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Introduction

This paper is written about the property (DF) on regular rings whose maximal
right quotient rings are Type I,. Hereafter regular rings whose maximal right
quotient rings are Type I, are said to satisfy (+). The property (DF) is very
important property when we study on regular rings satisfying (), and it was
treated in the paper [5] written by the first author, where (DF) for a ring R is
defined as that if the direct sum of any two directly finite projective R-modules
is always directly finite. In the above paper, the equivalent condition that a regular
ring R of bounded index satisfies (DF) was discovered and called (¥). Stillmore,
we proved that the condition (DF) is equivalent to (¥) for regular rings whose
primitive factor rings are artinian in the paper [6]. Then we have the problem
that (DF) is equivalent (¥) for regular rings satisfying (x) or not, where the condition
(*) is weaker than one that primitive factor rings are artinian.

In §2, we shall prove Theorem 2.4. This is important, and using this, Theorem
2.5 (ie. if R is a regular ring satisfying (%) and k is any positive integer, then kP
is directly finite for every directly finite projective R-module P)is proved. Moreover,
we shall solve the above problem in Theorem 2.11.

In § 3, we shall consider some applications of Theorem 2.11. We prove Theorem
3.3 that if R is a regular ring satisfying (*) whose maximal right quotient ring of
R satisfies (DF), then so does R. Though it is clear that a regular rings satisfying
(*) which has a nonzero essential socle satisfies (DF), we can prove that, for regular
rings satisfying (*), the condition having a nonzero essential socle is not equivalent
to (#) in Example 3.4. Next, we shall consider that (IIPR)/(@®R) satisfies (DF)
or not for a regular ring R satisfying (%x). This problem is a generalization of
Example 3.4, and we prove that, for a regular ring R of bounded index,
(IIPR)/ (® R) satisfies (DF) (Theorem 3.9).

Throughout this paper, R is a ring with identity and R-modules are unitary
right R-modules.
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1. Definitions and notations

DerINITION 1. A ring R is (Von Neumann) regular provided that for every
x€ R there exists y€ R such that xyx=x.

Note. Every projective modules over regular rings have the exchange property.

DEerFINITION 2. A module M is directly finite provided that M is not isomorphic
to a proper direct summand of itself. If M is not directly finite, then M is said
to be directly infinite. A ring R is said to be directly finite (resp. directly infinite)
if so is R as an R-module.

DErFINITION 3. The index of a nilpotent element x in a ring R is the least
positive integer such that x"=0 (In particular, 0 is nilpotent of index 1). The
index of a two-sided ideal J of R is the supremum of the indices of all nilpotent
elements of J.

If this supremum is finite, then J is said to have bounded index. If J does not
have bounded index, J is said to be index oo.

Note. Let R be a regular ring with index co. Then using [3, the proof of
Lemma 2], there exists a family {4,}2 , of independent right ideals of R such that A4,
contains a direct sum of n nonzero pairwise isomorphic right ideals. Therefore
R has a family {e;;};;-1,,,... of idempotents such that

e21R~e;;R
631R2€32R 2633R

, where ;=0 (i<j), and {e;,---,¢;} are orthogonal for all i.

DerFINITION 4. A ring R has (DF) if the direct sum of two directly finite
projective R-modules is directly finite.

DEFINITION 5. A regular ring R is abelian provided all idempotents in R are
central.

DEFINITION 6. A ring R satisfies (+) if every nonzero two-sided ideal of R
contains a nonzero two-sided ideal of bounded index.

DEFINITION 7. A ring R is unit-regular provided that for each xe R there is a
unit ue R such that xux=x.
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Note. Every finitely generated projective module over a unit-regular ring has
the cancellation property ([2, Theorem 4.14]).

DEerINITION 8. Let e be an idempotent in a regular ring R. Then e is called
an abelian idempotent (of R) whenever the ring eRe is abelian.

DerINITION 9. Let e be an idempotent in a regular right self-injective ring
R. Then e is faithful (in R) if 0 is the only central idempotent of R which is
orthogonal to e. A regular right self-injective ring R is said to be Type I provided
that it contains a faithful abelian idempotent, and R is Type I, if R is Type I
and directly finite.

Note. It is well-known from [4, Theorem 2] and [2, Lemma 7.17] that
a regular ring R satisfies () if and only if the maximal right quotient ring of R
is Type I,.

Note. Let R be a regular ring satisfying (*). If P is a finitely generated
projective R-module, then Endg(P) is a regular ring satisfying (*).

Proof. Choose a positive integer n and an idempotent matrix ee M,(R) such
that e(nRg)~P. Then Endg(P)~eM (R)e. Using [2, Corollary 10.5], we see that
eM (O(R))e~Q(eM,(R)e) is Type I, where Q(R) is the maximal right quotient of
R. Since eM,(R)e=<.0(eM, (R)e) as an eM,(R)e-module, we have that eM,(R)e
satisfies (), and so has Endg(P).

NotaTiOoNs. Let 4, B and A; (iel) be R-modules, and k£ be a positive
integer. Take xelIl4;. Then we have some notations as following.

A<B ; A is a submodule of B.

A<B ; B has a submodule isomorphic to A.

A<@®B ; A is a direct summand of B.

AS@®B ; B has a direct summand isomorphic to A.
A<,B ; A is an essential submodule of B.

A<.B ; B has an essential submodule isomorphic to A.
kA ; the k-copies of A.

x(i) ; the i-th component of x.

O(R) ; the maximal right quotient ring of R.

2. The property (DF) for regular rings satisfying («)

Lemma 2.1 ([2, Theorem 6.6]). Let R be a regular ring whose primitive.
factor rings are artinian. Then R satisfies (*).
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Lemma 2.2. Let R be a regular ring satisfying (»). Then there exist
abelian regular rings {S,},.r and orthogonal central idempotents {e},.r of R
such that Ry < [TIM,((S)1g, ®M,(S)<SR and e,R=M,,(S,). Therefore Q(R)~
TLM, (Q(S).

Proof. This theorem follows from [2, Lemma 7.17 and the proof of Theorem
7.18].

Lemma 2.3. Let R be a regular ring of bounded index and P be a finitely
generated projective R-module. Then P can not contain a family {A,A,,---} of
nonzero finitely generated submodules such that A;2A;,, and iA;SP for each
i=1,2,---.

Proof. By [2, Corollary 7.13], we see that Endg(P) has bounded index. Note
the claim in the proof of [2, Theorem 6.6], and applying [5, Lemma 5] to Endg(P),
we see that this lemma holds.

Theorem 2.4. Let R be a regular ring satisfying (»), and P be a projective
R-module with a cyclic decomposition P=@®; P, Then the following conditions
(@)~(d) are equivalent:

(a) P is directly infinite.

(b) There exists a nonzero cyclic projective R-module X such that X (X < P.
(c) There exists a nonzero cyclic projective R-module X such that X<
@ier—(iy,.inPi for any finite subset {iy,---,i,} of L.

(d) There exists a nonzero cyclic projective R-module X such that X (X< @P.

Proof. Itisclear that (a) — (b) and (c) — (d) — (a) hold, hence we shall prove that
(b) = (c) holds. We may assume @M, (S, <Rg<[IIM,(S)]g for some set of
abelian regular rings {S,},.r by Lemma 2.2. Now we assume that (b) holds, hence
there exists a nonzero principal right ideal X of R such that X (X< P. Let {ij,---,i,}
be a subset of I and set I'=I—{i;,---,i,}. Since @M, (S, <Rg < [IIM,,(S)]x,
there exists #'e€T such that Y=[(I1,-,0)x M,,(S)]nX#0. By the property of
regular ring, it is clear that Y is a principal right ideal of R. Then R (Y
P, hence YS@®P. Thus for each iel, we have decompositions P;=P!@®P{"
and Y~P! @ - ®P.®(@®rP). Set (I1,2,0) X M,(S;)=3S, and then there exists
a central idempotent e in R such that eR=S.

Note that S is a regular ring of bounded index. It is clear that

Y®RSS’:’(P}1®RS)@ ®(P1'1,,®RS)®[®1'€I‘(PI'I®RSS)]

and 2Y®rSsSP®gSs. Since S is unit-regular, Y®pSs has the cancellation
property. Hence
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Y®rSs S ®(P®S)® - D (P @ p)D[@ e (P ® &S]
Thus for each i, we obtain that P{V® pSs=P*@ P? for each iel and
Y®rSs~Pi® - ®P.O(® s P}).
Continuing this procedure, we have that Pi™ =Pr*1@pm*+V and
Y®rSs>Pr 1@ @Pr (@ PP Y)

for each iel and each positive integer m.

Now we set A,=Pr®--@®PF, where A;=(P®zS)® - ®(PLR®rS). Then
A S®A,®(® ;- P?), hence there exist a direct summand B, of 4, and a direct
summand Q? of P? such that 4, ~B,®(®;.0?. Continuing this procedure, we
obtain a family {B,,B,, --} (4, =B,) of finitely generated projective S-submodules
of (P;,® - ®P;)®xS such that B, 2B, ., and mB, <nS for all m. By Lemma
2.3, there exists a positive integer k such that B,=0 for all m (=k). Thus we
have that 4, ~(®; .?)@"‘(‘D(@iel'Q‘i() and Y®zSs~(®i; 0@ - ®(®icr )
Noting that 0# Y < S, we have that Y, <@ P;.

Corollary 2.5. Let R be a regular ring satisfying (). Then R contains no
infinite direct sums of nonzero pairwise isomorphic right ideals. Hence R is
directly finite.

Proof. From Lemma 2.2, we may assume that, Rg<IIM,, (S, for some
abelian regular rings {S,},.;. Set T=TIM,(S,). Now we assume that R contains a
direct sum of nonzero pairwise isomophic right ideals, and so there exists a nonzero
idempotent e of R such that 0#Xy(eR)SRr Then R o(eR)QrTSRRRT,
and so R (eT)<ST, which contradicts to Theorem 2.4 because T is a directly
finite regular ring satisfying ().

Theorem 2.6. Let R be a regular ring satisfying (¥) and k be a positive
integer. If P is a directly finite projective R-module, then so is kP.

Proof. We may assume that @M, (S, < Rg < [TIM,(S,)]x for some abelian
regular rings {S,},.;, and let P=@,,P; be a cyclic decomposition of P. It is
sufficient to prove that this theorem holds in case k=2. Assume that 2P is directly
infinite. Then Theorem 2.4 follows that there exists a nonzero principal right
ideal X of R such that X< @cr—g;,......,,2P; for any finite subset {i;,---,i,} of I. By
the proof of Theorem 2.4, we may assume that exists ¢ of T such that
X<(I1,.,0) X M,(S;)=S. For any finite subset {i;,---,i,} of I, we have that
0#XQrSsS Dicr—iy,..iy(2Pi®gS). Since S is a regular ring of bounded index,
we see that 2(P®zS)s is directly infinite by Theorem 2.4 and so (P® xS)s is directly
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infinite by [5, Theorem 4]. Moreover, using Theotem 2.4 again, there exists a
nonzero principal right ideal Y of S such that YS @, ;—g,.......,(Pi®gSs) for any
finite subset {i;,---,i,} of I. Considering Y as an R-module, O# Yr S@®;_g,....iaP:
Therefore P is directly infinite, and so this theorem is complete.

Corollary 2.7. Let R be a regular ring satisfying (). Then every finitely
generated projective R-module is directly finite.

Proof. It is clear by Corollary 2.5 and Theorem 2.6.

Corollary 2.8. Let R be a regular ring satisfying (*).

(@) M(R) is directly finite for all positive integer n, and so M (R) contains no
infinite direct sums of nonzero pairwise isomorphic right ideals.

(b) If P and Q are finitely generated projective R-modules, then P@® Q is directly

finite.

Proof. (a) R is a regular ring satisfying (), and hence so is M,(R). Therefore
Corollary 2.5 shows that (a) holds. (b) follows from Corollary 2.7.

Note. In [1], Chuang and Lee have shown that there exists a regular ring
satisfying (*) which is not unit-regular. Our Corollary 2.8 gives a partially solution
for open problems 1 and 9 in Goodearl’s book ([2]).

DEFINITION. Let R be a regular ring and P be a projective R-module. We
call that P satisfies (#) provided that, for each nozero finitely generated submodule
I of P and any family {4,,B,, -} of submodules of P with

I=A1@Bl,
A;=A,®B,;
Bi=A2i+l®B2i+l fOl‘ CaCh i=1,2,'-~,

there exists a nonzero projective R-module X such that X S @2, 4; or XS D2, B for
any positive integer m.

Lemma 2.9 ([5, Lemma 6]). Let P be a nonzero finitely generated projective
module over a regular ring R, and set T=Endg(P). Then the following conditions
are equivalent:

(a) P satisfies (¥).

(b) T satisfies () as a T-module.

Lemma 2.10 ([S5, Lemma 7]). Let P be a nonzero finitely generated projective
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module over a regular ring R, and set T=Endg(P). Then the following conditions
are equivalent:

(a) R satisfies (¥) as an R-module.

(b) All nonzero finitely generated projective R-modules satisfy (¥).
(c) For any positive integer k, kR satisfies (#).

(d) There exists a positive integer k such that kR satisfies (#).

Theorem 2.11. Let R be a regular ring satisfying (¥). Then the following
conditions are equivalent.

(a) R has (DF).

(b) R satisfies (¥) as an R-module.

(c) For any nonzero finitely generated projective R-module P, Endg(P) has (DF).
(d) For any positive integer k, M(R) has (DF).

(e) There exists a positive integer k such that M (R) satisfies (DF).

Proof. Note that Endg(P) is a regular ring with (). [S5, Theorem 8] was
proved only using [5, Theorem 2]. Now [5, Theorem 2] holds on a regular ring
satisfying (x) by Theorem 2.4. Hence we see that this theorem holds under this
condition using the similar proof of [5, Theorem 8] (Note that the unit-regularlity
is not needed).

3. Some applications

Lemma 3.1. Let R be a regular ring satisfying (%), and let {e;} be a set of nonzero
orthogonal central idempotents of R such that @®e;Rgx<,Rg. Then R has (DF)
if and only if e,R has (DF) for all i.

Proof. Note that ¢;R is a ring direct summand of R. It is clear from Theorem
2.11 that “only if” part holds. We shall prove that “if” part holds. Let I be a
nonzero direct summand of R, and so ¢, RNI#0 for some i. Setting J=¢;RNI,
J is a principal right ideal of both R and ¢;R. We consider decompositions

I=A,®B,
Aj=A,;®B,;
B;j=A,;+1®B,j41 for each j=1,2,--,
and so there exist decompositions of J such that
J=C,®D,
Ci=C,;®D,;
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Dj=C2j+l®D2j+1
C;<s®A4; and D;S®B; for each j=1,2,-.-.

By the assumption, there exists a nonzero cyclic projective e;R-module X such
that X<®2,C; or X<S@®2,D; for each positive integer m. Hence X®ge,RS
D m(Ci®reR) o XQre,RS®2,(D;®@ge;R). Note that @52, (C;®@reR)S
@2nmdjand @2,(D;@e;R)S @2 ,,B;. Therefore XQre,RS DL ,,A; or XQge,R
S®2,B;. Since X®gre;R#0, this lemma has proved by Theorem 2.11.

Lemma 3.2 ([6, Proposition 2.1]). Let R be an abelian regular ring. If Q(R)
has (DF), then so has R.

Theorem 3.3. Let R be a regular ring satisfying (). If Q(R) has (DF),
then so does R.

Proof. By Lemma 2.2, we may assume that there exists a set {S,} of abelian
regular rings such that Rg < [TIM,(S)]. Then Q(R)=IIM,,O(S,). Assume that
Q(R) has (DF), then so does M,,,(Q(S,)) for all t by Lemma 3.1. Moreover, Theorem
2.11 shows that Q(S,) also has (DF), hence so has S, by Lemma 3.2. Thus M,(S,)
also has (DF) by Theorem 2.11. There exists the set {e,} of orthogonal central
idempotents of R such that e, R=M,,(S,) x [I1,.,0] and @e,R<.Rg. Therefore
R has (DF) by Lemma 3.1.

Now we shall give an example of a regular ring with a zero socle satisfying
(*) which has (DF), as following.

EXAMPLE 3.4. Let F be a field, and set R=I12 F(F,=F) and R=R/soc(R).
Then R is a regular ring satisfying (*) which has (DF).

Proof. Since it is clear that R is a regular ring satisfying (), we shall prove
that R has (DF) using Theorem 2.11. Let ¥ be the natural map from R to R, and
let I be a nonzero direct summand of R with following decompositions:

I=A,®B,
Ai'_—Azi(‘BBzi
Bi=A, ®B,i4, for i=1,2,---.

Now assume that there does not exist {C;} (C;=A; for some i) which is an infinite
subset of {4;}2, such that C;>C;,, and C;#0 for all j. Let {D,} (D,=A4, for
some i) be an infinite decreasing sequence of {4}, and so there exists a
positive integer p’ such that D,=0 (p<p’). Hence 0=D,=A4; for some
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iy. Thus B; #0. Next, we take {E,} (E,=A; for some i) which is an infinite
decreasing sequence of {4,}, where E,<B; and B, <B;, (4x,=E,) for all positive
integer g. Similarly, there exists a positive integer ¢’ such that E,=0(q'<q). Hence
there exists a positive integer i, (i, > i;) such that E,, =4, =0. Therefore B;,#0 and
B;,>B;,. Continuing this procedure, we can get an infinite set {B,} such that
{B;} > {B,} and B, #0 for all k. From the above, we may assume that there
exists an infinite decreasing sequence {C;} such that {4;} > {C}}, C;>C;,, and
C;#0 for all j.

We have a set {¢;} of idempotents of R such that ¥(e;R)=C; and e;R>e; R for all
j. We take an idempotent fi(€e;R) with dimg(f;R)=1. Next we take an
idempotent f,(ee,R) such that dimg(f,R)=1 and f,f,=0. Continuing this
procedure, we can take a set {f;} of orthogonal idempotents of R. Set e=Vf
and then W(e)#0. We have that eR=J®(eRne;R) and J<@F; for some right
ideal J. Noting that J® zR=0, we have that

0#%¥(e)R~eR®R
~[J®(eRNe;R) @R
<e;R®xR
~C; for all j.
Therefore 0#¥(e)RS @2 .A; for any positive integer m. Hence R has (DF) by
Theorem 2.11.

By Example 34, we have a problem that, for any regular ring S, R
=(I1PS) /(@ S) satisfies (DF) or not. Example 3.5 shows that, even if S satisfies
(*¥), R does not satisfy (). Therefore we shall give the necessary and sufficient
condition for that R satisfies (x), and we solve the above problem under this condition.

ExaMPLE 3.5. Let F be a field and set S=II2 M(F), S=S/(®M/F)),
T=II2,S;(S;=S)and R=T/(®S;). Then S satisfies (*), but R does not satisfy ().

Proof. It is clear that S satisfies (¥). Therefore we shall show that R does
not satisfy (x). Set a central idempotent e (€ T) as following;

e(n)=(0,~-,0,[1 1],0,0,...),
Lr—11Ln]|

where e(n) € S,,.
Let @ be the natural map from S to S, and p be the natural map from 7'to R. Set
¥ =p|,;. Noting that e(n)S,~M,(F), we have eT~S. Hence there exists a ring
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isomorphism k from eT to S. Now, we define a ring homomorphism o from
Y(e)R to S as following; for each x (e'¥(e)R), we take any element y of ¥~ '(x)
and set o(x)=Dxk(y).

PR > §
v
eT —x> S

Similarly we define a ring homomorphiism B from S to W(e)R. Then we have that
Poa=1,,r and af=15 Hence « and B are isomorphic. Therefore W(e)R~S. Let
I be a nonzero two-sided ideal of S, and so I=J/(®S;) for some nonzero two-sided
ideal of S which contains @S, There exists 0#xeJ—(®S; with x(i)#0 for
almost all i. Since S;x(i)S;=M(F) has index i, there exists a nonzero central
idempotent e(i) of M(F) which S;x(i)S; has index i. Therefore SxS does not have
bounded index, and so does not J/(@®S,). Therefore § does not satisfy (+), and
hence so does not W(e)R. Thus R does not satisfy (*).

Lemma 3.6. Let R be a ring, and e, f be idempotents of R. Then eR~fR if
and only if there exist u and v of R such that vu=e and uv=f.

Lemma 3.7. Let S be a regular ring which has index oo, and set
R=(12,S)/(®S) (S;=S). Then R has an infinite direct sum of nonzero pairwise
isomorphic right ideals.

Proof. Let W be the natural map from IT2,S; to R. Since S has index oo,
there exists a set of idempotents {e;;}; ;- ,... as following:

e S
€;5e;,S

e3;8e3,8~e33S

, where e;;=0 (i<j) and {e;,,,e;} are nonzero orthogonal for alli. For all positive
integer m, we take idempotents {f,,} such that f,(k)=e,, for all positive integer
k. Since e, S~e,,S for all k, there exist u, and v, of S such that v, =¢,, and
V=€, by Lemma 3.6. Set u and v of II2;S; such that w(k)=u, and
v(k)=v,. Then uv=f, and vu=f; —e, where e is an idempotent with e(1)=e,; and
elk)=0 (k#1). Hence (f;—eXILS;)~f,(I1S;) and (f;—e)ILS;)f5(I1S;)=0.
Therefore we see from Lemma 3.6 that W(f; —e)R~¥(f;)R and W(f; —e)RNY(f,)R
=0. Since W(f; —e)R="Y(f})R, we have that W(f;)R~Y(f,)R and ¥(f))RN¥Y(f,)R
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=0. Continuing this produre, for all positive integers i and j, W(f)R=~¥(f)R and
Y(f)n¥Y(f)R=0 (i#j). Thus R has an infinite direct sum of nonzero pairwise
isomorphic right ideals.

Theorem 3.8. Let S be a regular ring, and set R=(II2,S))/(®S)
(S;=S). Then the following conditions are equivalent:

(a) R satisfies (*).

(b) R is a regular ring whose primitive factor rings are artinian.

(c) R has bounded index.

(d) R contains no infinite direct sums of nonzero pairwise isomorphic right ideals.
(€) S has bounded index.

Proof. It is clear by Lemma 3.7 that (d) — (e) = (c) = (b) — (a) hold. (a) — (d)
follows from Corollary 2.5. Therefore this theorem is complete.

Theorem 3.9. Let S be a regular ring of bounded index. Set R=(I1;>-,S,)/(®S,)
(S,=S). Then R has (DF).

Proof. Set II;2,S,=T, and let ¥ be the natural map from Tto R. LetIbea
nonzero direct summand of R with following decompositions:

I=A1®Bl
A;i=A,®B,;
Bi=A43;+1®Byi+1 for i=1,2,....

Similarly to the proof of Example 3.4, we may assume that there exists an infinite
subset {C;} of {4,} (C;=A, for some i) such that C;>C;,, and C;#0 for all positive
integer j. We have the set of idempotents {e;} of T such that W(e;T)=C; and
e;T>e; . ,T. Set J,=8,x(1;;,0). Then, J, ne;T#0 for some positive integer
ny. There exists a nonzero idempotent f, € T such that f,T=J, ne,T. Next we
have a nonzero idempotent f,eT for some n, (>n,) such that f,R=J,,ne,R.
Continuing this procedure, we have the set {f;} of orthogonal idempotents of
T. Now, we set an idempotent g of T as following;

gn j) =fj(" j) =e ,(” j)
gk)=0 (k¢ {n;}).

Put K;=f,T® - ®f;-,T for all . Then gT=K;®(gTne;T). Noting K;®rR=0,
we have that
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0#Y(g)R~gT®R
:[Kj®(ngejT)]®TR
~(gTneT)QrR
Se;T®rR

~C; for all j.

From the above, we have that W(g)R < ®2,.4; for any positive integer m. Therefore
R has (DF) by Theorem 2.11.
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