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1. Introduction

Let Q be an open set in R* and L be a second order partial differential
operator defined in Q of the form

d d\? 0 b
(1.1) L=f (x,y)<a(x,y)—a + b(x,y)—> + c(x,y)—+d(x,y)—+ g(x,).
x dy Ox dy

In this paper we give necessary and sufficient conditions for hypoellipticity of L
under the following assumptions:

(H.1) f, a, b, ¢, d and g are real valued analytic functions defined in Q;

(H.2) the operators ad/dx+bd /0y and cd/0x+do/dy are independent in Q, that
is, ad—bc#0 in Q.

We recall that L is said to be hypoelliptic in Q if for any open subset @ of Q and any
ue D'(w), Lue C*(w) implies ue C*(w).
Set
0 0 0 0

1.2 X=a—+b—, Y=c—+d—.
(1.2) ox 0Oy cax Oy

Then we have the following theorem.

Theorem. Suppose that (H.1) and (H.2) hold. Then, L is hypoelliptic in Q if and
only if
(A) Xf(x,y)=0 for any (x,y)eQ such that f(x,y)=0,
(B) f does not vanish identically on any integral curve of Y,
(C) f does not change sign from plus to minus along any integral curve of Y,

where we consider Y as a vector field in Q.

The necessity of (A) and (B) follows from Theorem ILI (iii) and Theorem ILI
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(i) of [14] respectively, and the necessity of (C) follows from Theorem 1.2 of
[2]. For details see §2.

It is already proved in [11], [5], [9] and [4] that (A), (B) and (C) are sufficient
for hypoellipticity of L in Q if one of the following four conditions is satisfied:
() f(x,»)20 in Q or f(x,y)<0 in Q (cf. [11]);

(i) X=a(x,y)0/0x, Y=0/0y and f(x,y)=ya(x,y) in Q, where a(x,y) is a real valued
analytic function defined in Q and a(x,y)=0 there (cf. [5]);

@) f(x,y)=(x,)Ph(x,y) in Q with some real valued functions ¢,he C*(Q) and
an integer p=3, where h(x,y)20 in Q and ¢~ !(0) is a finite union of C'-curves
(cf. [91)

(iv) Yf(x,y)>0 for any (x,y)eQ such that f(x,y)=0 (cf. [4]).

With regard to the condition (iv) see also [3].

Our proof of the sufficiency of (A), (B) and (C) will be given in §3 and §4 by
considering the above cases (i), (i) and (iii). In case 3 of §3 we shall adopt the
reasoning of [9] with several auxiliary lemmas, and among them the results of
Lemma 3.2 relating to (iii) will play an essential role.

2. Necessity of (A), (B) and (C)

In this section we shall prove that (A), (B) and (C) hold if L is hypoelliptic
in Q. We write

(2.1)  L=f(a*3*/0x*+2abd* | 0xdy +b*0* | 0y*)+(faa, + fba,+ c)d | 0x
+(fab,+fbb,+d)d/0y+g
=0/0x(fa*d/dx+fabd/dy)+0/dy(fabd | ox+fb*d/dy)
+[e—{(fa)s+(fb),}al0/ 0x + [d—{(fa).+ (f]),}b]0/ Dy +¢g.
By the assumption (H.2), |a|+]b|#0 and |c|+|d]#0 in Q. Hence
|fa?|+|2fabl+|fb*|+|faa, +fba,+c|+|fab,+[bb,+d|
=|f1(lal+bI)* + | f(aa, + ba,) + c|+ | f(ab,+ bb,) +d| #0 in Q.

This shows that the N. T. D condition of [14] is fulfilled and we can apply
Theorem ILI of [14] to the operator L.

Proof of (A). (A) follows immediately from (2.1) and Theorem ILI (iii) of [14].

Proof of (B). The proof is by contradiction. Suppose that there exists an
integral curve I" of Y where f vanishes identically. Let p be a point on I Then
we have

2.2) Y"f(p)=0 for all non-negative integers n.
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Now we set Qo =[c— {(fa), + (fb),}ald/dx + [d — {(fa)s + (fB),}610/ 2y, O,
=fa*d/dx+fabd/dy and Q,=fabd/ox+fb*0/dy. Since f=0 on T, it follows
from (A) and (1.2) that (fa),+(fb),=Xf+fa,+fb,=00onT. Therefore Y=Q,onT
and we have by (2.2)

(2.3) Qif(w)=0 for all non-negative integers n.

On the other hand, according to Theorem ILI(ii) of [14], the hypoellipticity
of L implies that

(24) rank Lie [Q0,0:,0,](p)=2,
where Lie [Qy,Q,,0Q,] is the Lie algebra generated by Q,, Q; and Q,.

RemMARK. Theorem ILI(ii) of [14] states that rank Lie [Q,0,,0,](r)=2 with
O=(faa,+fba,+c)0/0x+(fab,+fbb,+d)d/dy. But its proof indicates that (2.4)
holds. Compare two expressions of L in (2.1).

Successive use of the formula: [W,¢pZ]=¢[W,Z]+(W¢)Z, where W and Z
are first order operators with smooth coefficients, ¢ is a smooth function and [,]
denotes the Lie bracket, yields that any element of Lie [Q,,Q,,0,] is of the form:
hQo+fMy+(Qof )M, +---+(Q% f)M,, where h is a real analytic function in Q, k
is a non-negative integer, and M,,i=0,---,k, are first order operators in Q with real
analytic coefficients. Hence, in virtue of (2.3), Lie [Q,,0;,Q0,](p) is generated by
Qo) and so rank Lie [Q,,0,,0,](p)<1 which contradicts to (2.4). Thus we
obtain (B).

Proof of (C). The proof is by contradiction. Suppose that f changes sign
from plus to minus along an integral curve I':(x(¢),)(t)), t, <t<t,, of Y. We set

(2.5) RO)=f(x(.0(0), 1, <t<t,.

K1) is real analytic on (¢,,¢;) and changes sign from plus to minus when ¢
increases. Therefore there exist ¢,,¢, <t,<t,, a constant ¢<0 and an odd integer
q>0 such that

(2.6) At)=c(t—t,)1+ O((t—1,)*" ).

Set (x,,y,)=(x(,),1(t,)). It follows from the hypothesis (H.2) that |a(x,,y,)|
+|b(x,,y,)| #£0. Without loss of generality we may suppose that

2.7 a(x6,,) #0.

Let x=¢,(u,v) and y=¢,(u,v) be the solutions of the initial value problem
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dx d
= a(x,y)’ __’}_)

2.8
28) du du

=b(x’y)a x|u=0=xo’ y|u=0=ya+v'

Then it is obvious that ¢,(u,v) and ¢,(u,v) are real analytic functions defined in an
open neigborhood of (0,0). Since d(¢,,¢,)/0WU,V)l,=p=0=0a(x,y,) #0 by (2.8) and
(2.7), we can introduce the coordinate transformation

0. J¥=91(0)
= ¢2(u: l))

from an open neighborhood @, of (0,0) in the uv-plane to an open neighborhood
w, of (x,,y,) in the xy-plane. The operator L is transformed by ® to the operator

~ 0? 0 0
L =.i'(u’ U)——— + E(u: U)— + a(ua U)— + g~(u’ U)a
ou? ou ov

Where 7(“5 U) =f(¢1(u,v)a ¢2(u>v))’ g(us U)=g(¢ l(u,v)» ¢2(u,v)), a/au=(q)_ l)*X and
¢0/ou+do/ov=@""),Y. From the hypothesis (H.2) it follows that /du and
¢0/0u+do/dv are independent in @,, that is,

2.9) du,v)#0, (u,v)ed,

Let I be the image of ' by ®~!. Then I is the integral curve of ¢d/du+dd | év
through (0,0), and we have

(2.10) Tle=f@. ), 1 <1<ty

where ¢, <t|<t,<t,<t,. Now we consider the operator

,_Taz o 0 § . &
dou

L="_"—+-—+_+% in
2 dou ov d

1
d
It is clear that

1.
(2.11) Z’L is hypoelliptic in  @,.

Let T be the integral curve of &/dd/du+d/dv through (0,0). Then I” coincides
with T" except for parametrization. From (2.9) we see that 4>0 in @&, or d<0 in
@, if we shrink @, to (0,0). In the former case I has the same direction as ", and in
the latter case the opposite one. Therefore, by (2.6) and (2.10), f/d changes sign
from plus to minus along I in a neighborhood of (0,0). Hence, denoting T by
(u(v),v), |v|<e, (¢,>0 is small), we see that there exist a constant ¢'<0 and an odd
integer ¢’ >0 such that f{u(v),v) / du(v),v)=c'v? + O@? *1), |v| <e,, because fu,v)/ dlu,v)
is real analytic in @, and u(v) is real analytic on (—¢,¢,). Then, according to
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Theorem 1.2 of [2], L/d is not hypoelliptic in &, which contradicts to (2.11). Thus
we obtain (C).

3. Sufficiency of (A), (B) and (C): special case

In this section we shall prove that the conditions (A), (B) and (C) are sufficient
for L to be hypoelliptic in Q when

3.1 b(x,y)=c(x,y)=0 and d(x,y)=1, (x,y)eQ.

Then we can write

o\ 0 0
(32) L=fla—) +-+8=—0i+0o+8
Ox dy ox

where Q,=(—f.a*—faa)0/0x+0/dy, Q,=fa*d/ox.

Here we list up the properties that f, a and g have. By the assumptions (H.1)
and (H.2) it holds respectively that

(3.3) f, a and g are real valued and analytic in Q,

(34) alx,y)#0, (x,y)eQ,

and by (A) with (3.4) above, (B) and (C) it holds respectively that
(3.5) filx,y)=0 for any (x,y)eQ such that f(x,y)=0,

(3.6) for any xe R and any interval  such that {x} x I < Q, the function y — f(x,y)
does not vanish identically on I,

(3.7) for any xe R! and any interval I such that {x} x I = Q, the function y — f(x,y)
does not change sign from plus to minus when y increases on /.

Lemma 3.1. Let Q, and Q, be the first order operators introduced in (3.2). Then
rank Lie [Q,,0,1(p)=2, peQ, where Lie [Q,,Q,] is the Lie algebra generated by

Qo and Q,.

Proof. Let p be an arbitrary point in Q and let T':(x(2),1(?)), t,<t<t,
(t; <0<t,), be the integral curve of Q, such that p=(x(0),y(0)). Suppose that f=0
on I'. Then, by (3.5), —f.a>—faa,=0 on I'. Hence I is the straight line parallel
to the y-axis and f=0 there, which contradicts to (3.6). Thus it has been shown
that f does not vanish identically on T". Therefore, since f(x(¢),)(¢)) is real analytic
on (t,t,), it holds that there exists an integer n=0 such that
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06/ (p)=d* | dtf(x(8), (M=0=0, k=0,---n—1, and
o (p)=d"/dt"f(x(0), (D)= #0.
By using the formula: [W,¢Z]=¢[W,Z]+(W¢)Z repeatedly, where W and

Z are first order operators with smooth coefficients and ¢ is a smooth function,
we have

(3.8)

n—1
(ad Qo)"Qs = ‘ZO 0u(fa*)Z;+ Qy(fa*)d / ox,

where (ad A)B=AB— BA for any operators 4 and B, and Z,, i=0,---,n— 1, are first
order operators with smooth coefficients. Hence, in virtue of (3.4) and (3.8),
(ad Q,)"Q,=cd/0x at p with a constant ¢#0, and so Q, and (ad Q,)"Q, are
linearly independent at p which proves the Lemma.

Here we remark that hypoellipticity is a local property, that is, L is hypoelliptic
in Qif and only if for any p € Q there exists an open neighborhood w, of p such that L
is hypoelliptic in w,.

Let p be an arbitrary point of Q. For the sake of simplicity we let
p=(00). Setting for r,r,>0

(39 D, ,,= {0y |x|<ry, yl<r,}
we must show that

(3.10) L is hypoelliptic in D, ,, for sufficiently small ry, r,.

Sr2

In virtue of (3.3) and (3.6) we can write with a constant a#0 and an
integer k>0

(3.11)  f0,)=oy*+0(** ), |y|<r, for sufficiently small r>0.

Furthermore, by the Weierstrass preparation theorem, we can write for sufficiently
small r>0

(312) f(x,}’) = q(x’y)ylF(x’y)a (xay) € Dr,r s

where

(3.13) g(x,y) is a real valued analytic function in D,, and ¢(x,y)#0, (x,y)eD,,,
(3.14) Ax,y)=y"+a,_(x)y" '+ +ayx), (x,»)€D,,,

(3.15) [ and m are non-negative integers and /+m=k,

(3.16) a(x),i=0,---,m—1, are real valued analytic functions on (—r,r) and a;(0)=0,
i=0,---,m—1,
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(3.-17) ag(x)#0 on (—r,r).

We shall divide the proof of (3.10) into three parts: Case 1, Case 2 and Case 3.

Case l: kiseven. Leta>0in (3.11). Then we can take r, and r,, 0<r,r, <r,
so small that f(x,—r,)>0, |x|<r,. Therefore it follows from (3.7) that f(x,y)=0,
(x,y)eD,,,,. Combining this with (3.3) and Lemma 3.1, we see from Theorem
2.8.2 of [11] that L is hypoelliptic in D, ,,.

Next let «<0 in (3.11). Then we can take r, and r,, 0<r,r,<r, so small
that f(x,r,)<0, [x|<r,. Therefore it follows from (3.7) that f(x,y)<0, (x,y)eD,, ,.
By the change of variables: x'= —x, y'=—y, L is transformed to the operator
L'=f(—x,—yYa(—x',—y)0/0xy*—0/dy +g(—x',—y') and —L' is hypoelliptic in
D,,,, by the previous argument. Hence L is hypoelliptic in D, ,,.

Case 2: k is odd and /is odd. Since k is odd, it follows from (3.11) and (3.7)
that «>0. On the other hand, it follows from (3.11)<3.16) that ¢(0,y)y*
=ay*+0(**!). Therefore ¢(0,0)=0>0 and so we have by (3.13)

(3.18) qx,»)>0, (x,y)eD,,.

Since ay(x) is analytic on |[x|<r and ay(x)#0 there by (3.16) and (3.17), there
exists ry, 0<r, <r, such that a,(x)#0, 0<|x|<r,. Suppose that ay(x,) <0 for some
x,, 0<|x,|<r;. Then Hx,y)<0 for sufficiently small y and so f(x,y)=
q(x,,y)y'F(x,,y) changes sign from plus to minus when y increases near 0, because
q(x,,y)>0 by (3.18) and / is odd by the hypothesis. This contradicts to (3.7) and
S0 ay(x,)>0 which implies that ay,(x)>0, O0<|x|<r,. Hence, for any fixed x,,
0<|x,| <r;, there exists ', 0<r' <r, such that Fx,,y)>0, |[y|<r' (' may depend on
x,). Hence f(x,,y) = q(x,:y)y' Fx,,y) >0 on 0<y <r" and f(x,,y) = q(x,,y)y'F(x,,y) <O
on —r'<y<0, because / is odd by the hypothesis and g(x,,y)>0 on |y|<r' by
(3.18). Then it follows from (3.7) that f(x,y)=0, O<y<r and f(x,y)=0,
—r<y<0. This implies that F(x,,y)=0, [y|<r. Since x,, 0<|x,|<ry, is arbitrary
we obtain

(3.19) Hx,»)20, (x,y)eD,,,.

Taking into account that / is odd, we see from the Example 2 of [5] that
(3.12)«3.14), (3.18) and (3.19) yield that L is hypoelliptic in D,,,, with r,=r.

Case 3: k is odd and [ is even (hence m is odd). As in the Case 2 it holds
that «>0 and

(3.20) q(x,)>0, (x,y)eD,,.

Since >0 and k is odd by the hypothesis, it follows from (3.11) that there exist
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p, and p,, 0<p,;p,<r, such that f(x,—p,)<0 on |x|<p, and f(x,p,)>0 on
|x|<p,. Hence, from (3.12), (3.20) and the fact that / is even by the hypothesis,
we have

(3.21) Fx,—p,)<0 on |x|<p; and F{x,p,)>0 on |x|<p,
and, moreover, in virtue of (3.7) it holds that

(3.22) for any xe[—p,,p,]), the function y — F(x,y) does not change sign from
plus to minus when y increases on [ —p,,p,].

Then it is not difficult to see that

(3.23) there exists a unique continuous function A(x) defined on [—p,,p,] such
that 4(0)=0, |Ax)| <p, on |x| < p,, Ax,y) <0 in {(x,p)| IX|Spy, —p,Sy<Ax)}
and Fx,»)20 in {(x,y)| x|Sp,, AX)Sy<p,}.

The uniqueness follows from the fact that the function y — F(x,y) does not vanish
identically on any sub-interval of [ —p,,p,]. We define A(x) as sup{y,e[—pap,]l

F(x,)<0 on —p, Sy=y,}.

Lemma 3.2. There exist ry, r, (0<r,<p,, 0<r,<p,) and real valued analytic
Sfunctions ¢(x,y), h(x,y) in D, , such that

ri,r2

(324 fx.y)=d(x.y)h(x,y), (x.y)€D,,,,;

(3.25) h(x,y)20, (x,y)eD

(3.26) |Ax)<ry, xe(—ryry);
(327) ¢(x,y)<0 in {(x,y)eD,,,, |y SAUx)} and ¢(x,y)20 in {(x,y)€D,,,, |yZAx)};
(3.28) A(x) is real analytic on 0<|x|<r,;

(3.29) for any fixed ye[ —r,,r,], the number of x’s on [ —rq,r] satisfying A(x)=y
is less than or equal to M, where M is the order of zero of the function
ay(x) at x=0.

Proof. We consider a factorization of F(x,y). Let A, be the ring of germs
of real valued analytic functions of x at x=0, and let 4,[y] be the polynomial
ring of A, It is well-known that A, and A,[y] are unique factorization
domains. We regard F(x,y) as an element of 4 [y]. Then there exist irreducible
polynomials P,,---,Pye A,[y], P;#P; (i#j), and positive integers m,,---,my such
that F=P7'... PR, Since F is a monic polynomial of y, we may suppose that
P, i=1,--- N, are also monic polynomials of y of degree p;=1. Since P; and
0P,/ dy are relatively prime, their resultant w;, w;€ A4,, is not equal to 0, and there
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exist G;, H;e A,[y] such that G;P;+ H,0P;/dy=w;. Furthermore, since P; and P;
(i#)) are relatively prime, their resultant w;;, ; ;€ 4,, is not equal to 0, and there
exist G, ;, H; je A,[y] such that G;;P;+ H, ;P;=w, ;.

We choose ry, 0<r;<p,, so small that w;, w;; and all coefficients of F, P,,
G;, H;, G;j and H,;, 1<i#j<N, are real valued analytic functions defined on
(—ryry) and they can be extended analytically to the complex domain {zeC]|
lzl<ry}. Then we can regard F, P;, G;, H;, G,; and H,;, 1<i#j<N, as analytic
functions defined in D={(z,w)e C?| |z|<r,, |w|< o0}, and w;, w;j, 1Si#j<N, as
analytic functions defined in |z|<r,. Of course, F(z,w), P(z,w), G{z,w), H(z,w),
G, (z,w) and H; (z,w), | i#j< N, are polynomials of w. Then we have by choosing
r, smaller if necessary

(3.30) Flz,w)=P,(z,w)™ -+ Pyz,w)™ in D={(z,w)e C?| |z|<ry, [W|<c0};

(3.31) Gz,w)P{z,w)+ H{z,w)0P(z,w)/ Ow=w{z) in D, and w(z)#0 in 0<|z|<r,,
1<i<N;

(3.32) G, f(z,w)P{z,w)+ H, j(z,w)P(z,w)=w; (z) in D, and w; (2)#0 in 0<|z|<r,,
1<i#j<N,

(3.31) and (3.32) imply respectively that

(3.33) for any fixed z, 0<|z|<r,, the equation P(z,w)=0 has no multiple roots,
1<iZN;

(3.34) for any fixed z, 0<|z|<r,, the equations P(z,w)=0 and Pjz,w)=0 have no
common roots, 1<i#j<N.

We set At ={zeC| |z|<r,, Rez>0} and fix x,€(0,r,). In virtue of (3.33) the
equation P(x,,w)=0 has distinct roots «; ;,---,; ,. Since the coefficients of P(x,,w)
as a polynomial of w are real, it is possible to choose v;, 0=<v,<y;, so that
i gm0y, are realy o, g0, are not real and o =0, j=vi+1,
v;+3,--,u;—1. Here we let v;=0 if the equation Py(x,,w)=0 has no real roots. It
follows from (3.33) and the implicit function theorem that there exist r,,
0<r,<min(x,,r, —x,), and analytic functions w; {(z),-:-,w; ,(z) defined in B,={ze C|
|z—x,|<r,} such that wi,k(xo)=ai,k(1 Sksp), Pz,w;(2))=0 in B, (1=k=y), and
wi(2)#w; {(z)in B, (1<k#j<u;). Itisobvious that the functions w; \(x), k=1,---,v;,
are real valued on (x,—r,x,+r,). In virtue of (3.33) we can extend w;(z),
k=1,--,u, to analytic functions A;,(z), k=1,---,p;, defined in A* such that
Aipd2)# A f2) in AT (1Zk#j<p). This fact is well-known in the theory of analytic
functions. Hence we have

Px,y)=0—4i,1(x)) - (0 — 4i, (%), (x,9)€(0,r1) X (— 00, 00).

The functions A, ,(x), k=1,---,v;, are real valued on (0,r;), because 1, (z),
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k=1,---,v;, are the analytic extensions of w;,(z), k=1,---,v;, and w; (x), k=1,---,v;,
are real valued on (x,—r, x,+7,). On the other hand, it is easy to see that 1, (),
j=vi+ 1o, are analytic in A*. Since Z;;4,(x,)=04 4+ =0 ;=4 [x,) and
Pi(-xa/li.j+l(x_))=Pi(xJ'i.j+l(x))=0=Pi(x’}'i,j(x)) on (0,ry), j=vi+1,v;+3, -, p;—1, it

Jj=v;i+Lv;+3,--,4;—1, on an open interval containing x,. Therefore, by the
coincidence theorem, 2 ;.,(Z)=24 (2), j=vi+1,v;+3,-,u;—1, in A*, and so
Lijr 1) =4 (), j=vi+ Ly +3,,u;—1, on (0,ry).

We note that Im 4; (x)#0, j=v;+1,---,u;, on (0,ry), since 4, ;, ((x)=4; {x) and
)Li,j+1(x)7é'1i,j(x)aj;vi+la"i+3,""ﬂi_1, on (0,r,). Then (y_/li,j(x))(y_)'i,j+1(x))
= =4 )y =24 (x)>0, j=v;+1,v;+3,--,;—1, in (0,ry) x (—00,00). Hence

(3.35) Pix,p)=(0—2;1(x) - (r— 24, () Qilx,y) in  (0,ry)x(—00,00),
where
(3.36) Qix,y)= ‘ H _(V =2 (x)>0 in (0,ry)x(—00,00).

Here we take (y —4; ((x))--- (¥ —4;,,(x)) to be equal to 1 in (0,r,) x (— o0, 00) if v;=0,
and Qy(x,y) to be equal to 1 in (0,r;) x(—o00,00) if v;=pu,.
It follows from (3.30), (3.35) and (3.36) that

(3.37) [T {0—=2:G) =4, LD}™

1<iSN

=Fx,y) [] Qdxy)™ in (0,ry)x(—00,00),

1<isN
and from (3.22) and (3.36) that

(3.38) for any fixed x€(0,r,), the left-hand side of (3.37), as a function of y, does
not change sign from plus to minus when y increases on [ —p,,p,].

We have by (3.33) and (3.34)
(3.39) Aip(x) # Ay (x)  for all xe(O,ry) if (i,k)#( k).

Since li_IB)F(x,w)zwm uniformly on |w|=p, by (3.14) and (3.16), it follows from
Rouché’s theorem that for sufficiently small r, >0

(3.40) X)) <p, for all xe(0,ry), 1SiSN, 1Sk=Sy,

Combining (3.38) with (3.39) and (3.40) we see that

(3.41) there exists at most one i, 1 i< N, such that m; is odd and v;>1;
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(3.42) v;=1 if m; is odd and v,=1.

Since m=p,m, + ---+ uymy by (3.14), (3.30) and the definition of u;, and m is odd
by the assumption of Case 3, there exists i,, | <i,< N, such that u; m; is odd. Then
Wi, and m;_ are odd, and moreover, v; =1 because y; —v;_ is even from the definition
of v;. Hence v;,=1 by (3.42). On the other hand, suppose that um; is odd with
i#i, Then m; is odd and v;=1 by the previous argument, which contradicts to
(3.41). Thus it has been proved that

(3.43) there exists a unique i, 1<i,<N, such that y; m; is odd;

(3.44) v, =1.

Let i#i,. If m; is odd, then v;=0 by (3.41), (3.43) and (3.44), and so
Pyx,p)™ = Qyx,y)">01in (0,r,) x (— 00,00). If m, is even, it is clear that P(x,y)" =0
in (0,r,)x(—o00,00). Thus we have

(3.45) Plx,p)=0 in (0,r)) x(—00,00) if i,
By using (3.30), (3.35) with i =i,, (3.36) with i=1,, (3.44) and (3.45), we can write
(346) F(x’y) = (y - Aio, 1(x))'nioﬁ(-x’y)7 (X,J’) € (O’rl) X ( — 00, (D),

where

Fx,p)=0,xpy™e [ Pexy)z0, (x,9)€(0,r;)x(—00,00).

1<isSN
T#i,

Since m;, is odd by (3.43), we see from the definition of A(x) in (3.23) that
Ai, 1(x)=A(x) on (0,r,). Hence

(3.47) A(x) is real analytic on (0,r,),
and by (3.35), (3.36) with i=i,, and (3.44)
(348) P, (x,y)<0 if O<x<r, and y=<A(x)

P, (x,y)=z0 if O<x<r; and y=Ai(x).

Now we shall show that
(3.49) m; 3.
Suppose that m; =1. We have by (3.12) and (3.46)
S =gy =4, s CDEX,Y), - (x,9)€(0,r1) X (—1,7).

Since |4;, {(x)|<p, on (0,r;) by (3.40), and (0,r,) x (—p,,p,) < D,, < Q, it follows



618 T. AKAMATSU

from (3.5) that f.(x,4; ;(x))=0 on (0,r,), that is, q(x,/l,-ml(x))(l,.o.l(x))’(—d/lio‘,(x)
/dx)F“(x,l,-D_l(x))zo on (0,ry). By (3.20), g(x,4;, 1(x))#0 on (0,r,); furthermore,
ﬁx,ﬂiml(x))aéo on (0,r,), because Q,(x,4; (x))#0 on (0,r;) by (3.36), and
Px,2;,1(x))#0 on (0,r,), i#i, by (3.34). Therefore (4, ,(x))\dA;, (x)/dx=0 on
(0,r,), and so (4, 4(x))'* " is constant on (0,r,). This constant is equal to 0, because
Ai,.1(x)=A(x) on (0,r,) and liTOA(x)=0 by (3.23). Hence 4;_,(x)=0 on (0,r;) which

implies from (3.46) and (3.14) that aq(x)=Fx,0)=0 on (0,r,). Since a,(x) is analytic
on (—rr) by (3.16), this shows that a,(x)=0 on (—rr) which contradicts to
(3.17). Thus we have proved that m; =2. Since m;, is odd by (3.43), we obtain
(3.49).

In the case x<0, we adopt the same reasoning as in the case x>0. Then,
from the uniqueness of i, such that u; m; is odd, we obtain for sufficiently small r; >0

(3.50) PM(x,»)=0 in (—r,0)x(—o00,00) if i#i,;
(3.51) A(x) is real analytic on (—r,0);
(3.52) Pi(xy)=0 if —r;<x<0 and y=A(x)

P, (xy)20 if —ri<x<0 and y=A(x).

Combining (3.45), (3.47) and (3.48) with (3.50)(3.52) we have

(3.53) Pr(x,y»)=0 in (—ry,r)x(—o0,00) if i#i;
(3.54) A(x) is real analytic on (—r,0)U(0,r,);
(3.55) P (xy)=<0 if |x|<r; and y=SAx)

P (x,)=0 if |x|<r, and y=Ai(x).
We take r, such that 0<r,<p, and set

¢(X,}’) = Pia(x’.}))a (x,y) € Drl,rz;

h(x,y)=q(x,y)y'P; (x,y)™-* T] P{x.p)™, (x.)e€D,,,,
1<isN

i#io

Since /is even by the hypothesis of Case 3, and m; =3 is odd, it follows from (3.20) and
(3.53) that A(x,y)=0 in D, ,,. It is clear that ¢ and A are real valued analytic
functions defined in D, ,,, and it follows from (3.12) and (3.30) that f=¢%h in
D,,,,. Thus we obtain (3.24) and (3.25). From (3.54) and (3.55) we obtain (3.28)
and (3.27) respectively.

Finally we shall prove (3.29) and (3.26) by taking r;,r,>0 sufficiently
small. In virtue of (3.17) we can take r, >0 so small that the function ay(z), ze C,



HYPOELLIPTICITY OF SECOND ORDER OPERATORS 619

has zero of order M only at z=0 when |z|<r,. Since limF(z,y)=ay(z) uniformly
y—0 ‘

on |z|=ry, it follows from Rouché’s theorem that if r, >0 is sufficiently small, then
for any fixed y, |y|<r,, F(z,)), as a function of z, has M zeros in |z|<r,. We fix
¥, |y|=r,, arbitrarily. Let x, |x|<r,, satisfy A(x)=y. Then F(x,y)=F(x,A(x))=0
by (3.30) and (3.55). Therefore the number of x’s satisfying A(x)=y is less than
or equal to M, which proves (3.29). Since A(x) is continuous at x=0 and A(0)=0,
we obtain (3.26) by taking r;>0 smaller. Q.E.D.

Let D, ,, be the open set determined in the above lemma. As was proved
in Theorem 2.1 of [9], to show that L is hypoelliptic in D, ,. it is sufficient to prove
the following:

ri,r2

for any peD
e C§(D,

..r, there exist positive constants C, ¢, 6 and ¢, ¢,, ¢3
) such that

ri,r2

@ Y IL°Pulg< C{I(Lu, ¢y + lul3},

i=1,2

(3.56) 1 @) Y NLGul3

i=1,2

<C 3 {(LDu), ¢ D)l +|(L(Daa), ¢ 3 Daa)| + ull 3},

(iii) full?= C{ILulg+ ulg}, for all ue Ce(S(p,d),

where L°V=fa%d/0x, L*® =0, L{,=(fa?),0%/0x?, L%, =(fa?),0* | 0x* D, =0/ ox,
D,=38/0dy; (,) denotes the inner product in L*(R?), and | -|,, seR, denotes the
H* norm; S(p,0)={(x,y)€ R?| |(x,y)—p| <d}.

We obtain (3.56)(i) by the same argument as in the proof of Lemma 3.1 of
[9]. We obtain (3.56)(ii) by Lemma 3.2 (3.24) of this paper and the same argument
as in the proof of Lemma 3.2 of [9].

To prove (3.56)(iii) we use the following notations introduced in [9]. We set
D} ,,={(x,y)eD,,,,| y>Mx)}, D], ={(xy)eD,,,| y<Ax)} and we set for

u,ve C(D,,,,)
(u,0)* =J
D

Then the following two lemmas hold.

uvdxdy, (u,v)” = J ubv dxdy.

+
Fi.r2 rr2

Lemma 3.3. We have

(f a*u,0)*| < C{I(Lu,u)* |+ I(Lo,0) * | + ullg + [10]13}
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for all u,ve CF(D,,,,), where C>0 is a constant independent of u and v.

ri,r2
Lemma 3.4. Let 0<s<1/2 and for every ve C;°(D,,,,) set vy(x,y)=v(x,y) if
(xay)eD:; ra2? Uo(x J’) 0 !f(x’y)¢Dr1 r2 Then we have

”UOHs C”U"s fOl all UECO (Drl rz),

where C>0 is a constant independent of v.

ReEMARK. If A(x) is continuously differentiable in a neighborhood of x=0,
then the proof of Lemma 3.3 is contained in that of Lemma 3.4 of [9] and Lemma
3.4 is a consequence of Theorem 11.4 and Theorem 9.2 of [10].

Proof of Lemma 3.3. We follow the way of proof of Lemma 3.4 of [9] with
slight modifications. We have

(357 (f@’u,v)*|S |fla*(lul? + [v.l*)dxdy

D
ri.r2

= if Ja(uyl? +1v,|*)dxdy,

Di:
rir2

since /=0 in D, ,, and f<0in D,
the right-hand s1de of (3.57).

by (3.24), (3.25) and (3.27). We shall estimate

ri,r2

For every ¢,0<e<r,, we set m(8)=max|/1(x)|, K,={(x,y)e R?*| |x| ¢, |y| Smle)},

_'Dr-: rz\

~ . \K,. Since l(x) is continuous at x=0 and A(0)=0,

"l r2

limm(g)=0 and so K, < D, ,, for sufficiently small ¢>0. In the rest of the proof

0
we shall take ¢>0 small.

By (3.28), oD} and 0D are piecewise smooth curves, and by (3.24) and (3.27),
f(x,y)=0 on y=A(x). Hence we have

j fa?|u,|* dxdy = —J (fa*uy)),idxdy+ | fa*uidy
D# D

oD

- J (fa*u,)adxdy + J fatu idy,
D:

véE

where y is the polygonal line with vertices (—&,A(—¢)), (—e&,m(e)), (e,m(e)) and
(e,A€)); y. is the polygonal line with vertices (¢,A(€)), (¢, —m(e)), (—e, —m(e)) and
(—&AM—¢). By (3.2) we can write (fa’u,), = Lu— au, —u, —gu where o
= —f.a*—faa,. Hence, takinginto account thatfa?|u,|? is real valued, we have
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(3.58) f fa*u,|? dxdy= —Re f (Lwyia dxdy +Re J o, i dxdy
D¢ D¢ D¢

+ Ref u, it dxdy + ReJ‘ glu|? dxdy + Ref fa’u iidy.
D* D yE

+
€

Since f(x,y)=0 on y=A(x), we see from (3.5) that f,(x,y)=0 on y=A(x). Therefore
a(x,y)=0 on y=A(x). Hence

f ou ddxdy = — f u(owd), dxdy + J alu|? dy
D2 Dz

oD

=— J (uoid, + o |u|?) dxdy + f alu|* dy,
Dy

v

and so we have
(3.59) 2Ref au g dxdy = — J o Ju)? dxdy + J alu|? dy.
Dz D v

On the other hand

J u, i dxdy = — J uil, dxdy — J u|? dx,
Dz D¢ (225

and so, noting that u=0 on dD,, ,,, we have

(3.60) i2ReJ uyii dxdy = ?J |u|? dx <0.
D P

D

Combining (3.58)~(3.60) we have

1
+ f fa*|u |*dxdy< F Ref (Lu)i dxdy iif o, |u|? dxdy
Dt Dz Dz

1
iif orju)? dyij glulzdxdyiReJ fatuidy.
5 D} vE

€ €

Hence, letting ¢ — 0, we have

(3.61) + fat|u*dxdy < F Ref (Luya dxdy
thx 2 D’*l 2
1
5 f o Jul* dxdy + J glu|* dxdy
Df

D

*
ryr2 ri,r2
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< C{I(Luw)*|+ ul3).

In the same way we have

(3.62) +J fa?v,)? dxdy < C{|(Lv,v)* |+ lIv]|3}.

ry,ra

From (3.57), (3.61) and (3.62) we obtain Lemma 3.3. Q.E.D.

Proof of Lemma 3.4. From the hypothesis that 0<s<1/2, it follows that

ue H(R?* if and ony if ue H°(R? and Jt"23+‘)dtf (ju(x +1,y)
0 R2

—u(x,y)|? +lulx,y + 1)~ u(x,))dxdy <oo; the norms |ul, and {Ilullé

(3.63) © 3
+J t""‘“’dtj (Iu(x+t,y)—u(x,y)|2+lu(x,y+t)—u(x,y)lz)dxdy} are
0 R?
equivalent,
and
there exists a constant C>0 such that
(3.64) f x| P(x)2dx £ CJ @D gy J |p(x + ) — P(x)|%dx
0 0 0

for any ¢ e C*([0,00)) with a bounded support.

(3.63) is, for example, due to Theorem 10.2 of [10]. The proof of the inequality
(11.24) of [10] indicates that (3.64) holds whether ¢(0)=0 or not.

Let x(x,y) be the characteristic function of the set {(x,y)eR? |x|<r,,
y>Ax)}. Then vo=yv and in virtue of (3.63), to prove Lemma 3.4 it is sufficient
to show that

7@ G L (Ix(x+ 6 )o(x + £,) — x(xp)o(x, )

0 R2

+1x(x,y + Oo(x,y + 1) — x(x,y)o(x,y)|*)dxdy

(3.65)

—

< CJ 1=+ D gy f (Iv(x + 1,y) — v(x, y))?
0 R2
+ |v(x,y + 1) — v(x,y)|*)dxdy

for all ve C5°(D,,,,), where C>0 is a constant independent of v. In the rest of
the proof we shall denote by C positive constants independent of ve Cg°(D,,,,).
We have
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(¢ + £, y)o(x + ,9) — x(x,y)o(x, y)|*

= |10+ ,Y)(00x + £,y) — v(x,)) + v0x, y)(x(x + £,3) — x(x, V)

< 20u(x +£,9) = v(x, )| + 2|o0x, ) | x(x + £,y) — 2(x, )
and similarly

16,y + o(x,p + 1) — x(x,y)o(x, y)|*

= 20000,y + 1) — v(x,3)|* + 2006, Y) Py + 1) — x(x, ).
Hence
(3.66) the left-hand side of (3.65)

< 2fwt_(zs+ D dt f (o(x+ t,y)—v(x,p)|?

' " +lo(x,y + 1) — v(x,y)|*)dxdy

+ 20,421,

where

I, = f 1=+ Ddy f oG, PP 1x(x + £,y) — x(x, )| *dxdy,
0 R2

I,= J t"z‘“’dtj [0 P)Px(x,y + ) — x(x,y)|>dxdy.
Rz

0o

First we estimate I;. Since suppv < D, ,,, We can write
r2 ry ©
I = J dy J dXI £~ Dlo(x,y) | x(x + £,y) — x(x, )l at.
-r2 -r 0

Fix any ye(—r,,r,). In view of (3.29) we let x,,---,x,, be the points on (—r,r,)
such that x, <x,<---<x, and y=AMx,), i=1,---;m. We let m=0 if there exists
no xe(—r,ry)such that y=A(x). Then,setting x,= —r, and x,,,, =r,, we have

ra 0
f dxj 1~ @ D(x, p)Pxlx + 1,y) — x(x, y)dt
.

(=]

m

)

i=0
m

2

i=0

because (y —Ax))y—Ax+1))>0 if x;<x<x;,, and x;<x+t<x;,,, and so, by the

Xi+1

—

dXJ £~ Do, y) P xx + £,y) — x(x, )l dt
0

Xi

Xi+1

—

00
dx J 1~ @ Dl(x, p) P x(x + t,y) — x(x,p)|dt,
Xi+1—X

Xi
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definition of y, |x(x+,y)—x(x,»)|=0 if x;<x<x;,, and x;<x+1<x;,,.
Therefore

f dx f = Do, y)Px(x + 1,y) — x(x, p)|*dt

0

m [(Xi+1 ©
<y de t~ @+ Djy(x, )| dt

i=0Jx; Xi+1—X

(*xi+ 1

—AXi11—X)" 2‘|v(x,y)|2dx
2s

i=0Jx;
m [(Xi+1—Xi
= Z x4 1 —x,¥)1Px " 2dx
i=0J0 2s
m (oo
=< Z —l(xi 41— x,J’)’zx_ 2sdx.
i=0Jo 25

Since v(x;;; —x,y)e C®([0,00)) and it has a bounded support as a function of x,
we have by (3.64)

J [0(x; 4+ 1 — X, )| *x ™ 2%dx
0

(fo 0

<C| 7 l)dtf (X4 1 — X —1,Y) = 0(X; 4 — X, p)|dx
Jo 0

(o Xi+1—t

=C| t7®*Var j [v(x,y) — v(x + 1,y)|*dx

JO —®

"o 0
SC| 7@+ gy f [v(x + £,y) — v(x,y)|*dx.

JOo -

Therefore, taking into account that m< M (constant) by (3.29), we have

f dxf 1~ * Dlo(x,y) 2 x(x + t,y) — x(x, y)|*dt
-ry 0

s CJ ¢~ st 1’a’tf lo(x +2,y) — vx, y)| *dx.

0

- ©

Hence

(3.67) I < CJ =2+ gy f [v(x + t,y) — v(x, )| *dxdy.
R2

0
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Secondly we estimate I,. Since suppv < D we can write

ri,r2
ry r2 @
I,= J dxf dyf = Dlo(x, )P x(ey + ) — x(x, )| dt.
-ry —-ra 0
Fix any xe(—r,,7;). Then we have

f dyf 1~ Djn(x, ) x(x,y + 1) — x(x, )| dt

-r 0

A(x) 00
= f dyf 1~ @ Dlo(x, y) 2 x(x,y + 1) — x(x, )|t
—-ra o

because, by the definition of y, x(x,y +t)=yx(x,y) if y>A(x) and t=0. On the other
hand, y(x,y+9=yx(x,) if y<A(x) and y+¢=<A(x). Therefore

ra 0
J dy J 1~ Dlo(x, )2 x(x,y + 1) — x(x,y)|*dt
-ra 0

FA(x) ©
= dyf ™ O, )P x(x,y + 1) — x(x, )| *dt
Ax)—y

v =r2

IIA

(A (x) ©
dyf ¢~ Djy(x, y)|*dt

J-r2 Ax)—y

A(x)

1
= Iv(x,y)lzfl(x) —y)~*dy
A)

J —r
(A(x)+r2

= —Ju(x,A(x) —y)|2y ™ >*dy
2s

JO

(*oo

IIA

1 _
—v(x, A(x) — y)|2y ~ *dy.
25

Jo

Since v(x,A(x)—y)e C*([0,00)) and it has a bounded support as a function of y,
we have by (3.64)

f o6, 20— )y~ 2y
0

) (*oo
SC| 7@t Ju(x, Ax)—y — ) — v(x, A(x) — y) *dy
Jo Jo
(foo (A(x)—t
=C| 1@+t gy [v(, ) — v(x,y + )| 2dy
Jo v -
("o ("o
SC| =@ e e,y + 1) —vx,y)*dy.
JO J -0
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Hence

(3.68) L< CJ t~ 2t D gy J [v(x,y + t) — v(x, )| *dxdy.
0 R?

From (3.66)3.68) we obtain (3.65). Thus Lemma 3.4 has been proved.
Q.E.D.

Lemma 3.3 corresponds to Lemma 3.4 of [9]. Then, as was shown in Lemma
3.5 of [9], it holds that

(3.69) for any peD,,,, there exist positive constants C, § such that ||Qqul%,,,
S C{ILulld + ul3}, ue C2(S(p,9)).

For the definition of Q, see (3.2). On the other hand, as was shown in Lemma
3.6 of [9], we have by Lemma 3.4

(3.70) (1, 0)*| =, 00)| = llull 25+ lvo 17 = Clllull 2 s+ 011 3), w,ve CX(D,,,,,)
and so
B.71)  w,)"|=lu,v—vo)l £ Clull2s+ [I0]|2), u,ve C3(D,,,,)-

(3.70) and (3.71) correspond to Lemma 3.6 of [9].

By using the same reasoning as in Lemma 3.7 and Lemma 3.8 of [9], we see
from Lemma 3.1, (3.56)(i)(ii) and (3.69)~(3.71) that (3.56)(iii)) holds. Thus L is
hypoelliptic in D

ry,r2°

4. Sufficiency of (A), (B) and (C): general case

We shall prove that under the assumptions (H.1) and (H.2), the operator L
defined by (1.1) is hypoelliptic in Q if (A), (B) and (C) hold. To this end, it is
sufficient to show that for any p e Q there exists an open neighborhood w, of p such
that L is hypoelliptic in w,.

Let p be any point of Q. As in the proof of necessity of (C), we can introduce
an analytic coordinate transformation @ from an open neighborhood @, of (0,0)
in the uv-plane to an open neighborhood of p in the xy-plane such that ®0)=p
and ®(0/0u)=ad/0x+bd/dy. L is transformed by ® to the operator

2
L= f (u, v)a— + &(u, u)i +du, v)i +8&(u,v),
ou? ou ov

where ® (60 / du+do | dv)=cd | 0x+dd | dy, f(u,v)=F(x,y) and g(u,v)=g(x,y). Then,
in virtue of (H.2), d#0 in @, Furthermore, from (A), (B) and (C) it follows
respectively that
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(A), f.(u,v)=0 for any (u,v)e@®, such that f(u,v)=0;
(B), f does not vanish identically on any integral curve of ¢0/du+dé/dv;

(C), f does not change sign from plus to minus along any integral curve of
&0/ ou+do | ov.
We consider the operator (1/d)L=(f/d)0*/ou*+(G/d)o/ou+d/dv+g)/d.
Then, by (A),

(A), (f/d)u,v)=0 for any (u,v)ed, such that (f/d)u,v)=0.

An integral curve of (¢/d)d/du+d/dv through a point of &, coincides with that of
&0/ 0u+do/ dv through the same point except for parametrization. If d>0 in &,,
both integral curves have the same directions and if d<0 in @, the opposite
ones. Hence, from (B); and (C),, it follows respectively that

(B), f/d does not vanish identically on any integral curve of (&/d)d/0u+0d /v,
(C), f/d does not change sign from plus to minus along any integral curve of
(¢/d)o/ou+a/ ov.

Let u=y ,(s,f) and v=y,(s,t) be the solutions of the initial value problem

@ _ Hup) dv
dt duv) dt

=1, uly=o=s5, vl,=o=0.

Then ,(s,0)=t, and y,(s,?) is real analytic in W,={(s,?)| |s|<r, |f|]<r} for some
r>0. Since W, ¥,)/0(s,t)s=,—o=1, we can introduce the coordinate trans-
formation

- {u=|/’1(s’t)

. U=¢2(S,t)=t

from W, to an open neighborhood @&, = @, of (0,0) by taking r>0 small. Then,
the operators d/du and (¢/d)d/0u+0/dv are transformed by W to the operators
(0, /0s)~ 10/ bs and 8/ 0t respectively, and so the operator (1 /d)L to the operator

L=fGs t)(é(s t)i>l+i+§(s 7)
’ os) ot T

Wheref(s’t) =](|//l(s’t)>t)/a('lll(s’t)’t), 5(s,t)=(all/1(s,t)/as)’ 1’ g;(s,t)=§(l/~11(s,t),t)/c7(|//1(s,
1),t) and all of them are real analytic in W,. Here we note that d#0 in W,.
From (A),, (B), and (C), it follows respectively that

(A); f:(s,t)=0 for any (s,f)e W, such that f(s,t):O;

(B); for any fixed se(—r,r), the function ¢ — f (s,¢) does not vanish identically on
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any sub-interval of (—r,r);

(C); for any fixed se(—r,r), the function ¢ — f (s,¢) does not change sign from plus

to minus when ¢ increases on (—r,r).

Hence, from the result of §3, L is hypoelliptic in W,. This implies that L is
hypoelliptic in w,=®(¥(W,))3p.

(1]
(2]

(3]
4
(5]
(6]
(7

(8]
]

[10]
(1]
[12]
(131
[14]
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