Masuda, K.
Osaka J. Math.
34 (1997), 115-131

EQUIVARIANT ALGEBRAIC VECTOR BUNDLES
OVER A PRODUCT OF AFFINE VARIETIES

Kavyo MASUDA

(Received April 7, 1996)

0. Introduction

Let G be a reductive complex affine algebraic group and Z a complex affine
G-variety with a G-fixed base point zoe Z. Throughout this paper, the base field
is the field C of complex numbers. Let Q be a G-module. We denote by Vecg(Z, Q)
the set of algebraic G-vector bundles over Z whose fiber at z, is Q and by
VEC4(Z,0Q) the set of G-isomorphism classes in Vecg(Z,0). We denote by [E]
the isomorphism class of Ee Vecy(Z,Q).

There are many interesting problems concerning VEC4(Z, Q), especially when
the base space Z is a G-module P. One of them is the Equivariant Serre Problem,
which asks whether VEC4(P,Q) is the trivial set consisting of the isomorphism
class of the product bundle P x Q. When G is trivial, the Quillen-Suslin Theorem
says that VECg4(P, Q) is the trivial set. More generally, Masuda-Moser-Petrie [9]
recently have shown that VEC4(P,Q) is trivial for any abelian group G. However,
when G is not abelian, VEC4(P,Q) is non-trivial in general. Schwarz [13] (see
Kraft-Schwarz [5] for details) first presented counter examples to the Equivariant
Serre Problem by proving that VEC4(P, Q)= C? when the algebraic quotient space
P//G is one dimensional i.e. isomorphic to affine line 4. When dimP//G>2,
there are many non-trivial examples of VEC4(P,Q) ([11], [4]) but it remains open
to classify elements in VEC4(P,Q) in general.

The results of [13] extend to the case where the base space is a weighted
G-cone with smooth one dimensional quotient (for a precise definition, see §1; a
G-module with one dimensional quotient is an example of such a cone):

Theorem A ([8]). Let X be a weighted G-cone with smooth one dimensional
quotient and Q be a G-module. Then VECy4(X,Q)=C? for a non-negative integer
p. Moreover, there is a G-vector bundle B over XxCP such that the map
C?3z[B| xx(»]€ VECH(X,Q) gives a bijection.

Masuda-Petrie have made the following observation. Let X and p be as
above and Y an irreducible affine variety with trivial G-action. We denote by
Mor(Y,C?) the set of morphisms from Y to C?. Then there is a map
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@ :Mor(Y,C?) » VECy(X x ¥, Q)

defined by ®(f)=[(idy x)*B] for fe Mor(Y,C?). 1t is bijective when Y is a point
by Theorem A. Moreover, Theorem A implies that @ is injective. Masuda-Petrie
have shown that @ is bijective in some examples. We prove

Main Theorem. Let X be a weighted G-cone with smooth one dimensional
quotient and Y an irreducible affine variety such that every vector bundle over Y
and (A—{0})x Y is trivial. If a G-module Q is multiplicity free with respect to a
principal isotropy group of X, then

®@: Mor(Y,CP) - VEC4(X x Y, Q)
S [idy x £)*B]

is bijective and hence VECgy(X x Y, Q)=~Mor(Y,CP?) where p and B are given in
Theorem A.

Here a G-module Q is called multiplicity free with respect to a reductive
subgroup H if in the decomposition of Q as a direct sum of irreducible H-modules,
each irreducible H-module occurs with multiplicity at most 1. G-modules which
satisfy the multiplicity free condition with respect to some reductive subgroup are
abundant. Moreover, the integer p in Theorem A is computed or estimated mainly
in the case where Q is multiplicity free with respect to a principal isotropy group
of X ([5], [10]).

When Y is m-dimensional affine space 4™, the assumptions on Y in the Main
Theorem are satisfied by Swan’s Theorem ([15]). So we have

Corollary. Let X, Q and p be the same as in the Main Theorem. Then

VEC(X x A, 0)~Mor(4™,C?).

We show the Main Theorem by calculating VECg(Xx Y,Q). For the
calculation of VEC4(X x Y, Q), we apply the techniques of Kraft-Schwarz [5] (or
[8]). In order to extend the glueing argument of Kraft-Schwarz we need the
hypotheses on Y (cf. remark after Theorem 3.4). But it is still difficult to apply
their method directly to VEC4(X x Y, Q) for any G-module Q since the dimension
of the algebraic quotient space of the base space is greater than 1 (unless Y is a
point). However, when Q is multiplicity free with respect to a principal isotropy
group of X, the argument in [5] and [8] becomes drastically simplified and even
in the case where the base space is X x Y the argument does not become difficult
so much. For example, thanks to the multiplicity free condition, the approximation
property established in [5] (or [8]) becomes obvious. It is not hard to check that
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a similar argument to that in [5] and [8] works in our case.

The organization of this paper is as follows. In §1 we recall the definition
of a weighted G-cone with smooth one dimensional quotient and discuss its
properties. In §2, under the multiplicity free condition, we investigate the action
of a cyclic group I" and prove the vanishing of a group cohomology of I' (Lemma
2.2) which is needed to show the key fact that every G-vector bundle over X x ¥
is trivial when restricted to (X —ny '(0)) x Y where ny: X — X//G=~A denotes the
algebraic quotient map (Theorem 3.3 (1)). Its proof is elementary by virtue of
the multiplicity free condition. In §3 we show that every G-vector bundle over
X x Y has a trivialization over (X—nx '(0)) x Y which reduces VEC4(X x ¥, Q) to
a double coset of transition functions. Furthermore, from the multiplicity free
condition, the double coset turns out to be a quotient group of some abelian
group. In order to analyze the quotient group, we prove the decomposition
property established in [5] (or [8]) in §4. Thanks to the multiplicity free condition,
its proof also becomes elementary. In§5 we give a proof of the Main Theorem.

I thank Professor Mikiya Masuda for helpful discussions. I also thank
Professor K.H. Dovermann, Professor T. Petric and Professor L. Moser-Jauslin
for comments. I am grateful to Professor M. Miyanishi for giving me a lot of
information on algebraic vector bundles.

1. Weighted G-cone with one dimensional quotient

Let G be a reductive algebraic group and Z an affine G-variety (reduced but
not necessarily irreducible). We denote by O(Z) the ring of regular functions on
Z and by O(Z)° the ring of G-invariants. The quotient space Z//G is the affine
variety corresponding to ((Z)¢ and the quotient map n,: Z — Z// G is the morphism
corresponding to the inclusion O(Z)% g O(Z).

We recall the definition of a weighted G-cone with smooth one dimensional
quotient ([10]). Let X be a G x C*-affine variety. The C*-action defines an
integer-valued grading on O(X).

DerINITION. An affine G x C*-variety X is called a weighted G-cone with
smooth one dimensional quotient if it satisfies the following conditions:

(1) OX)®=C and O(X) is positively graded with respect to the C*-action.

(2) OX)°=C[{] where te O(X)° is homogeneous.

REMARK. A G-module P with dim P//G=1 is a weighted G-cone with smooth

one dimensional quotient. In fact, the C*-action corresponds to the scalar
multiplication, so that condition (1) is clearly satisfied. It is known that P//G~A
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when dim P//G=1 ([5, p.13]), this implies that condition (2) is also satisfied.

From now on, X will denote a weighted G-cone with smooth one dimensional
quotient. It follows from condition (1) that X has a unique closed C *-orbit, in fact
a G x C*fixed point, which we denote by x,. Condition (2) means that the
quotient space X // G is isomorphic to the affine line 4=Spec C[t]. We identify
X//G with A. Then the quotient map ny: X —» X//G=A is given by the function
te O(X)® < O(X). Since t is homogeneous, every fiber of my over A:=A—{0} is
isomorphic to each other.

Let H be a principal isotropy group of X, that means it is the minimal one
among isotropy groups of points of closed orbits in X up to conjugation (cf.
[7]). Since every fiber over A is isomorphic to each other, isotropy groups of points
of closed orbits in X—ny '(0) are all conjugate to H. Let xe X—ny !(0) be a point
whose isotropy group is H. Set X,;:=(Gx C*x. It is a closed G x C*-subvariety
of X. Hence clearly, O(Xc,)c'=_ C. Since ny maps a G-closed set to a closed set
([3)), nx(X)=7x(Gx CHx)=A=A. Thus X,//G=X//G=A, ie. O(X,)°=0X)®
=([¢]. Hence X, is also a weighted G-cone with smooth one dimensional
quotient. We denote the restriction map of ny to X, by n,: X, - X,//G=X//G.
We set F:=n;'(1). Then F~G/H ([10]).

Let Y be an irreducible affine variety with trivial G-action. Then
XxY)//G=(X,%xY)//G=AXY.

Lemma 1.1. Let Q be a G-module. If every vector bundle over Y is trivial
then for every EeVecy(X x Y, Q) there exists fe O(X x Y)°=0(Ax Y) such that
f0,y)=1 and E is trivial over (X x Y),:={(x,y)e X x Y|f(x,y) #0}.

Proof. Let EeVecg(X'x Y,Q). Since {xo}x Y is fixed under the G-action
and every vector bundle over Y is trivial by assumption, E restricts to a trivial
G-vector bundle {x,}x ¥Yx Q ([2]). The Equivariant Nakayama Lemma ([1])
implies that the G-isomorphism E|,«xy— {Xo} X YxQ extends to a G-
homomorphism E — X x Y x Q which is an isomorphism over a G-invariant open
neighborhood U of {x,} x Y. Note that U > n5'(0)x Y since the set of G-closed
orbits in x '(0) x Yis just {x,} x Y. Let V' be the complement of Uin Xx Y. Since
V is a G-invariant closed set, V//G is also closed in Ax Y. Let f;eO(AxY),
1 <i<r be the generators of the defining ideal of ¥'//G. Since V//Gn ({0} x Y)=0,
the ideal (fy,---.f,,?) is equal to O(4 x Y). Restricting the functions to {0} x ¥, we
obtain (f,(0,y),---,/,(0,y))=0O(Y). Hence there exist g(y)e O(Y), 1 <i<r such that
¥_.gf0y)=1. Let f:=XI_,g,/iec@(AxY). Then f is contained in the
defining ideal of V' //G and f(0,y)=1. This means that the image of U under the
quotient map Xx ¥ —(Xx Y)//G=Ax Y contains (4x Y),, hence U> (Xx Y),.

O



EQUIVARIANT ALGEBRAIC VECTOR BUNDLES 119

Note that X, x Y contains all closed G-orbits in X' x Y. Hence it follows from
the Equivariant Nakayama Lemma that the restriction map VECy(X x Y, Q)
— VEC4(X, x Y, Q) is an injection (cf. [1]).

2. The multiplicity free condition and the action of I

Let Q be a G-module and H be a principal isotropy group of X. Note that
H is a reductive subgroup of G by the Theorem of Matsushima. Decompose Q
as a direct sum of irreducible H-modules

Q=L nW,

where W, are mutually non-isomorphic irreducible H-modules and »; is the
multiplicity of W,in Q. Recall that F=n_'(1). We set M:=Mor(F, GLQ)® which
is the group of G-equivariant morphisms from F to GLQ. Since F~G/H,

M =Mor(F,GLQ)° ~GL(Q)" ~ ﬁ GL,,.

Let d:=degt. Note that d>0 since O(X) is positively graded. The C*-action
on X, induces a C*-action on X,//G=A. The induced C*-action on A is scalar
multiplication with the d-th power. Let I' be the group of d-th roots of unity. Then
[ acts trivially on A4, so F==n;!(1) is invariant under the I-action. Let
B=Spec C[s] where t=s?. The group T acts on B by scalar multiplication and
B/T'>A. We define an action of yeI' on M by

(ym)(N)=m(y~'f) for meM, feF
and on M(Bx Y):=Mor(Bx Y, M) by
(yw)b,y)=y(u(by,y)) for peM(BxY) beB, yeY.

DEerINITION. A G-module Q is called multiplicity free with respect to a reductive
subgroup K if n,=1 for all i in the decomposition of Q as a direct sum of irreducible
K-modules as above.

When Q is multiplicity free with respect to H, M is isomorphic to a g-dimensional
torus. From now on, we assume that Q is multiplicity free with respect to H
and identify M with (C*? unless otherwise stated.

Lemma 2.1. The group I acts on the torus M =(C*)? by permutation of C*s.

Proof. Let ye' be a generator. We make an observation about the
isomorphisms between M =Mor(F,GLQ)® and a torus. Choose f,eF whose
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isotropy group is H. Evaluating an element of Mor(F,GLQ)¢ at f, induces an
isomorphism M =Mor(F,GLQ)® - GL(Q)". Since the I'-action on F~G/H is
G-equivariant and the isotropy group of f, is H, y~!f,=gf, for some g in the
normalizer of H in G. We fix such a geG. For me M we have

rm)(fo)=m(y~ 'fo) =mlg fo) = pIm(fo)p(g) "

where p:G — GLQ is the rational representation associated with Q. Hence the
action of y on M corresponds to conjugation by p(g)e GLQ on GL(Q)”. Since
g is in the normalizer of H in G, p(g):Q — Q maps an H-submodule to an
H-submodule (but p(g) is not necessarily H-equivariant). Let 0=0,® - ®Q,
where Q; are mutually non isomorphic irreducible H-submodules. Since Q; is an
irreducible H-submodule, p(g)Q; is also an irreducible H-submodule and
Q=®% 1p(g)Q; since p(gle GLY. From the assumption that irreducible H-
submodules Q; are mutually non isomorphic, it follows that irreducible
H-submodules p(g)Q; are not isomorphic to each other. Hence the conjugation
by p(g) on GL(Q)! =II,GL(Q)" is a permutation of GL(Q)¥=~C* This shows
that y acts on M~(C*? by permuting C*s. O

Let By:=Bx Y where B=B—{0}. Since M is a torus, M(By)=Mor(By, M) is
considered as a direct product of copies of O(By)* (the group of invertible elements
in O(By). Note that an element of O(By)=0(B)®0(Y) is a Laurent polynomial
in s with coefficients in ((Y). Since Y is irreduceble, ie. O(Y) is an integral
domain, one easily sees that O(By)*=0O(B)*O(Y)*. We denote by H(T, M(By))
the group cohomology of I' with values in M(B,) (for the definition of a group
cohomology, see [14] for example). For later use, we prove the next lemma.

Lemma 2.2
H'\(T', M(By))={x}.

Proof. Letyel bea generator. From Lemma 2.1, y acts on the g-dimensional
torus M by permuting components. It is sufficient to show that the cohomology
group vanishes when M consists of a single I'-orbit of one component C*. Hence
we may assume that the action of y on M is a cyclic permutation of ¢ components.
Note that d=gk for some positive integer k since y*=1. Let {A(y)},.r be a
1-cocycle of I with values in M(B,). It follows from the 1-cocycle condition that

I=A>y") =AY yIAGYY---y** VAR

where I denotes the constant map to the identity element of M. Let
AGNs,y)=(f1(5,9),- S s,y) where f{s,y)e O(By)*=0O(B)*O(Y)*. Since the action
of y7 on M is trivial, it follows from the above identity that
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S s,y) - f** Vs, y)=1 for 1<i<q.

This implies that f; is independent of s, so f;e O(Y)* and f*=1. Since O(Y) is an
integral domain, f; must be a k-th root of unity. Hence A(y?) is a constant map
to an element of M with entries of k-th roots of unity. Let A(y)(s,y)=(a,(s,»),--,
a,(s,y)) where afs, y)e OBy*O(Y)*. Since A(y)-yA®y)---y1~'A(y)=A(y?Y) from the
1-cocycle condition, we obtain

) a($,y)a;4 (v5,y) - a7 5, 0)a, (" s, p) gy (17 s, y) =y

for a positive integer r;, 1<i<q. Note that a; '(s,y)a, (y%,y)=y%+*"") for
1<i<g—-1.

We will construct ¢ =(¢,(s,»), -, P(5,y)) € M(By) such that A(y)=¢~'-y¢. The
elements ¢; must satisfy

afs,9)=¢; '(5.Y)¢ir1(vsy) for 1<i<q-—1

) _
aq(say) = ¢q (s,y)¢ 1(’}’3,}’)-

We rewrite (1) using (2). Then the condition which ¢; must satisfy is
G) éi ()P y)=y" 1<i<q.

Take ¢,(s,y)=s" and define ¢l(s,y)=¢j_l(y”‘s,y)aj_l(y"s,y) for 2<j<q. Then
¢; satisfies (2) clearly, and (3) also since a; !(s,y)a(y%,y)=y™+1~". Hence
¢ =(¢1(5,p),--,@,(s,y)) is the required element. O

3. Triviality over the principal stratum

Let X,;:=X,,—n;'(0). In this section, we show that for every E e Vecg(X,, x Y,
0), E|x,,xy is trivial when Y satisfies the assumptions in the Main Theorem in
the introduction. Since E is trivial over a G-invariant open neighborhood of
n;'(0)x Y by Lemma 1.1, it follows that VEC4(X,, x Y, Q) is isomorphic to a
double coset of a group of transition functions and VECyX x Y, Q)= VEC4;(X,, x ¥,
Q) (Theorems 3.3 and 3.4).

We denote by B*"F the quotient of Bx F by I" where yeI" acts on B x F by
b, Nyy=(by,y”'f) for beB, fe F. The group G acts on B+TF by g[b, f1=[b,gf]
for geG. There is a morphism Bx"F— X, mapping [b, f] to bf where B is
identified with C* so that bf makes sense. This morphism can be extended to
a map ¢:B+"F— X, by defining ¢([0, f])=x,.

Lemma 3.1 ([8, 3.1]). The map ¢:B+"F — X, is a G-morphism, and it restricts
to an isomorphism from B+TF to X,,.

Let EcVecg(X, x ¥, Q). We denote by £ the pull-back of E| 4.y under the
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@xid

map BxFxY - (Bx"F)x Y - X,x Y where id denotes the identity map on Y.

Lemma 3.2. If every vector bundle over A x Y is trivial, then the G x I'-vector

bundle E is isomorphic to the product bundle Bx Fx Y x Q - Bx Fx Y as a G-vector
bundle.

Proof. We identify F with G/H and set E0:=E‘|,-x(emxy. Then E, is
isomorphic to a trivial H-vector bundle since the H-action on the base space is
trivial and every vector bundle over 4 x Y is trivial by assumption ([2, 2.1]). Since
the fiber of E, is a G-module Q, Ex~G+" E, is trivial as a G-vector bundle.

a

The next theorem is the key fact to analyze VECg(X,x Y,Q) and
VEC4(X x Y, Q).

Theorem 3.3. Let Q be a G-module which is multiplicity free with respect to
H and Y be an irreducible affine variety such that every vector bundle over Ax Y
is trivial.

(1) For every EeVecg(X,,x Y,Q), E|x_ «y is trivial.

(2) Furthermore, if every vector bundle over Y is trivial, then the restriction
map VECg(X x Y, Q) —» VEC4X,,x Y, Q) is a bijection.

Proof. (1) By Lemma 3.2, we may assume that E is the trivial G-vector
bundle Bx Fx Yx Q. From Lemma 3.1 and the fact that the I'-action on Bx Fx Y
is free, it follows that E| x_, .y is isomorphic to the quotient of E by the I'-action.

The action of yeI" on E=Bx Fx Y x Q must be in the following form

&, £y, 9v=0v,y" £y, AQ)b, £,yNq)) beB, feF, yeY, qeQ

where A(y)e Mor(Bx Fx Y,GLQ)°~M(B,). Set A(y):=A(y)~!. Then one easily
verifies that {A4(y)},. satisfies the 1-cocycle condition and gives rise to an element
of H\(T', M(By)). Since H (T, M(By)={+} by Lemma 2.2, there exists ¢ e M(By)
such that A(y)=¢~!-y¢ for all yeI. Then the following map gives an isomorphism
from E to a trivial G x I'-vector bundle

E=BxFxYxQ->BxFxYxQ
&, £y, 9 b, £,3,(9b,yXN9).

where the I'-action on Q in the right hand side is trivial. This shows that E| x_ .y is
isomorphic to a trivial G-vector bundle from the remark above.
(2) As noted in §1, the Equivariant Nakayama Lemma implies that the
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restriction map VECgXx Y, Q) - VEC4;(X,;x Y, Q) is injective. We show its
surjectivity. Let Ee Vecg(X,;x Y,Q). From (1) and Lemma 1.1, E is trivial over
X, xY and (X, xY), for some fe (4 x Y) such that f(0,y)=1. Let y be the
transition function of E with respect to trivializations over X, x Y and (X, x Y),.
Note that yy can be viewed as an equivariant vector bundle automorphism of a
trivial bundle over (X, x Y)n (X, x Y);=(X, x Y),, with fiber Q. Since (X,; x Y),,
is a closed G-subvariety of an affine variety (X x Y),, and contains all closed
G-orbits in (X x Y),,, ¥ extends to an equivariant vector bundle automorphism ¢
of a trivial bundle over (X x Y),, by the Equivariant Nakayama Lemma. Let E
be the G-vector bundle over X x Y obtained from the transition function . Clearly
E restricts to E, and this proves the surjectivity. O

REMARK. For EeVecg(X x Y,0), E| 4y is trivial since the restriction map
VEC (X x Y, Q) » VEC4(X,, x Y, Q) is an injection from the Equivariant Nakayama
Lemma.

By virtue of Theorem 3.3 (2), we will continue to study VEC4(X, % Y, Q)
instead of VECy4(X x ¥, Q) in the following. Set

Ay=Ax7Y, jy:=,‘iyx(“y,ﬂy
where Ay is an affine scheme such that
O Ay)={ft.y)/2t.y)| f(t.y)g(t.y)eO(AxY) and g0,y)=1}.

Note that CO(IZY):(O(AY)(@M“y,(’)(ﬂy). Similar definition applies for B. For a
scheme Z together with a morphism Z — 4 x Y, we set

PB(Z):=Mor(Z x 4, y(X,; x Y¥), GLQ)C.
Theorem 3.4. Let Q be a G-module which is multiplicity free with respect to

H. If Y is an irreducible affine variety and every vector bundle over Y and A x Y is
trivial, then there exists a bijection

VEC4(X, x Y, Q)= B(A )\ B(Ay)/ B(Ay).

Proof. Let EeVecg(X,;x Y,0). By Theorem 3.3 (1) and Lemma 1.1, there
exist trivializations Y : E| 3, «y 2 X, x Yx Q and 1 E| x, «y), =(X, x Y); x Q where
feO®AxY) and f(0,y)=1. Then yoyy~! defines a transition function o
e Mor((X,, x Y),;, GLQ)® by

Yo~ (x,,9)=(x,y,d(x,y)q)

for (x,y)e(X,xY),;, qeQ. Note that an element of Mor((X,x Y),,,GLQ) is
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considered as an invertible matrix with entries in O((X,x Y),,). Since

O(Xa X Y) )= 0(A X Y),)®oax 10Xy x Y)
=0(AXY),;®gaxn(XyxY)

where (0(4 x Y),, denotes the localization by ¢f, the canonical inclusion
OAXY),— O(Ay) induces an injection Mor((X,; x Y),j, GLQ)® - P(4,). We define
amap ¥: VECg(X, x Y, Q) » B(dy)\B(4y)/ B(4y) by W([E])=[d]. Then the map
Y is well-defined. In fact, let E'e Vecyg(X,x ¥Y,Q) and ¢:E’'— E be a G-vector
bundle isomorphism. Let /' be a trivialization of E'| .y and /' a trivialization
of E'|(x,,xy), Where f'e0(AxY), f'(0,y)=1. Then Yo'~ defines an element

& € P(dy). The equivariant vector bundle automorphism Jodoy’~! of a trivial
bundle over (X;xY);N(Xyx Y);=(X,xY),, defines GePB(dy). Similarly, ¥’
o loyy™! defines aeMor(X,x Y,GLQ)®=P(4y). Since & =daad, ¥ is well-
defined. It is easy to see that W is bijective. O

ReMARK. There are two hypotheses on an irreducible affine variety Y:(1)
every vector bundle over Y is trivial, and (2) every vector bundle over 4 x Y is
trivial. They are used in order to apply the glueing argument of Kraft-Schwarz;
(1) is used in order to prove the bundle triviality over a neighborhood of ny !(0)x Y
(Lemma 1.1) and (2) is used in order to prove the bundle triviality over X x Y
(Theorem 3.3). If Y is smooth and satisfies (1), then every vector bundle over 4 x Y
is trivial ([6]). However, the author does not know whether and when (1) implies (2).

Since ¢ x id:(B*TF)x Y - X, x Y is an isomorphism over 4, by Lemma 3.1,
it induces an isomorphism:

(o x id) : B(Ay) = M(By)".

Lemma 3.5. For any G-module Q and an irreducible affine variety Y, the
morphism ¢ x id induces a bijection

BA\BAy) | BAy) = MBY\M(ByY /(¢ x id) B(Ay).

Proof. Note that (O(I?Y);(Q(Zy)(xb@(“y,cf)(Bx Y). In fact, the product map
(O(ZY)®@( axnO(BXxXY)— O(By) defined by h,®h, — h,h, is an isomorphism. It is
obvious that the map is ((4y)-algebra homomorphism and injective. We show
that it is surjective. Let f/ge@O(By) where f,geO(Bx Y) and g(0,y)=1. Set
g:=T,yg. Then geOBx Y)' =0(AxY) and §0,y)=1. Hence geO(4y)* and
f/gistheimage of ' ®(fg/g)e O(A Y)® o x 1)O(B x Y) by the product map. Thus
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O(By) = OB ® s x 1,0(By)
= @(,fi y)@ou x y)(Q(BY)
= (9(A y)@@(jy)co(gy)

>

ie. l}y;/; ¥ X a,By. Since ¢ is G-equivariant, the isomorphism ¢ x id: EY*FF =Ady
X 4,(Bx"F)x Y) — Ayx;(X,xY) induces an isomorphism (¢ x id),: P(Ay)
— M(B,)". Itis easy to see that ¢ x id induces a bijection from B(Ay)\B(4y)/ P(Ay)
to M(By)"\M(By)" /(¢ x id) J(Ay). O

When Q is multiplicity free with respect to H, M(ﬁy)r is an abelian group
since M is a torus. Hence we obtain from Theorem 3.4 and Lemma 3.5

Theorem 3.6. Under the assumptions in Theorem 3.4,

VEC(X,, % Y, Q)= M(B,)" | (M(By)" (o x id) B(Ay).

By Theorem 3.6, we will analyze M(Ey)r /(M(By)" (¢ x id) *‘B(/Z y)) in the following
sections.

4. The decomposition property
We set
M(By), :={pe M(By)| 0,y)=1}
M(Er)r = M(EY)I ﬁM(ﬁy)r-
Note that M(B,), is considered as a direct product of copies of O(By),:={f
€ O(By)| f(0,y)=1}.
Lemma 4.1 (The decomposition property)

M(B,)F = M(B,)F M(B,)}.

Proof. Every O;éh(s,y)eco(l}y) is written in the form
h(s,y)=57(s,y)/ &(s.y)

for reZ, f(s,y), g(s,y)eOBxY), f(0,)#0, g(0,y)=1. If h is invertible, then
f(0,)eO(Y)*. In fact, there exists A'=s"f"(s,y)/g'(s,y) such that hh'=1. Here,
reZ and f' and g’ satisfy similar conditions to f and g, respectively. Thus
s (s,0) [ (s,y)=g(s,y)g'(s,y). Since the right hand side is a polynomial in s with
constant term 1, r+# must not be positive. Suppose r+r' <0. Comparing the
terms with the lowest degree in s in both sides of the above identity,
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f(0,y)f'(0,y)=0. While ((Y) is an integral domain and neither f(0,y) nor f'(0,y)
is zero, this is a contradiction. Thus r++'=0 and f(0,y)f"(0,y)=1, i.e. f(0,y) is
invertible. Hence we obtain

h(s,y) =f(05y)sr f(oay)_ 1f(s,y)/g(s,y)e @(BY)*(Q(gY)l .

Thus M(&,): M(By)M(B,),. Since M(By)n M(By), =1, the decomposition of M(Ey)
to a product of M(By) and M(By), is unique. Let HE M(B,)" and pu=pji where
fie M(By) and jie M(By),. Since the I'-action on (O(By) preserves the order at
s=0 and I' acts on M by permuting components (Lemma 2.1), it follows from

the uniqueness of the decomposition of M(By) to a product of M(By) and M(By),
that e M(B,)" and jie M(B)). O

We denote by P(4y), the subgroup of B(Ay) consisting of elements which
are equal to the constant map to /e GLQ on {x,} x Y.

Proposition 4.2
M(By) | (M(By) (¢ x id) B(Ay) = M(By) / (¢ x id) B(Ay), .

_Proof. From Lemma 4.1 and the fact that M(By) ~ M(B,)} =1, the projection
M(By)F - M(By)" | M(By)" ~M(B,)} induces an isomorphism

M@ByF | (MBy)F (¢ x id) B(Ay) = M(By); | (MBy); (@ x id) B(Ay)).
Since M(B))} N (¢ x id) B(Ay)=(¢ x id) ,B(Ay),, the proposition follows. [

Let B:=Spec C[[s]] where C[[s]] denotes the ring of formal power series in
s. We set B,=BxY. The group M(B,) has a natural grading induced from
OB)=C[[s]]. For r>1, we define

M(By), = {ne M(By) | p=1+O(s")}
M(By); := M(By),~ M(By)".

We also define Ay=A x Y where 4=Spec C[[]] and P(4,), in a similar way to
B(Ay),. There exists a canonical map

M(By)} /(@ x id) B(Ay), » M(By)] [ (@ x id) B(Ay); -

In the following section, .we will show that the above map is in fact a
bijection. For preparation, we prove

Lemma 4.3. For all r>1,
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M(By); = M(By,){M(By); .

Proof. It is clear that M(B,)} > M(B,)\M(B,)’. We show the opposite inclu-
sion. Let u=(h,(s,y),-~-,hq(s,y))eM(Ey)'[ where As,y)=14+X5Z1a;(y)s’ + O(s"), and
a,(y)eO(Y)for 1<i<q. Define i=(h\(s,y),-,hi(s,y)) by hfs,y):=1+Z;Z1a,(y)s for
1<i<q. Since the T-action preserves the grading on M(By); (Lemma 2.1),
fie M(By)] and g~'-pe M(By) . O

5. Moduli of vector bundles over X x Y
We define
G(Ay):=Mor(Ay x 4, y(X, x Y), End Q).

Note that €(A4y)=0O(4dy)®g.Mor(X,,End Q)°. Since Mor(X,,End Q)¢ is a free
module of rank dim End(Q)” over O(X,)¢ = 0(A) for any G-module Q ([10]), (4,)
is a free module of rank g over O(Ay).

Let m be the Lie algebra of M, ie.,

m :=Mor(F,End Q)° ~ End(Q)" ~ C*.

The map ¢:B+"F — X, induces an 0(Ay)-module homomorphism (¢ xza’) (€(Ay)
—m(B,)". Setting Y to be a point, we obtain an @(4)-module homomorphlsm
(/)#.()E(A)—->m(B)r where ©(A4):=Mor(4 x ,X,,End 0)°. The morphism go#.(E(A)
—m(B) is an injection of free ®(4)-modules and of full rank ([8, 6.1]). Through
the canonical isomorphisms G(A4y)x G(ﬁ)@cw(Y) and m(B, )r~m(l§)"®c(9( Y),
(p x id)#:(E(Ay) - m(B))" agrees with ¢, ®id: (A)®0(Y) —» m(B) r(>Z>CCO(Y) Note
that ®(4,) inherits a grading induced #[rom O(X,). For r>1, let €4,), be the
ideal of ®(4y) generated by the homogeneous elements of degree . We define

PAy, = {4 Bdy)| A-1eC(dy),}
m(Byl = {nem(By | u=0(s)}.
We have a commutative diagram

(¢ x id),

‘B(-"iy)y - M(By)r

P 1ee
63(1‘i e - m(éy)r

(p xid)y

where the vertical maps are isomorphisms induced from exp:End Q - GLQ.
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Lemma 5.1.  There exists a positive integer ro such that (¢ x id) J(Ay),= M(By)
for any r>r,.

Proof. Setting Y to be a point in €(4,),, we also have €(A), for r>1. Then

there exists a positive integer r, such that (p#(ﬁ(ﬁ), m(B)Y for any r>r, ([8,
6.17). Thus

(¢ x id) €(Ay), = ¢, €(A), ® ()
=m(Bf ®c0(Y)
=m(By) .

Using the above commutative diagram, we have ((pxid)*iB(/iy),=M(l?y)f .
O

Proposition 5.2. The canonical map

M(By); /(@ x id) B(Ay); ~ M(By)} / (¢ x id) B(Ay),

is a bijection.

Proof. The surjectivity follows from Lemmas 4.3 and 5.1. We show its
injectivity. It is enough to show that M(B,) N (¢ x id),,fB(fi,,)1 < (o x id)*‘B(Zy),.
Let pe M(By)\ n (¢ x id) B(Ay),. Since M =Mor(F,GL Q)¢ = Mor(F,End Q)¢ =m,
we can consider M(B,)" as a subset of m(B,)’. Similarly, we can consider P(A4y)
as a subset of ®(4,). We regard u as an element of m(l?y)"n((pxid)ﬂ(i(fiy)
’_—‘:(9(;1',)@@( A)m(B)rn(D(ziy)@)am(p G€(4) where G(4)=Mor(X,,End Q)°. Since ¢
:€(4) - m(B)' is an injection of f ree ((A)-modules and of full rank ([8, 6.1]), one
sees that u is an element of @(Jﬁ@m) Py C(A)x(¢ x id) Mor(ZyxMxy)(X,,x Y),
End Q)¢. Since ye(goxzd)*‘B(,iy)l, this 1mp11es that uef x id) B(Ay),. Hence
the injectivity follows. O

Now, we can describe VEC4(X x Y, Q).

Theorem 5.3. Let X be a weighted G-cone with smooth one dimensional quotient
and Y an irreducible affine variety such that every vector bundle over Y and A x Y is
trivial. When a G-module Q is multiplicity free with respect to a principal isotropy
group of X, the map

@:Mor(Y,C?) - VEC4(X x Y, Q)
J Ly x ))*B]

is a bijection. Here p and B are given in Theorem A in the introduction.
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Proof. We have proved
VEC4(Xx Y,Q)=VEC4X,x Y,0) (by 3.3 (2)
= M(By)" | (M(By)" (¢ xid) B(dy)) (by 3.6)
=M(By) /(¢ x id) ,B(4y); (by 4.2)
=M(By)[ /(¢ x id),B(Ay); (by 5.2).

From the commutative diagram above Lemma 5.1, the exponential map induces an
isomorphism

M(By) /(¢ x id) *"B(/ZY)l = m(ﬁy)ll- /(@ % id)#(E(fi 1
=~(m(B)]/ 90#(5(/‘1)1)@&9( Y).

Hence VEC4(X x Y, Q)=(m(B)Y / ¢, €(A),)®0(Y). In particular, when Yis a single
point, we obtain a bijection VéCG(X,Q)zm(ﬁ){ /(P#@(fi)l. By composing the
bijection to the map C?3z—[B]|y,(,]€ VEC4(X,Q), we have a bijection

C? 3 VECG(X,0) = m(By] / ¢, €(d),.

We identify m(B)Y/ (p#(‘é(/i), with C? through the above bijection. Using this
identification we have a bijection

VECG(X x Y,0) > (m(B)] / ¢, €(A))®cO(Y)

=2 C?’Rc0(Y)

=~ Mor(Y,C?)
which we denote by ¥:VEC4(X x Y, Q) - Mor(Y,C?). Note that when Y is a
point, ¥ becomes ¥,:VEC4(X,0) > m(B)/¢ #03(,2), ~CP and it satisfies that
Wo([B| xx(»])=zforanyze C?. Thusit follows from the way of constructing ‘¥’ that

(¥ D) )y)=Y([(idx x f)*BI)»)
= ‘Po([% ' X x (f(y))])
=/

for any feMor(Y,C?) and ye Y. Thus ¥o®=id (in particular, ® is an injection.
cf. remark in the introduction). Since W is a bijection, in particular, an injection,
the above identity implies that ® is a surjection. Hence ® is bijective. O

As remarked in the introduction, if we take Y=A™ the assumptions on Y in
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Theorem 5.3 are satisfied.

Corollary 54. Let X, Q, and p as in Theorem 5.3. Then

VEC4(X x 4™, Q)= Mor(4™, C?).

REMARK. There is a formula to compute the dimension p of VEC4(X, Q) ([8,
6.5]), [5, VID).

Let Q= @%_, W, where W, (1<i<q) are irreducible H-modules. If every W;
is G-stable, then VEC4;(X,Q) is trivial (cf. [5, VII]). So we have

Corollary 5.5. Let X and Q be as in Theorem 5.3 and W, be as above. If
every W, is G-stable, then for any affine variety Y satisfying the assumptions in
Theorem 5.3, VEC4(X x Y, Q) is trivial.

For example, let G=0Q2)=C*>}Z/2Z and V, (m>1) be a 2-dimensional
G-module on which C* acts with weights m and —m and the generator of Z/2Z
acts by interchanging the weight spaces. It is easy to see that V,//G=~A and
the principal isotropy group of V,, is a dihedral group D,,=Z/mZ Z/2Z. Note
that ¥V, is an irreducible D,-module when m{2l. Hence for any affine
variety Y satisfying the assumptions in Theorem 5.3, VEC4(V,, x Y, V) is trivial
for a positive integer / such that m42l.
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