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CONTINUITY OF DIRECTIONAL ENTROPY

KYEWON K. PARK

(Received March 3, 1993)

1. Introduction

J. Milnor [3] has introduced the notion of directional entropy in
cellular automata. Cellular automata can be briefly described as a dynamical
system where K consists of finite alphabets and S is a continuous map
on a compact space Kz" to itself which commutes with the translations
of the lattice Z". Since the space K2" is compact, 5 is uniformly
continuous. Hence it is not difficult to show that 5 is a block map (a
finite code) [1]. (S is said to have a finite memory.) Since the directional
entropy is defined in all directions, it can be considered as a generalization
of the entropy of non cocompact subgroups. J. Milnor asked if the
directional entropy is continuous.

When w = l , we denote by T the shift action on Kz . Let μ be a
measure invariant under T. We assume that S preseves the measure
μ. {T,S} generate a Zx N action, which can be extended to a Zx Z = Z2

action.
Let (X9T^yμ) be an ergodic dynamical system of finite entropy. By

Krieger's theorem, this system is isomorphic to a product space of finite
alphabets with the shift. Without confusion, we will denote this symbolic
system by (XyTy^9μ). Let S be a measure preserving invertable map
of X generated by a block map. Hence {T,S} generate a Z2-action on
X. In this setting, Sinai [4] has shown the following: We assume
h(Ί*Sl)<ao for all (&,/)eZ2. (Clearly this forces the entropy of the
Z2-action to be zero). If {qi/pi} converges to an irrational τ, then

hp q. converges, where hp. q. denotes h(TplSql). Main tool of this

proof is to express the directional entropy in a rational direction as an
integral. (**)

* This work was partially supported by NSF DMS 8902080, KOSEF and GARC-KOSEF.
Mathematics Subject Classification (1985 Revison). Primary 28D05.
(**) In [4], he expressed the limit in the form of an integral. In private communications, we have
agreed that in order to be able to write the limit as an integral, the proof needs further assumptions on
T and S. (see Remark 2.1)
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In this paper we will show that the directional entropy in the direction
VQ where tan# = τ can be represented as an integral in the form of [4]. And
we show that the limit is always less than or equal to the integral. Hence
directional entropy is upper semi-continuous. This partly answers
Milnor's question. It is not yet clear if the directional entropy is in fact
continuous even in the case of cellular automata.

We may mention a couple of results in this direction. In a topological
setting of Cellular Automata, D. Lind and J. Smillie constructed an
example in their unpublished work (see [2]) whose topological directional
entropy function is upper semi-continuous on rationals. J.-P. Thouvenot
[5], simultaneously B. Weiss, constructed an example by cutting and
stacking method such that if S is not continuous (that is, S is of infinite

memory), then { — hp q } does not necessarily converge. Hence

the directional entropy is far from being continuous in a more general
setting.

We may sketch the Thouvenot's example briefly [5]. We first
construct a Z2-action (Y,Z2,&yv) which has the following condition.

(1) Λ l

(2) hpq = 0 for all (/>,#) which is not a scalar multiple of (1,0).

He uses the above system to construct a sequence {(XhZ
2^iyμ)} of

Z2-actions such that

/ >) 9 r 4.H14.1

VPli+dι

(4) ΛM = 0 if (P,q)*(p2t,q2i).

00

Let (J^Γ,Z2,μ)=f| (Xί,Z
2,e^

Γ

ί,μί). We have

(5) —-=hp.q. >l if ί is even

(6) _ _ = * = < ) if us odd

Hence it is clear that {— hp } does not converge.
Jqf+pf
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2. Preliminaries

Let (XjTj^μ) be an ergodic dynamical system where X is a space
of doubly infinite sequences of finitely many alphabets. Let T be a shift
in X and S be a homomorphism of the compact space given by the rule
/, i.e. (Sx)n=f(xn-s,xn-s+i, ίx0, yxn+s). We call S a block map of
size 2s. First we embed the lattice Z2 into the 2-dimensional real vector
space R2. Let P be a partition according to the alphabets. We denote
the partition ΎlSj(P) by PtJ. The directional entropy h(v) in the
direction of v is defined as follows:

h(v) = sup ϊϊirϊ- H( V PtJ).

where B + [0,fjϋ = {(f\;)eZ2; there exists (k,ΐ)eB such that (ij)-(k,l) = aίv
for some α e [0 , t] } . Supremum is taken over all bounded subsets of Z2 .

Given a vector veR2, which is not a scalar multiple of (1,0), we
define w = cotθ where Θ is the angle between the vector v and x-axis. We
note that (wy\) is a scalar multiple of v. We call a vector a rational
vector if the corresponding w is rational. Otherwise, we call the vector
an irrational vector.

It is not difficult to check that

1 [ty]
h(v)= lim Πm - H( V V PtJ) for any ae [0,1].

n -* oo ί -* oo £ J = 0 — n + j\v +a<i<n+ j\v + a

Clearly h(v) is homogeneous and h(TpSq) = h(v) where v = (p,q). (see [2])
We will follow the notations in [4]. The following left and right

entropies have been introduced in [4].

Hr(arf = H( V PiΛ\ V V P,j)
i>a+j\v

V Pu| V V Ptj)
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(Note: H( V PiΛ\ V V PtJ) =
ί>a+jw

lim lim H( V PίΛ\V V P(J)
a+jw<i<a+jw + n

We define

We note that Hry Hl and H are defined independent of the size of the vector.

Since S is a block map of size 2s, we have

H( V PiΛ\V V PU)

ifw>s

HI V PiΛ\V V PIJ) ifw>-s
a — s<i<a + w j<0 i<a+jw

ifw<-s

We need following observations.

(I) Given a vector v, Hr(a,v) and Ht(ayv) are bounded functions of
<2e[0,l] Hence H(a,v) is a bounded function.

(II) For each fixed vector v, Hr(a,v) and Ht(a,v) are periodic
functions of a with period 1. Hence so is H (a,v).

(III) We fix a0 and ^0

 = (Λ:o>3;o) an<^ assume that tfo+,/^0 ̂ s not an

integer for anyy<l . (We note that given vQy hence w0, there exist only
countably many a's in [0,1] such that a+jw is an integer for somey<l.)
If a and v are sufficiently close to a0 and v0 respectively, then

V Pu= V Pu
o + s

(IV) Let (Λ:fc,>Ίt) be a sequence of vectors such that — — >— . We
Xk XQ

have wk — > w0. If — \ — , then
xk x0
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lim V V Pίtj = V V Pίtj and
i>a+jw0

lim V V PU > V V PtJ

i<a+jw0

whenever a+jw0 is not an integer for any/<l . Hence by (III) and the

continuity of conditional entropy, we have lim Hr(a,v^) = Hr(ayv^) for all
fc->oo

except countably many a's. And we have lim jFfj(tf,ΐ;fc)<ίfz(α,^) for all
fc->oo

except countably many a's. Hence we have lim H(ayvk)<H(a,v0)
fc->αo

for the set of ays of full measure.

Likewise if — ? — , then we have
Xk XQ

lim H(a,v) = H(a,v} and lim H(a,

(V) If vk's are sufficiently close to v09 then the sequence {H(a,vk}}
is uniformly bounded for all «e[0,l] and all vk's.

REMARK 2.1. We note that lim V V P{j is V V PitJ plus
fc-^oo 7<0 i<a+jwk 7^0 i<a + jwo

some kind of "tail field". If this "tail field" does not affect the entropy,
then the continuity of directional entropy follows from the result in the
next section.

3. Directional entropy of an irrational vector

We fix an irrational vector v. Without loss of generality we assume

y ~*->0. In this section, we write Hr(ά) for Hr(a,v). Let ε>0 be given.
x
Let rar(<2,ε) be an integer such that if ra>rar(0,ε), then

V PίΛ\V V
α + j\v <i<a+ j\v + m

We let wr(α,ra,ε) where m>mr(ayε) be an integer such that if n>nr(a,myε)y
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then

\H( V Pu| V V Pu)-H?(a)\<ε.
a + w<i<a + s ~

We denote by H?*(a)

H( V Pu| V V
a + \v<i<a+s -n<j<0 a + j\v<i<a + j\

Hence if n>nr, then

\H?°'"(a)-H,(a)\<2ε.

We choose mr(ε) sufficiently large so that

v{ΛG[0,l]: \H?(a)-Hr(a)\<ε}>l-ε for m>mr(ε) ...... (3.1)

where v denotes the Lebesgue measure on [0,1].
Given mr(ε), we can choose nr(ε) sufficiently large so that

(3.2)

Likewise we can choose raj(ε) so that it satisfies the condition corresponding
to (3.1).

Recall that s denotes the size of the block map. We let
m0(ε) = max{mr(ε),m/(ε)}. We choose n0(m0,ε) sufficiently large so that the
following conditions are satisfied.

(i) The set

α)| <ε, \PΓ?0+s>n(a)-H?0+s(a)\ <ε

has measure bigger than 1— ε for all n>n0.

(ii) The set

<ε

has measure bigger than 1— ε for all n>n0.

REMARK 3.1. We note that Hr(a)<H?+s>n(a)<H?>n(a).
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REMARK 3.2. If n>n0, then each of the sets F^'M = {«e[0,l]:

\H?<n(ά)-Hr(a)\ <2s} and /̂ •" = {a6[0fl]:|flj"i"(«)-»i(a)l <2ε} has meas-
ure bigger than 1— 2ε. Also each of the sets F?+s n = {ae[Q,l]:
|//?+s'>)-//Λa)|<2ε}and^+^
measure bigger than 1— 2ε.

REMARK 3.3. We note that H?'n(ά) and H?'n(a) are uniformly
bounded in all ay m and w > l .

REMARK 3.4. If aeE?0'", then | #?'>)-#? + s'"(a) | <3ε for all
n>nσ. Also for a given n>n0 and any &>«, if aeE™°*n

y then we have

We let

iyVW,w _ Tjw,n .~ iyVW,π

Hence, given ε>0, there exist w and n such that

I H(ά)da- /f" π(α)rfα|<
Jo Jo

I |#(α)-Hm »|<ία+
J pm,n J(Fm»")c

<4ε-h4εL (3.3)

where L denotes the uniform bound of Hm'n(ά) for all α, m and n>\.

Theorem 3.1. Let v = (x,y) be an irrational vector. Then we have

Γ1

Jo
-h(v)= H(ayv)da.
y Jo

Proof. Let ε>0 be given. Let [τ] denote the greatest integer
ε ε

<τ. We choose m0(—) and n0(m0ί—) so that if n>nQy then the subset

E of [0,1] satisfying

(i) H?>*(a)-Hf(a) <- and
5

ε
<-

5
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(π)
ε

<- and

has measure bigger than 1 .

We choose an even positive integer m such that

(m !) y> > 5>

(m.2)

1 [ty]
(m.3) \h(v)-\im-H( V

t-»oo t j = 0
V PtJ)\ <ε for all k>m.

Given this my we choose an integer n > n0(m, — ). We choose t0 such that

(t.l) — L<ε,
[t0y]

[ty]
(t.2) \h(v)--H( V

(t.3) If t>t0, then the set

V Pi9J)\ <2ε for all t>toί

ι [ty] p.
JB = {fl6[0,l]: I-— Σ flm "(β+J«;)- ff" "(fl)Λι| <β}

[^Jj=o Jo

has measure bigger than 1— ε,

(t.4) If t>t0, then

1 [ty]
= {#e[0,l]: - Y χE(a +jw) > 1 — ε} has measure bigger than

j=o

(t.5) F Pίfβ)<ε for all
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Given m, we fix t>tσ. We let u = \ty] and m' = — . We choose

a0eBc^G. We denote kw + a0 (mod 1) by ak and [£«> + #«,] by w;fc. It
is sufficient to show that

\-H(V V

is less than ε-β for some number β. By our conditions (t.2),(t.3)
and (3.3),

-H( V V Ptj)
U = o -

=-ΣH( v p*\ v v pu)
Uk = Q -m'+k\v + ao<i<m' +kw + ao 0<j<k -m' +j\v + ao<i<m' +0'- l)w + αo

Since H( ••}•••) is invariant under the shift T, the above formula is
equal to

-ΣH( v pijk\ v v P,J)
0<j<k j\v + ao<i<m + jw + ao

-Σ H( V Pα| V V PtJ)
U k = 0 ah + w < i < α»c 4- w + m 0<j<k j\v + ao - ^k - i < i < jw + aσ - Wk - i + m

H( F Pu|
α k - ι + w < i < α k - ι + \ v + m

F F
0 < j < k jw + a0 - wk - i < i < j w + aσ - WK - i + m

+ i#( F Pί>0)

Let bkj = ak_i—jw for Λ = 1, ,M and y = 0, ,Λ — 1. Note that
We have
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-Σ#( v PU! v v pM_ fc+1)W fc = 1 ak-ι+w<i<ak-ι+w + m 0<j<k jw + ao~\Vk- i < i < jw + αo ~ Wk - i + m

hj + m

v PU| F F Λ,_
<i<αk-ι-ί-s 0<j<k bk

V Pu|( Γ

We note that the first term in the summand is equal to H^l'k(ak_1). Let
us consider the second term.

H( V Pu|( V V
0<j<k bkj<i<bkj + m

V( V Pu))

= H( V Pu|( V V Plt_j)
ak-ι-s<i<ak-ι+w 0<j<k bkj-m<i<bkj

V( V Pu)) (3.4)
αk-ι + w - m < i < α k - ι - m

Clearly (3.4) is bigger than

H( V Pu|( V V PtJ)V( V Pίfβ))
dk-ι-s<ί<ak-i+w 0<j<kbkj-m<i<bk,j bk,0-

which is greater than

H( V Pu| V V
+w 0<j<k bkj-m-s<i<bkj

Also (3.4) is smaller than
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H( V Pu| V V
<*k - i - s < i < Ok - i + w 0<j<k bkj-m<i< bk

Now, we have that

i [ty]
H( V V P i 9 _ j )

is bigger than

-(H( V
w a0<i<a0 +

and smaller than

( v pί,0)+
a0<i<aσ + m

V P )

Since we have

u u

f c - 1 k = l

fc-l

We have that

|-H( V V PtJ-- f «"•"(«,_!)! (3.5)
W j = o -m'+jw + α 0 <i<m'+jw + α0 W f c = i

is between

|-H( F Pi,0)--Σ(Hm ''(αk_1)-/Γ'+s 'ίK_1))| (3.6)
^ ao^i^ao + ̂ i W f c = l

and
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\-H( V Pί<0)^-YJ(Hm'"(ak_1)-Hm k(ak_ί))\ ...... (3.7)
u a0<i<a0 + m W f c = l

We will show that (3.7) is small.

By our choice of u, satisfying (t.l), (t.3), (t.4), and (t.5) we have

\-H( v p^)-- X (fr -^.o-fl1"^.!))!
U a0<i<a0 + m Uk=l

2n 1 "
<ε + _L + -Σ \Hm'"(ak_1)-Hm k(ak_ί)\

U Mfc = π

<2ε + -( Σ \Hm n(ak_l)-Hm'k(ak_l)\ +
U

<2ε + - - (l-ε)iέ + — 2L
w 5 u

Recall that if aeE, then we have |/Γn'w(α)-ίίnl+s'k(«)l <ε for all
Λ > w . Hence we have that (3.7) is also smaller than ε(2 + (l — ε) + 4L)<
ε(3+4L). Likewise, we can show that (3.6) is small. This completes
the proof of the Theorem.

4. Continuity

We need the following two theorems from [4].

Theorem 4.1. Let v = (pyq)(q^0) be a given vector where p and q
are relatively prime.

qk=o q
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Corollary 4.2. Under the condition of Theorem 4.1, we have

1 I*"1 k Π
-Λ(«) = - Σ H(-,«) = H(β>ϋ)ώ.
# g j k = o ? Jo

REMARK 4.1. The first equality comes from observation (II) in
§2. The second equality comes from the following observation;

Hr(aJ) = Hr(bj) if α,ie(-,—], ft = 0, ,g-l.
ί ί

) if fl,

That is, Hr(a,v) (Ht(a,v)) is a left (right) continuous step function.

Corollary 4.3. h(TpSq)<oo for all (p,q)eZ2.

REMARK 4.2. If v is a scalar multiple of (0,1), then we note that
Hr(a9v)(Ht(atv)) is a constant function on [0,1].

Theorem 4.4. Given a vector v = (xyy)(y^Q), let {vk = (pk,qk)} be

a sequence of vectors such that — -> -.
Pk x

1 - Γ Γ -lim—Λ(?; f c)=lim H(a,vk)da< H(a,v)da
k-+ao<2k fc->oo Jo Jo

By Corollary 4.2 and the observation (IV) in §2, the above theorem is clear.

Corollary 4.5. // ^^(1,0), then the directional entropy function is
upper semi-continuous at v.

REMARK 4.3. It is not hard to see that yH(a,v) is uniformly bounded
for all unit vectors. Hence h(v) is uniformly bounded for all unit vectors.

Theorem 4.6. Dirctional entropy function is continuous atv = (\ ,0).

Proof. Althogh this is proved in [2], we will prove it here to
illustrate the ideas in a general setting. We let w = (x0,yo) where x0
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and y0 satisfy y= -- (x— 1). By the homogeneity of the directional
s

entropy, it is sufficient to prove that h(w) -> h(v) as xσ-+l. We may

y iassume xσ>0 and d— — < <-.
x0 s

We note that

h(v)= lim lim-H( V V P£J)
m-xx>n->oo^ 0 < i < π -

and

h(w) = lim lim - H( V V PtJ)
m-+aot-+aot 0<i<tx -

Since S is a finite code of length 25, it is easy to see that for each m,

V V Pjjc V V PU-
OSiSHXo -9 + </i<jsf + di ' 0<ί<n -?:£./:£?

Hence we have h(w)<h(v).
We show that

-H( V V PU)--H( V V P{J)
n 0<ί<n -™<j< n 0<i<nx0 -

is small for large n and large m, as x0 -* 1 .
Let rfπ denote the largest integer <nd+\. We assume n to be sufficiently
large so that n(\— x0)>s. We note that

H( V V

and

0<i<n - < j < 0 < i < w -f + d«<

V F Pi,j^QlVQ2 where
0<i<n - +

Q1 = V V Pifj and
0<i<π -™ + di<j<™ + di

Q2= v v p
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Now, we compute -H(Q2\Q^) and -H(Q^) as n -> oo and ra -> oo.
n n

-H(Q2\Q^ = -H( V V Pt\Qi)
n n

-H( I7 V

=- ΣW j = y+

2 n
( V PtJ\ V V PtJ) + H( V P
0<i<s +

+ H( V P

1

n-s<i<n

F P,.β))
0 < ί < s w - s < i < M

F P ί > 0)asn-*cx).
W 0 < / < s 0<i<s

We also note that

lim lim -H(Qi)=—h(w}.
m-^oo w->oo W <X0

Hence we have

Λ(«)^-Λ(w) + dff( F Pίiβ).
Λ^o 0<i<s

Since the directional entropy is uniformly bounded, this completes our
proof.
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