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Introduction

The purpose of this paper is to complete T. Akahori’s construction of the
semi-universal family of strongly pseudo-convex (s.p.c. for abbreviation) domains
of dimcX>4 (cf. [1], [2]), in the general deformation theoretic context. In [6],
J. Bingener and S. Kosarew considered deformations of s.p.c. complex spaces, and
they proved the existence of the semi-universal family for deformations as germs
along a compact subspace with a certain property (in the case of a non-singular
complex space, along the exceptional subset) and conjectured the exstence of a
formally semi-universal convergent family for deformations as whole complex
spaces. In this paper, we will consider deformations of s.p.c. manifolds and will
show that the Akahori’s canonical family of complex structures on a compact level
subset of a strictly pluri-subharmonic exhaustion function (cf. [1], [2]) induces both
the semi-universal family and the formally semi-universal converent family as above,
if dimcX'>4.

The key step is to construct the semi-universal family for deformations as
germs along a compact level subset from the Akahori’s canonical family of complex
structures. Though the correspondence between families of complex structures
and of complex manifolds is not direct, it is rather simple if we restrict ourselves
in the classical deformation theory. Let r be a strictly pluri-subharmonic exhaustion
function on a s.p.c. complex manifold X with dimcX>4. We denote Q,
={xeX|r(x)<e} and suppose K=n,.Q, for some infyr<a<supyr. Consider
a fibred groupoid p: Fy — % (the category of germs of complex spaces) of deformations
of X as germs along K and its restriction over %, (the category of germs of
reduced complex spaces) preq: (Fi)ea = Grea- In [1] and [2], Akahori constructed
a family of complex_ structures over each Q, (x<e) which is effective and complete
in the sense that any family of deformations of a neighbourhood of Q, is induced
from that family of complex structures over Q, (what is called “versal in the sence
of Kuranishi” in [1]). This implies that, for each ¢>a, there exists a family ', - T,
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in Fg which is effective, complete in the sense that any family of deformations of
a neighbourhood of Q, is induced from &, = T, in (Fg),.q» and moreover, by the
same argument of [16, §2], is formally versal in Fy. Hence the families %, - T,
are all isomorphic to each other in (Fg),.q and induce an effective family in
(Fg)rea- The completeness of that effective family in (Fg),., immediately follows
from the above completeness of each &, — T,. In order to argue in the general
deformation theoretic context, we need to remove the restriction on (Fg),.q and
consider the versality (i.e. having the lifting property) instead of the completeness. We
can generalize compleness in the Akahori’s result to having the lifting property by
modifying the argument of [3, §3] (cf. Proposition 5.2). The main technical
improvement is the adaptation of the division theorem by a submodule (cf. [14], [5])
instead of the small trick used in [3, Proposition 3.1]. The generalization from
(Fg)rea to Fx is done by the following criterion for versality which is an easy
consequence of an argument in [7, pp.415-416]: Let p:F — € be a fibred groupoid
satisfying the Schlessinger’s conditions (S1') and (S2), and we F a formally versal
element. Then, w is versal if and only if w has the lifting property for any extension
S — 8'=S8,.q (In our case, (S2) is due to the coherency theorem for direct images
under 1-convex maps (cf. [18]).) Hence we have

Theorem 1. There exists a semi-universal family in Fy.

If we set K=the exceptional subset, Theorem 1 asserts the J. Bingener-S.
Kosarew’s existence theorem in the case of deformations of s.p.c. manifolds of
dimc X >4,

It is a simple matter to obtain a formally semi-universal convergent family
in Fy from Theorem 1. Fix ¢, <&, < --- = supyr such that dr#0 on X\Q,. Since
Z,— T, and ¥,  —T,,, are isomorphic to each other in Fz , we have a
family & — T in Fy by patching all Z,, - T,, together. From the versality of each
Z,,— T,, and the Schlessinger’s formal existence theorem (cf. [17]), we infer that

& — T has the property conjectured in [6, Bemarkungen (5.10)]. Hence we have

Theorem 2. There exists a formally semi-universal convergent family in Fy
which is a versal element in Fy for any strongly pseudo-convex compact subset™ K in X.

The argument of this paper has a further generality. Let (V,0) be an isolated
singularity with dimg(V,0)>4 and r a strictly pluri-subharmonic exhaustion function
on V¥ which is C® and dr#0 on V\o. We denote Q;,={xeV\o|d<r(x)<e}
(infyr <6 <e<supyr) and let K=n;., 5. Q5 for some fixed infyr <a < B <supyr. If

1) A compact subset in a s.p.c. manifold X is called a strongly pseudo-conex compact subset if it is
the inverse image of a Stein compact subset in the Remmert quotient of X.
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we consider the fibred groupoid Fy of deformations of the regular part along K,
T. Akahori’s construction is still workding on Q;, and the argument of this paper
works without any change. If moreover depth(V,0)>3, (S2) is satisfied due to the
coherency theorem for direct images in the case of a (1.1)-complete map (cf. [12,
Proposition 4.4] combined with [13]). Hence we have

Theorem 3. If dim(V,0)>4 and depth(V,0)>3 then there exists a formally
semi-universal convergent family of deformations of V\o which is semi-universal in Fy.

In particular, if o= f, then we have the versality of the formally semi-universal
convergent family of deformations of V\o near a compact real hyper-surface, which
was obtained in [16, Theorem 1].

The arrangement of this paper is as follows. In §1, we will obtain the above
criterion for versality. In §§2 and 3, we summarize the property of the Akahori’s
canonical family of complex structures and the division theorem by a submodule,
in the form needed in the argument of §§4 and 5. In §§4 and 5, we will prove
Theorem 1. Though the argument is a modification of [3, §3] by means of the
division theorem by a submodule, we will describe it explicitly because we need
extra care other than in [3, §3], in order for the formal solution to be convergent. We
will prove Theorem 2 in §6.

1. A criterion for versality

Let ¥ be the category of all germs of complex spaces. A fibred groupoid
over € is a category F with a covariant functor p:F — %, such that the following
holds:

(1.1) (Existence of basechange) For any morphism ¢:S—S" and any a'eF
with p(a’)=S’ there exists a lifting a = a’ of ¢ to F.

SI — SII
(1.2) (Uniqueness) Let T ~ be a commutative diagram in €, then any partial
S
al - all

lifting to F of solid arrows * can be completed by a unique dotted
a
arrow.
We will denote by F(S) (S € %) a subcategory of F with Obj F(S):={a€ F|p(a)= S}
and Homg(d',a"):={(a' - a")e Homgd',a")| pla’ - a")= idg}. For aeK(S), we
denote by F, the category consisting of all morphisms a —a’ and Homg (a',a")
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al — a”

:={(a’ - a")e Hom(d',a") satisfying the commutative diagram 1 ~ }, and denote

a
by F, the set of all isomorphism classes.
Now we recall the Shlessinger’s conditions.
SH
(S1) Let ! be a diagram in € such that o is an infinitesimal extension
s 5 s

(i.e. @s.i» O is surjective with nilpotent kernel) and S,., — S” is a closed
embedding. Then for any aeHS), the canonical map F(S'II S")—
F,(S')x F(S") is surjective.

(S1) In the above situation, the canonical map F,(S'II (S") — F(S') x F,(S") is an
equivalence of categories.

(S2) Let 4 be a coherent U5 _,-module. Then F(S[.#]) is a finitely generated
0Os,.,~module.

ExAMPLE. Let X be a complex manifold and K a compact subset of X. We

consider deformations of X as germs along K. Precisely, Fy=Ilim F; where
— UoK

U is an open domain in X and F; denotes the fibred groupoid of deformations
of U. Clearly Fy is a fibred groupoid over ¥ and satisfies (S1') because each Fy
does. If ae Fi(S) is represented by n: % — S and .# is a coherent U, _,-module,

then (F)(S[A])=lim  H'%,04;5®,, M)
— UK red

Let p: F— € be a fibred groupoid over ¥ and we F(T). We say that w has
w
the lifting property for an extension S— S’ in € if any diagram 1 %, of solid
a —»xa’
arrows with p(a - a)=S5— S’ is completed by a dotted arrow.

DerFiNITION 1.1, Let we F.

(1) w is versal if w has the lifting property for any extension S — S’ in €.

(2) wis formally versal if w has the lifting property for any extension S — S’ in €,
where €, denotes the subcategory of € consisting of all artinian complex spaces.

DerFNITION 1.2. Let weF. w is effective if dp(o), =dp(B), holds for any two
morphisms a, f:a—w in F.
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DErFINITION 1.3, Let weF. w is semi-universal (resp. formally semi-universal)
if w is versal (resp. formally versal) and effective.

In this section, we will obtain the following criterion for a formally versal
element to be versal.

Theorem 1.1. Let p:F— € be a fibred groupoid satisfying (S1') and (S2), and
weF a formally versal element. Then w is versal if and only if w has the lifting
property for any extension S — S’ with S'=S,.,.

The following is the key proposition.

Proposition 1.2. Suppose that a fibred groupoid p:F — € satisfies (S1) and
(S2). Let weF be a formally versal element, then w has the lifting property for
any infinitesimal extension S— S’ in €.

A proof using [8, Satz 3.2] is found in [7, pp.415-416].

Proof of Theorem 1.1. We will prove if-part. (Only if-part is trivial) Let a

w T
diagram 1 over 1 be given. We may assume that the morphism
a—-a S -8

S — T is an embedding.

Let So:=8SNS,4, ag:=axgS, and a,.4:=a' X 5S,.q. Then we have a diagram
w T
1 over 1 By the assumption, we have a lifting a,.y —» w over
Ay = Greq So = Stea
S=a
and ¢*wx SUSOS;QdS,’ed=a;cd. Since (S1’) holds for F, we have ¢*w=a)j in
F(SUs,S,q) Where a):=a xg(SIsSq) (note that S, — § is an infinitesimal
embedding). Since S S,.q— S  is an infinitesimal embedding, by Proposition

’
red

S;.a— T. Hence we have a morphism S1Ig,S,.q 5T such that ¢*w x SIs 5

w T

1.2, the diagram of solid arrows T ™. over TS can be completed
a'l - da SHSOSI"ed - 5

by dotted arrows. Q.E.D.

2. Deformations along a s.p.c. compact level subset-construction of the
Kuranishi family

Let X be a s.p.c. complex manifold with dim¢X>4 and with an exhaustion
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function r which is strictly plurisubharmonic of C*®-class and dr#0 outside a

compact subset K. We will denote Q,={xe X|r(x)<e¢} and suppose K=n,.,Q,

for a fixed infyr <a<supyr. We will consider the fibred groupoid p: Fx — % given

by Obj(Fg)={a smooth morphism n:% — S as a germ along K}, Hom, (a,a'):={a
A

pair of morphisms ¢:T— T" and ®:% — 2" such that | | is commutative
T > T

and =% x.T} and p(n:Z — S)=S. Then Fy satisfies (S1') and (S2) by the

coherency theorem for direct images in the case of 1-convex maps (cf. §1, Example

and [18, Main Theorem]).

We recall the property of the canonical family of deformations of complex
structures on Q, in [1]. Fix an e>a« and let r:=dimcHY(Q,, T'X). Let || |0, be
the norm introduced in [1, §4] and denote by .77 the completion of 4%4Q,, T"'X)
with respect to || |04 In [1], we obtained a powerseries o e& [ty 1,]]
satisfying
(2.1) #(0)=0= and P()e L' {t,,--,1,} for all k>n+2,

(2.2) if we denote by ¢,(?) the linear term of ¢(f), then d¢,(f)=0 and ¢,(f) spans
H3(Q, T'X),

(2.3) (1) is real-analytic on a neighbourhood of Q,, x D, where ¢,:=%%* and D
is a neighbourhood of the origin of C’,

(24) 0d()—3LP(1), (1)1 € Jr A G5 (1", '} for all k>n+2, where Iy, denotes the
defining ideal of the analytic subspace T,:=h~'(0) of D by denoting
h(f):=HL (), ()] and /%3, denotes the completion of A, T'X) by
the tangential Sobolev (0,k)-norm.

Here &' denotes a subspace of 4%Y(Q, T'X) induced in [1]. We will need the
property ¢ fllo.xn<cldllionl o for pe&' and fe I'(Q,,1) where ¢, is a constant
independent of ¢ and f.

By an ideal theoretic improvement of the argument of [15, Ch.7], from (2.3)
and (2.4), we have a smooth morphism =,: &, — T, such that n, '(0)=,,. By the
same argument as [16, §2], we have

Proposition 2.1. =n,: ¥, —> T, is formally semi-universal in Fy.

3. The division theorem by a submodule

In this section, we recall a division theorem with estimate which will be a
basic tool in the argument of §§4 and 5.

o I

(I) Pseudonorm. Let X ys' be the Taylor series expansion of M(s)=

veN4 i

1
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(3-4y/1—s). Let K be a Banach space with a norm | |x. For p=(p,,--,p,)€(R%)?
and f(s)e K[[s]]:=K[[s,, --,5,]], we define a pseudo-norm [[f(s)l,:=sup,{| £ |xp*/ 7.}

and a pseudo-norm on K[[s]1™ by [(f1)(s) " Sem,:=max; o cmill S}
Refer to [10] for the properties of the pseudo-norm | |,

(II) Division Theorem. We introduce a total ordering in N?x {1,---,m}. For
W)=y, Vm3i) and () =(1ys s lm3)) in NIx{1,---,;m}, we set (v,i)>(u,j) if
[v|>|ul, if |v|=|u| and i>j, or if |v|=|u|, i=j and v<pu with respect to the
lexicographical ordering in N A subset E of N?x {1,---,m} is called a monoideal
if E4+N%=E holds. (v,))eE is an extremal point if (v,i)¢ U, i £ jee( /) +N%  In
a monoideal, there exist at most a finite number of extremal points (cf. [14, Lemma
(1.1.8)]). Let {(./u)}1<k<p be the set of all extremal points of a monoideal
E. Then we have a partition of NIx{l,---,;m};Ap:=(teji) + NO\(Up <xAr)
(1<k<p) and A:=(N1x{1,---,m})\E.

Let K be a Banach C-space (resp. C-vector space) and denote by K{s} (resp.
K[[s]]) the convergent powerseries ring (resp. the formal powerseries ring) in
5:=(sy,--+,5,) with coefficients in K. feK[[s]]" is expressed as f=(Z,f;)s", ",
Z, femps’). fis called to be reduced with respect to A if f;,=0 for (v,))¢ A. For
feK[[s]]™, we denote exp(f)=inf{(v,i)|f;;,#0}.

Now let # < C{s}™ be a submodule, then FE(#):={exp(f)|fe#} is a
mono-ideal of N¥x {1,---,m}. Let {(4./i)}1<k<, be the set of all extremal poits
of E(#) and (A,,---,A,,A) the associated partition of N?x {1,---,m}. The division
theorem by a submodule .# is as follows.

Theorem 3.1. ([14, Theorem (1.2.2)], [5,Theorem 6.2]) There exists a system
of generators f,---f? of M having the following property. Let K be an arbitrary
C-vector space.

(1) exp(f)=(mj) 1<k<p).
(2) feK[[s]1]™ is expressed uniquely as
P
f= Z af +h
k=1
where g, =2, ireadgs" "€ K[[s]] (1 <k <p), he K[[s]]™ and h is reduced with
respect to A.
(3) If K is a Banach C-space and f is in K{s}™ then g.€K{s} (1<k<p) and
he K{s}™.
(4) For any ae(R*)%, ae(R%)"U{(0,---,0)} if m=1, there exists an open set of

poly-radious Vﬁ,c={p=(n1H‘,“‘,'?lH")G(Ri)q|(51,"'»5q)€/\ﬂ, 0<n<C (64,
d,)} such that
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lgell, <2mp™"~|| fl k=1,---,p) and
Iall,<2mp~°|fl, hold for all pe Ay

hold where Ap={(d,---,0)€(R*)?|0<6; <0, <+ <0,B,—1<P,} for some 0
<By<--<B, and C:A; > R is a continuous function.

REMARK 3.1. Though the above (4) is obtained with respect to another norm
in [14], we can obtain this estimate also by a similar argument.

From now on, we denote by red ,f the 4 in Theorem 3.1(2).

Let 3 = C{s} be an ideal and {1,,---,4,} the set of all extremal points of
E(3). Then, by Theorem 3.1, we have a unique system of generators {w,,---,®,,}
of an ideal J such that w,=s*+a, with «, reduced with respect to A and
exp(a,)>A,.. We call such a system of generators of § the WeierstraB3 family of .

Now we consider J, J ideals of C{s}. Let {w,, --,»,} be the Weierstral}
family of J. Let x:C{s}" > J be a homomorphism defined by x(g¢) " *&m)
=X"_ 18® Set M=% '(JNTF). For any Banach C-space K we define a
homomorphism y: K{s}™ — JK{s} by the same way. From Theorem 3.1, by the
Hahn-Banach extension theorem, we infer

Lemma 3.2.

1) X(gu)a"‘,g(m))ESIK{s} if and only if(g(l)s“'ag(m))e'/”K{s}-

2 X(g(l),"'ag(m))e(S'+m“3)K{S} if and only if (g(l),---,g(m))e./llK{s}+‘m"K{s}"‘,
where m denotes the maximal ideal of C{s}.

Then we define a homomorphism Q:3K{s} - K{s}" by O(f):=(&1y""",&m) for
S=Z8 184D

Let u,:=exp(w,) (k=1,---,m). By Theorem 3.1 (4), We have

Lemma 3.3. Suppose that a, pe(R%)? satisfy Theorem 3.1 (4), then we have

(M) xgay - 8mll, <2m(max, o, c w1y 8m)ll p»
@ 12N, <2Aming ., <mp™) If Nl »
(3) lired 4o Q(N), <4m(min, _, _.0") " 'p~°| 11,

Lemma 34. Suppose that |u|=n, (k=1,--m). Let V:i={p=@n'*%,...,
n'*%)| (8, 6)€A, 0<n<1} be a set of poly-radious with A an open set
of (R})%. For any ae(R*%)! with max, ., ., <M.,a> #0, there exists an &:=(g,,
+,&g) €(RY)! such that
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max, SKSMPM"

- —<p
mIHISKSmp "

holds for pe V defined by (6,---,0,)€ A with 0<d;<¢; (j=1,--,q).

Proof. Let a:=(ay, -,a,) and suppose 0<6;<(Zf-  a,)a;/ Max; <y < < s@>)
(j=1,---,9). Then (max,.,<mp"™) / (Min;ccmp™) = (MaAX; ™ * <*%7) /
(minISKSmnn°+<um6>)' Since <#x’6><(zz=lak) <U,a> /(maXISJcsm <#ma>)a
We have (Max, oy <up™)/ (M g pp) <y~ Ee1% <y~ Heste <> _ =

Q.E.D.

4. Deformations along a s.p.c. compact level subset-an infinitesimal lifting

In this section, we will get a canonical way constructing a lifting along the
infinitesimal extension SUS,_; - SUS,, where S is a subspace of S’ and S,
denotes p-th infinitesimal neighbourhood of o€ S§’.

Let @(7):=¢?) (te T,) be the family of complex structures on Q, obtained in
§2. Let w:% —» S’ be a smooth morphism with Q, ==~ !(0) given by a locally
finite system of local charts {#, (w,s):=(w!,---,whs',---,s9},; with transition
functions wfzﬁfj(wj,s) (@=1,--,n) on ¥n¥; Let Up=%nw '0), zi=wjpy,
(a=1,---,n). If I'={i|UnQ,#¢} then #I'<+o0. In §4 and 5 we choose
{Uyz;:=(z},",28)}icr as a system of local charts of a neighbourhood of Q..

Suppose that S and S’ are analytic subspaces of C? defined by ideals J§ and
I with I’ < 3 respectively. We may assume that E‘,?‘j(wj,s) is represented by a
holomorphic function if‘;‘](wj,s) over (W,nW)xD satisfying hif(h;(w,,s),s)—
h%(w,,,8)=0 mod J'.

We will consider a holomorphic map t:SuS,—7, and a map g:{Q,x
(SUS,) - % which is holomorphic with respect to the family of compelx structures
P(t(s)) (se SUS,). They are represented by wi=g¥z,,s) with gi(s)e T(U;nQ,,1){s}
(x=1,---,n) and °=1"(s) with 1°(s)e C{s} (6 =1,---,r) with satisfying
4.1) g%z,0)=z% (x=1,---,n) and 7°(0)=0 (c=1,---,r),

@.2), gHs)—hgfs),9)eF +m* ' JIrU;nU;nQ, 1){s} (x=1,--,n),
43), (0—(t(e))gis) (I +m* ' JYTYU; N Qe (T"X) M5} (x=1,--,n),
" (0 n 0 _
where (0— ¢(t(s))gi(s) == . (—_7,— > ¢%(I(S))—A)g?(3)d2? (@=1,--,n),
p=1 6zi A=1 aZ,-
4.4), hp(t(s))e(3’+m"“3) (p=1,---,), where h,(?),---,h(f) are generators of
RPN

where we denote by T (UNQ,, V) (resp. T(UNQ,, 1)) the completion of I(UNQ,, V)
with respect to || [l (resp. || llio.x)-
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Proposition 4.1. Let gXs)eT(U;nQ,, 1){s} (x=1,---,n) and 1°(s)e C{s} (c=1,
---,r) satisfying (4.1),(4.2)_ ~(4.4)_, are given. Then, for u> — 1, there is a canonical
way lifting g"~ YX(s)eT(U;nQ, 1){s} (@=1,---,n) and 1*~Y(s)e C{s} (6=1,---,r)
satisfying (4.2),_,~(4.4),_, and

@1,y gl Vs)—gi(s) e ITUinQ, 1){s} (@=1,--,n) and

n—1
T#= D) —7%(s)eJ (6=1,---,7)
to gP*s)eTU;n D, D){s} (x=1,---,n) and 1™(s)e C{s} (6=1,---,r) satisfying
4.2),~(4.4), and
@.1), g"%s)—g¥ () em*ITYU;NQ,1){s} (¢=1,---,n) and

tW9(5) -t V(e mt (o=1,---,7).

Proof. Let wy(s),--,w,(s) be the Weierstral3 family of J and y: K{s}" - JK{s}
and Q:JK{s} » K{s}™ be the homomorphisms defined in §3 using this Weietstral}
family. We fix the following decompositions by means of (4.2)_, and (4.3)_,
respectively

&i(s)—hijg (9),5) = a7fs) + 6i5(s) (a=1,---,n),
(0—(T(s))gi(s) = Ei(s) + &) (@=1,--,m)
where 3%(5)e ITUU A Uyn, )5}, #5()€ STV Un D, 1)(s), &) ITUT;n
Q,(T"X)*){s}, Ci*(s)€ JTUU;N Qe (T X)*){s}.
In the followings, we fix a partition of unity {p;} subordinate to {U}.
The first task is to construct gjf,(s) (x=1,---,n) such that

(45) g D)+ gl — el VO +ghlohs) € (F+mt I ITYUNU;nD, 1){s}
(¢=1,---,n) holds.
In the following argument, we identify {gi"(s)},= ..., With gi.(s)=Z7_ 1gi"(s)s.
Let ({1)iju(8) ***s0fmyijjul8)) (x=1,---,n) be homogeneous polynomials of s of order
u such that

(05 1)ij1u(8)s -, Ofmyiju(8)) =1ed 4 0 Qg ™ VX(5) — A8 ~ V(s),5) — :3(s))
mod m**!

holds, and denote
a — c a a £ a a
(i) TN =\ X otniuls)5 ) Tomiitul8) 5 |-
a=1 62,. a=1 azi

If we solve

(4.6) 5{(821)4;4(5)’ - '9g2m)i{u(s))} = {(a(l)kiIu(s)’ - "U(m)ki(u(s))}y
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then gj, is given by

gé,,,(s) = X(g;l)ih‘(s)s - 'ame)iIu(s))‘

From the following sublemma, we infer that
(81)i1a8)s & myiul)) = ;Pk(‘f Okilal8)s 5 O mykifu5))
gives a solution of (4.6)
Sublemma 4.2.  6{(61ijju(5); "G myijiu(8))} = (0, ++,0).

Proof. Since (4.2),_ implies d{x(01)iu(5)s"" T myijiu(8))} =0 mod F' +m** 13, it
follows Lemma 3.2. Q.E.D.

Next task is to construct homogeneous polynomials of s of degree p,
gi(s)eTW(Q,, T'X)[s] and ,(s)e C"[s] satisfying
47) Ogus)—P17us)= —(0— Dz sNgl* ™ Vo) +gipuls) mod J +m# 13,

where ¢,7,(s) denotes X7, _,%4(0)z5(s).
Before proceeding the second task, we remark the following formula: Let
¢ A* (U, T'X), ge C*(U) and 0:=(0—¢)g, then

(4.8) 00=—(0p—3i[¢,d1)g+ P A0 holds, where U denotes an open set of Q,.
This formula follows by a standard calculation.

Sublemma 4.3. A, (z*"(s))=0 mod I +m**'J (p=1,---,]).

Proof. Since (4.5) implies that 6(s):=(0— @™~ V(s))(g ™ (s)+gipuls) is a
T'X-valued global (0,1)-from modulo ' +m**15;, this follws from the formula (4.8)
and the definition of A(2). Q.E.D.

Let (E¢1)iu(8)s 5 Etmyigu(8)) (x=1,-+-,n) be homogeneous polynomials of s of order
u such that

Elayuls) -+ Eomuuls) = red 4 0 QT — P~ ()t ™ (s) +gif () — &)

modm* !

holds, and denote
n . a n . a
(é(l)ihl(s)"",é(m)ilu(s))= Z é(l)i|u(s) 20 Z ﬁ(m)l]u(s) 2
a=1 az,- a=1 aZ,-

as in the first task. If we solve
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(49)  Agl1uls) 8 mul8) — (D17 (1)u8); > D1 Temu8) = = (E1)ul)s > Empul )
then g,(s) and t,(s) are given by
£.8) = x(&(1)u(5), ***,&mu(S)s
Tu(8) = 1T (1)), -+ > TmyulS))-
Sublemma 4.4.

(1) 5{(€(l)i|u(s)’ ] i(m)iIu(s))} = (Oa o "O)a
) 3—(5(1),‘(3), Tty f(m)u(s)) =(0,---,0).

Proof. Applying J—¢(z*~s)) to (4.5), we have 6{x(&1)iuls), s Emyituls))} =0
mod § +m** 13,

(2) Applying the formula (4.8) to 0(s):= x(é(l)ﬂu(s),--~,€<m),-|‘,(s)), we have gx(émi,u(s),
€ myif(8)) =0 mod F' +m# 13, Q.E.D.

Hence, there are uniquely determined homogeneous polynomials (z(),(s),

"',t(m)u(s)) of s of order u SuCh that (é(l)u(s)s"'sé(m)u(s))_(d)lr(l)u(s)""'9¢1‘C(m)u(s)) is
d-exact where we denote by &), (s) (x=1,---,m) the T'X-valued global (0,1)-form
defined by {&yyu(s)}. Therefore if we set

(gzrl )u(s)’ o ’gz’m)u(s)) = SN((C“)"(S), B é(m)u(s)) - (d) 1T )u(s)9 Y ¢ lr(m)u(s))),

where N denotes the standard Neumann operator (cf. [9]), then (g(1).(5), -, & (mu(s)
and (t;),(), -+, Tm,ls)) are solutions of (4.9). Thus we get g"*s) (x=1,---,n) and
t™(s) (6=1,---,r) by

#1779 = 8 V() + (5) +837(5) (= 1,-+m),

1@(s):=1®"DYs)+1Ys) (6=1,---,7).

This completes the proof of Proposition 4.1.

5. Deformations along a s.p.c. compact level subset - proof of versality

Let n,:%,— T, be the family in §2. We denote by w, the object in Fg
corresponding to it. Then the main result of this section is the following theorem
implying Theorem 1.

Theorem 5.1. w, has the lifting property for any extension S — S'=S].q.

At first, we prove the following.

Proposition 5.2. Let w:% — S’ be a smooth map with Q, c w '(0) and k a
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positive integer. Suppose that there exist a holomorphic map 1?:S8' > S — T and
a map g9:Q,xS—>Y represented by 19(s)eC{s} (6=1,--,r) and g\”%s)e
TU;nQ,1){s} (x=1,---,n) respectively, with respect to a system of local charts
{#,(wi,5)} of ¥ as in §4, satisfying the following

(.1 £z, 0)=2* (a=1,---n).

(520 g2%5)— k(g s),5) € S TH Ui Ujn D, 1)(s) (@=1,-+-,n).

(53) (0= N ) € ITWUiNQ (T X)H{s} (a=1,-+-,n).

(540 h,xAs)eJs (p=1,---,1), where hy(t),---,h(t) are generators of Jr..

Then there exist liftings ©:S'>T and g:Q,xS —% represented by
1°(s)e C{s} (6 =1,--,r) and g¥(s) e T(U; " Q,, 1){s} (@ = 1,---,n) respectively, satisfying

1o £ —gP()eIsTUUNUinQ, D{s} (x=1,--n),
() —1P()eIs (0=1,--.7).

(52), 8H5)—hi{g )€ I TU;n U;n O, 1){s} (a=1,-+-,n),

(53) (0 els))gis) € I TW(Uin QT X) M5} (a=1,---,n),

4y h(us)eJs (p=1,-0).

Proof. Throughout the proof, we will denote ¢p:=¢,. First set J=3Js, J' =35,
£5(5):=g{"(s) and 7%(s):= 7 "(s).

Let n, be a positive integer such that all extremal points of E(m" nJ,) are
of total degree n,. Then by repeating the infinitesimal lifting in Proposition 4.1 we
have g{"* V%(s)e T(U;nQ,, 1){s} (@=1,---,n) and t"*VY(s)e C{s} (¢=1,---,r) satisfy-
ing (4.1),,,, and (42),, . ~@4),, 1.

Next, set J=m"nZT;, J'=3Ts. Remark that if (w,(s),---,w,(s) be the
Weierstrall family of J then |exp(w(s))|=n, (k=1,---,m).

Set g%s5):=g"*V%s) (a=1,---,n) and 7°(s):=1"*V°(s) (6=1,---,r), then they
satisfy (4.1) and (4.2), ~(4.4),.

Again, starting with gV%s):=g%s) and t"°(s):=7°%(s) and by repeating
the infinitesimal lifting of Proposition 4.1, we have a sequences {g{%(s)} .., and
{t"9(s)} | < p <, satisfying (4.1);~(4.4), for p>1. Remark that g{*(s)=gi(s)mod J,
19(5) =7°(s)mod J and Q(g¥*(s) — g%(s)) and Q(z*?(s) —7°(s)) are reduced with respect
to A.

We will prove the convergence of lim,, , ,g**(s) and lim,_, ; ,7*(s).

Lemma 5.3. Let Uc < W< < C" be open domains, he T y(W,0){s} and k a
positive integer. Then, for g(s)e Ty(U,1)"{s} with g*(z,0)=2* (1<a<n), there exist
positive constants ¢ and Cy~ Cy such that
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oh
(g (s) + Y(s),s) — h(g(s),5) — 5(2, OW)ll, <

¢, Il!//(S)I|2+szaXap|| (g(S) 5)— —(Z ol v,

holds for Y(s)eT\(U,1)"{s} with y(z,0)=0 and ||y |, <e, where T',(W,0) denotes the
Banach space of all bounded holomorphic functions on W and we consider

h(g(s)+ Y(s),5) — h(g(s),s) — 2(z,00{/(s) as an element of T (U,1)"{s}.
We can prove Lemma 5.3 along the way of [11, Lemma 2.22].

Lemma 5.4. Let K be a Banach space with its norm | |x and ¢(t)e K{t,,---,t,}.
Then, for 1(s)€ C"{sy,---,5,} with 1(0)=0, there exist £>0, C; >0 and Cs>0 such that

llb(x(s)+n(s)) — P(x(s)) —%%(O)n(S) I, < Calln()13 + Cslie)l llnts)ll,

holds for n(s)e C"{sy,--,5,} with n(0)=0 and |n(s)ll,<e.

Proof is a direct calculation.
The following is well known, where constants ¢ and d are independent of g or ¢:

(5.5) 1%lon=clglion for all ge C(U;nG, 1),
(56) [9NEliop<dlélou for all ¢eA%'(@,T'X).

In the followings, we fix an a=(a,,--,a,)e(R¥)* with a;+ --- +a,<1/8 and
satisfying <exp(w,),a> #0 for some 1<x<m Let p,e(R%)? be such that
max{p,);<1and ||g(s)|l,,, (x=1,---,n) and ||7°(s)|,, (6=1,---,r) are all finite. Suppose
that

187(s)—z¢ll,, <0, (x=1,---,n),
177, <0, (6=1,---,),
o@D, < 00,

max, 4| %3(3(s),5) — §£a(z,0)| ,, < 0,
[red 4o Q@EEO,, <0, (x=1,--,n),
Ired 4 o Q&SI ,, <0, (@=1,---,n).

Since gX(s)=z{modm and 7°(s)=0modm, we infer from (3.3) that, for pe
(R%)* with p<p,,
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57 &) -z, <) ola=1,--,n),
1@, <) o, (6=1,---,r),
oY, < (5
max, pllaha(g(s),s) &(z,00,<®) o,
Since red , » Q(6;3(s)=0 mod m> and red_, o Q(E7(s))=0 mod m?, we have
(5.8) lired 4° Q@IN, <(2) 0, (2=1,--,n),
(5.9) lred o QEFN, <(2)* 0, (@=1,-,n).

It is enough to show that the following estimates hold for some pe(R*)’,
0>0 and for all u>1:

(5.10),  l(ghyiuls) +&(DHul); &myitul) + &emulIN, < 0} (2=1,--+,n),
(51 l)u "(T{I )u(s) T(m)u(s))"p <0 (0' = 1 )

Since gl 1(5)=0 (x=1,--,n, k=1,---,m) and 15,(5)=0 (6=1,---,r, k=1,---,m),
(5.10); and (5.11), hold for any pe(R*)? and ¢>0.

Proposition 5.5. Suppose that all inequalities in Lemmas 3.3 and 3.4 hold
for pe(R¥)® with p<p, If (510), and (5.11), with 0<o<min{l,e} hold for
v=1,2,---,u—1 (u=2), then the followings holds

(1) @l +8ud), < Ce(2)? 0,+ Cap™ 262 + Cap™ (20 (a=1,,n, k=1,
m),

bl

@) 5@, < Ce(2)? 0,4+ C1p~ 40> + Cep™ () 0 (0=1,--7), k=1,---,m),
where Cg~ Cg are constants independent of p, u and o and ¢ is the constant in
Lemmas 5.3 and 5.4.

The following lemma implies Proposition 5.5.

Lemma 5.6. Under the assumption of Proposition 5.5,

(1) 1@yl Tijmpu, < Co2)? 05+ Crop ™ *0% + Cy1p~ (1) o,
@) 1) Eamitul, < C12()* 0,4 Crap™*6% + Crap™ *(f) 0,
B3) Nk Eum, < Ci5(2)? 0o+ Crep ™20 + Ciap™*(F) 0,
@ 1@ TN, < C18(2) 05+ Crop~ >0 + Caop ™ *(1) 0,
(5) 11l Zlomu, < C21(2)? 6,4 Caap™ >0 + Co3p™ (J;
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where Cy~ C,5 are constants independent of p, p and o.

Proof. (1) Set @%,s):=hE/s)+ ) —HZAhS) — Zpo  2Hz, OWP. T we
denote Y¥(s)=g%~V(s)—g¥(s), then we have

&)~ hife (o)) =

(&i(s) — hif&5(s), ) + ¥rils) — i %2%(2 1 OW3(5) + DAY (5),5)
p=10Zj

and Q(J¥s)) are polynomials of order p reduced with respect to .#. Hence
(Gij1yu(8)s T jmyu(8)) 18 the homogeneous term of degree p of red, o Q(d7(s)
+ @} (5),5)). Therefore (1) follows from (5.8) and (5.10), (I1<v<pu—1) using
Lemmas 5.3 and 3.3.

(2) follows from (1).

(3) Set P(1,5):=P(T(s) + 1) — P(E(s) —5(O)y. If we denote Yi(s) =g~ s)—£s)
and d(s)=1"*"Y(s)—1(s), then

(0= (™™ D))g" ™ 1As) +&lyu(s)) = (0 — PD)ZLs) + W (5) + 8iyuls) — $18(5)z;
— AW (S) +&1u(8) — D1 (Mgt ™ (5) + &ly(5) — z) + W (S(), sMgt" ™ V(s) + £7y,(5)

and Q(Y(s)) and Q(d(s)) are polynomials of degree u reduced with respect to
M. Hence (1)), ,¢myu(s) is the homogeneous term of degree u of red,,
cQEls) + Ogiuls) — PEOWS) — d16)gt ) — z) — W((s)5)g V(o))
Therefore (3) follows from (5.9) and the inductive assumption (5.10), and (5.11),
(v<u-—1), using (5.5) and Lemmas 5.4 and 3.3.

(4) and (5) follow from (3) taking account of (5.6). Q.ED.

Let V¢ be the open set of poly-radious in Theorem 3.1 (4) with respect to a and
Vi={p=('*"-n' %) eV, |0<d;<¢; (j=1,---,9)}, where (¢,---,¢,) has the
property in Lemma 3.4 and satisfies maxe;<1. Choose a peV’ such that
Ce(2)<1/3, Cip~2%L)o,<1/3, and Cgp~2%(£)<1/3 hold. This is possible
because we have p~2%(2)<n?/inf(p,);. 1In fact, p**=y?*=1%%2<%2> <y holds for
0<é;<e; (1<j<q)since a;+ ---a,<1/8 and maxg;<1. Let 6=(2)g,. Then, by
Proposition 5.5, (5.10), and (5.11), hold for p=1,2,---, since Cq(2 2g,<0/3,
Cip~ 20 =Crp ™ (&) 0,0<0/3 and Cgp~2(2)*0<0/3 hold. Thus we proved
the convergence of g,(s)=lim,_, , ,gl(s) (k=1,---,m) and 7(s)=lim,_, , ,T¥)(s)
(k=1,---,m). This complets the proof of Proposition 5.2.

Corollary 5.7. Let a<¢' <e,. Then there exist an isomorphism ©v:T,— T,
and an embedding g:Q,x T, — %, which is holomorphic with respect to ¢, (x(t))
(teT,). Inparticular,(X,)ica = (Ts)req is embedded in (X )req = (T2),eq A4S an open part.
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Proof. Let S":=T,, S:={o}, ©?:=0 and g©:=i:Q, > n_'(0). Then, by
Proposition 5.2, we have a holomorphic map ©:7,—7, and a C* "-map
2:Q,x T, - &, satisfying (5.1)7, ~(5.4),, of Proposition 5.2. On the contrary, since
w, is formally versal, we have a formal map 6:7,—»7T,. d6-%)=id and
d(% - 6)=id follow from the effectiveness of w,. and ¢, combined with the Dolbeault
isomorphism. Hence, according to [4, Annex, Notel], we have that % is an
isomorphism. Therefore 7 is an isomorphism. The latter half part follows by [19,

Satz 4.2]. Q.E.D.

Proof of Theorem 5.1. Let w:% — S'=S,4 be a smooth map such that
= (o) is a neighbourhood of K. Suppose that there exist a holomorphic map
1,:8' > 8-> T, and an isomorphism G,:#|5s—> Z,x ;. S. Choose an a<¢'<e, and
denote the isomorphism t:7,—> T,, the embedding g:Q,x7T,— %, and the
isomorphism G :(Z);eq = (% )req» Obtained in Corollary 5.7 respectively, where 27,
denotes a neighbourhood of K. Let 7,:=t07,:S > T, and g,:=G, 'og,:Q, xS
— % s where g, denotes the embedding Q, xS - %, xr Sinduced fromgandz,. By
Proposition 5.2, we have liftings ¥:S' > T, and §:Q, xS - %, of 7, and g,
respectively, satisfying (5.1)7, ~(5.4),, of Proposition 5.2. Since S’ is reduced, by
(5.3),, and [19, Sats 4.2], we have that ¢’ induces an isomorphism G': &, x .8 =¥
in Fy.

Now we remark that Im7' < (T,),.q since S’ is reduced. Then Im1, < (T,),.q
and Imt, c (T,),, Hence g,=G,'cG, where G, denotes the isomorphism
(ZDrea X ToreaS = (X e)rea X (T.)eea S induced from G, 7, and 7,

Since g|5,. xs=g,, We have that G~igt, <5 =G, ! °G, ideal theoretically, by [20,
Korollar 2.4 (for A=S', B=¢)].

Therefore if we set T:=1"10%:S" = (T),eq and G:=G" o Gg :(X})seq X ToeeaS =
%, where Gy denotes the isomorphism (27);eq X (To),ca S = (Z edrea X (Topea S induced
from G, T and ¥, (G,7) is a lifting of (G,,7,) in Fg. Q.E.D.

6. Deformations of s.p.c. domains-proof of Theorem 2

Let X be a s.p.c. manifold with dim¢X'>4 and with the exceptional set E. Let
p:X = X be the Remmert quotient and p(E)={qy,"-*,q,}. Let r:X —[—o0,+0)
be an exhaustion function having the follwing properties:

(6.1) r is a strictly plurisubharmonic C*-function on X\E.

(6.2) dr#0on {xeX|—oo<rx)<c yu{xeX|c,<r(x)<+ oo} for some —oo<c,
<cy, <+ 00.

63) E=n_ Q.

Proposition 6.1. There exists a formally semi-universal convergent family
& — T of deformations of X which is semi-universal in Fg_ for all —oo<a<c, or
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¢, <a< + o0, where we denote Fg__:=Fy and F,—2c2 =05, Fo.

Proof. Choose a strictly increasing sequence c,<g,<é3<--- such that
lim;, .&;=+00. By Theorem 1, there exists a ;> T; (i=2,3,--) which is a
semi-universal in Fg_for all ¢, <e<g; respectively. Since semi-universal elements
are isomorphic to each other, we may assume that ;- T; is embedded in
Xi+1— T;1, as an open part. Hence if we set 7:=T; and ¥ =u2,%, ¥—>T
is a family of deformations of whole X which is semi-universal in Fg_for all
c¢,<e<oo. Next, fix an —oo<g,<c;. Then, by Theorem 1, we have a family
Z— T, of deformations of €, which is semi-universal in Fg for all
—o0<e<g,. Hence, we have a morphism (¥ > 7) - (%, > T,) in Fﬁgrr Since
(Z, - T,) is formally semi-universal in F5_for all —oo<e<c; (cf. [16, §2]), we
have a formal map T, - 7 and a formal isomorphism &, - % x #+T, in Fg, . By
the effectiveness, the above holomorphic maps are all isomorphisms (cf. [4i Annex,
Notel]). Hence 4, —» T, is embedded in & —» T as an open part. Therefore we
conclude that & — T is also a semi-universal element in Fg_for all —oo<e<c,.

Formally semi-universality of & — T follows by comparing & — T with the
formally  semi-universal formal family (cf. [17, Theorem 2.11]). Q.E.D.

Let E;:=p~(g;) (j=1,2,---,,k) and %;— 7}' be a semi/—universal family in Fy,
(j=1,2,--k). Itis clear that U§_ %, x r, (I=;T;)— 1}, T, is a semi-universal
family in Fu’,i‘=1Ej,1' Then we have

Lemma 6.2. US_ %;x ¢ (IT{_,T)) » II5_T; is isomorphic to - T in Fy.
Corollary 6.3. Any US_,%;, x T, (T2, T;) = 05, T, is embedded in ¥ — T
as an open part of Xy, 5,7,

Proof of Theorem 2. Let & — T be the formally seimi-universal family in Fy
obtained in Proposition 6.1. Let K< X be a strongly pseudo-convex compact
subset. First we suppose that KnE=E":=U%_ E; and set K=n2 UY where
all U™s are inverse images of Stein spaces in the Remmert quotient. We may
assume that p" (UY)NE=E' (i=1,2,---). Let r® be an exhaustion function on
U® having the properties (6.1)~(6.3) for some —oo<c{’<cP < 400 respectively.
By Proposition 6.1, we have a family Z® — T which is formally semi-universal
in Fyw and is semi-universal in Fgg for all ee[—o0,cf)u[c, +0). Denote
(X' - T)=( x y (4=, T;) - 152, 7},).  We will compare 29 — T with &' — T".
For each i=1,2,---, choose ¢ <&¢? < + oo such that K < Q. We may assume that
Qi < < Q). By the semi-universality of ¥ — 7@ in Fgq, there exists a
holomorphic map t?: 7" — T® and an isomorphism between 2 x 1., T — T’ and
X' —-T in Fﬁi‘&h' Remark that this is also an isomorphism in Fg. By the
semi-universality of 2" — T’ in Fg, there exists a holomorphic map t:T® —» T"
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and an isomorphism between ¥ —» T® and 2" x . T® - T® in F,. From the
effectiveness, v and t*” are all isomorphic to each other. Hence we may assume that
all @ - T are embedded in 2’ — T" as open parts.

Let w: % —» S be a family with Kcw '(0) (0eS’) and a morphism
Ys > &'

! | be given. Choose i such that K < Q% < < w™!(0). Then we have a
S - T
Ys - 29
morphism | 1l in Faq, By the semi-universality of ® — T, we have a
S - 719
Y - O Y > x
lifting | | in F,—QS&). Therefore we have a lifting | | in Fgx. This implies
S - TV S > T
that & — T is a versal element in Fg.

Next, we suppose that KnE=¢. Then we may assume that p~ (U nE=¢
(i=1,2,---) in the above argument. Choose an arbitrary point pe K. Then by
the same argument as above with E'={p}, we have that Z — T is a versal element
in Fy. Q.ED.
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