
Ma, Z.M., Overbeck, L., Rδckner, M.
Osaka J. Math.
32 (1995), 97-119

MARKOV PROCESSES ASSOCIATED WITH
SEMI-DIRICHLET FORMS

ZHI-MING MA, LUDGER OVERBECK and MICHAEL ROCKNER

(Received May 10, 1993)

1. Introduction

Recently, in [1], [11] an analytic characterization of all (non-symmetric) Dirichlet
forms (on general state spaces) which are associated with pairs of special standard
porocesses has been proved extending fundamental results in [8], [9], [18], [5],
[10] (cf. also the literature in [11]). These Dirichlet forms are called quasi-regular
(cf. Section 3 below). The processes forming the pairs are in duality w.r.t. the
reference (speed) measure of the Dirichlet form. From a probabilistic point of
view, however, this duality is quite restrictive. It arises from the fact that a
Dirichlet form by the definition in [1], [11] exhibits a contraction property in
both of its arguments. More precisely, we recall that a coercive closed form
(<̂ ,Z>((ί)) on L2(E;m) (cf. Section 2 below) is called a Dirichlet form if for all ueD(£)
we have w+ MeD(S) and

(1.1)

(1.2)

The purpose of this paper is to show that quasi-regularity is also sufficient and
necessary for the existence of an associated special standard process if the given
coercive closed form is merely a semi-Dirichlet form, i.e., only (1.1) (or (1.2))
holds. The existence of a (Hunt) process associated with a semi-Dirichlet form
($,D($)) was first proved in [5] in the case where E is a locally compact separable
metric space under much more stronger assumptions on

Let us now briefly describe the contents of the single sections of this paper in
more detail. In section 2 we first prove a few new results for the (one sided)
analytic potential theory of semi-Dirichlet forms which are needed later. Here
we only require that £ i s a measurable space in contrast to earlier work on this
subject (cf. [5], [2], [3], where e.g. the measure representation of potentials was
crucial which could only be obtained because E was assumed to be locally
compact). In particular, we give a new proof for the characterization of α-excessive
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functions in terms of the semί-Dirichlet form in this purely measure theoretic
context (Theorem 2.4 below). This proof does not use the "dual structure" of the
semi-Dirichlet (i.e., the dual semigroup (tt)t>09 generator L etc.) at all giving rise
to possible extensions to more general situations. Furthermore, we show that
the infimum of an α excessive function in L2(E;m) and a function in D(β) belongs
to D(S) (which appears to be new even if (<f,£>(<ί)) is a Dirichlet form; cf. Theorem
2.6). Another important result is the characterization of <?-nests in terms of a
suitably defined capacity without duality (cf. Theorem 2.14) if E is a topological
space. Section 2 furthermore contains a description of the general setting and a
review of the underlying terminology. Based on these results the construction of
the process and the proof of necessity is then analaogous to the case considered
m [1]> [H] The corresponding theorems are formulated in Section 3 where we
also summarize the necessary facts on quasi-regularity. Finally we want to
emphasize that due to the results of this paper, all results in [11] carry over to
semi-Dirichlet forms.

This paper was motivated both by the results in [5], [20] for finite dimensional
state spaces and by applications to cases with infinite dimensional state spaces,
more precisely to measure valued diffusions, in particular the construction of
Fleming-Viot processes with selection. The situation in Section II.3 of [20] cannot
be handled within the theory of Dirichlet forms, but only with the help of
semi-Dirichlet forms. We describe our results, which extend the examples in [5]
and a part of the results in [20], in Subsection 3.4 below, where we also sketch
the applications to the Fleming-Viot processes. The details of the latter are
contained in a forthcoming joint paper of the two last-named authors and B.
Schmuland.

2. Analytic potential theory of semi-Dirichlet forms

In this section we state the definiton of semi-Dirichlet forms and develop the necessary
potential theoretic tools on which the construction of the process will be based. As
far as the proofs in [11] apply (i.e., only use (1.1), not (1.2)) we just quote them
and concentrate on the new parts.

2.1. Semi-Dirichlet forms and excessive functions

Let (E,&,m) be a measure space. Let & be a bilinear form with domain D($) on
the (real) Hubert space L2(E m) with inner product (,). We set SΛ := $ + α(,), α > 0.

DEFINITION 2.1. {S,D(S)) with D{$) dense in L2(E,m) is called a coercive
closed form if:

(i) ($,D($)) is positive definite and closed on L\E\m\ where
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<?(w,v):=l/2(<f(M,v) +<f(v,w)) is the symmetric part of β.

(ii) (Sector condition). There exists a constant ^ > 0 such that

(S,D(S)) is called a semi-Dirichlet form on L2(E;m) if in addition:

(iii) (Semi-Dirlchlet property) For every ueD(S\ u+ ΐ\\eD(£) and

From now on we fix a semi-Dirichlet form ($,D($)) on L2(E\m). Below Z)(<f) is
always equipped with the norm S\12.

REMARK 2.2. (i) Let (Tt)t>0, (Ga)Λ>0 denote the semigroup and resolvent (of
operators) associated with (S,D(S)) as in [11, Diagram 2, page 27]. By [11, 1.4.4]
the semi-Dirichlet property is equivalent to the sub-Markov property of Tt and
αGα for all f,α>0, i.e., 0 < / < l implies 0<TtfaGJ<l.

(ii) If also the dual form £(u,v):=£(v,u) satisfies 2.1 (iii) then (S,D(S)) is a Dirlchlet
form (cf. [11, Chapter 1.4]). This, however, is not always the case as the following
example shows (cf. [12, 1.4.3a]).
Let dx denote Legesgue measure. Consider on L2(]0,l[,rfx) the coercive closed
form S>(uiv) = j1

0u
fvfdx-h^bufvdx,D(^) = H^2(]0,ll), with b(x):=jx. Let (Tt)t>09

(ft)t>0 be the strongly continous contraction semigroups associated with ($,D($)\
(£,D($)) respectively (cf. (i)). Let (L,D(L)) be the ZΛgenerator of (Γ f) f > 0 (cf. [11,
Chapter I]). Suppose (Γ t) f > 0 is sub-Markovian. Then for all

|7>φ?jc< Γ,|φfx< |w|fflrfx< \\u\dx,

i.e., the operators Tt are L1(]0,1 [,rfx)-contractive. Hence its ZΛgenerator is accretive
(cf. [14, Theorem X 48]) and, since it coincides on QfQO, 1[) with L, we obtain that

- I u"dx +
Jo Jo

bu'dx>0 for all ueC%(]O,lLl " > 0

Since ^u"dx = 0 integration by parts implies that b' = l/2x~ί/2 is negative on
]0,l[. Therefore, (ft)t>0 cannot be sub-Markovian.

(iii) By [11, 1.4.4] we know that 2.1 (iii) is equivalent with the following:

For all ueD(S) and α>0, uAoceD(S>) and φ Λ α , w-wΛα)>0.

In particular, u+,M~',\u\eD(S\ and thus uί\v,u\JveD(S) for all veD(S). Since for
all weZ)((f),α>0,
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it follows that

Hence, since \u\ = u+ +u~ = — (( — w)Λ0) + (wΛ0), by the triangle inequality we obtain
that

(2.1) ^(|M|,|M|)<4Λ:2^(W,W) for all ueD{£).

(iv) A detailed study of the analytic theory of semi-Dirichlet forms in case E is

a locally compact separable metric space and @ its Borel σ-algebra 0b(E\ can be

found in [2], [3].

Below we write f<g or f<g for f9geL2(E;m) if the inequality holds m-a.e. for

corresponding ra-versions. We say that/is positive if/>0. Let us now consider

excessive functions.

DEFINITION 2.3. Let αe]0,oo[. ueL2(E;m) is called α-excessive if e~atTtu<u

for all f>0.

It is easy to check that an α-excessive function u is positive. Furthermore, we have:

REMARK. Let ueL2(E;m). Then u is α-excessive if and only if βGβ+au<u

for all β>0. The "only i f part is clear since (cf. [11. Chapter I.I])

•Γ
Jo

Gx= e-«T,dt, α>0.
Jo

The "if part is shown as follows. By the resolvent equation we have that

= e-*tTt(Gx(u-βGβ+xu))

<Ga(u-βGp+Λu)

where the inequality follows by assumption, since GJ is α-excessive for every

feL2(E;m),f>0. Hence by the strong continuity

έΓ°"7>= li

Also in the case of semi-Dirichlet forms it is possible to characterize α-excessive

functions purely in terms of the form in this purely measure theoretic context. This



MARKOV PROCESSES 101

will be crucial below in order to show that reduced functions are 1-excessive.

REMARK. Also "(ii)=>(i)" of the following theorem is proved in [11,

IΠ.1.2]. One only has to realize that the dual semigroup ( f f ) ί > 0 and resolvent

(Gx)a>0 are still positivity preserving in our more general situation. For possible

later generalizations, however, we present a different new proof here which does

not use the dual structure of the semi-Dirichlet form at all.

Theorem 2.4. Let u e D(S) and α > 0. The following assertions are equivalent.

(i) u is en-excessive.

(ii) SJu, v) > 0 for all v e D{£\ v > 0.

Proof. (i)=>(ii) see [11, ΠI.1.2.].

(ii)^(i):

Claim 1: w>0:

We have that

<fα(w-(wV0),w-(wV0))

The second term is positive by the semi-Dirichlet property (see 2.2 (iii)) and because
αJT((~ w)Λ0) ( — u) — (u+)2']dm = 0. The first term is negaitve by assumption

(ii). Therefore, the strict positivity of SΛ implies w = wV0, i.e., w>0.

Claim 2:

Let Jf be the topological dual of {D{S)J\12). For α > 0 let Ua:Jf ->D{£) be the

linear map defined as follows: If JeJtf then

Sa{Up\w)=J{w) for all weD{S).

The existence of Ua follows by the Theorem of Lax-Milgram and it is obvious

that Ua is a bijection. Furthermore for α,/?>0 we have a "resolvent equation"

(2.2) Uβ(J)- Ua(J)={<x-β)GaUβ(J).

Indeed, for all weD{$) we have that
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Sa{Uβ{J)-{θL-β)GΛUβ{J\w)

In particular, (2.2) implies that GaUβ(J) = GβUa(J).

Claim 3: If /(v)>0 for all veD{S) with v>0, then Ua(J)>0 m-ai.e. for all α > 0 .

The positivity of / implies <%(t/α(/),v)>0 for all veD(g) with v>0. Hence by

Claim 1 Ua(J)>0 m-a.e. for all α>0.

Claim 4: u is α-excessive.

Let veD{£\ v>0,β>0.

= $'a(Gβ+au,v) (resolvent equation)

= Sa{Gβ+aUa(U;xu\v) (Ua is a bijection)

= ga(GaUβ+a(U;1u)9v) (Claim 2)

because Uβ+<x(U~1u) is positive by Claim 3 and assumption (ii) and because GJ

is α-excessive, if / i s positive.

For v = λGJ with 0<feL2(E;m) we thus have that 0<(u-βGβ+au,λGλf), which

yields as Λ-» oo that 0<(u-βGβ+au9f) for a l l / e L 2 ( £ ; m ) , / > 0 , and (i) follows by

he remark preceding this theorem. •

REMARK 2.5. (i) If u e D(L\ the crucial point in Claim 4 can be prove without

using Ua. (u-βGβ+Λu,v) = ga(Gβ+au,v) = £a(Gβ+aGa(a-L)u9v) = ^ ^

>0, since because of

for all v

the function {<x — L)u is positive. By the Markov property Ga+β(oc — L)u is still

positive which implies that Goββ+(t(θL—L)u is α-excessive.

(ii) Theorem 2.4 is well-known if E is a locally compact separable metric space

and έ% its Borel σ-algebra &(E). The classical proof is based on measure

representation of potentials (see [2]).

The domain of a Diriclet form is inf-stable. The next theorem extends this result
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to semi-Dirichlet forms under the restriction that one of the functions is 1-excessive
but not necessarily in the Dirichlet space.

Theorem 2.6. Let ue(β,D($)) and heL2(E;m% l-excessive. Then uAheD{£)
and ^i(uAh,u)>S'ί(uAhiuAh). In particular, any l-excessive function bounded by
a function u e d{$) is itself in D{$).

Proof. Definite for a,β>0,u,veL2(E;m)

Fix β>0. The identity u = (u-h)+ + uAh implies that

(2.3) (£ί)
(βXuΛh,u-uAh) = (£ιy

βXuAh9(u-hy).

Since (Gα)α > 0 is sub-Markovian and h is l-excessive it follows that

(u-h)+(l-βGβ+ί)(uAh)>(u-h)+(h-βGβ+ίh)>09

and hence

(2.4) (^)(/?)(wΛΛ,(«-Λ)+) = Ml-^+i)(wΛΛ),(w-Λ)+)>0.

Furthermore,

Ofθf((!l-Λ) + ,(tt-*) + )^^^^

( M H - Λ ) + ) (by (2.4))

where the last inequality follows by [11, 1.2.11 (iii)] applied to the form (δl9D($))
and its resolvent (G 1 + α ) α > 0 Consequently,

which implies that (u-h)+eD(£) (by [11, 1.2.13 (i)]), and hence uAh
= u-{u-h)+eD{£). By [11, 1.2.13 (iii)]

and the desired inequality follows by (2.3) and (2.4). •

REMARK 2.7. Theorem 2.6 generalizes the result of inf-stability of the Dirichlet
space [11,1.4.11] as well as the result that an α-excessive function is in the Dirichlet
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space D{S) if it is dominated by an α-coexcessive function in D{$) (cf. [11, III.1.3 (ii)]).

2.2. Reduced functions

In this section we recall the definition of reduced functions and collect properties

which remain true if {$,D{$)) is merely a semi-Dirichlet form. We assume from

now on that E is a Hausdorff topological space and take 31 to be its Borel

σ-algebra $(E\ We also assume that m is a σ-finite positive measure on

Proposition 2.8. Let h be a function on E. Define for U a E, U open,

&hU:={weD(£)\w>h m-a.e. on U}.

Suppose that &KVΦ§. Then.

(i) There exists a unique hυeS£hV such that for all

<ίί(*ι,,w) ̂ ( Λ ϋ A,).

(ii) Sγ{hυ,w)>0 for all weD{$) with w>0 m-a.e. on U. In particular, hυ is

l-excessive and $λ(hv,w) = 0 for all weD($)Uc, where

D(£>)uc:={ueD{£)\u = 0 m-a.e. on £/},

and U'^

(iii) hυ is the smallest function u on E such that uf\hυ is a {-excessive function in

D(S) andu>h m-a.e. on U. In particular, (0<)hv<h(m-a.e. on E) if and only if

h/\hυ is a l-excessive function in D($). In this case hv = h m-a.e. on U.

Suppose that V c: U c= E, V open. Then:

(iv) S£hy 3 J^cX/0), hv<hv, and

(v) Ifht\hv is a l-excessive function in D{β\ then {hυ)v = hv.

(vi) Ifg:E-+R, with S£9yVΦ§ and g>h m-a.e. on U9 then gv>hυ {m-a.e. on E).

Proof. Because of Theorem 2.4, 2.6, the proofs in [11, ΠI.1.5 (i)-(v) and ΠI.1.6

(iii)] carry over to the case of semi-Dirchlet forms. •

2.3. Capacities

We first recall the notion of "(f-nest" and "^-quasi-continuity".
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DEFINITION 2.9.

(i) An increasing squence (Fk)keN of closed subsets of E is called an S-nest if

is dense in D($).
k>\

(ii) An <f-nest (Fk)keN is regular if for all keN, U a E, U open, m(UnFk) = 0 implies

that UczFl

(iii) A subset N <= E is called S-exceptional if N a f]Fk for some <f-nest

(Fk)keN. We say that a property of points in E holds S-quasi-everywhere

(abbreviated S-q.e), if the property holds outside some ^-exceptional set.

Lemma 2.10.

(i) Let U a E,U open, and let (Fk)keN be an S-nest. Let h be a {-excessive function

in D{S). Then hυ^Fk -> hv in D(S) as k^oo.

(ii) Let hεD{£) and Uncz E, U open, Un | U. Then hUn -• hυ in D{$) as n^ oo.

Proof, (i): Since by Proposition 2.8 (iv) {hυκjFk)keN is a decreasing sequence

of functions, limΛy^pc^Λ^ exists m-a.e. and in L\E\rή). Since by the inequality

in Proposition 2.8 (iv) (hUuFk)k€N is bounded in (?}/2-norm, it follows that it weakly
converges to Λ^ in {D{£),{$x) (cf. [11, 1.2.12]).

Step 1. Assume C/=0.

For every we
keN

Becasue (Fk)keN is an & -nest, this implies h^ = 0. By Proposition 2.8. (ii) we see that

lim sup ^(hFck9hFf) = lim Sγ{hF^h) = 0,

k-* oo k-*oo

hence

λF£ -+ 0 in Z)(^) as k-+ oo.

Step 2. Assume U <= E, open.
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We have by Proposition 2.8 (iii)

hence A^^A^. But it is obvious that A^^A m-a.e. on U and that A^ is
1-excessive. Therefore, A^^A^ and consequently, ho0 = hu.
Because A is 1-excessive, we have that A{7uF£ = A = At7 m-a.e. on U by Proposition
2.8 (iii), and therefore, by Proposition 2.8 (ii)

u—hvuFc

k>hu — hvκjFc

k)

(ii): (hUn)neN is increasing and bounded in (D(δ\Sγ) by Proposition 2.8 (iv). Let
^ be the pointwise and weak limit. Then the weak convergence of (hUn)neN in

)A) y i e l d s

lim sup βγifi^ - hUn, h^ - hUn)
n->ao

= limsuρSί(hUn,hVn)~S'1{hO0,hoo)
n—• oo

where the inquality follows from Proposition 2.8 (i) since clearly h^^h m-a.e. on
each Un. D

The description of "small sets" by Definition 2.9 (iii) is essentially sufficient to
formulate quasi-regularity and to construct the process. But for the proofs we
need to "quantify" g-nests. Therefore, we introduce a capacity whose zero sets
are exactly the ^-exceptional sets.

DEFINITION 2.11. Let φ e L2(E m) such that 0 < φ < 1 m-a.e. and set
h\=Gγφ{>G). Then A is a 1-excessive function in D{$) and strictly positive
m-a.e. Define for U a E, U open,

capφ(U):={hU9φ)

and for any A a E
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cap (Λ):=inf{cap JJJ)\Λ a [/, U open}.

REMARK 2.12. (i) A cap -zero set is also an w-zero set, since

capφ(A)> inf hφdm> hφdm.
J U J A

(ii) Note that if (β,D(β)) is a Dirichlet form and if we set g:=Gtφ9 then by (2.5),

2.8 (ii) and [11, III.2.4] cap0(Λ) = CapM(Λ), where CapΛ>ί is the capacity defined

in [11, IΠ.2.4].

(iii) We have for U a E, U open,

(2.5) c2ipφ(U) = mu,Gίφ)<K^(Giφ,GίφM(hu^u)i

where (Ga)a>0 is the resolvent of £ (cf. 2.2 (ii)).

Proposition 2.13. (i) If Uc W, U and W open, with m(W\U) = 0, then

(ii) ΛdB^> cap^(Λ) < cap^(^).

(iii) Un t £/, Un open => lim cap (Un) = cap (U).
n~* oo ψ ψ

(iv) An c £ => cap ψ (U^ n )<Σcap^ n )
neiV w

Proof, (i): Clearly, 5£hυ = 5£hW, hence hw = hυ m-a.e. and the assertion follows.

(ii): It is sufficient to consider open sets A a B. The assertion follows then from

hB>hA, (cf. Proposition 2.8 (iv)).

(iii): Trivial by Lemma 2.10 (ii).

(iv): Let Uu ,Uk be open subsets of E. Then

k

Σhun>h *

and hence

k

,Φ)
n = l

Letting k -> oo we obtain the assertion by (ii) if An = £/„ is open. Then the assertion



108 Z.M. MA, L. OVERBECK and M. ROCKNER

trivially follows for all sets in E. •

The crucial result connecting cap with <f-nests is the following

Theorem 2.14. An increasing squence {Fk)keN of closed subsets of E is an S-nest

if and only i / l i m ^ 0

Proof. The "only i f part follows by Lemma 2.10 (i) (with ί/=0). To prove

the converse let ueD{$) such that $'l(w,u) = 0 for all wG[JD(S>)Fk. By the theorms
k

of Hahn-Banach and Lax-Milgram it is enough to show u = 0.

Let g<h,geD($\ the gυ<hυ by Proposition 2.8 (vi) for every open set

U cz E. Hence

0<(gFίc,φ)<(hn,φ).

Hence by assumption, since {gFk)k€N
 ι s decreasing by Proposition 2.8 (iv), gFck -+ 0

in L\E\m) as /:-• oo. But sup$\(gFk,gFc

k)<°° (by Proposition 2.8 (iv)); hence by

[11, 1,2.12] gFk-+0 weakly in {D{g)9i^. Now we specify g as Gx{\^) where

). Then

JA
, M ) = I φudm.

A

Because Ae&(E) is arbitrary and φ>0 m-a.e., it follows that w = 0. •

2.4. <f-quasi continuity

Given an (f-nest (Fk)keN we define

C({Fk}):={f:A -> R\ \jFkaAa EJ\Fk is continuous for every keN}.

DEFINITION 2.15. An S'-q.e. defined function / o n E is called S-quasi-continuous

if there exists an <f-nest (Fk)keN such that fe C({Fk}).

Proposition 2.16. Let S be a countable family of $-quasi-continuous functions

on E. Then there exists an S-nest (Fk)keN such that S c: C({Fk}).

Proof, (cf. [11, ΠI.3.3]) Let S={fι\leN}. Choose for every leN an <ί-nest

(Fιk)keN such that



MARKOV PROCESSES 109

The sets F k : = n | F l k satisfy the assertion by the sub-additivity of capφ. •

The following analogue of the Chebychev inequality is crucial.

Proposition 2.17. Let ueD($) such that it has an $-quasi-continuous m-version

ύ. Then for all λ>0

capψ({|«| > λ}) < -—ftft φ,
A

Proof. Let (Fk)keN be an (f-nest such that ύ e C({Fk}). Consider the open set

Uk:={\ύ\>λ}uFk and the function uk:=λ~i\u\+hFkeD($'), which dominates h on

Uk m-a,.e. (since h = Gιφ<\). Then

Therefore, using Proposition 2.13 (ii) and (2.5) we obtain that

The second summand tends to 0 as A:~> oo by Theorem 2.14, hence (2.1) implies

the assertion. •

We can now prove the remaining necessary results of the analytic potential theory

of semi-Dirichlet forms in exactly the same way as in [11, III.3].

Proposition 2.18.

(i) Let uneD(S\ which have $-quasi-continuous m-vesions un, neN, such that

un -+ueD($) as n-> oo w.r.t. S\12. Then there exists a subsequence (unk)keN and

an $-quasi-continuous m-version ύ of u such that (ύnk)keN converges $-

quasi-uniformly to M, i.e., there is an S-nest (Fk)keN such that \\mύn = ϋ uniformly
n-*ao

on each Fk.

(ii) Suppose h in Definition 2.11 has an $-quasi-continuous m-version K and let
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(Fk)keN be an S-nest such that fieC({Fk}). Let (δ)keN be a decreasing sequence

of positive numbers and that lim<5k = 0. Then there exists an S-nest (Fk)keN

such that Fk cz Fk and h>δk on Fk for every keN. In particular, {K= 0} is

$-exceptional.

(iii) Let (Fk)keN be an S-nest. Suppose that the relative topology on each Fk is

strongly Lindelδf (i.e., every open cover of any given open set has a countable

subcover). Set Fk := support [ l F k r a ] , then (Fk)keN is a regular S-nest, such that

Fk^Fkfor all keN.

(iv) Suppose (Fk)keN is a regular S-nest and fe C({Fk}). Iff>0 m-a.e. on an open

set U then f(z)>0 for all ze\jk^Fknϋ.

Proof, (i), (iii), and (iv) are proved as in [11, III.3.5,3.8,3.9], To prove (ii) set

Then (Fk)keN is an increasing sequence of closed sets. Let

Then for each keN, ukeD(S), uk>h m-a.e. on Fk and

(2.6)

k,hAδkγ'2

Since by Remark 2.2 (iii)

(2.7) SάhΛδ^hΛδjKS^hΛδ^h)

<KSάhί\δk,hf\δk)
xllSγ{h,h)112,

it follows by [11, 1.2.12] that hΛδk -• 0 weakly in (D{S\S^), hence by (2.7)
fc-+oo

hΛδk -• 0 w.r.t. S\. Now (2.6) and (2.5) imply the assertion. •
k-+ao

Proposition 2.19. Suppose that the following condition holds.

(2.8) Every ueD(S) has an S-quasi-continuous m-version denoted by ύ.

Let f be an S-quasi-continuous function on E.
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(i) Iff>0 m-a.e. on some open set U a E then / > 0 S-q.e. on U. In particular,

$-quasi-continuous m-versions of elements in D(S) are unique S-q.e.

(ii) Let A c E and define

<£s A\={weD(£)\w>f S-q.e. on A).

Assume S£fiA Φ 0. Then there exists a unique fA e S£fA such that for all w e 5£fA

This extends the notion of "reduced function on A" to arbitrary sets

A c E. Furthermore, the correspondingly modified analogues of Proposition

2.8 with AJreplacing U,h respectively and"$-q.eΓ replacing "m-a.eΓ remain true.

Proof, (i): The same arguments as in [4, Proposition I. 8.1.6] prove the

assertion.

(ii): By Proposition 2.18 (i) the proof is analogous to that of Proposition 2.8. •

Theorem 2.20. Let h be as in Definition 2.11. Suppose that condition (2.8)

holds and let A a E. Then

Proof. Let U cz E, U open, with A cz U. Then by Proposition 2.19 (ii) we

have that KA<fίυ S'-q.e. on E, hence

Consequently, capφ(A)>(hA,φ). To prove the dual inequality let (Un)neN be a

decreasing sequence of open sets in E such that A cz Un, neN, and

cap (Un) I cap (A) as n -» oo.

By Propositions 2.16 and 2.18 (ii) there exists an (f-nest (Fk)keN such that K,KA e C({Fk})

and £ > 0 on each Fk. Let keN and define

Then Vk is open, Vk •=> A\N for some $ -exceptional set N and

hA-\—h + hFc>h m-a.e. on Vk.
k
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Since h,hA,hFk are 1-excessive, we conclude by Proposition 2.8 (iii) and (iv) that

hA + ̂  4- hn >hVk > hUnnVk for all neN.

Hence

(hA,φ)>limlim(hVnnVk,φ)
fc-*oow->oo

= lim limcap.(ί/nn Vk)

D

Using Proposition 2.18 (i) we can prove the following lemma exactly as Lemma 2.10

Lemma 2.21. Let heD{S) and AnaE, An\A. Then hAn^>hA in D{£) as

n -* oo.

Corollary 2.22. Under the assumption of Theorem 2.20 we have that cap is

a Choquet capacity on E9 i.e., it has the following two properties:

(i) If (An)neN is an increasing sequence of subsets of E then

0

n> 1

(ii) If (Kn)neN is a decreasing sequence of compact subsets of E then

Proof, (i): It is clear that the left-hand side dominates the right-hand

side. The dual inequality follows immediately by Theorem 2.20 and Lemma 2.21.

(ii): Straightforward, cf. [11, Π.2.8]. D

3. Quasi-regularity: a necessary and sufficient condition for the existence of
an associated special standard process

In this section for simplicity we assume that @l(E) is generated by the continuous

functions on E. Let us first recall some notions from the general theory of Markov

processes (cf. [11, IV.l], [16]).
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3.1. Association of right processes and Dirichlet forms

DEFINITION 3.1.

(i) Let M =(Ω,JΓ,(JΓ

f) ί>0,(A r

f) ί>0,(/>

z)2e£ ) be a normal strong Markov process with

state space E, life time ζ, cemetery Δ, and shift operators θt,t>0. M is called

a right process if for each ωeΩ, t\-^Xt(ω) is right continuous on [0,oo[.

(ii) Let μ be a positive measure on (EA,&(EA)). A right process M is called

μ-tight if there exists an increasing sequence (Kn)neN of compact metrizable sets in

E such that

PA l imσ £ ^ n <C =0,
M[^«->oo x J

where σB:=inϊ{t>0\XteB} is the first hitting time of a subset B of EA.

(iii) Let m be a σ-finite positive measure on (EA,^(EA)). A right process M is

called an m-special standard process if for one (and hence all) probability

measures μ on (EA,$(EA)\ which are equivalent to m, it has the following

additonal properties:

(a) (left limits up to ζ) Xt_ :=limΛ; exists in E for all ίe]0,C[ Pμ-a.s..
s<t

(b) (quasi-left continuity up to ζ and special) If τ,τw, neN, are (J^f^-stopping

times such that τn j τ, then ΛΓτn -> Ύτ as n -> oo Pμ-a.s. on {τ < £} and A',.

is N/J^-measurable.
πeΛΓ

(iv) M is called a special standard process if it is a μ-special standard process for

all probability measures μ on (EA,^(EA)).

REMARK 3.2. #~fM denotes the completion of J^ w.r.t. to Pμ:=\Pzμ(dz) and

from now on we will assume without restriction that (^t)t>o is the natural filtration

of M, cf. [11, IV 1.10]. Let £ z [ ] denote the expectation w.r.t. Pz,zeEA.

DEFINITION 3.3. A right process M with state space E is said to be (properly)

associated with a semi-Dirichlet form (S,D(S)) on L2(E;m) iff ptf:= E[f(Xty\ is an

((^-quasi-continuous) m-version of TJ for all f\E-+R, ^(is)-measurable, m-square

integrable, and all t>0.

Proposition 3.4. Let (pt)t > 0 and M be as in 3.3 and let (£, D(S)) be a semi-Dirichlet

form with resolvent (Ga)a>0. Let for f: E —• /?, £8(E)-measurable^ bounded^
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, α>0,
Jo

(i.e., (Λα)α > 0 is the resolvent (of kernels) associated with (pt)t>0 resp. M). Then the

following are equivalent.

(i) M is properly associated with (<f,D(<ί)).

(ii) Raf is an $-quasi continuous m-version of Gaf for all α > 0 and all

&(E)-measurable, bounded, m-square integrable functions f:E-+R.

Proof. Because of Proposition 2.18 (i) the proof is the same as that of

Proposition IV.2.8 in [11]. •

In order to state our main theorem we have to extend the notion of quasi-regularity

to semi-Dirichlet forms.

DEFINITION 3.5. A semi-Dirichlet form (i,D(S)) on L\E\πί) is called

quasi-regular if:

(i) There exists an <ί-nest (Ek)keN consisting of compact sets.

(ii) There exists an (?}/2-dense subset of D($) whose elements have ^-quasi-

continuous m-versions.

(iii) There exist uneD(S>), nsN, having S-quasi-continuous m-versions ύn, neN,

and an ^-exceptional set N a E such that {un\n e N} separates the points of E\N.

The next proposition collects the properties of quasi-regular semi-Dirichlet forms

which are important for the construction of an assocaited process.

Proposition 3.6. Let {S,D(S)) be a quasi-regular semi-Dirichlet form on

L\E\m\ Them

(i) There exists an S-nest of metrizable compact sets.

(ii) D{S) is separable w.r.t. S\12.

(iii) Each element ueD(S') has an $-quasi-continuous m-version denoted by ύ.

(iv) Iffis $-quasi-continuous andf>0 m-a.e. on an open subset U of E, then / > 0

S-q.e. on U. In particular, ύ is S-q.e. unique for all u e D(S).

(v) If 2γ is a dense subset of D(S\ then there exists an $-exceptional set N c E

and S-quasi-continuous m-versions ύ, ue@u such that {ύlue^} separates the

points of E\N.
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(vi) There exists a countable subset &£ of D(S) consisting of bounded {-excessive

functions such that 2Q —2% is dense in Q){β\ an $-exceptional set N a E and

$-quasi-continuous m-versions «,«6^ 0

+, such that {u\ue@Q } separates the points

of E\N.

Proof. By virtue of our results in Section 2 the proofs of [11, IV 3.3, 3.4]

carry over to the case of semi-Dirichlet forms. •

REMRK 3.7. (i) As shown in [11, IV 3.2 (iii)] the set L2(E;m) can canonically

be identified with L2(Y;m), where Y:=uEk and {Ek)keN is an <f-nest of metrizable

compacts, because m(E\Y) = 0 and &(Y) = @{E)nY. The set Y is a topological

Lusin space. Therefore, when dealing with quasi-regular semi-Dirichlet forms one

could assume without loss of generality that E is a (topological) Lusin space.

(ii) It will turn out that for w-a.e. zeE, P2-a.e. M takes values in the Lusin space Y.

3.2. Sufficiency of quasi-regularity

Theorem 3.8. Let (<f,Z)(<f)) be a quasi-regular semi-Dirichlet form on

L2(E;m). Then there exists an m-tight special standard process M which is properly

associated with {β,D(S)\

After having developed all the necessary analytic potential theory of semi-Dirichlet

forms in Section 2 and because of Propositions 3.4 and 3.6, the proof of Theorem

3.8 can be done by carrying over the proof of Theorem IV.3.5 in [11] (cf. also [1])

word by word.

The idea is to construct a set Y2 with E\ Y2 $ -exceptional and via a nice countable

set f0 a D(S) of 1-excessive $ -quasi-continuous functions a compactification E of

7 2 u{Δ} and from (Ga)a>0 a corresponding Ray-resolvent (Ra)a>0 on E. Then we

show that the corresponding right process M can be restricted to F 2 u{Δ} and

that this restriction is an m-tight special standard process properly associated with

3.3. Necessity of quasi-regularity

Theorem 3.9. Suppose that there exists an m-special standard process

M=(Ω,#r,(Xt)t>0,(Pz)zeE) with state space E and life time ζ which is m-tight and

associated with ($,D($)). Then ($,D($)) is quasi-regular, i.e., satisfies 3.5

(i)-(iii). Moreover, M is properly associated with (S,D(S)).

After our preparation the proof of properties 3.5 (i) and (ii) can be done in exactly

the same way as in [11, IV.5a and b]. Now let us turn to the proof of 3.5
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(iii). We first note that by Proposition 2.18 (i) it follows from property 3.5 (ii),
which we have just proved, that every ueD(S) has an <f-quasi continuous version
ύ. Hence, we know by Corollary 2.22 that cap is a Choquet capacity. Now
the proof of property 3.5 (iii) parallels entirely the proof in [11, IV.5c]. The fact
that cap is a Choquet capacity was crucial in [11, IV.5c] for the proof of
Theorem 5.28 (i), which implies that the resolvent of the process maps a bounded
^(Is)-measurable funcion to an ^-continuous function.

REMARK 3.10. (i) For the same reasons as above all other results in [11,
Chapters IV-VI] on Dirichlet form carry over to semi-Dirichlet forms (as far as
they still make sense), like e.g. the one-to-one correspondence between semi-Dirichlet
forms ($,D($)) and special standard processes Λf, the equivalence of the local
property of (S,D(S)) with the continuity of the sample paths of M, the
regularization/transfer method developed in [11, VI] etc. We also mention that
the crucial relation of the capacity with the hitting probabilities given by

cap0(Λ) =

still holds. Here A e 0&(E) and τA is the first touching time of A and Φ is an
m-version of φ such that Φ(z)>0 for all zeE.

(ii) Using the regularization/transfer method mentioned above one can also derive
a proof of the "sufficiency part" of our result, i.e., Theorem 3.8, from [5] (i.e., the
"regular locally compact" case).

3.4. Examples

(i) Let U be an open (not necessarily bounded) subset in Rd and let dx denote
J-dimensional Lebesgue measure. Let a^b^d^ceLl^XJ'.dx), 1 <ij<d, and define
for WjVeCo'ί{/)(:= the set of all infinitely differentiable functions with compact
support in U)

A Cdu du . < Cdu , ,

\uvcdx.

Then (SXo(U)) is a densely defined bilinear form on L2{U;dx). Set 5 y :=i(fly + ity),
ά^'^^aij — aji), b:=(bl9-',bd\ d:=(dl9-~9dj and let || || denote the Euclidean
distance. Suppose that

(3.1) (strict ellipticity) There exists ve]0,oo[ such that
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dx-a.e. for all ξ = (ξu -9ξd)eRd.

(3.2) ά^eL^U ώή

(3.3) \\b\\9\\d\\ eLd

l0C(U;dx),ceL<!£(U',dx).

(3.4) \\b-d\\eL">(U;dx)vLd(U;dx).

(3.5) There exists αE]0,oo[ such that

d c)d
-Σ-Γ1 and

are positive measures on #(£/), where β\=(βu •• ,j5d),y:=(7i, ,yΛi8i,yI e
LlJU dx), \<i<d, such that b = β + y with ||£|| eL™(U;dx)vLp(U;dx) for

some /? < rf.

Then (^Co^C/)) is closable on L2(U;dx) and its closure (<%,/)(<%)) is a quasi-regular
semi-Dirichlet form, (in fact it is regular in the sense of Fukushima [8], [9]). In
particular, the corresponding semi-group (Γ f) ί > 0 is sub-Markovian and there exists
a special standard process porperly associated with ($',D($')) which is in fact a
diffusion (cf.[ll, V.I.5]). The poof of this statement is similar to that in [11,
Chapter II.2d.], so we do not repeat it here. For a more general result including
sub-elliptic possibly degenerate cases and its detailed proof we refer to [15]. Note
that if /J#0, (<%,£>(<%)) is in general not a Dirichlet form as shown in Remark 2.2
(ii). In [5], based on the classical results in [19], only the case, where in addition
to our conditions άijeL^iU dx) and ||6||,||</|| eLd(U;dx) (globally!), was treated. We
were able to treat the more general case above because of the more refined
closability results in [11] and [15]. In [20, Theorem Π.3.8] the case αl7GL°°(C/;ί/jc),
άij = O for \<iJ<d,i9d=0, and β_eL°°(Um

9dx) was considered. We emphasize,
however, that Stroock's result is stronger in this particular case since he even
proves the corresponding semigroup to be strongly Feller and to have a density
w.r.t. dx.

(ii) In a forthcoming paper [13] we shall use Theorem 3.8 to construct a
Fleming-Viot process with generalized selection associated with a semi-Dirichlet
ϊoxm($,D($)) on L2(E;m), where E is the set of all probability measures on a polish
space S and m the unique reversible measure of the Fleming-Viot process with
neutral mutation, but without any selection, cf. [7], [17]. ($,D($)) is defined by

(u, v) = [ddm(μ){<yu{μ\ Vv(μ)>μ + u(μKb(μ\ Vv(μ)}μ + aiu{μ)v{μ%
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with D{$) the closure of the finitely based functions &<€% w.r.t. the norm S\. The
gradient Vw(μ) is the function in L2(S;μ) defined by

where ^ is the Gateaux derivative in direction of the Dirac measure δx.
For two functions f,geL2(S;μ\ the scalar product <f,g>μ is the covariance of
/ and g w.r.t. μ.
The only assumption on the "generalized selection" function
b: {probability measures on S}xS -+ R is that

s u ρ < % , ),%, )> μ <oo.

This is less restrictive than

supsup6(μ,Λ:)<oo,
μ x

which is assumed by D.A. Dawson [6, 7.2.2,10.1.1] in order to construct Fleming-Viot
processes with selection by a Girsanov type transformation. (D.A. Dawson,
however, also shows uniqueness of the corresponding martingale problem.)
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