ON UPPERBOUNDS OF VIRTUAL MORDELL-WEIL RANKS

Khac Viet NGUYEN

(Received February 13, 1996)

0. Introduction

0.0. Let $f: X \rightarrow C$ be a relatively minimal fibration of curves of genus $g \geq 1$ over a smooth projective curve C of genus b defined over an algebraically closed field k. Let $K=k(C)$ be the field of rational functions on C. In the theory of Mordell-Weil lattices due to Shioda (cf. [17], [18]) the following conditions are assumed:
(0.1) (i) f admits a global section (O) as zero-section,
(ii) K / k-trace of the Jacobian J_{F} of the generic fibre F / K of f is trivial.

Under these conditions the Mordell-Weil group $J(K)$ of K-rational points of J is finitely generated. The rank r of its free part is called the Mordell-Weil rank. We shall be concerned with characteristic zero case (in this case the second assumption in (0.1) is equivalent to $q(X)=b$). In [14, Theorem 1.3] an upperbound of r via the invariants of f is given. In particular, for the case of rational surfaces X it was shown in a joint paper ([15]) that $r \leq 4 g+4$. Moreover the structure of fibrations with maximal rank $r=4 g+4$ and the structure of corresponding Mordell-Weil lattices are completely determined in [15] (a such fibration is obtained as a blowing up of a linear pencil of hyperelliptic curves on a Hirzebruch surface Σ_{e} with $0 \leq e \leq g(g \geq 2)$).

In this note we consider a similar problem for locally non-trivial fibrations, not necessarily satisfying conditions (0.1). Let $\operatorname{NS}(X)$ be the Néron-Severi group of X. Then $\mathrm{NS}(X) /$ torsion admits the lattice structure with the intersection pairing. Hodge's index theorem asserts that its signature is $(1, \rho-1)$, where $\rho:=\operatorname{rank} \operatorname{NS}(X)$ is the Picard number of X.

Definition 0.2 (cf. [11]). The virtual Mordell-Weil rank r of f is defined to be the rank of the essential sublattice of the Néron-Severi lattice (cf. [17], [18]), i.e.,

[^0]\[

$$
\begin{equation*}
r=\rho-2-\sum_{t \in C}\left(n_{t}-1\right) \tag{0.3}
\end{equation*}
$$

\]

where n_{t} is the number of irreducible components of $X_{t}:=f^{-1}(t)$.
If f satisfies conditions (0.1) then this is nothing but the well-known formula for the Mordell-Weil rank r (loc. cit). This justifies our definition.
0.4. A natural question arising here is to give a best possible upperbound of virtual Mordell-Weil rank and we are interested in knowing when it becomes the real Mordell-Weil rank. In a similar way as in [14, Theorem 1.3] by using Xiao's inequality ([20]), one can have the following bound for a locally non-trivial fibration $f: X \rightarrow C$

$$
\begin{equation*}
r \leq(6+4 / g) d+2(q-b)+2 g(b-1) \tag{0.5}
\end{equation*}
$$

where $d=\operatorname{deg}\left(f_{*} \omega_{X / C}\right), q=q(X)$. Moreover we can show that the equality holds only if f is a hyperelliptic fibration, all fibres of f are irreducible and $q=b$.

In the non-hyperelliptic case with $f_{*} \omega_{X / C}$ semi-stable we have a sharper bound for r due to Konno's stronger version of the slope inequality ([5, Lemma 2.5]). In the light of new results of Konno (personal communication) we know that the case of equality implies that $\operatorname{Cliff}(f)=1$, i.e., genaral fibres of f are trigonal or plane quintic (see also his recent paper [6] where he treates the non-semistable case with $\operatorname{Cliff}(f)=1)$. From the point of view of Mordell-Weil lattices the "computable" case $p_{g}=q=0$ is most interesting. In this case $r \leq 3 g+6$ (also for the number of singular fibres $s: s \leq 7 g+6$). We give two examples showing that bounds actually are sharp. It should be very interesting to get a complete description as in [15] for the maximal case.*

We can also have more precise structure theorem for the following pencils $(b=0)$:
(I) Pencils with $\chi\left(\mathcal{O}_{X}\right)=1$. In this case the bound (0.5) can be read as $r \leq 4 g+4+2 q$. We remark that the equality $r=4 g+4+2 q$ leads us to the maximal case studied in [15] by using [11, Lemma 3.1.2]. Also $s \leq 8 g+4$ and the equality $s=8 g+4$ gives us Lefschetz pencils in the constructions of [15].
(II) Pencils with $c_{1}^{2}(X)=-4(g-1)<0$. Here we have $r \leq 4 g+4-8 q$ (resp. $s \leq 8 g+4-12 q$). The maximal case is obtained as a blowing up of a pencil (resp. a Lefschetz pencil, except for $g=2 q$) on a ruled surface $\Sigma_{e}^{q} \rightarrow E, g(E)=q$ $(-q \leq e \leq g-2 q)$ whose general members are double coverings of curve E. In the maximal case the structure of the essential sublattice in the Neron-Severi lattice is uniquely determined. The proof uses the fact that in this case X is double

[^1]covering of $E \times \boldsymbol{P}^{1}$ whose branch locus is a smooth irreducible curve of numerical type $(2 g+2-4 q, 2)$ (cf. [11, Theorem 3.1 and Lemma 3.1.2]).

I am grateful to Professors T. Shioda, M.-H. Saito and K. Konno for sending me their interesting papers and valuable discussions. I would like also to thank the referee for his (her) comments and suggestions.

1. Bounds of virtual Mordell-Weil ranks

1.1. We use the following notation:
$X(Y, \gamma, B):=\operatorname{Spec}\left(\mathcal{O}_{Y} \oplus \mathcal{O}_{Y}(\gamma)^{\vee}\right)$: the double covering of a smooth surface Y with branch locus $B \sim 2 \gamma$:
$f: X \rightarrow C$: a relatively minimal fibration, not locally trivial, of curves of genus $g \geq 1$;
C : a smooth projective curve with genus b.
S : the finite set of critical points on $C, s=$ the number of S.
$\omega_{X / C}$: the relative dualizing sheaf, $d:=\operatorname{deg}\left(f_{*} \omega_{X / C}\right)$.
ω : the relative canonical class $K_{X / C}$.
$\lambda(f):=\omega^{2} / d$: the slope of f.
$\rho^{\prime}:=h^{1,1}-\rho$: the difference of the middle Hodge number $h^{1,1}$ and Picard number ρ of X. Note that ρ^{\prime} is a non-negative number by virtue of Lefschet'z theorem on algebraic cycles.
$\chi\left(X_{t}\right):=$ the topological Euler number of $X_{t}:=f^{-1}(t)$ for $t \in C$.
$e_{t}(X):=\chi\left(X_{t}\right)-(2-2 g)$: the local Euler number over $t \in C$.
n_{t} : the number of irreducible components of X_{t}.
$g\left(\tilde{X}_{t}\right)$: the genus of the normalization of X_{t}.
Recall that the ground field k is the field of complex numbers \boldsymbol{C}.
Proposition 1.2. Let $f: X \rightarrow C$ be a relatively minimal fibration as in (1.1) and r denote the virtual Mordell-Weil rank of f. Then we have

$$
\begin{equation*}
r \leq\left(4+\frac{4}{g}\right)\left[\chi\left(\mathcal{O}_{X}\right)-(g-1)(b-1)\right]+2\left[\chi\left(\Theta_{X}\right)+q-1\right], \tag{1.2.1}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
r \leq\left(6+\frac{4}{g}\right) d+2(q-b)+2 g(b-1) \tag{1.2.2}
\end{equation*}
$$

Moreover the equality in the bounds above holds if and only if

1) f is a hyperelliptic fibration with lowest slope $\lambda(f)=4-4 / g$,
2) all fibers of f are irreducible,
3) $\rho^{\prime}=0$.

Proof (cf. [14, Theorem 1.3]). First in view of Xiao's inequality $\lambda(f) \geq 4-4 / g$ ($[20$, Theorem 2]) one can put

$$
\begin{equation*}
\omega^{2}=\omega_{f}+\left(4-\frac{4}{g}\right) d \tag{1.2.3}
\end{equation*}
$$

with non-negative ω_{f}.
By an easy calculation using Leray's spectral sequence and Riemann-Roch we have

$$
\begin{equation*}
\chi\left(\mathcal{O}_{X}\right)=d+(g-1)(b-1) \tag{1.2.4}
\end{equation*}
$$

Next since $\chi(X)=c_{2}(X)=2-2 b_{1}+b_{2}$ and $b_{1}=2 q$, where b_{i} is the i-th Betti number we infer from Noether's formula

$$
h^{1,1}=b_{2}-2 p_{g}=\left(4+\frac{4}{g}\right)\left[\chi\left(\mathcal{O}_{X}\right)-(g-1)(b-1)\right]+2\left[\chi\left(\mathcal{O}_{X}\right)+q\right]-\omega_{f} .
$$

Taking into account (0.3) one obtains

$$
\begin{equation*}
r=\left(4+\frac{4}{g}\right)\left[\chi\left(\mathcal{O}_{X}\right)-(g-1)(b-1)\right]+2\left[\chi\left(\mathcal{O}_{X}\right)+q-1\right]-\omega_{f}-\sum_{t \in C}\left(n_{t}-1\right)-\rho^{\prime}, \tag{1.2.5}
\end{equation*}
$$

or equivalently (in view of (1.2.4))

$$
\begin{equation*}
r=\left(6+\frac{4}{g}\right) d+2(q-b)+2 g(b-1)-\omega_{f}-\sum_{t \in C}\left(n_{t}-1\right)-\rho^{\prime} \tag{1.2.6}
\end{equation*}
$$

Bounds (1.2.1)-(1.2.2) follow directly from (1.2.5)-(1.2.6). Moreover the equality holds if and only if

1) $\omega_{f}=0$, or equivalently, $\lambda(f)=4-4 / g$,
2) $n_{t}=1, \forall t \in C$, i.e., all fibres of f are irreducible,
3) $\rho^{\prime}=0$.

It remains to use Konno's result stating that fibrations with lowest slope $\lambda(f)=4-4 / g$ are hyperelliptic ([5, Proposition 2.6]).

Remark 1.3. As a consequence of this proposition we obtain $q=b$ in the case of the equality of bounds above ([20, Corollary 1]). If we assume moreover that f admits a global section, then this is equivalent to the triviality of K / k-trace of the Jacobian J_{F}. So r becomes the real Mordell-Weil rank and it makes sense to study the structure of Mordell-Weil lattices in this case.

Corollary 1.4. Let $f: X \rightarrow C$ be as in Proposition 1.2. Assume that r is
maximal, i.e., $r=(6+4 / g) d+2(q-b)+2 g(b-1)$. Then X is a double covering of a ruled surface $\Sigma_{e}^{b} \rightarrow C$ with smooth branch locus B and

$$
\begin{equation*}
\omega^{2}=2(g-1)[2 m-(g+1) e], \quad d=\frac{g}{2}[2 m-(g+1) e], \tag{1.4.1}
\end{equation*}
$$

where $B \equiv 2(g+1) C_{0}+2 m F_{0}$ with C_{0}, F_{0} denoting the minimal section and a fibre on Σ_{e}^{b}.

Proof. From Proposition 1.2 and Horikawa's theory it follows that X is the canonical resolution of a double cover of a ruled surface over C with simple singularities. It remains to use standard calculations with double coverings (see, e.g., [4], or [1, V, 22], cf. also §3). The fact that B is smooth follows from the irreducibility of fibres of f. Indeed, if B were singular, a fibre of f could consist of extra curves arising from the resolution of singularities.
1.5. Consider the non-hyperelliptic case and assume that $f_{*} \omega_{X / C}$ is semi-stable then one can have a sharper bound thanks to Konno's stronger version of the slope inequality ([5, Lemma 2.5]). In particular if $p_{g}=q=0$ then it is easy to see that $f_{*} \omega_{X / \mathbf{P}^{1}}$ is semi-stable (cf. [11, A.4.4]). So we have $r \leq 3 g+6$. We give here examples which show that this bound is sharp. Take a Lefschetz pencil of curves of degree m in the projective plane \boldsymbol{P}^{2}, considered in [19]. By blowing up m^{2} distinct base points from \boldsymbol{P}^{2} one obtains a smooth rational surface X with natural morphism $f: X \rightarrow \boldsymbol{P}^{1}$. The fact that f is non-hyperelliptic if $m>3$ is obvious. An easy computation shows that we have the following invariants:

1) $g=(m-1)(m-2) / 2$,
2) $\omega^{2}=3 m^{2}-12 m+9, \omega_{f}=(m-3)^{2}$,
3) $r=m^{2}-1, s=3(m-1)^{2}$.

Thus the case of $m=4,5$ gives us the equality in the bound above. It should be very interesting to describe all such fibrations (see footnote in the Introduction).
2. Pencils with $\chi\left(\mathcal{O}_{X}\right)=1$

Proposition 2.1. Let $f: X \rightarrow \boldsymbol{P}^{1}$ be a relatively minimal fibration of curves of genus $g \geq 1$ (having a section if $g=1$). Assume that $\chi\left(\mathcal{O}_{X}\right)=1$. Then we have

$$
\begin{equation*}
r \leq 4 g+4+2 q \tag{2.1.1}
\end{equation*}
$$

Moreover the equality $r=4 g+4+2 q$ implies that X is a rational surface (hence $q=0$) and f has a section. In particular, r gives actually the Mordell-Weil rank and if $g \geq 2$ we obtain the known constructions with Hirzebruch surfaces Σ_{e}, $0 \leq e \leq g$, as in [15].

Proof. In fact bound (2.1.1) can be easily followed from (1.2.1)-(1.2.2). In our special case we have $d=g$ and

$$
\begin{equation*}
\omega_{f}=\omega^{2}-4(g-1) \tag{2.1.2}
\end{equation*}
$$

is a non-negative integer.
Next (1.2.5)-(1.2.6) can be rewritten as

$$
\begin{equation*}
r=4 g+4+2 q-\omega_{f}-\sum_{t \in S}\left(n_{t}-1\right)-\rho^{\prime} \tag{2.1.3}
\end{equation*}
$$

Consequently $r \leq 4 g+4+2 q$ and the equality holds if and only if $\omega_{f}=0$, all singular fibres are irreducible, and $\rho^{\prime}=0$. Since the elliptic case $(g=1)$ is obvious we can assume $g \geq 2$. Then the condition $\omega_{f}=0$ implies that X is a ruled surface ([11, Theorem 3.1 and Lemma 3.1.2]), in particular $p_{g}=q=0$, and by the same token the rationality of X. (Note that the fact $p_{g}=q=0$ also follows from Remark 1.3). It remains to refer to [15, Theorem 4.1] for the rest of the Proposition.

Lemma 2.2. (i) For $t \in S$ one has

$$
\begin{equation*}
e_{t}(X)>0 \tag{2.2.1}
\end{equation*}
$$

except X_{t} is a non-singular elliptic curve with some multiplicity (the case $e_{t}(X)$ $=0$).
(ii) Moreover $e_{t}(X)=1$ if and only if either X_{t} is irreducible with at most one node as its singularity, or X_{t} is a curve with two smooth irreducible components C_{1}, C_{2} meeting at one point transversally such that $g\left(C_{1}\right)+g\left(C_{2}\right)=g$.

The first statement is nothing but Theorem 7 in [16, IV]. The proof of the second statement is purely technical and can be followed from the arguments in the proof of that Theorem and Lemma 4 (loc. cit.)

Corollary 2.3. Under the assumptions of Proposition 1.2 we have

$$
\begin{equation*}
s \leq(8+4 / g) d \tag{2.3.1}
\end{equation*}
$$

In the case of equality we also have (1.4.1)
Proof. First note that

$$
\begin{equation*}
\chi(X)=c_{2}(X)=\sum_{t \in S} e_{t}(X)+4(g-1)(b-1) \tag{2.3.2}
\end{equation*}
$$

(see, e.g., [16, IV, §4] or [1, III, 11.4]). Furthermore from this, (1.2.3) and Noether's formula we have

$$
\begin{equation*}
\sum_{t \in S} e_{t}(X)=\left(8+\frac{4}{g}\right) d-\omega_{f} \tag{2.3.3}
\end{equation*}
$$

It remains to use (2.2.1) to get (2.3.1). The case of equality implies that $\omega_{f}=0$. The same arguments as in the proofs of Proposition 1.2 and Corollary 1.4 show that one has (1.4.1).

Corollary 2.3.4. $\quad e_{t}(X) \leq 2\left(g-g\left(\tilde{X}_{t}\right)\right)+2\left(n_{t}-1\right)$.
Proposition 2.4. In the situation of Propositon 2.1 we have

$$
\begin{equation*}
s \leq 8 g+4 \tag{2.4.1}
\end{equation*}
$$

Furthermore every fibration with maximal number $s=8 \mathrm{~g}+4$ is a rational hyperelliptic Lefschetz pencil with a section such that $\omega^{2}=4(g-1)$.

Proof. Since $d=g$ it follows from (2.3.3) that

$$
\begin{equation*}
\sum_{t \in S} e_{t}(X)+\omega_{f}=8 g+4 \tag{2.4.2}
\end{equation*}
$$

So (2.4.2) together with (2.2.1) implies the bound (2.4.1). Moreover $s=8 g+4$ holds if and only if:

1) $\omega_{f}=0$,
2) $e_{t}(X)=1, \quad \forall t \in S$.

As in the proof of Proposition 2.1, $\omega_{f}=0$ implies that f is a rational hyperelliptic pencil. Furthermore since X is the canonical resolution of a double cover of $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ with simple singularities, singular fibres with two smooth irreducible components in the second statement of Lemma 2.2 can not occur. Thus we have a Lefschetz pencil.

Corollary 2.4.3. Let $f: X \rightarrow \boldsymbol{P}^{1}$ be as in Proposition 2.1. If $p_{g}=q>0$ then $r \leq 4 g+2 q$ (resp. $s \leq 8 g$) and the equality is possible only in case $p_{g}=q=1$.

Proof. 1) From [20, Corollary 1] and the assumption $q>0$ it follows that $\lambda(f) \geq 4$. Furthermore $\lambda(f)=4$ implies $q=1$ ([20, Theorem 3]). It remains to use (2.1.3) and (2.4.2).

Remark 2.4.4. For the detailed construction of Lefschetz pencils in Proposition
2.4 we refer to [15]. Note that those fibrations are irregular in the sense of [11, §3] if $g \geq 2$.
3. Pencils with $c_{1}^{2}(X)=-4(g-1)<0$
3.1. In this section we consider the class of pencils with $c_{1}^{2}(X)=-4(g-1)$ <0. First recall some facts from the theory of double covering of surfaces. Let B be an even reduced effective divisor on a smooth surface Y. Consider the double covering $X(Y, \gamma, B)$ with branch locus B and γ such that $B \sim 2 \gamma$ (cf. 1.1). Let $X_{C R}=X_{n} \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow X_{0}=X(Y, \gamma, B)$ be the canonical resolution of X_{0}. Putting $Y_{0}=Y, B_{0}=B$ then

1) each X_{i} is a double covering of Y_{i} with branch locus B_{i},
2) $\quad Y_{i}$ is a blowing up of Y_{i-1} at a singular point of B_{i} with multiplicity m_{i}, $i \leq n-1$,
3) B_{n} is non-singular.

Recall that X_{0} has at most rational double points as its singularities if and only if all m_{i} are less than 4 ([4, Lemma 5]).

Lemma 3.2. In the notation above we have

$$
\begin{gather*}
\chi\left(\mathcal{O}_{X_{C R}}\right)=2 \chi\left(\mathcal{O}_{Y}\right)+\frac{1}{2} \gamma\left(K_{Y}+\gamma\right)-\frac{1}{2} \sum_{i}\left[\frac{m_{i}}{2}\right]\left(\left[\frac{m_{i}}{2}\right]-1\right), \tag{3.2.1}\\
c_{1}^{2}\left(X_{C R}\right)=2\left(K_{Y}+\gamma\right)^{2}-2 \sum_{i}\left(\left[\frac{m_{i}}{2}\right]-1\right)^{2} . \tag{3.2.2}
\end{gather*}
$$

Proof. See [4, Lemma 6].
Theorem 3.3. Let $f: X \rightarrow \boldsymbol{P}^{1}$ be a relatively minimal fibbration with $g \geq 2$. Assume that

1) $c_{1}^{2}(X)=-4(g-1)$,
2) $\chi\left(\mathcal{O}_{X}\right) \geq 3-g$.

Then X is a ruled surface defined as a family $\pi: X \rightarrow E, g(E)=q$. The morphisms f and π define a 2-to-1 map from X to $Y=E \times \boldsymbol{P}^{1}$ with a branch locus B. The second projection of Y induces f and B is of numerical type $(2 g+2-4 q, 2)$. Moreover X is the canonical resolution of $X(Y, \gamma, B)$ with rational double singularities. In particular, if $q=0$ then X is a rational surface and f is hyperelliptic.

Proof. From [11, Theorem 3.1 and Lemma 3.1.2] we have known that X is a ruled surface $\pi: X \rightarrow E, g(E)=q$. The morphisms f and π define a 2-to-1 map from X to Y. So it can be easily seen that the branch locus has the desired numerical
type. It remains to show that X is the canonical resolution of $X(Y, \gamma, B)$ with rational double singularities. Indeed arguments similar to those in [8, §2] show that the natural morphism $h: X_{C R} \rightarrow X$ is a contraction of all (-1)-curves on $X_{C R}$. Now calculating $\chi\left(\mathcal{O}_{X_{C R}}\right), c_{1}^{2}\left(X_{C R}\right)$ by (3.2.1)-(3.2.2) we obtain:

$$
\begin{aligned}
& \chi\left(\mathcal{O}_{X_{C R}}\right)=1-q-\frac{1}{2} \sum_{i}\left[\frac{m_{i}}{2}\right]\left(\left[\frac{m_{i}}{2}\right]-1\right), \\
& c_{1}^{2}\left(X_{C R}\right)=-4(g-1)-2 \sum_{i}\left(\left[\frac{m_{i}}{2}\right]-1\right)^{2} .
\end{aligned}
$$

Therefore

$$
\begin{gathered}
\sum_{i}\left[\frac{m_{i}}{2}\right]\left(\left[\frac{m_{i}}{2}\right]-1\right)=0, \\
\sum_{i}\left(\left[\frac{m_{i}}{2}\right]-1\right)^{2}=0 .
\end{gathered}
$$

That is $X=X_{C R}$ and all m_{i} are less than 4 as desired.
Corollary 3.3.1. Under the assumptions of Theorem 3.3 let m be the number of critical points of π. We have

$$
(m=4 g+4-8 q) \Leftrightarrow(B \text { is a smooth irreducible curve })
$$

Theorem 3.4. Let $f: X \rightarrow \boldsymbol{P}^{1}$ be as in Theorem 3.3. Then we have

$$
\begin{equation*}
r \leq 4 g+4-8 q \quad \text { and } \quad s \leq 8 g+4-12 q . \tag{3.4.1}
\end{equation*}
$$

Moreover the equality $r=4 g+4-8 q$ implies that it is obtained by blowing up from a pencil on a ruled surface $\pi^{\prime}: \Sigma_{e}^{q} \rightarrow E, g(E)=q(-q \leq e \leq g-2 q)$ whose general members are double coverings of curve E. Furthermore in the case $2 q \neq g$ the equality $s=8 g+4-12 q$ implies the same conclusions with a Lefschetz pencil. In the maximal cases the structure of the essential sublattice in the Néron-Severi lattice is uniquely determined.

Proof. 1) The first bound in (3.4.1) is obvious since $\rho=b_{2}=4 g+6-8 q$ and by using (0.3). The second one follows immediately from Lemma 2 and

$$
\begin{equation*}
\sum_{t \in S} e_{t}(X)=8 g+4-12 q \tag{3.4.2}
\end{equation*}
$$

(cf. (2.4.2)). As a consequence we obtain $g+1 \geq 2 q$.
2) Now assume $r=4 g+4-8 q$. Then all singular fibres are irreducible. Since by Theorem 3.3, X is the canonical resolution of $X(Y, \gamma, B)$ with rational double singularities it follows that B is a smooth irreducible curve, so that $m=4 g+4-8 q$. Let us denote by $\left\{E_{i}{ }^{ \pm}\right\}_{i=1}^{4 g+4-8 q}$ the irreducible components of corresponding singular fibres of π. Obviously $E_{i}^{ \pm}$s are sections of f. After a succession of blowings down (each time one of $E_{i}^{ \pm}$which we denote simply by E_{i}) we obtain a standard ruled surface $\pi^{\prime}: \Sigma_{e}^{q} \rightarrow E$. Surface Σ_{e}^{q} has degree $-e$ and a section C_{0} such that $C_{0}^{2}=-e$. For invariant e we know that $e \geq-q$ ($[9,7]$).

Thus we have a birational morphism $\varphi: X \rightarrow \Sigma_{e}^{q}$. Setting $F^{\prime}=\varphi(F)$ the image of a smooth general fibre we may assume that F^{\prime} is also smooth and birational to F. An easy computation shows that

$$
F^{\prime} \equiv 2 C_{0}+a F_{0}
$$

where $a=g+1+e-2 q$ and $F_{0} \simeq P^{1}$ is a fibre of π^{\prime}. It means that we obtain a linear pencil of a linear system $\left|2 C_{0}+\bar{a} F_{0}\right|$ on Σ_{e}^{q} with $\operatorname{deg} \bar{a}=a$ and X is obtained as a blowing up of the base points of this linear pencil. We have to consider two cases.
(+) If $e \geq 0$ then from [2, V, 2.20] it follows that $a \geq 2 e$, or equivalently, $e \leq g+1-2 q$. Assume that $e=g+1-2 q$ then $F^{\prime} . C_{0}=0$. Let C_{0}^{\prime} be the proper transform of C_{0} by φ, one can see that $F . C_{0}^{\prime}=0$ and $C_{0}^{\prime 2}=C_{0}^{2}=-e=2 q-g-1$. In view of the irreducibility of fibres of f it is possible only if $e=2 q-g-1=0$. Hence π is a smooth fibering, that is, $X=\Sigma_{e}^{q}$. On one hand C_{0} is fibre of f by the above. On the other hand C_{0} is a section of π. This contradicts the fact that $F \cdot F_{0}=2$. We have proved $e \leq g-2 q$.
$(++)$ If $e<0$ then from [2, V, 2.21] we have known that $a \geq e$, or equivalently, $g+1 \geq 2 q$.
3) The Néron-Severi group $\operatorname{NS}(X)$ in the maximal case is as follows.

$$
\begin{equation*}
\mathrm{NS}(X) \simeq Z \cdot C_{0} \oplus Z \cdot F_{0} \oplus\left(\oplus_{i}^{4 g} \underline{\underline{g}}_{1}^{+4-8 q} Z \cdot E_{i}\right) \tag{3.4.3}
\end{equation*}
$$

where we denote total transforms of C_{0}, F_{0} under φ by the same letters. We have a relation

$$
\begin{equation*}
F \sim 2 C_{0}+\bar{a} F_{0}-\sum_{i=1}^{4 g+4-8 q} E_{i} \tag{3.4.4}
\end{equation*}
$$

4) One can show easily the assertions for s with adding the Lefschetz property to the pencinls. In fact since $e_{t}(X)=1$ and $g \neq 2 q$ we see that a singular fibre with two smooth irreducible componnents C_{1}, C_{2} with $g\left(C_{1}\right)+g\left(C_{2}\right)=g$ (cf. Lemma 2.2) does not appear. Since X is the canonical resoluton of $X(Y, \gamma, B)$, one obtains $g\left(C_{1}\right)=g\left(C_{2}\right)=q$, that is impossible by the assumption $g \neq 2 q$. Thus arguing as above we get decomposition (3.4.3). Therefore in the case $s=8 g+4-12 q$ (even without the condition $g \neq 2 q$) the structure of the essential sublattice in the

Néron-Severi lattice is uniquely determined.
Corollary 3.4.5. Let $f: X \rightarrow \boldsymbol{P}^{1}$ be as in Theorem 3.3. Assume that all singular fibres are irreducible, then

$$
s \geq 8+\frac{4 q-4}{g+1-2 q}
$$

In particular we have $s \geq 7$ and if either $q \geq 1$, or $q=0$ and $g \geq 4$, then $s \geq 8$.
Proof. By virtue of the Riemann-Hurwitz formula one sees that $g\left(\tilde{X}_{t}\right) \geq 2 q-1$ (Note that since S is not empty we get another proof of estimate $g+1>2 q$). The corollary now follows easily from (3.4.2) and Corollary 2.3.4.
3.5. The maximal case with rational base $q=0$ leads us to known constructions with Hirzebruch surfaces Σ_{e}. As a rule for constructing examples with maximal numbers s, r we need the very ampleness of linear system $\left|2 C_{0}+\bar{a} F_{0}\right|$ on Σ_{e}^{q} (cf. [15]). In general one can construct certain examples with maximal numbers $r=4 g+4-8 q, s=8 g+4-12 q$ under some conditions with respect to e.

Note that linear system $\left|2 E+\bar{a} \boldsymbol{P}^{1}\right|$ on $\boldsymbol{P}^{1} \times E$ with $\operatorname{deg} \bar{a}=a=g+1-2 q$ is very ample if $a \geq 2 q+1$. This gives an example with $e=0$. In fact one can prove the following proposition.

Proposition 3.5.1. If $4 q \leq g$, then for $-q \leq e \leq \frac{(g+1)}{2}-2 q$ linear systems $\left|2 C_{0}+\bar{a} F_{0}\right|$ with $\operatorname{deg} \bar{a}=a=g+1+e-2 q$ are very ample on Σ_{e}^{q}.

Proof. Denote by $\mathscr{L}=\mathcal{O}\left(2 C_{0}+\bar{a} F_{0}\right)$ and consider any two (possibly coinciding) points P_{1}, P_{2} on Σ_{e}^{q} being contained in fibres F_{1}, F_{2} respectively. As is well known, to prove the very ampleness of \mathscr{L} it suffices to show:

$$
\begin{equation*}
H^{1}\left(m_{i} \otimes \mathscr{L}\right)=H^{1}\left(m_{1} m_{2} \otimes \mathscr{L}\right)=0, \tag{*}
\end{equation*}
$$

where m_{i} is the ideal sheaf of P_{i}.
On the other hand due to two exact sequences

$$
\begin{aligned}
0 \rightarrow \mathscr{L}\left(-F_{i}\right) \rightarrow m_{i} \otimes \mathscr{L} & \rightarrow m_{i} \otimes \mathscr{L} / \mathscr{L}\left(-F_{i}\right) \rightarrow 0 \\
0 \rightarrow \mathscr{L}\left(-F_{1}-F_{2}\right) \rightarrow m_{1} m_{2} \otimes \mathscr{L} & \rightarrow m_{1} m_{2} \otimes \mathscr{L} / \mathscr{L}\left(-F_{1}-F_{2}\right) \rightarrow 0
\end{aligned}
$$

one can see easily that the vanishing statement (*) follows from the following two statements:

1) the corresponding to (*) vanishing statement for \mathscr{L} restricted on fibres of $\pi^{\prime}:$ it is easy since $\operatorname{deg} \mathscr{L}_{\mid F_{i}}=2$ and $F_{i} \simeq \boldsymbol{P}^{1}$ so that $\mathscr{L}_{\mid F_{i}}$ is very ample on F_{i},
2) $H^{1}\left(\mathscr{L}\left(-\bar{b} F_{0}\right)\right)=0$ for any effective divisor \bar{b} on E with $\operatorname{deg} \delta \leq 2$.

For the second statement by virtue of the Kodaira-Ramanujam vanishing theorem ([13]) it suffices to verify the numerical positivity of divisor $D \equiv 2 C_{0}$ $+(a-2) F_{0}-K_{\Sigma g}$. Here are standard calculations using [2, V, 2.20-2.21].
(i) Since $g \geq 4 q$ by the assumption we have $D^{2}=8(g+1-4 q)>0$.
(ii) Case $e \geq 0$: let $C^{\prime} \equiv b C_{0}+c F_{0}$ be an irreducible curve ($b>0, c \geq b e$) then from the condition for e we have

$$
\begin{gathered}
D \cdot C_{0}=g+1-4 q-2 e \geq 0, \\
D \cdot C^{\prime}=-4 b e+b(g+1+2 e-4 q)+4 c \geq-4 b e+b(g+1+2 e-4 q)+4 b e>0 .
\end{gathered}
$$

(iii) Case $e<0$: for an irreducible curve $C^{\prime} \equiv b C_{0}+c F_{0}$ we have $(+)$ either $b=1, c \geq 0$, so that

$$
D \cdot C^{\prime}=-4 e+(g+1+2 e-4 q)+4 c>-4 e+2 e=-2 e>0,
$$

$(+)$ or $b \geq 2,2 c \geq b e$, and here

$$
D \cdot C^{\prime}=-4 b e+b(g+1+2 e-4 q)+4 c>-4 b e+2 b e+2 b e=0 .
$$

This completes the proof.
Remark 3.5.2. If $q=1$ then using [2, V , exer.2.12] it is easy to verify that the linear systems above are very ample if $-1 \leq e \leq g-6$.

Remark 3.5.3. In fact the method in the proof of Proposition 3.5.1 enables us to establish the very ampleness of the divisor $a_{0} C_{0}+\bar{a} F_{0}$ on Σ_{e}^{q} with

$$
a_{0}>0, \quad a \geq \max \left\{\frac{a_{0} e+1}{2}+2 q,\left(a_{0}+1\right) e+2 q\right\} .
$$

This is not sharp in general. The only case where it gives sharp estimates is $e=q=0$ (cf. [2, V, 2.18]).
3.6. From the very ampleness of $\left|2 C_{0}+\bar{a} F_{0}\right|$ in a similar way as in [15] one can find a Lefschetz pencil of this linear system such that $4 g+4-8 q$ distinct base points $p_{1}, \cdots, p_{4 g+4-8 q}$ do not lie on C_{0} and any two of them are not on the same fibre of π^{\prime}. By blowing up the base points we obtain the desired fibration $f: X \rightarrow \boldsymbol{P}^{1}$ with maximal numbers r and s. Indeed if we denote by $\left\{E_{i}\right\}_{i}={ }_{1}^{4 g}{ }^{+4-8 q}$ the exceptional curves dominating points $\left\{p_{i}\right\}_{i=1}^{4 g+4-8 q}$ respectively then for the Néron-Severi group $\mathrm{NS}(X)$ we have decomposition (3.4.3) with relation (3.4.4). Therefore $\rho=4 g+6-8 q$, and by (0.3) $r=4 g+4-8 q$. Furthermore it is easy to see that $c_{1}^{2}(X)=-4(g-1)$. So (3.4.2) implies $s=8 g+4-12 q$.

Remark 3.6.1. Examples with $q=1$ give us the best upper bound of the
self-intersection of curves on irrational ruled surfaces (cf. [3]).
Note Added in Revision. A part of results presented here remains valid in positive characteristic (at least, $\neq 2$) due to Moriwaki's version of the Cornalba-Harris-Xiao inequality in any characteristic (cf. [10]). We will come back to this theme in the other occasion.

References

[1] W. Barth, C. Peters, A. Van de Ven: Compact complex surfaces, Springer-Verlag, 1984.
[2] R. Hartshorne: Algebraic Geometry, Springer-Verlag, 1977.
[3] R. Hartshorne: Curves with high self-intersection on algebraic surfaces, Publ. Math. IHES, 36 (1969), 111-125.
[4] E. Horikawa: On deformations of quintic surfaces, Invent. Math., 31 (1975), 43-85.
[5] K. Konno: Non-hyperelliptic fibrations of small genus and certain irregular canonical surfaces, Annali, Scuola Normale, Serie IV XX, 4 (1993), 575-595.
[6] K. Konno: A lower bound of the slope of trigonal fibrations, Internat. J. Math., 7 (1996), 19-27.
[7] M. Maruyama: On classification of ruled surfaces, Kyoto Univ.,Lectures in Math. 3, Kinokuniya, Tokyo, 1970.
[8] S. Matsusaka: Some numerical invariants of hyperelliptic fibrations, J. Math. Kyoto Univ., 30-1 (1990), 33-57.
[9] M. Nagata: On self-intersection number of a section on a ruled surface, Nagoya Math. J., 37 (1970), 191-196.
[10] A. Moriwaki: Bogomolov conjecture over function fields for stable curves with only irreducible fibers, to appear in Comp. Math..
[11] K.V. Nguyen: On Beauville's conjecture and related topics, J. of Math. of Kyoto Univ., 35-2 (1995), 275-298.
[12] K.V. Nguyen and M.-H. Saito: On Mordell-Weil lattices of non-hyperelliptic fibrations on surfaces with $p_{g}=q=0$, Manuscript 1995.
[13] C.P. Ramanujam: Remarks on the Kodaira vanishing theorem, J. of Indian Math. Soc., 36 (1972), 41-51, 38 (1974), 121-124.
[14] M.-H. Saito: On upperbounds of Mordell-Weil ranks of higher genus fibrations, Proc. of the Workshop "Hodge Theory and Algebraic Geometry", Hokkaido Univ., June 20-24, 1994, Juten Lect. Notes $\mathrm{N}^{0} 10,26-35$.
[15] M.-H. Saito and K.-I. Sakakibara: On Mordell-Weil lattices of higher genus fibrations on rational surfaces, J. of Math. of Kyoto Univ., $34-4$ (1994), 859-871.
[16] I.R. Shafarevich et al.: Algebraic surfaces, Proc. Steklov Inst. Math., 75 (1965), transl. by Amer. Math. Soc. (1967).
[17] T. Shioda: On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli, 39 (1990), 211-240.
[18] T. Shioda: Mordell-Weil lattices for higher genus fibration, Proc. Japan Acad. 68A (1992), 247-250.
[19] T. Shioda: Generalization of a Theorem of Manin-Shafarevich, Proc. Japan Acad. 69A (1993), 10-12.
[20] G. Xiao: Fibered algebraic surfaces with low slope, Math. Ann., 276 (1987), 449-466.

Institute of Mathematics
P.O. Box 631 BoHo
10000 Hanoi, VIETNAM
e-mail: nkviet@thevinh.ac.vn
Current address:
Department of Mathematics
Faculty of Science
Kyoto University
Kyoto 606-01, Japan

[^0]: The author was supported partially by JSPS and the National Basic Research Program in Natural Sciences of Vietnam.

[^1]: *A full account of this situation is now in preparation ([12]).

