^{\Gamma} F\right) \times Y \xrightarrow{\varphi \times i d} \dot{X}_{\text {cl }} \times Y$ where id denotes the identity map on Y.
Lemma 3.2. If every vector bundle over $\boldsymbol{A} \times Y$ is trivial, then the $G \times \Gamma$-vector bundle \tilde{E} is isomorphic to the product bundle $\dot{\boldsymbol{B}} \times F \times Y \times Q \rightarrow \dot{\boldsymbol{B}} \times F \times Y$ as a G-vector bundle.

Proof. We identify F with G / H and set $E_{0}:=\left.\tilde{E}\right|_{\dot{B} \times\{e H\} \times Y}$. Then E_{0} is isomorphic to a trivial H-vector bundle since the H-action on the base space is trivial and every vector bundle over $\dot{A} \times Y$ is trivial by assumption ($[2,2.1]$). Since the fiber of E_{0} is a G-module $Q, \widetilde{E} \cong G *^{H} E_{0}$ is trivial as a G-vector bundle.

The next theorem is the key fact to analyze $\operatorname{VEC}_{G}\left(X_{c l} \times Y, Q\right)$ and $\operatorname{VEC}_{G}(X \times Y, Q)$.

Theorem 3.3. Let Q be a G-module which is multiplicity free with respect to H and Y be an irreducible affine variety such that every vector bundle over $\dot{A} \times Y$ is trivial.
(1) For every $E \in \operatorname{Vec}_{G}\left(X_{c l} \times Y, Q\right),\left.E\right|_{\dot{X}_{c l} \times Y}$ is trivial.
(2) Furthermore, if every vector bundle over Y is trivial, then the restriction map $\operatorname{VEC}_{G}(X \times Y, Q) \rightarrow \operatorname{VEC}_{G}\left(X_{c l} \times Y, Q\right)$ is a bijection.

Proof. (1) By Lemma 3.2, we may assume that \tilde{E} is the trivial G-vector bundle $\dot{\boldsymbol{B}} \times F \times Y \times Q$. From Lemma 3.1 and the fact that the Γ-action on $\dot{\boldsymbol{B}} \times F \times Y$ is free, it follows that $\left.E\right|_{\dot{X}_{c l} \times Y}$ is isomorphic to the quotient of \tilde{E} by the Γ-action.

The action of $\gamma \in \Gamma$ on $\tilde{E}=\dot{\boldsymbol{B}} \times F \times Y \times Q$ must be in the following form

$$
(b, f, y, q) \gamma=\left(b \gamma, \gamma^{-1} f, y, \tilde{A}(\gamma)(b, f, y)(q)\right) \quad b \in \dot{\boldsymbol{B}}, f \in F, y \in Y, q \in Q
$$

where $\tilde{A}(\gamma) \in \operatorname{Mor}(\dot{\boldsymbol{B}} \times F \times Y, \mathrm{GL} Q)^{\boldsymbol{G}} \cong M\left(\dot{\boldsymbol{B}}_{Y}\right) . \quad$ Set $A(\gamma):=\tilde{A}(\gamma)^{-1}$. Then one easily verifies that $\{A(\gamma)\}_{\gamma \in \Gamma}$ satisfies the 1-cocycle condition and gives rise to an element of $H^{1}\left(\Gamma, M\left(\dot{\boldsymbol{B}}_{Y}\right)\right.$). Since $H^{1}\left(\Gamma, M\left(\dot{\boldsymbol{B}}_{Y}\right)\right)=\{*\}$ by Lemma 2.2 , there exists $\phi \in M\left(\dot{\boldsymbol{B}}_{Y}\right)$ such that $A(\gamma)=\phi^{-1} \cdot \gamma \phi$ for all $\gamma \in \Gamma$. Then the following map gives an isomorphism from \tilde{E} to a trivial $G \times \Gamma$-vector bundle

$$
\begin{aligned}
\tilde{E}=\dot{\boldsymbol{B}} \times F \times Y \times Q & \rightarrow \dot{\boldsymbol{B}} \times F \times Y \times Q \\
(b, f, y, q) & \mapsto(b, f, y,(\phi(b, y)(f))(q)) .
\end{aligned}
$$

where the Γ-action on Q in the right hand side is trivial. This shows that $\left.E\right|_{\dot{X}_{c l} \times Y}$ is isomorphic to a trivial G-vector bundle from the remark above.
(2) As noted in §1, the Equivariant Nakayama Lemma implies that the
restriction map $\operatorname{VEC}_{G}(X \times Y, Q) \rightarrow \operatorname{VEC}_{G}\left(X_{c l} \times Y, Q\right)$ is injective. We show its surjectivity. Let $E \in \operatorname{Vec}_{G}\left(X_{c l} \times Y, Q\right)$. From (1) and Lemma 1.1, E is trivial over $\dot{X}_{c l} \times Y$ and $\left(X_{c l} \times Y\right)_{f}$ for some $f \in \mathcal{O}(A \times Y)$ such that $f(0, y)=1$. Let ψ be the transition function of E with respect to trivializations over $\dot{X}_{c l} \times Y$ and $\left(X_{c l} \times Y\right)_{f}$. Note that ψ can be viewed as an equivariant vector bundle automorphism of a trivial bundle over $\left(\dot{X}_{c l} \times Y\right) \cap\left(X_{c l} \times Y\right)_{f}=\left(X_{c l} \times Y\right)_{t f}$ with fiber Q. Since $\left(X_{c l} \times Y\right)_{t f}$ is a closed G-subvariety of an affine variety $(X \times Y)_{t f}$ and contains all closed G-orbits in $(X \times Y)_{t f}, \psi$ extends to an equivariant vector bundle automorphism ψ of a trivial bundle over $(X \times Y)_{t f}$ by the Equivariant Nakayama Lemma. Let \bar{E} be the G-vector bundle over $X \times Y$ obtained from the transition function ψ. Clearly \bar{E} restricts to E, and this proves the surjectivity.

Remark. For $E \in \operatorname{Vec}_{G}(X \times Y, Q),\left.E\right|_{\dot{X} \times Y}$ is trivial since the restriction map $\operatorname{VEC}_{G}(\dot{X} \times Y, Q) \rightarrow \operatorname{VEC}_{G}\left(\dot{X}_{c l} \times Y, Q\right)$ is an injection from the Equivariant Nakayama Lemma.

By virtue of Theorem 3.3 (2), we will continue to study $\operatorname{VEC}_{G}\left(X_{c l} \times Y, Q\right)$ instead of $\operatorname{VEC}_{G}(X \times Y, Q)$ in the following. Set

$$
\dot{A}_{Y}:=\dot{A} \times Y, \quad \tilde{\dot{A}}_{Y}:=\dot{A}_{Y} \times{ }_{(A \times Y)} \tilde{A}_{Y}
$$

where \tilde{A}_{Y} is an affine scheme such that

$$
\mathcal{O}\left(\tilde{A}_{Y}\right)=\{f(t, y) / g(t, y) \mid f(t, y), g(t, y) \in \mathcal{O}(A \times Y) \quad \text { and } \quad g(0, y)=1\} .
$$

Note that $\mathcal{O}\left(\tilde{\tilde{A}}_{Y}\right)=\mathcal{O}\left(\dot{\boldsymbol{A}}_{Y}\right) \otimes_{\mathcal{O}(\boldsymbol{A} \times Y)} \mathcal{O}\left(\tilde{A}_{Y}\right)$. Similar definition applies for B. For a scheme Z together with a morphism $Z \rightarrow \boldsymbol{A} \times Y$, we set

$$
\mathfrak{P}(Z):=\operatorname{Mor}\left(Z \times_{A \times Y}\left(X_{c l} \times Y\right), \mathrm{GL} Q\right)^{G} .
$$

Theorem 3.4. Let Q be a G-module which is multiplicity free with respect to H. If Y is an irreducible affine variety and every vector bundle over Y and $\dot{\boldsymbol{A}} \times Y$ is trivial, then there exists a bijection

$$
\operatorname{VEC}_{G}\left(X_{c l} \times Y, Q\right) \cong \mathfrak{P}\left(\dot{A}_{Y}\right) \backslash \mathfrak{P}\left(\tilde{\boldsymbol{A}}_{Y}\right) / \mathfrak{P}\left(\tilde{\boldsymbol{A}}_{Y}\right) .
$$

Proof. Let $E \in \operatorname{Vec}_{G}\left(X_{c l} \times Y, Q\right)$. By Theorem 3.3 (1) and Lemma 1.1, there exist trivializations $\dot{\psi}:\left.E\right|_{\dot{X}_{c l} \times Y} \cong \dot{X}_{c l} \times Y \times Q$ and $\tilde{\psi}:\left.E\right|_{\left(X_{c l} \times Y\right)_{f}} \cong\left(X_{c l} \times Y\right)_{f} \times Q$ where $f \in \mathcal{O}(A \times Y)$ and $f(0, y)=1$. Then $\dot{\psi} \circ \tilde{\psi}^{-1}$ defines a transition function $\tilde{\dot{\alpha}}$ $\in \operatorname{Mor}\left(\left(X_{c l} \times Y\right)_{t f}, \mathrm{GL} Q\right)^{G}$ by

$$
\dot{\psi} \circ \tilde{\psi}^{-1}(x, y, q)=(x, y, \tilde{\dot{\alpha}}(x, y) q)
$$

for $(x, y) \in\left(X_{c l} \times Y\right)_{t f}, q \in Q$. Note that an element of $\operatorname{Mor}\left(\left(X_{c l} \times Y\right)_{t f}, G L Q\right)$ is
considered as an invertible matrix with entries in $\mathcal{O}\left(\left(X_{c l} \times Y\right)_{t f}\right)$. Since

$$
\begin{aligned}
\mathcal{O}\left(\left(X_{c l} \times Y\right)_{t f}\right) & =\mathcal{O}\left((A \times Y)_{t f}\right) \otimes_{\mathcal{O}(A \times Y)} \mathcal{O}\left(X_{c l} \times Y\right) \\
& =\mathcal{O}(A \times Y)_{t J} \otimes_{\mathcal{O}(A \times Y)} \mathcal{O}\left(X_{c l} \times Y\right)
\end{aligned}
$$

where $\mathcal{O}(A \times Y)_{t f}$ denotes the localization by $t f$, the canonical inclusion $\mathcal{O}(A \times Y)_{t f} \rightarrow \mathcal{O}\left(\tilde{\dot{A}}_{Y}\right)$ induces an injection $\operatorname{Mor}\left(\left(X_{c l} \times Y\right)_{t f}, G L Q\right)^{G} \rightarrow \mathfrak{P}\left(\tilde{\dot{A}}_{Y}\right)$. We define a map $\Psi: \operatorname{VEC}_{G}\left(X_{c l} \times Y, Q\right) \rightarrow \mathfrak{P}\left(\dot{A}_{Y}\right) \backslash \mathfrak{P}\left(\tilde{\tilde{A}}_{Y}\right) / \mathfrak{P}\left(\tilde{A}_{Y}\right)$ by $\Psi([E])=\left[\tilde{\dot{\alpha}}^{\prime}\right]$. Then the map Ψ is well-defined. In fact, let $E^{\prime} \in \operatorname{Vec}_{G}\left(X_{c l} \times Y, Q\right)$ and $\phi: E^{\prime} \rightarrow E$ be a G-vector bundle isomorphism. Let ψ^{\prime} be a trivialization of $\left.E^{\prime}\right|_{\dot{X}_{c l} \times Y}$ and $\tilde{\psi}^{\prime}$ a trivialization of $\left.E^{\prime}\right|_{\left(X_{c l} \times Y_{)^{\prime}}\right.}$ where $f^{\prime} \in \mathcal{O}(A \times Y), f^{\prime}(0, y)=1$. Then $\dot{\psi}^{\prime} \circ \tilde{\psi}^{\prime-1}$ defines an element $\tilde{\alpha}^{\prime} \in \mathfrak{P}\left(\tilde{\dot{A}}_{\boldsymbol{Y}}\right)$. The equivariant vector bundle automorphism $\tilde{\psi} \circ \phi \circ \widetilde{\psi}^{\prime-1}$ of a trivial bundle over $\left(X_{c l} \times Y\right)_{f} \cap\left(X_{c l} \times Y\right)_{f^{\prime}}=\left(X_{c l} \times Y\right)_{f f^{\prime}}$ defines $\tilde{\alpha} \in \mathfrak{P}\left(\tilde{A}_{Y}\right)$. Similarly, $\dot{\psi}^{\prime}$ $\circ \phi^{-1} \circ \psi^{-1}$ defines $\dot{\alpha} \in \operatorname{Mor}\left(\dot{X}_{c l} \times Y, G L Q\right)^{G}=\mathfrak{B}\left(\dot{A}_{Y}\right)$. Since $\tilde{\dot{\alpha}}^{\prime}=\dot{\alpha} \tilde{\alpha} \tilde{\alpha}, \Psi$ is welldefined. It is easy to see that Ψ is bijective.

Remark. There are two hypotheses on an irreducible affine variety Y :(1) every vector bundle over \boldsymbol{Y} is trivial, and (2) every vector bundle over $\dot{\boldsymbol{A}} \times \boldsymbol{Y}$ is trivial. They are used in order to apply the glueing argument of Kraft-Schwarz; (1) is used in order to prove the bundle triviality over a neighborhood of $\pi_{X}^{-1}(0) \times Y$ (Lemma 1.1) and (2) is used in order to prove the bundle triviality over $\dot{X} \times Y$ (Theorem 3.3). If Y is smooth and satisfies (1), then every vector bundle over $A \times Y$ is trivial ([6]). However, the author does not know whether and when (1) implies (2).

Since $\varphi \times i d:\left(\boldsymbol{B} *{ }^{\Gamma} F\right) \times Y \rightarrow X_{c l} \times Y$ is an isomorphism over $\dot{\boldsymbol{A}}_{\boldsymbol{Y}}$ by Lemma 3.1, it induces an isomorphism:

$$
(\varphi \times i d)_{*}: \mathfrak{P}\left(\dot{A}_{Y}\right) \leadsto M\left(\dot{B}_{Y}\right)^{\Gamma} .
$$

Lemma 3.5. For any G-module Q and an irreducible affine variety Y, the morphism $\varphi \times$ id induces a bijection

$$
\mathfrak{P}\left(\dot{A}_{Y}\right) \backslash \mathfrak{P}\left(\tilde{\dot{A}}_{Y}\right) / \mathfrak{P}\left(\tilde{A}_{Y}\right) \cong M\left(\dot{\boldsymbol{B}}_{Y}\right)^{\Gamma} \backslash M\left(\tilde{\dot{B}}_{Y}\right)^{\Gamma} /(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{A}_{Y}\right) .
$$

Proof. Note that $\mathcal{O}\left(\tilde{\boldsymbol{B}}_{Y}\right) \cong \mathcal{O}\left(\tilde{A}_{Y}\right) \otimes_{\mathcal{O}(\boldsymbol{A} \times Y)} \mathcal{O}(B \times Y)$. In fact, the product map $\mathcal{O}\left(\tilde{A}_{Y}\right) \otimes_{\mathcal{O}(\boldsymbol{A} \times \boldsymbol{Y})} \mathcal{O}(\boldsymbol{B} \times Y) \rightarrow \mathcal{O}\left(\widetilde{\boldsymbol{B}}_{Y}\right)$ defined by $h_{1} \otimes h_{2} \rightarrow h_{1} h_{2}$ is an isomorphism. It is obvious that the map is $\mathcal{O}\left(\tilde{A}_{Y}\right)$-algebra homomorphism and injective. We show that it is surjective. Let $f / g \in \mathcal{O}\left(\tilde{\boldsymbol{B}}_{Y}\right)$ where $f, g \in \mathcal{O}(\boldsymbol{B} \times Y)$ and $g(0, y)=1$. Set $\bar{g}:=\Pi_{\gamma \in \Gamma} \gamma g$. Then $\bar{g} \in \mathcal{O}(\boldsymbol{B} \times Y)^{\Gamma}=\mathcal{O}(\boldsymbol{A} \times Y)$ and $\bar{g}(0, y)=1$. Hence $\bar{g} \in \mathcal{O}\left(\tilde{A}_{Y}\right)^{*}$ and f / g is the image of $\bar{g}^{-1} \otimes(f \bar{g} / g) \in \mathcal{O}\left(\tilde{A}_{Y}\right) \otimes_{\mathcal{O}(A \times Y)} \mathcal{O}(B \times Y)$ by the product map. Thus

$$
\begin{aligned}
\mathcal{O}\left(\tilde{\dot{B}}_{Y}\right) & =\mathcal{O}\left(\tilde{\boldsymbol{B}}_{Y}\right) \otimes_{\mathcal{O}(\mathbf{B} \times Y)} \mathcal{O}\left(\dot{\boldsymbol{B}}_{Y}\right) \\
& \cong \mathcal{O}\left(\tilde{A}_{Y}\right) \otimes_{\mathcal{O}(\boldsymbol{A} \times Y)} \mathcal{O}\left(\dot{B}_{Y}\right) \\
& =\mathcal{O}\left(\tilde{\boldsymbol{A}}_{Y}\right) \otimes_{\mathcal{O}\left(\dot{A}_{Y)}\right)} \mathcal{O}\left(\dot{\boldsymbol{B}}_{Y}\right)
\end{aligned}
$$

i.e. $\tilde{\boldsymbol{B}}_{Y} \cong \tilde{\boldsymbol{A}}_{Y} \times{ }_{\boldsymbol{A}_{Y}} \dot{\boldsymbol{B}}_{Y} . \quad$ Since φ is G-equivariant, the isomorphism $\varphi \times$ id: $: \tilde{\boldsymbol{B}}_{Y} *^{\Gamma} F \cong \tilde{\tilde{\boldsymbol{A}}}_{Y}$ $\times_{\dot{A}_{Y}}\left(\left(\dot{\boldsymbol{B}}^{\top}{ }^{\Gamma} F\right) \times Y\right) \rightarrow \tilde{\tilde{A}}_{Y} \times{ }_{\dot{A}_{Y}}\left(\dot{X}_{c l} \times Y\right)$ induces an isomorphism $(\varphi \times i d)_{*}: \mathfrak{P}\left(\tilde{\tilde{A}}_{Y}\right)$ $\rightarrow M\left(\tilde{\dot{B}}_{Y}\right)^{\Gamma}$. It is easy to see that $\varphi \times i d$ induces a bijection from $\mathfrak{P}\left(\dot{\boldsymbol{A}}_{Y}\right) \backslash \mathfrak{P}\left(\tilde{\dot{A}}_{Y}\right) / \mathfrak{P}\left(\tilde{\boldsymbol{A}}_{Y}\right)$ to $M\left(\dot{\boldsymbol{B}}_{Y}\right)^{\Gamma} \backslash M\left(\tilde{\boldsymbol{B}}_{Y}\right)^{\Gamma} /(\varphi \times i d) * \mathfrak{P}\left(\tilde{\boldsymbol{A}}_{Y}\right)$.

When Q is multiplicity free with respect to $H, M\left(\tilde{\dot{B}}_{Y}\right)^{\Gamma}$ is an abelian group since M is a torus. Hence we obtain from Theorem 3.4 and Lemma 3.5

Theorem 3.6. Under the assumptions in Theorem 3.4,

$$
\operatorname{VEC}_{G}\left(X_{c l} \times Y, Q\right) \cong M\left(\tilde{\dot{B}}_{Y}\right)^{\Gamma} /\left(M\left(\dot{B}_{Y}\right)^{\Gamma}(\varphi \times i d)_{*} \ngtr\left(\tilde{A}_{Y}\right)\right)
$$

By Theorem 3.6, we will analyze $M\left(\tilde{\boldsymbol{B}}_{Y}\right)^{\Gamma} /\left(M\left(\dot{\boldsymbol{B}}_{Y}\right)^{\Gamma}(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{\boldsymbol{A}}_{Y}\right)\right)$ in the following sections.

4. The decomposition property

We set

$$
\begin{aligned}
& M\left(\widetilde{\boldsymbol{B}}_{Y}\right)_{1}:=\left\{\mu \in M\left(\widetilde{\boldsymbol{B}}_{Y}\right) \mid \mu(0, y)=I\right\} \\
& M\left(\widetilde{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma}:=M\left(\widetilde{\boldsymbol{B}}_{Y}\right)_{1} \cap M\left(\widetilde{\boldsymbol{B}}_{Y}\right)^{\Gamma} .
\end{aligned}
$$

Note that $M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}$ is considered as a direct product of copies of $\mathcal{O}\left(\tilde{\boldsymbol{B}}_{\mathbf{Y}}\right)_{1}:=\{f$ $\left.\in \mathcal{O}\left(\widetilde{\boldsymbol{B}}_{Y}\right) \mid f(0, y)=1\right\}$.

Lemma 4.1 (The decomposition property)

$$
M\left(\tilde{\dot{B}}_{Y}\right)^{\Gamma}=M\left(\dot{\boldsymbol{B}}_{Y}\right)^{\Gamma} M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma}
$$

Proof. Every $0 \neq h(s, y) \in \mathcal{O}\left(\tilde{\dot{B}}_{Y}\right)$ is written in the form

$$
h(s, y)=s^{r} f(s, y) / g(s, y)
$$

for $r \in Z, f(s, y), g(s, y) \in \mathcal{O}(B \times Y), f(0, y) \neq 0, g(0, y)=1$. If h is invertible, then $f(0, y) \in \mathcal{O}(Y)^{*}$. In fact, there exists $h^{\prime}=s^{\prime} f^{\prime}(s, y) / g^{\prime}(s, y)$ such that $h h^{\prime}=1$. Here, $r^{\prime} \in \boldsymbol{Z}$ and f^{\prime} and g^{\prime} satisfy similar conditions to f and g, respectively. Thus $s^{r+r^{\prime}} f(s, y) f^{\prime}(s, y)=g(s, y) g^{\prime}(s, y)$. Since the right hand side is a polynomial in s with constant term 1, $r+r^{\prime}$ must not be positive. Suppose $r+r^{\prime}<0$. Comparing the terms with the lowest degree in s in both sides of the above identity,
$f(0, y) f^{\prime}(0, y)=0$. While $\mathcal{O}(Y)$ is an integral domain and neither $f(0, y)$ nor $f^{\prime}(0, y)$ is zero, this is a contradiction. Thus $r+r^{\prime}=0$ and $f(0, y) f^{\prime}(0, y)=1$, i.e. $f(0, y)$ is invertible. Hence we obtain

$$
h(s, y)=f(0, y) s^{r} \cdot f(0, y)^{-1} f(s, y) / g(s, y) \in \mathcal{O}\left(\dot{\boldsymbol{B}}_{Y}\right)^{*} \mathcal{O}\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1} .
$$

Thus $M\left(\tilde{\dot{B}}_{Y}\right)=M\left(\dot{\boldsymbol{B}}_{Y}\right) M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}$. Since $M\left(\dot{\boldsymbol{B}}_{Y}\right) \cap M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}=I$, the decomposition of $M\left(\tilde{\boldsymbol{B}}_{Y}\right)$ to a product of $M\left(\dot{\boldsymbol{B}}_{Y}\right)$ and $M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}$ is unique. Let $\mu \in M\left(\tilde{\boldsymbol{B}}_{Y}\right)^{\Gamma}$ and $\mu=\dot{\mu} \tilde{\mu}$ where $\dot{\mu} \in M\left(\dot{\boldsymbol{B}}_{Y}\right)$ and $\tilde{\mu} \in M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}$. Since the Γ-action on $\mathcal{O}\left(\tilde{\dot{B}}_{Y}\right)$ preserves the order at $s=0$ and Γ acts on M by permuting components (Lemma 2.1), it follows from the uniqueness of the decomposition of $M\left(\tilde{\boldsymbol{B}}_{Y}\right)$ to a product of $M\left(\dot{\boldsymbol{B}}_{Y}\right)$ and $M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}$ that $\dot{\mu} \in M\left(\dot{\boldsymbol{B}}_{Y}\right)^{\Gamma}$ and $\tilde{\mu} \in M\left(\widetilde{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma}$.

We denote by $\mathfrak{P}\left(\tilde{A}_{Y}\right)_{1}$ the subgroup of $\mathfrak{P}\left(\tilde{A}_{Y}\right)$ consisting of elements which are equal to the constant map to $I \in \mathrm{GL} Q$ on $\left\{x_{0}\right\} \times Y$.

Proposition 4.2

$$
M\left(\tilde{\dot{B}}_{Y}\right)^{\Gamma} /\left(M\left(\dot{\boldsymbol{B}}_{Y}\right)^{\Gamma}(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{\boldsymbol{A}}_{Y}\right)\right) \cong M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma} /(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{\boldsymbol{A}}_{Y}\right)_{1}
$$

Proof. From Lemma 4.1 and the fact that $M\left(\dot{\boldsymbol{B}}_{Y}\right)^{\Gamma} \cap M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma}=I$, the projection $M\left(\tilde{\dot{B}}_{Y}\right)^{\Gamma} \rightarrow M\left(\tilde{\boldsymbol{B}}_{Y}\right)^{\Gamma} / M\left(\dot{\boldsymbol{B}}_{Y}\right)^{\Gamma} \cong M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma}$ induces an isomorphism

$$
M\left(\tilde{\dot{B}}_{Y}\right)^{\Gamma} /\left(M\left(\dot{\boldsymbol{B}}_{Y}\right)^{\Gamma}(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{A}_{Y}\right)\right) \cong M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma} /\left(M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma} \cap(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{A}_{Y}\right)\right) .
$$

Since $M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma} \cap(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{A}_{Y}\right)=(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{A}_{Y}\right)_{1}$, the proposition follows.
Let $\hat{\boldsymbol{B}}:=\operatorname{Spec} \boldsymbol{C}[[s]]$ where $\boldsymbol{C}[[s]]$ denotes the ring of formal power series in s. We set $\hat{\boldsymbol{B}}_{Y}=\hat{\boldsymbol{B}} \times Y$. The group $M\left(\hat{\boldsymbol{B}}_{Y}\right)$ has a natural grading induced from $\mathcal{O}(\hat{\boldsymbol{B}})=\boldsymbol{C}[[s]]$. For $r \geq 1$, we define

$$
\begin{aligned}
& M\left(\hat{B}_{Y}\right)_{r}:=\left\{\mu \in M\left(\hat{B}_{Y}\right) \mid \mu=I+O\left(s^{r}\right)\right\} \\
& M\left(\hat{\boldsymbol{B}}_{Y}\right)_{r}^{\Gamma}:=M\left(\hat{\boldsymbol{B}}_{Y}\right)_{r} \cap M\left(\hat{\boldsymbol{B}}_{Y}\right)^{\Gamma} .
\end{aligned}
$$

We also define $\hat{\boldsymbol{A}}_{\boldsymbol{Y}}=\hat{\boldsymbol{A}} \times Y$ where $\hat{\boldsymbol{A}}=\operatorname{Spec} \boldsymbol{C}[[t]]$ and $\mathfrak{B}\left(\hat{\boldsymbol{A}}_{Y}\right)_{1}$ in a similar way to $\mathfrak{P}\left(\tilde{A}_{Y}\right)_{1}$. There exists a canonical map

$$
M\left(\tilde{B}_{Y}\right)_{1}^{\Gamma} /(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{A}_{Y}\right)_{1} \rightarrow M\left(\hat{B}_{Y}\right)_{1}^{\Gamma} /(\varphi \times i d)_{*} \mathfrak{P}\left(\hat{A}_{Y}\right)_{1} .
$$

In the following section, we will show that the above map is in fact a bijection. For preparation, we prove

Lemma 4.3. For all $r \geq 1$,

$$
M\left(\hat{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma}=M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma} M\left(\hat{\boldsymbol{B}}_{Y}\right)_{r}^{\Gamma} .
$$

Proof. It is clear that $M\left(\hat{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma} \supset M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma} M\left(\hat{\boldsymbol{B}}_{Y}\right)_{r}^{\Gamma}$. We show the opposite inclusion. Let $\mu=\left(h_{1}(s, y), \cdots, h_{q}(s, y)\right) \in M\left(\hat{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma}$ where $h_{i}(s, y)=1+\sum_{j=1}^{r-1} a_{i j}(y) s^{j}+O\left(s^{r}\right)$, and $a_{i j}(y) \in \mathcal{O}(Y)$ for $1 \leq i \leq q$. Define $\tilde{\mu}=\left(\tilde{h_{1}}(s, y), \cdots, \tilde{h}_{q}(s, y)\right)$ by $\tilde{h_{i}}(s, y):=1+\sum_{j=1}^{r-1} a_{i j}(y) s^{j}$ for $1 \leq i \leq q$. Since the Γ-action preserves the grading on $M\left(\hat{\boldsymbol{B}}_{Y}\right)_{1}$ (Lemma 2.1), $\tilde{\mu} \in M\left(\tilde{\boldsymbol{B}}_{Y}\right)_{1}^{\Gamma}$ and $\tilde{\mu}^{-1} \cdot \mu \in M\left(\hat{\boldsymbol{B}}_{Y}\right)_{r}^{\Gamma}$.

5. Moduli of vector bundles over $X \times Y$

We define

$$
\mathfrak{E}\left(\hat{A}_{Y}\right):=\operatorname{Mor}\left(\hat{A}_{Y} \times_{A \times Y}\left(X_{c l} \times Y\right), \text { End } Q\right)^{G} .
$$

Note that $\mathscr{E}\left(\hat{A}_{Y}\right) \cong \mathcal{O}\left(\hat{A}_{Y}\right) \otimes_{\mathcal{O}(\boldsymbol{A})} \operatorname{Mor}\left(X_{c l}, \operatorname{End} Q\right)^{G}$. Since $\operatorname{Mor}\left(X_{c l}, \text { End } Q\right)^{G}$ is a free module of rank $\operatorname{dim} \operatorname{End}(Q)^{H}$ over $\mathcal{O}\left(X_{c l}\right)^{G}=\mathcal{O}(\boldsymbol{A})$ for any G-module Q ([10]), $\mathfrak{E}\left(\boldsymbol{A}_{Y}\right)$ is a free module of rank q over $\mathcal{O}\left(\hat{A}_{Y}\right)$.

Let \mathfrak{m} be the Lie algebra of M, i.e.,

$$
\mathfrak{m}:=\operatorname{Mor}(F, \operatorname{End} Q)^{G} \cong \operatorname{End}(Q)^{H} \cong C^{q} .
$$

The map $\varphi: \boldsymbol{B} *{ }^{\Gamma} \boldsymbol{F} \rightarrow X_{c l}$ induces an $\mathcal{O}\left(\hat{\boldsymbol{A}}_{Y}\right)$-module homomorphism $(\varphi \times i d)_{\#}: \mathfrak{E}\left(\hat{\boldsymbol{A}}_{Y}\right)$ $\rightarrow \mathfrak{m}\left(\hat{\boldsymbol{B}}_{Y}\right)^{\Gamma}$. Setting Y to be a point, we obtain an $\mathcal{O}(\hat{A})$-module homomorphism $\varphi_{\#}: \mathfrak{E}(\hat{\boldsymbol{A}}) \rightarrow \mathfrak{m}(\hat{\boldsymbol{B}})^{\Gamma}$ where $\mathfrak{E}(\hat{\boldsymbol{A}}):=\operatorname{Mor}\left(\hat{\boldsymbol{A}} \times{ }_{\boldsymbol{A}} X_{c l}, \text { End } Q\right)^{\boldsymbol{G}}$. The morphism $\varphi_{\#}: \mathfrak{E}(\hat{\boldsymbol{A}})$ $\rightarrow \mathrm{m}(\hat{\boldsymbol{B}})^{\Gamma}$ is an injection of free $\mathcal{O}(\hat{\boldsymbol{A}})$-modules and of full rank ($[8,6.1]$). Through the canonical isomorphisms $\mathfrak{E}\left(\hat{\boldsymbol{A}}_{Y}\right) \cong \mathfrak{E}(\hat{\boldsymbol{A}}) \otimes_{\boldsymbol{C}} \mathcal{O}(Y)$ and $\mathfrak{m}\left(\hat{\boldsymbol{B}}_{Y}\right)^{\Gamma} \cong \mathfrak{m}(\hat{\boldsymbol{B}})^{\Gamma} \otimes_{\boldsymbol{C}} \mathcal{O}(Y)$, $(\varphi \times i d)_{\#}: \mathfrak{E}\left(\hat{A}_{Y}\right) \rightarrow \mathfrak{m}\left(\hat{\boldsymbol{B}}_{\boldsymbol{Y}}\right)^{\Gamma}$ agrees with $\varphi_{\sharp} \otimes i d: \mathfrak{E}(\hat{\boldsymbol{A}}) \otimes_{\boldsymbol{c}} \mathcal{O}(Y) \rightarrow \mathfrak{m}(\hat{\boldsymbol{B}})^{\Gamma} \otimes_{\boldsymbol{c}} \mathcal{O}(Y)$. Note that $\mathbb{E}\left(\hat{\boldsymbol{A}}_{Y}\right)$ inherits a grading induced from $\mathcal{O}\left(X_{c l}\right)$. For $r \geq 1$, let $\mathfrak{E}\left(\hat{\boldsymbol{A}}_{Y}\right)_{r}$ be the ideal of $\mathfrak{E}\left(\hat{A}_{Y}\right)$ generated by the homogeneous elements of degree r. We define

$$
\begin{aligned}
\mathfrak{P}\left(\hat{\boldsymbol{A}}_{\boldsymbol{Y}}\right)_{r} & =\left\{A \in \mathfrak{P}\left(\hat{A}_{Y}\right) \mid A-I \in \mathfrak{E}\left(\hat{\boldsymbol{A}}_{Y}\right)_{r}\right\} \\
\mathfrak{m}\left(\hat{\boldsymbol{B}}_{Y}\right)_{r}^{\Gamma} & :=\left\{\mu \in \mathfrak{m}\left(\hat{\boldsymbol{B}}_{Y}\right)^{\Gamma} \mid \mu=O\left(s^{r}\right)\right\} .
\end{aligned}
$$

We have a commutative diagram

$$
\begin{aligned}
& \mathfrak{P}\left(\hat{A}_{Y}\right)_{r} \xrightarrow{(\varphi \times i d)_{*}} M\left(\hat{\boldsymbol{B}}_{Y}\right)_{r}^{\Gamma} \\
& \exp \uparrow\rangle \quad \uparrow^{\exp } \\
& \mathfrak{E}\left(\hat{A}_{Y}\right)_{r} \underset{(\varphi \times i d) \#}{\rightarrow} \mathfrak{m}\left(\hat{\boldsymbol{B}}_{Y}\right)_{r}^{\Gamma}
\end{aligned}
$$

where the vertical maps are isomorphisms induced from exp: End $Q \rightarrow \mathrm{GL} Q$.

Lemma 5.1. There exists a positive integer r_{0} such that $(\varphi \times i d)_{*} \boldsymbol{P}\left(\hat{A}_{Y}\right)_{r}=M\left(\hat{\boldsymbol{B}}_{Y}\right)_{r}^{\Gamma}$ for any $r \geq r_{0}$.

Proof. Setting Y to be a point in $\mathfrak{E}\left(\hat{\boldsymbol{A}}_{Y}\right)_{r}$, we also have $\mathfrak{E}(\hat{A})_{r}$ for $r \geq 1$. Then there exists a positive integer r_{0} such that $\varphi_{\#}\left(\mathbb{E}(\hat{A})_{r}=\mathfrak{m}(\hat{B})_{r}^{\Gamma}\right.$ for any $r \geq r_{0}$ ([8, 6.1]). Thus

$$
\begin{aligned}
(\varphi \times i d)_{\#} \mathfrak{E}\left(\hat{A}_{Y}\right)_{r} & \cong \varphi_{\#} \mathfrak{E}(\hat{\boldsymbol{A}})_{r} \otimes_{\boldsymbol{c}} \mathcal{O}(Y) \\
& =\mathfrak{m}(\hat{\boldsymbol{B}})_{r}^{\Gamma} \otimes_{\boldsymbol{c}} \mathcal{O}(Y) \\
& \cong \mathfrak{m}\left(\hat{B}_{Y}\right)_{r}^{\Gamma} .
\end{aligned}
$$

Using the above commutative diagram, we have $(\varphi \times i d)_{*} \mathfrak{P}\left(\hat{\boldsymbol{A}}_{Y}\right)_{r}=M\left(\hat{\boldsymbol{B}}_{Y}\right)_{r}^{\Gamma}$.

Proposition 5.2. The canonical map

$$
M\left(\tilde{B}_{Y}\right)_{1}^{\Gamma} /(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{A}_{Y}\right)_{1} \rightarrow M\left(\hat{B}_{Y}\right)_{1}^{\Gamma} /(\varphi \times i d)_{*} \mathfrak{P}\left(\hat{A}_{Y}\right)_{1}
$$

is a bijection.
Proof. The surjectivity follows from Lemmas 4.3 and 5.1. We show its injectivity. It is enough to show that $M\left(\tilde{B}_{Y}\right)_{1}^{\Gamma} \cap(\varphi \times i d)_{*} \mathfrak{P}\left(\hat{A}_{\mathbf{Y}}\right)_{1} \subset(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{A}_{\mathbf{Y}}\right)_{1}$. Let $\mu \in M\left(\tilde{B}_{Y}\right)_{1}^{\Gamma} \cap(\varphi \times i d)_{*} \mathfrak{P}\left(\hat{A}_{Y}\right)_{1}$. Since $M=\operatorname{Mor}(F, \mathrm{GL} Q)^{\boldsymbol{G}} \subset \operatorname{Mor}(F, \text { End } Q)^{G}=\mathfrak{m}$, we can consider $M\left(\tilde{\boldsymbol{B}}_{Y}\right)^{\Gamma}$ as a subset of $\mathfrak{m}\left(\tilde{\boldsymbol{B}}_{Y}\right)^{\Gamma}$. Similarly, we can consider $\mathfrak{P}\left(\hat{\boldsymbol{A}}_{Y}\right)$ as a subset of $\mathfrak{E}\left(\hat{\boldsymbol{A}}_{Y}\right)$. We regard μ as an element of $\mathfrak{m}\left(\widetilde{\boldsymbol{B}}_{Y}\right)^{\Gamma} \cap(\varphi \times i d)_{\#} \mathfrak{E}\left(\hat{\boldsymbol{A}}_{\boldsymbol{Y}}\right)$ $\cong \mathcal{O}\left(\tilde{A}_{Y}\right) \otimes_{\mathcal{O}(\boldsymbol{A})} \mathfrak{m}(\boldsymbol{B})^{\Gamma} \cap \mathcal{O}\left(\hat{A}_{Y}\right) \otimes_{\mathcal{O}(\boldsymbol{A})} \varphi_{\#} \mathbb{E}(\boldsymbol{A})$ where $\mathscr{E}(\boldsymbol{A})=\operatorname{Mor}\left(X_{c l} \text {, End } Q\right)^{G}$. Since $\varphi_{\#}$ $: \mathfrak{E}(\boldsymbol{A}) \rightarrow \mathfrak{m}(\boldsymbol{B})^{\Gamma}$ is an injection of ${ }^{\#}$ ree $\mathcal{O}(\boldsymbol{A})$-modules and of full rank ($[8,6.1]$), one sees that μ is an element of $\mathcal{O}\left(\tilde{A}_{Y}\right) \otimes_{\mathcal{O}(\boldsymbol{A})} \varphi_{\#} \mathbb{E}(A) \cong(\varphi \times i d)_{\#} \operatorname{Mor}\left(\tilde{A}_{Y} \times(A \times Y)\left(X_{c l} \times Y\right)\right.$, End $Q)^{G}$. Since $\mu \in(\varphi \times i d)_{*} \not{ }^{\boldsymbol{P}}\left(\hat{A}_{Y}\right)_{1}$, this implies that $\mu \in(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{A}_{Y}\right)_{1}$. Hence the injectivity follows.

Now, we can describe $\operatorname{VEC}_{G}(X \times Y, Q)$.
Theorem 5.3. Let X be a weighted G-cone with smooth one dimensional quotient and Y an irreducible affine variety such that every vector bundle over Y and $\dot{A} \times Y$ is trivial. When a G-module Q is multiplicity free with respect to a principal isotropy group of X, the map

$$
\begin{aligned}
\Phi: \operatorname{Mor}\left(Y, C^{p}\right) & \rightarrow \mathrm{VEC}_{\mathbf{G}}(X \times Y, Q) \\
f & \mapsto\left[\left(i d_{X} \times f\right)^{*} \mathfrak{B}\right]
\end{aligned}
$$

is a bijection. Here p and \mathfrak{B} are given in Theorem A in the introduction.

Proof. We have proved

$$
\begin{aligned}
\operatorname{VEC}_{G}(X \times Y, Q) & \cong \operatorname{VEC}_{G}\left(X_{c l} \times Y, Q\right) \quad(\text { by } 3.3(2)) \\
& \cong M\left(\tilde{\boldsymbol{B}}_{Y}\right)^{\Gamma} /\left(M\left(\dot{B}_{Y}\right)^{\Gamma}(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{A}_{Y}\right)\right) \quad(\text { by } 3.6) \\
& \cong M\left(\tilde{B}_{Y}\right)_{1}^{\Gamma} /(\varphi \times i d)_{*} \mathfrak{P}\left(\tilde{A}_{Y}\right)_{1} \quad(\text { by } 4.2) \\
& \cong M\left(\hat{B}_{Y}\right)_{1}^{\Gamma} /(\varphi \times i d)_{*} \oiint^{P}\left(\hat{A}_{Y}\right)_{1} \quad \text { (by 5.2). }
\end{aligned}
$$

From the commutative diagram above Lemma 5.1, the exponential map induces an isomorphism

$$
\begin{aligned}
M\left(\hat{B}_{Y}\right)_{1}^{\Gamma} /(\varphi \times i d)_{*} \mathfrak{P}\left(\hat{A}_{Y}\right)_{1} & \cong \mathfrak{m}\left(\hat{B}_{Y}\right)_{1}^{\Gamma} /(\varphi \times i d)_{\#} \mathfrak{E}\left(\hat{A}_{Y}\right)_{1} \\
& \cong\left(\mathfrak{m}(\hat{B})_{1}^{\Gamma} / \varphi_{\#} \mathbb{E}(\hat{A})_{1}\right) \otimes_{\boldsymbol{c}} \mathcal{O}(Y) .
\end{aligned}
$$

Hence $\operatorname{VEC}_{\boldsymbol{G}}(X \times Y, Q) \cong\left(\mathfrak{m}(\hat{\boldsymbol{B}})_{1}^{\Gamma} / \varphi_{\#} \mathfrak{E}(\hat{\boldsymbol{A}})_{1}\right) \otimes_{\boldsymbol{c}} \mathcal{O}(Y)$. In particular, when Y is a single point, we obtain a bijection $\operatorname{VEC}_{G}(X, Q) \cong \mathfrak{m}(\hat{B})_{X}^{\Gamma} / \varphi_{\#} \mathfrak{E}(\hat{A})_{1}$. By composing the bijection to the map $C^{p} \ni z \mapsto\left[\left.\mathfrak{B}\right|_{X \times\{z]}\right] \in \operatorname{VEC}_{G}(X, Q)$, we have a bijection

$$
C^{p} \leftrightharpoons \mathrm{VEC}_{G}(X, Q) \leadsto \mathfrak{m}(\hat{\boldsymbol{B}})_{1}^{\Gamma} / \varphi_{\#} \mathfrak{E}(\hat{\boldsymbol{A}})_{1} .
$$

We identify $\mathfrak{m}(\hat{\boldsymbol{B}})_{1}^{\Gamma} / \varphi_{\#} \underset{(}{\mathcal{E}}(\hat{\boldsymbol{A}})_{1}$ with C^{p} through the above bijection. Using this identification we have a bijection

$$
\begin{aligned}
\operatorname{VEC}_{G}(X \times Y, Q) & \leadsto\left(\mathfrak{m}(\hat{\boldsymbol{B}})_{1}^{\Gamma} / \varphi_{\#}\left(\mathbb{E}(\hat{A})_{1}\right) \otimes_{\boldsymbol{c}} \mathcal{O}(Y)\right. \\
& \cong C^{p} \otimes_{\boldsymbol{c}} \mathcal{O}(Y) \\
& \cong \operatorname{Mor}\left(Y, C^{p}\right)
\end{aligned}
$$

which we denote by $\Psi: \operatorname{VEC}_{G}(X \times Y, Q) \rightarrow \operatorname{Mor}\left(Y, C^{p}\right)$. Note that when Y is a point, Ψ becomes $\Psi_{0}: \operatorname{VEC}_{G}(X, Q) \cong \mathfrak{m}(\hat{B})_{1}^{\Gamma} / \varphi_{\#} \mathfrak{E}(\hat{A})_{1} \cong C^{p}$ and it satisfies that $\Psi_{0}\left(\left[\left.\mathfrak{B}\right|_{X \times\{z]}\right]\right)=z$ for any $z \in C^{p}$. Thus it follows from the way of constructing Ψ that

$$
\begin{aligned}
(\Psi \circ \Phi)(f)(y) & =\Psi\left(\left[\left(i d_{X} \times f\right) * \mathfrak{B}\right]\right)(y) \\
& =\Psi_{0}\left(\left[\left.\mathfrak{B}\right|_{X \times\{f(y)\}}\right]\right) \\
& =f(y)
\end{aligned}
$$

for any $f \in \operatorname{Mor}\left(Y, C^{p}\right)$ and $y \in Y$. Thus $\Psi \circ \Phi=i d$ (in particular, Φ is an injection. cf. remark in the introduction). Since Ψ is a bijection, in particular, an injection, the above identity implies that Φ is a surjection. Hence Φ is bijective.

As remarked in the introduction, if we take $Y=\boldsymbol{A}^{m}$ the assumptions on Y in

Theorem 5.3 are satisfied.
Corollary 5.4. Let X, Q, and p as in Theorem 5.3. Then

$$
\operatorname{VEC}_{G}\left(X \times A^{m}, Q\right) \cong \operatorname{Mor}\left(A^{m}, C^{p}\right)
$$

Remark. There is a formula to compute the dimension p of $\operatorname{VEC}_{G}(X, Q)$ ([8, 6.5]), [5, VI]).

Let $Q \cong \oplus_{i=1}^{q} W_{i}$ where $W_{i}(1 \leq i \leq q)$ are irreducible H-modules. If every W_{i} is G-stable, then $\operatorname{VEC}_{G}(X, Q)$ is trivial (cf. [5, VII]). So we have

Corollary 5.5. Let X and Q be as in Theorem 5.3 and W_{i} be as above. If every W_{i} is G-stable, then for any affine variety Y satisfying the assumptions in Theorem 5.3, $\operatorname{VEC}_{G}(X \times Y, Q)$ is trivial.

For example, let $G=O(2)=C^{*} \rtimes Z / 2 Z$ and $V_{m}(m \geq 1)$ be a 2-dimensional G-module on which C^{*} acts with weights m and $-m$ and the generator of $\boldsymbol{Z} / 2 \boldsymbol{Z}$ acts by interchanging the weight spaces. It is easy to see that $V_{m} / / G \cong A$ and the principal isotropy group of V_{m} is a dihedral group $D_{m}=\boldsymbol{Z} / m \boldsymbol{Z} \quad \boldsymbol{Z} / 2 \boldsymbol{Z}$. Note that V_{l} is an irreducible D_{m}-module when $m+2 l$. Hence for any affine variety Y satisfying the assumptions in Theorem $5.3, \mathrm{VEC}_{G}\left(V_{m} \times Y, V_{l}\right)$ is trivial for a positive integer l such that $m+2 l$.

References

[1] H. Bass and W. Haboush: Linearizing certain reductive group actions, Trans. Amer. Math. Soc. 292 (1985), 463-482.
[2] H. Kraft: G-vector bundles and the linearization problem, CMS Conference Proceedings 10 (1989), 111-123.
[3] H. Kraft: Geometrische Methoden in der Invariantentheorie, Aspecte der Mathematik D1, Vieweg Verlag, Braunschweig, 1984.
[4] F. Knop: Nichitlinearisierbare Operationen halbeinfacher Gruppen auf affinen Räumen, Invent. Math. 105 (1991), 217-220.
[5] H. Kraft and G.W. Schwarz: Reductive group actions with one dimensional quotient, Publ. Math. IHES 76 (1992), 1-97.
[6] H. Lindel: On the Bass-Quillen conjecture concerning projective modules over polynomial rings, Invent. Math. 65 (1981), 319-323.
[7] D. Luna: Slice etales, Bull. Soc. Math. France, Memoire 33 (1973), 81-105.
[8] K. Masuda: Moduli of equivariant algebraic vector bundles over affine cones with one dimensional quotient, Osaka J. Math. 32 (1995), 1065-1085.
[9] M. Masuda, L. Moser-Jauslin and T. Petrie: The equivariant Serre problem for abelian groups, Topology 35 (1996), 329-334.
[10] M. Masuda, L. Moser-Jauslin and T. Petrie: Equivariant algebraic vector bundles over cones with smooth one dimensional quotient, to appear in J. Math. Soc. of Japan
[11] M. Masuda, L. Moser-Jauslin and T. Petrie: Invariants of equivariant algebraic vector bundles and inequalities for dominant weights, (preprint).
[12] M. Masuda and T. Petrie: Stably trivial equivariant algebraic vector bundles, J. Amer. Math. Soc. 8 (1995), 687-714.
[13] G.W. Schwarz: Exotic algebraic group actions, C. R. Acad. Sci. Paris 309 (1989), 89-94.
[14] J.P. Serre: Local fields, GTM 67, Springer Verlag, New York-Heidelberg-Berlin, 1979.
[15] R.G. Swan: Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978), 111-120.

Department of General Education Akashi College of Technology 679-3 Nishioka Uozumi Akashi 674 JAPAN
E-mail: kayo@akashi.ac.jp

