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1. Introduction

In recent times a new approach has been taken to the study of
compact symmetric spaces. This approach, begun by B-Y. Chen and T.
Nagano [4], involves the study of pairs (M™*(p), M~ (p)) of totally geodesic
submanifolds associated with closed geodesics. 'The submanifold M™(p),
called the polar set through p, is the orbit through p of the isotropy
subgroup. The space M~ (p) intersects M*(p) orthogonally at p and,
when M is irreducible, is usually a local product of two irreducible
symmetric spaces.

The purpose of this paper is to exhibit the close connection between
these pairs (together with their generalizations through the method of
Borel-De Siebenthal [1]) and the Morse-Bott theory of isotropy-invariant
functions on M. If M =G/K, we consider conjugation-invariant functions
on G; which we pull back to (K;-invariant functions on) M by means
of the quadratic representation. In this way, we reduce our study to
that of class-functions at the group level, and calculations may be restricted
to a maximal torus in the group. If H is a vertex of the fundamental
simplex and if p=exp H is a critical point of a class-function on G;, then
the eigenspaces of the Hessian coincide with the factoring obtained from
the Borel-De Siebenthal splitting at p. Thus, the question of nondeg-
eneracy and the calculation of the index is reduced to finding the
eigenvalues corresponding to each factor. This can be done easily. To
construct suitable class-functions we consider the real parts of the
characters of irreducible representations. Some care must be taken with
the choice of representation so that we do not obtain degenerate critical
submanifolds. For example, in the case of the groups E4 and G,, the
character of the adjoint representation has some M™’s as degenerate
critical submanifolds. The correct choice of representation usually seems
to be one having lowest degree and, generically, the critical submanifolds
(all of which are nondegenerate) are either M *’s or are of the form K,.p,
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where p is the exponential of a vertex of the fundamental simplex. The
explicit calculations are given for the groups F, and E4 where we have
taken the lowest dimensional (non-trivial) irreducible representations of
these groups. In the case of E¢ there are two additional (nondegenerate)
critical submanifolds.

Similar functions have appeared in the literature for various subclasses
of symmetric spaces, namely: T. Frankel’s function for the classical groups
[6], S. Ramanujam’s for symmetric spaces of classical type [10] and M.
Takeuchi’s for the broader class of symmetric R-spaces [11]. Our methods
give a unified approach to the subject and have the advantage of allowing
one to construct functions for the entire class of compact symmetric spaces.

The authors wish to thank the referee for providing Remark (ii)
following Lemma 3.5, Remark (ii) following Theorem 4.1 and for
suggestions which led to improvements and simplifications in the
presentation of this work. We would also like to thank E. Buffet for
some helpful conversations.

2. Preliminaries

A (connected) Riemannian manifold M is called a (Riemannian)
symmetric space if for each x € M there exists an isometry s, of M satisfying:

1. x is an isolated fixed point of s, and

2. s, is involutive (i.e. s os, =the identity map on M).

For each xe M, s, is uniquely determined by reflection in geodesics
through x and is called the symmetry at x.

Denote by G the closure (in the compact open topology) of the group
of isometries of M generated by {s,: xe M}. Then G is a Lie group
which acts transitively on M. If we fix o€ M, then we can write M=G/K
where K:={geG: g.o=o0}. Henceforth, we will assume that M, and
therefore G, is compact.

If % denotes the Lie algebra of G, then we have the following
commutative diagram:

ad
9 End(%)
exp e e))
Ad
G GL(%)
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where (Adg)X:=(d/dt)g(exptX)g™'|,—p, (adX)Y:=[X,Y], and exp and e
are the exponential maps. Consequently, if < , > is a bi-invariant
Riemannian metric on G, then

<(@dX)Y,Z>=—-—<Y,(ad X)Z> (2)

for every X,Y,Ze%. That is, for each Xe% the endomorphism ad X
is skew-symmetric with respect to < , >.

The map o: G—-G: g—s,gs, ' =s,gs, is an involutive automorphism
of G and, therefore,its derivative g,=Ads, is an involutive automorphism
of 4, which we may assume preserves < , >. Thus, 0,€ GL(%) which
satisfies:

1. ¢2= the identify map on ¥

2. 0[X,Y]=[0,X,0,Y] VX, YeZ and
3. <0X,0,Y>=<X,Y> VX, Ye%.

Accordingly, we obtain an orthogonal decomposition ¥=.4DA
where A and A are the —1 and +1 eigenspaces of ag,, respectively. A~
is the Lie algebra of K and .# may be identified with 7,M, the tangent
space to M at o. It follows that

(A, M, [ A, [M A<M 3)

If o/ is an abelian subalgebra of ¢ (i.e. [.«/,o/]=0) then the Jacobi
identity implies that {adH: He./} is a commuting family of
(skew-symmetric) endomorphisms of 4. Hence, {(adH)*: He &/} is a
commuting family of symmetric endomorphisms of ¥ and so can be
simultaneously orthogonally diagonalised. In particular, the eigenvalues

of (ad H)? are all <0.

From now on we will assume &/ is an abelian subalgebra of ¢ such
that o/ «.# and is maximal with respect to this property. The torus
A={exp H.o: He o} for such an . is called a maximal torus of M. Now,
for each Heo <M it follows from (3) that (adH)%: M —.H and
A —->HA. Accordingly, we can decompose ¥ into an orthogonal sum of
(simultaneous) eigenspaces of {(ad H)?: He o/} as follows:

G=AD ), MPH D Y, A, 4)

aeRn aeRm

where A o:={YeX: [Y,/]=0},
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adH: M,— A, satisfies (ad H)?|, = —a*(H)id,,,
and

adH: A", > M, satisfies (adH)ZIJ‘Q: —az(H)idxa

The non-zero linear functions o:e/ »R so defined up to a multiple
of +1 are called the roots of M and will be denoted by R,,. For each
ae Ry let p,=dim A,=dim A ,, which is called the multiplicity of the

root . Thus, for each root a there exist orthonormal bases X3,---, X}

for A, and Y7,---,Y}, for A", such that VHe &/ and 1<i<pu, we have
(@dH)Xi=a(H)Y; and (adH)Y}=—o(H)X] (5)

DerFINITION 2.1. Vectors X*e€.#, and Y*e A, which satisfy (5)
VHe o/ will be called conjugate (relative to 7).

Any conjugate vectors X% Y* span a two dimensional subspace of
% which is invariant under ad.&/. Hence, VHe o/, ad H and &**¥ restricted
to RX?@RY”® have the following matrix representations with respect to
X5 Y=

d H=( 0 —oc(H))’ JdH_ <c?s «(H) —sina(H) ) ©
«(H) 0 sino(H) cos a(H)

Thus,

A YT oo a(H)X*+sina(H) Y* } (7)

M Y* = —sina(H) X*+ cosa(H) Y*

We now describe the tangent bundle to M on a maximal torus. For
any p € M we obtain a surjective linear map:

pG->T M: X—X,=(d/dt)exp tX.pl,- 8)

In this way, YXe€¥% we obtain a C® vector field on M (again denoted
by X) called the field on M induced by X. We remark that at o this
map: =M DA — T,M has kernel A" and, after a suitable choice of metric
< , > on G, we may assume it maps .# isometrically onto T,M. Now,
fix a maximal torus 4:={expH.o:He o/} in M.

Proposition 2.2. Let X*e M, and Y* €A, be conjugate relative to
o, then ¥V HH €./ we have:

1. H;po.o = (exp H)QH’O
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2. X:po.o =cos OC(Ii)(exp H)th
3. YprH.o = Sim‘(H)(eXP H)*X';

Proposition 2.3. Let A={expH.o:He o/} be a maximal torus in M
and let heexp o <G.

1. If H',---,H is an orthonormal basis for of, then H} ,--- H}, , is an
orthonormal basis for T, A.

2. {X5,, Yiy XM, YeX, and a€ Ry} spans the normal space
to A at h.o.

3. K,-invariant Morse functions on M

Let K, be the identity component of the isotropy subgroup K at
0. Throughout this section f: M — R will be a K,-invariant function on
M. We recall ([7] ChV, §6) that if A is a maximal torus in M, then V
x€M Fke K, such that kxe A. Therefore, f is completely determined
by its values on 4.

Proposition 3.1. For every pe A gradf,e T,A.

Proof. Since{X3, Y3: X*e M,, Y€ X', and o€ Ry} spans the normal
space to A at p, it is sufficient to show that
<gradf,, Y,>= <gradf,, X}, > =0.

1. <gradf, Y,>=0:
Observe that VY*e A, and VieR exptY*e K, so that
<gradf, Y,> =Y} f=(d/dt) f(expt Y*.p)|,=¢
=(d/dt) f (P)li=0=0.

2. <gradf, X,>=0:
Choose Y*e A, so that it is conjugate to X* (relative to .&).
If h.oe A is such that h=exp H where He o/ satisfies a(H)¢Zn,

then we have:

< gradfh.o)Xz.o >=< gradf,,.,,,cos (X(H)h,X; >
=cot a(H) < gradfh.w Y;.o >
=0.

That is, <gradfe,,n.,Xexpr.o> =0 VHe o/ which satisfies a(H)
¢Zn. Therefore, by continuity the innerproduct is zero VH € «/.



538 J.M. Burns and M.J. CLaNCY

The Hessian: If peM is a critical point of f, then the Hessian
of f at p (denoted Hf,) is the symmetric bilinear form on T,M defined
as follows: given X,Y e T ,M extend them to C* vector fields on M (again
denoted by X and Y) and define:

Hf(X,Y)=X,(Yf)
Following the notation of [2] we have a self-adjoint linear map:
Tf,: T,M—T,M
defined by
<Tf,X,Y>=Hf,(X)Y) VX, YeT,M.
Proposition 3.2. Let V be a Riemannian manifold and let U<V be
a submanifold with the induced metric. If a smooth function g. V—-R

satisfies gradg,€ T,U Vpe U, then Tg,;: T,U— T, U at every critical point
qge U of g.
Proof. Given Xe T, U and Ye T,V extend them to C® vector fields
(X and Y, respectively) on a neighbourhood of ¢ in V' so that X is
tangent to U. If Z:=gradg and V is the Riemannian connection on V,
then Z,=0 and
<Tg,X,Y>=X,(Yg)=X,<Z,Y>
=<V 2, Y>+<Z,,Vy V>
=<V, X+[X,Z],Y>
=<[X,Z],Y> VYeT,V.
Therefore, Tg,X=[X, gradg], VXe T,U. However, grad g is tangent

to U so that [X, gradg] is also tangent to U whenever X is. Thus,
Tg,XeT,U.

Corollary 3.3. If peA is a critical point of f, then Tf, leaves T,A

invariant.
Proof. This follows immediately from propositions 3.1 and 3.2.
Corollary 3.4. Ifpe A is acritical point of f, then (Tf,)|7, 4= T(f| 1),

Proof. For any XeT,A and YeT,M let Y=Y, +Y, where
Y, eT,A and Y,eT,A*, the orthogonal complement of T,4, then



PoLAR SETS As CRITICAL SUBMANIFOLDS 539

<(Tfr,aX,Y>=<Tf,X,Y>=<Tf,X, Y+ Y,>
=<Tf,X,Y,>=<T(fl),X,Y,>
= <T(fl),X,Y>

and hence the result.

Lemma3.5. LetpeM be acritical point of f and let ke K, then:

1. kp is a critical point of f and
2. koTf,=Tf,ok,

Proof.

1. 'This is trivial by the K,-invariance of f.
2. Since fok=f we have VX,Ye T, M, that

<Tf,X,Y>=Hf,(X,Y)=H(f-k),(X,Y)
=X, { Y(foh)} = X,{[(k, V)] ok}
= (k*X)kp{(kt Y)f} = kap(k*X)ka Y)
= <Tfi kX kY >= <k 'Tf kX, Y>

and the result follows.

REMARKS.

(i) This lemma is of particular importance when attention is focused
on K,:={keK:k.p=p}. If we split T,M into the irreducible
components of the isotropy representation of K, at p and use
Schur’s lemma as modified in (ii) below, then Tf, is a multiple
of the identity on each irreducible component. We will see
that on the orthogonal complement of the K,-orbit of p there
are usually only two components.

(ii)) Modified Schur’s Lemma: If a group K=K, x--- x K acts on
a metric vector space V=V, @V, @ ---@V; as linear isometries
in such a way that for each 1<i<s, K, acts irreducibly on V;
and acts trivially on V(0<;j<s, j#1i), then any K-invariant
symmetric endomorphism T of IV leaves each V,; invariant
(0<i<s) and Tly,=4;-(idy) for 1<i<s.

Theorem 3.6. If f|, is a Morse function in the usual sense, then f
is a Morse function on M in the sense of Bott [2] and the critical submanifolds
of f (all of which are nondegenerate) are the K, -orbits of the critical points

of fla-
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Proof. Let x€ M be a critical point of f and let C(x) be the connected
component of the set of critical points of f through x. Then C(x) is
the K;-orbit of C(x)nA4. But, C(x)nA4 is discrete since the critical points
of f on A are the same as the critical points of f|, which are
isolated. Hence, C(x) is the K -orbit of a point in 4 and is, therefore,
a submanifold of M. For the nondegeneracy; suppose C(x)=K,.p where
peA. C(x) is nondegenerate<>ker Tf,,=T,,C(x) VkeK; and (since
k.o Tf,=Tfi,ok, Yke K,) this is so<>ker Tf,=T,C(x). Now, it is clear, by
the Kj-invariance of f, that Tf,|r =0 so for nondegeneracy of C(x)
we must show that ker T,/ ¢y ={0} where T,C*(x) is the normal space
to C(x) atp. For the sake of clarity we break the proof into two cases:

1. Suppose p=exp H.o where He o satisfies a(H)¢Zn Yoe R,,. Let
h=exp He G so, by proposition 2.2, Y, =Y} ,=sina(H)hX; for
every root a € R,, and for every pair of conjugate vectors X*€ .4,
and Y*e X ,. Therefore, by proposition 2.3 {Hp, Y, Hedsd,
Y*e X', and ae Ry} spans T,M where {Y3: Y*e A, and ae Ry}
spans T,C(x) and TpCl(x)= T,A. However, by corollary 3.4,
(Tf)lr,a=T(fl4), which has zero kernel since f|, has p as a
nondegenerate critical point.

2. {(1) being a special case} Here again suppose that p=exp H.o
where He o/ and let Rij:={aeR,: a(H)eZn}. Clearly the set

AH=A DY m,,&ifa is a subalgebra of A since
12245 Vg

[ oK IS H g+ Haey  Va,BeRy

under the convention: X _,=X, oeR,. Denote by K*
the connected subgroup of K whose Lie algebra is S and
observe that since Y} =sina(H)h X;=0 Vae R it follows that
KH fixes p. Also,

M=o D Z M,

aeR
is a Lie triple system in .# for which there corresponds a totally
geodesic submanifold M¥ = M so that
(a) A<M and
(b) VXe TI,MH Jke K" such that k. Xe T,A.

In this case, C(x) (the K;-orbit of p=exp H.0) has T',C(x) spanned
by {Y3: a¢RY} and the normal space is TpMH . So C(x) is
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nondegenerate<>ker(Tf,|r yu)={0}. Now, let Xeker(Tf,|r, rx)
and choose ke K such that £, Xe T,A, then

0=Tf,X = Tfi-1,X =k Lo Tf,ok,X.

Therefore, £, X=0 since k,XeT,A and (Tf)|r,+=T(fl4), has

zero kernel. Hence, X=0 and C(x) is nondegenerate.

For our convenience, we recall (cf.[7]) that in the decomposition ¥=.# D A"
where # is identified with T ,M as in (8) the geodesic in M with initial
tangent vector Xe ./ ~T,M is given by exp tX.o.

The Morse function on G;: Let G, be the identity component
of G and let

p: G- U(V)

be an irreducible representation of G; on the complex vector space
V. Mostly we choose p to be of lowest degree. We define f to be the
real part of the character of p, that is

f: Gi—R: g—Re(Tr(p(g)))

where Tr is the trace function. Thus f is invariant under conjugation
by G,;. Let /% be a maximal abelian subalgebra in ¢ (not just in
M). To obtain a formula for f on A%:={exp H: He o/} we consider
the corresponding representation p,, the derivative of p at the identity,
on the Lie algebra of G;. We obtain the weight space decomposition

szVl

AeA

(where A denotes the weights of p,) such that for each ve IV, and He &/%
we have

p(Hyv=./—1A(H)v with A(H)€eR.
Thus

f(exp H)=ReTr[p(exp H)]=ReTr[e*™)]

and if we calculate relative to a basis for 7 consisting of vectors from
the various weight spaces 7, we find

flexp H)= Y 1, cos A(H)

AeA
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where u; denotes the multiplicity of the weight A.

Now to apply the results on symmetric spaces we may view the
compact group G, as a symmetric space (G, X G,)/I where I:={(g,g):
g€ Gy} (cf. [7], ChIV, §6). Indeed we have the bijection

¢: (G xG)/I-Gy: (,gl,é’z)l""é,’ugz_1

Note here that the action of an element (g,g)€l on the symmetric
space (G, x G1)/I, that is (g,2)"(g,,8,)] =(gg,,8¢,)I, corresponds under the
identification ¢ to conjugation by g in the group G,;. Thus the
isotropy-invariant functions on G, viewed as a symmetric space
(i.e.(Gy x G,)/I) correspond to the Ad(G,)-invariant functions on G,
viewed as a group. Furthermore, the involution corresponding to the
symmetric space G, is

0: Gy xG—»G; xGy: (g,,8,)(22.81)
from which we obtain the Cartan decomposition of ¥ X 4 into Z®.# where
P={(X,—X): Xe¥} and S ={(X,X): Xe¥}

are the —1 and + 1 eigenspaces of g,, respectively. As a maximal abelian
subalgebra in #Z we may take

of ={(H,—H): He s/}

which generates a maximal torus of G; viewed as a symmetric space. Now,
observe that if X* and Y* are conjugate relative to /¢!, from the group
view point, then the pairs
(X*,—X%e?, (Y, Y)es
(- Y, YHe?, (X5, X)esf
are conjugate relative to &/, from the symmetric space view point. Indeed
ad(H, — H)(X*, — X*)=a(H)(Y*, Y*)
ad(H,— H)(Y*,Y*) = —a(H)(X", — X%)
ad(H,— H)(— Y*, Y*) =a(H)(X*,X%)
ad(H, — H)(X*,X") = —a(H)(— Y*,Y?)

In particular, we obtain a one-to-one correspondence between the roots
{a} of G, viewed as a group and the roots {&} of G, viewed as a symmetric
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space via: &(H,— H)=a(H) VHe o/%'. Finally, from the identification ¢
between G; as a symmetric space and G; as a group we have that

identified

p=(expg xg(H,—H))I=(h,h"")] < h*=expg2H=¢(p)

Proposition 3.7. Let p=exp H where He /% and let H', H" € o/ ¢*,
then

<gradf,H' > ,=— ) A(H')u,sin A(H)

AeA

and, furthermore, if p ts a critical point of f, then

<Tf,H H">,=— Y A(H)AH");cos A(H)

AeA
Proof. To establish the first formula observe that

<gradf,H' > ,=H,, uf
=(d/dt)f(exp tH .exp H)|,~
=(d/dt)f(exp(tH + H))|,=o

=(d/dt) ) p;cos A(tH' + H)|, -

AeA

= — 3 M(H")p, sin A(H)

AeA

For the second formula we have
< Tpr',H” >, =H,(H"f)
=(d/dt)[Hpim p =0
=(d/dt)[(0/0s)f(exp sH"exp tH' .p)|s=olli=0
=(d/dt)[(0/0s)f(exp{sH" +tH + H})|;=0ll;=0

=(d/dt)[(0/0s) Y, pycos A{sH" +tH + H})|s=olis=0

AeA

=(d/dt)[— Y MH")u;sin A{tH +H},=o

AeA

= — ) MH)AH")p;cos MH)

AeA
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The Morse function on M: The map O: M—>G,: x—s,0s,, called
the quadratic representation of M in G, is a totally geodesic immersion
of M into G;. This map is a homothety, not an isometry, and we note
that Q(x)e G; because of the connectedness of M. Let Q(M) denote
the image of M under Q. We now show that if f: G;—>R is a Morse
function, then so also is (fcQ): M—R. We remark that (foQ) is
K -invariant because the action of K; on M corresponds to conjugation
in G; under Q.

Proposition 3.8. gradf is tangent to Q(M) and if fl e, has only
nondegenerate critical points, then (foQ)|, has only nondegenerate critical
points, where A is a maximal torus in M.

Proof. (Compare with [10]). The map

. G »Gy: g—a(g ) =s,g""1s,

fixes Q(M) pointwise because for any xe M
T(Q(x)) =0(5,05,) =5,08,°5,°8, =5,0°5,=O(x).

Also, (t,),=—(0,),is +1 on A and —1 on KA. Furthermore, for=f
since Vge G, p(g) e U(V) so p(g~ ') =(p(g))", the adjoint of p(g), and hence

(fer)(@)=f(s,g ~'s,)=ReTr(p(s,~'s,))
=ReTr(p(s, " 's, 1)) =ReTr(p(g™"))
=ReTr(p(g))"=ReTrp(g) = (g).

Now, 1: G; = G, is an isometry such that 12 = idg, and, therefore, (1,),
(the derivative of t at pe Q(M)) splits T,G; into an orthogonal sum of
its +1 and —1 eigenspaces (E;, E, respectively). The map: Q(M)—R:
p+—Tr(z,), is continuous so dim E: and dimE, are constant functions
of p. Therefore, dimE, =dimE;=dim.#=dimM. But, QM) is
pointwise fixed by t so T,Q(M)<E,. Hence, T,Q(M)=E, for
dimension reasons and, therefore, TpQ(JW)L (the normal space to Q(M)
at p) is E,. So VX,e TI,Q(]M)L we have

<gradf,,X,> = X f= X (fo1) = (1, X,)f
=—X,f=—<gradf,,X,>

and, therefore, <gradf,, X,>=0 VX,e TpQ(M)l. Hence, gradf,e
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T,0(M).
To complete the proof we may assume that Q(A4) is the identity
component of A NQ(M). Thus, grad fis tangent to Q(4) and, therefore,

{critical points of f on G }NQ(A4)={critical points of fly.}-

Furthermore, it follows from Proposition 3.2 that for any such critical
point p= (Q(a), where a€ 4, the map Tf, leaves T,Q(A4) invariant. There-
fore, if f|4c, is nondegenetate at p, then so also is f|y4 and consequently
a is a nondegenerate critical point of (fcQ)|,.

4. Polar sets as critical submanifolds

Let y: [0,]]>M be a geodesic in M which is parameterized by
arc-length and satisfies p(0)=7y(l)=0. The point p=7y(l/2) is said to be
antipodal to o along y. For such a point p we note that s,.p=p and since
the isometries s,0s,0s, and s, have the same derivative at p (namely
—idr ) we have that s,o5,=s,0s,.

To every p which is antipodal to o there is attached a pair of totally
geodesic submanifolds (M*(p),M~(p)) of M (cf. [4]) defined by:

M (p)="F(s,,p)=K,.p and M~ (p):=F(s,°s,,p)

where V map ¢: M->M we set F(¢,9):= the connected component
of the fixed point set of ¢ through ge M. The space M*(p) is called
the polar set at p and in the special case where M*(p)={p} we say that
p is a pole of M. We remark that T,M=T,M*(p)®T,M (p) is an
orthogonal direct sum. Now, after applying some ke K, to p we may
assume that p and indeed the entire geodesic y (along which p is antipodal
to o) are contained in the maximal torus 4. We will assume this to be
the case from now on.

Spaces of Classical Type: For the classical groups and symmetric
spaces, we note that the results of T. Frankel [6] and S. Ramanujam
[10] are obtained easily using our formulation. We outline the procedure
in the case of M=U(n) with the invariant Riemannian metric
(X, Y)=~—Tr(XY). Asirreducible representation in this case we take the
standard action of U(n) on C". We choose a maximal torus 4™ of M
consisting of diagonal matrices of the form

eV T 5 oV Tin

where the real-valued functions A,,---,A, on the Lie algebra /%™ of
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AY™ form the weights of this representation. If g,,---,¢, denote the
standard basis for &Y™ then

gradf,= — Y sin(4;)¢; where p=exp( ), Ajg;).
j=1 j=1

Therefore, p is a critical point of f if and only if sin4;=0 for all
1<j<n and this is the case if and only if p is the identity or is antipodal
to the identity along some closed geodesic contained in the maximal
torus. Thus the critical submanifold of f through p is the polar set M *(p).

To determine nondegeneracy and to calculate the index we need
only consider Tf, on the space orthogonal to M*(p) at p, that is, on
T,M~(p). In this case, M~ (p)=U(m)x U(n—m) where m=#{1<j<n:
A;is an even multiple of 7} and its action on T,M ™ (p) is the adjoint action.

Now, U(m) is not simple, but is locally a product of a circle (which
is the centre) and SU(m). Accordingly, it follows from the modified
Schur’s lemma that Tf, restricted to 7T,M (p) can have at most four
distinct eigenspaces. However, it is easy to check that when O<m<n
there are only two since 7f,= —1 on the U(m) component and +/ on
the U(n—m) component. Otherwise there is only one eigenspace. Thus
the index is dimU(m) and the critical submanifold M*(p) is the
Grassmannian U(n)/(U(m) x U(n—m))

REMARKS.

(i) When G, is simple, usually we will find that at a critical point
p € G, the isotropy subgroup (i.e. the centralizer of p) G,=M" (p)
is either simple, or splits into a local product of two simple
groups, or a simple group and a circle which may be read from
the Dynkin diagram by the method of Borel-De Siebenthal (see
[1],or Wolf [12] Chapter 8, §10). 'The action of G, on T,M ™ (p)
is the adjoint action so in the these cases it follows from the
modified Schur’s lemma that Tf, restricted to T,M ™ (p) will
have either one or two eigenspaces which coincide with this
splitting. Thus the negative eigenspace is either empty, or is
equal to T,M ™ (p) or else equals one of the factors.

(i1) In view of Proposition 3.8 this splitting is preserved when we
pull back to any symmetric space by the quadratic representation
of M in G;.

NortaTioN. To see more clearly why this Borel-De Siebenthal type
splitting comes about for conjugation-invariant functions we fix the
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following notation. G will be a compact, connected, simple and
semi-simple Lie group of rank » which has maximal torus 4¢ with Lie
algebra &/% and simple roots «,,---,®,. For each 1<i<r, we define:

(i) H;e ¢ by the condition that a;(H;)=2nd;; for all 1<;<r.
(ii) A;e% by the condition that (A, H)=0a,(H) for all He /¢,
where {,) is the metric obtained from the Killing form.

(ii1) s5; is the simple reflection from the Weyl group corresponding
to the simple root o;

Theorem 4.1. Let f: G- R be a smooth function which is invariant
under conjugation. Ifte R and if p=exp(tH,) is a critical point of f, then

{Hi’Al"")Ai—l) Ai+1)"'a‘4r}

form a basis for TI,AG consisting of eigenvectors of Tf,.

Proof. If j#1¢, then using Lemma 3.5, we have

Sj Tf. exp(!H,-)A iz Tf. exp(ts;H;)S jA j
= Tfexp(tHi)( - A_])

That is, s(Tf,A))=—Tf,A; and, therefore, Tf,A;=b;4; for some
b;eR. 'This shows that {A4,,---,4;_,, A;4,-,A4,} is a set of eigenvectors
of Tf, and, in particular, its linear span is stabilized by 7f,. Accordingly,
its orthogonal complement (in /) is also stabilized by Tf,, since Tf, is
self-adjoint. But this orthogonal complement is spanned by H;, so that

H; is also an eigenvector.

REMARKS.

(i) If one deletes the /*-vertex from the Dynkin diagram of G,
then there are at most three connected components in what
remains. Since the 4;’s corresponding to adjacent nodes of the
Dynkin diagram are pairwise non-orthogonal it follows that
those 4;’s corresponding to any one of the connected components
all must lie in the same eigenspace. Furthermore, if t=1/n;
where n; is prime, then H; must also lie in one of these
eigenspaces, because the action of each component in the
Borel-De Siebenthal split is irreducible. We note also that
there is an obvious generalization of the above theorem to the
case where p=exp(tH;+sH).

(i) The Borel-De Siebenthal split also holds in the case where #;
is not prime: Let the Lie algebra &, of the centralizer of peA°
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split into ¥,®9,®--- DY, (9, the centre, ¥, simple ideals) and

let MG=¢2/0@42/1®---®.52¢5 where &lj=gjr\.9ia 0<j<s, be the

corresponding decomposition of o/¢. Suppose ¥ is simple with

simple roots II= {a,,--,0,} and with the highest root

ad=Xmo;. Set ay=—4d and let p=exp(tH;/n;) where 0<t<1.

(a) Case 0<t<1: dim%,=1. Decompose IT—{a;} into com-
ponents:

M—{o;} =TI, u---UII,.

Then II; is a fundamental system for ¥;, .o/;=RII; and
M():g():RHi.
(b) Case t=1: dim %,=0. Decompose (IT—{a;})u{x,} into

components:

(M —{o})o{oe} =TT, L UILL,.

Then II; is a fundamental system for ¢; and .o«/;=RII;. In
particular, &/, =RII| +RH; if II,=TI\U{a,} contains a,.

We note that the above also implies Theorem 4.1 immediately.

Spaces of Exceptional Type: We now apply our methods to the
groups and symmetric spaces of exceptional type. We also point out
the connection between our approach and the Killing vector field approach
of R. Hermann [8].

The Group F,: We will follow the notation for the roots of F, as
given in Cornwell [5]. If ay,---,a, denote the simple roots then the
highest root

07=2061 +30t2+40t3 +2d4.

Let p be the irreducible representation of degree 26 of F, with highest
weight the short root ay +2a, +3a3+20a,. The weights then are the 24
short roots (each of multiplicity one) together with the zero weight which
has multiplicity two. Motivated by the expression for the long roots of
F, as given in Bourbaki [3] we use the polarization forms e,,---,e, which
are related to the simple roots by:

a1=el_ez—e3—e4
a2=264
A3=e€3—¢€y

Og=€;—é;3
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The nonzero weights are now expressed as +(e;1e;) where 1<i<;j<4.
Let 0,,---,0, denote the coordinates on /%' with respect to the basis
which is dual to e;,---,e,. Then for He .&/%* our Morse function has the
form

flexp H)=2+ ) cos A(H)

A#0

=2+2 ) cos(6;+0;) +cos(0,—0))

1<i<j<a4

=2+4 ) cosOcosb;

1<i<j<4

and the equations for a critical point on /¢! are
—4sin 0, g.cosej>=0 1<i<4.
i

Since every element of G, is conjugate to exp H for some element H in
the fundamental simplex

S={Heo/%: §(H)<2n and o(H)>0 V 1<i<4}

we seek only those solutions which lie in S. To this end we note that

oy (H)=0,—0,—05—0,

ay(H)=20,
ay(H)=03—0,
ay(H)=0,—04

and that the nonzero vertices of S are the vectors H;/n; where o,(H;)=
2n;; and A=) na;.

The solutions of the above equations are easily obtained, and
furthermore we can use Proposition 3.7 in accordance with Theorem 4.1
to determine the eigenspaces and corresponding eigenvalues. We now list
these solutions together with the eigenspaces.

(A) sin0;=0 for all 1 <i<4 and the only solutions in the fundamental
simplex are:
1) 0,=0,=0;=0,=0 so that o(H)=0 for all 1<i<4 which
corresponds to p=e=the identity. Tf,=(—1/3)I where [ is
the identity map.
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(i) 0y=m and 6,=0;=0,=0 so that o;(H)=n and a;(H)=0 when
j#1 which corresponds to the M*(p) at p=exp H for the
vertex H=H,/2. {A,,A3,A,} corresponds to the eigenvalue
(—1/9) and H, has eigenvalue (1/3).

(iii) 0,=0,=n and 0;=0,=0, for which ay,(H)=n and o;(H)=0
when j#4. This corresponds to the M™(p) at the vertex
H=H,/2 and Tf,=(1/9)1.

(B) sinf; =0 and sin0;#0 for j#1: Here there is only one solution in
the fundamental simplex, which is

91=7t, and 02=03=04=7t/3.

Thus, a,(H)=2n/3 and a;(H)=0 when j#2 which corresponds to
the vertex H=H,/3. {A,,H,} corresponds to the eigenvalue (1/6)
while {45,4,} corresponds to the eigenvalue (—1/12).

(C) sin0,=sin0,=0 and sin0;#0 when je{2,3}, we find:
01=7t, 02=03=7t/2, and 0420.

Thus, o3(H)=n/2 and o;(H)=0 when j#3 which corresponds
to the vertex H=H,/4. {A4,4,,H;} corresponds to the eigenvalue
(1/9) and A, has eigenvalue (—1/9).

Thus we have shown that our function f is a Morse-Bott function whose
critical submanifolds include all the polar sets. Furthermore, it seems
to be the correct generalization of the trace function in the classical cases,
since for these spaces all the »;’s are either 1 or 2 so that the orbit of
the exponential of a vertex isan M*. We remark also that, the exponential
of a vertex of S corresponding to an #n;, where n; is a prime, is well
understood as having centralizer which is a maximal subgroup of maximal

rank, see Borel-De Siebenthal [1].

The Group E,;: In what follows E¢ will always denote the simply-
connected group of type E4. Again we follow the notation in Cornwell
so that if «,, --,xs denote the simple roots then the highest root is

G=oy 4200, + 3003+ 2004 + 005 + 206.

We take p to be the irreducible representation with highest weight
(20, + 40, + 605+ Sy + 405+ 306)/3. The degree of this representation
(which is lowest) is 27 and the weights, all of which have multiplicity
one, can be calculated using Freudenthal’s recursion formula for the
weights and their multiplicities. We used the computer to carry out
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The weights are as follows:

Ay ={2,4,6,5,4,3} Ays={—-1,-2,0,2,1,0}

A, ={2,4,6,5,1,3} le={—1,1,0,—1,—-2,0}

Ay ={2,4,6,2,1,3} Ai,={—-1,—-2,0,—1,1,0}

As ={2,4,3,2,1,3} Aig={—-1,—-2,0,—1,—-2,0}

As ={2,4,3,2,1,0} Aro={—-1,—2,—-3,—1,1,0}

le ={2,1,3,2,1,3} Arpo={—-1,—-2,—-3,—1,1,-3}
A, ={2,1,3,2,1,0} Ay ={—-1,—-2,-3,—1,—-2,0}
lg ={—1,1,3,2,1,3} Appy={—-1,-2,-3,— 1—2,—3}
Ay ={2,1,0,2,1,0} Apa={—1,—-2,-3,— —2,0}
Ao={—1,1,3,2,1,0} Apa={—-1,—-2,-3,—4,—-2,-3}
211={2,1,0,—1,1,0} Ays={—1,—-2,—6,— 4,—2,—3}
A,={—-1,1,0,2,1,0} Ae={—1,—5,—6,—4,—2,-3}
A13={2,1,0,—1,—-2,0} Ay7={—4,—-5,—6,—4,—2,-3}
Aa={-1,1,0,—1,1,0}

where {m,,---,m¢} denotes the weight (X,m;)/3

We take the (orthogonal) polarization forms e,---
to the simple roots by:

,e¢ Which are related

oy =(3e;—e,—e3—ey—es—eg)/2

o, =es+eg

Oy=e4—es

a=e3—e, )
os=e,—e;

O =es5— e

and we let 0,,---,0, denote the coordinates on the maximal abelian
subalgebra /¢! with respect to the basis which is dual to e, Relative
to 0,,---,0¢ the highest root & evaluates as

',86.

=(361 +02+03+04+05_’06)/2

and among those inequalities, obtained from (9), which are used to
determine the fundamental simplex we draw particular attention to the
following:
0<05<0,<0;<0,<4n
—n/2<0g<7/2
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06| <0s<m
and

03(301 +02+03+04+95—06)/2321'C.

Using these coordinates our Morse function takes the form

flexp H)= ;COS ACH)

6 0. 6 0.
=16 1—[ cos<—'> —16 n sin<~'>+
i=1 2 i=1 2

6
cos 20, +2(cos 0,) D’ cos 0.
j=2

J

ci=cos<(;i> and s,-=sin<%)‘v’lsi_<_6

then the critical points on /%' are determined using the equations
0f/00,=0, for 1<i<6, from which we obtain:

If we set

6
2[51€2€3€4C5C6 + €15553545556] + 25161 (c} —s3) +5,¢, Z (cf——sf)=0 for i=1

j=2
(10)

2[sicl-~-f,~-"c‘6+Ci81~--§i---s6]+S,-Ci(6%—-—sf)=0 for ZSiS6 (11)
where the hat (") in the second equation denotes that the term is omitted.

REMARK. It follows from equation (11) that if (c? —s?)#0, then there
are at most two distinct sf’s (or cf’s) forall 2<j<6. Since these equations
are invariant under any permutation of the subscripts {2,---,6} we will
assume (after a suitable permutation) that if there are two distinct sf’s where
2<j<6, then s3#s35. Furthermore, when s2#s2 then the following
auxiliary equations are obtained from (11):

2¢4¢563€4¢566+(€2¢3)% (¢ —s3) =0 (12)

2515553545556+ (5253)%(c3 —53)=0 (13)



PoLAR SETs As CRITICAL SUBMANIFOLDS 553

We fix the notation
D=(3—-s), E=(3—s), F=(—s)
and draw attention to the identities
2¢=(14+D) and 2s2=(1-D)

with similar ones for ¢,c3,52 and s3. We keep in mind also that s?<1
and ¢?<1 for all 1<i<6. To solve the above equations we divide our
computations into four main cases.

Case 1, D=0: In this case s?=c¢?=1/2 and from equations (10) and

(11) we obtain

6
4lcy---cg+ 5156l + Y, (cF—57)=0
ji=2

and
stcycgt s 56=0, 2<i<6.

(A) If s} #0 for all 2<j5<6, then it follows from the second equation that

s?=s? for all 2<i<j<6. The only solution in this case is s?=c¢} for

all 1<i<6. Thus, cos0;=0 and 0,€(odd Z)(n/2). Also, from the
above equations we have

CrrCe=—$1 5S¢
and the only solution in the fundamental simplex is
0,=0,=---=05=n/2 and 0g= —n/2
so that
ay(H)=ay(H)=---=as(H)=0 and ag(H)=m.

This is the M* at H=Hg/2. {A,,4,,A3,A,,A5} corresponds to
the eigenvalue (—1/12) and Hg has eigenvalue (1/4).

(B) If there exists j€{2,---,6} such that sf=0, then it is easy to check
that in this case we must have: exactly two sf=0 and exactly two
s?=1 for 2<j<6 and the remaining s?2=1/2 for 2<i<6. In this
case there is no solution in the fundamental simplex.

Case 2, De{+1}:
(A) D=1: Now s;,=0, ¢?=1 and from equation (10) we find



554

(B)
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5233"‘56=0.

Therefore, at least one s;=0 for 2 <j<6, so that (after a permutation)
we may take s, =0.

(1) All 5;=0 for 1<:¢<6: In this case cos0;=1, and 0,e(even Z)n
forall1<i<6. The only solution in the fundamental simplex is

01=02=93=04=05=06=0‘
Thus

al(H) =°‘2(H) =a3(H)=a,(H)=0as(H)=as(H)=0

and p=e=the identity. Tf,=(—1/4)I where I is the identity
map.

(ii) At least one 5;#0 for 3<;j<6: After a permutation we may
take s;#0 and since D#0 we have sje{s3s3} for all
4<7j<6. Let

m=4#{jeN: 4<j<6 and s?=s3}.

Putting i=3 in equation (11), it follows that 2¢5+¢3=0 and
the only solutions possible are when 1<m<3. However, one
can check that none of the resulting solutions lie in the
fundamental simplex. This is seen easily, because the condi-
tion o, >0 together with s; =0, in this case, implies that 0, =2nn
for some ne N and hence &> 2.

D=—1: Now s?=1, ¢;=0 and the argument proceeds as in (A)
except that the roles of the c’s and s’s are interchanged. The
solutions are:

(i) All ¢;=0 for 1<i<6: in this case all cosf;=—1 and 0;¢e
(odd Z)m for 1<i<6. In particular, Og¢[ —7n/2,m/2], so none
of these solutions lie in the fundamental simplex.

(i) With ¢,=0 and 257 +s;=0, where m is as described in part
(A), we list the solutions:
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0,,0,€(odd Z)n
m=1 s3=54=0 and ¢5=c¢=0 so that
05,0, € (even Z)n and 05,04 € (odd Z)n
m=2 s3=s4=55=0 and ¢ =0 so that
(a) 0,,0,,05€ (even Z)n and 04 € (odd Z)n
m=2 s3=si=s52=1/4 and ¢=0 so that
(b) 05,04,05€ {3,°F} + (even Z)n and 0 € (odd Z)n
m=3 s3=84=55=56=0 so that
(a) 03,0,,05,06 € (even Z)n
m=3 s3=si=s52=52=1/2 so that
(b) 03,04,05,06 € (0dd Z)(n/2)

ReEMARK: There is a parity condition in the above list: s3==5,5,5,555¢
and all solutions are obtained by applying a permutation of {2,3,4,5,6}
to the list and the parity condition.

The only solution from this list which lies in the fundamental
simplex is in the case [m=3 (a)], when

01=92=T£ and 03=04=05=06=0'

That is, H=(H;+H,)/2 which corresponds to an M™* since
ny=ns=1, see Nagano [9]. {4,,43,44,4¢, (H,+H,)} corresponds
to the eigenvalue (1/12) and (H, —Hjs) has eigenvalue (—10/72).

Case 3, D¢{0,+1} and there are two distinct s} for 2<j<6: After
a permutation we suppose that s3#s2 and let

n=4#{jeN: 4<j<6 and s} =s3}

and put m=3—n. After a permutation of {2,3} we may assume ne{0,1}
and me{2,3}.

(A) n=0 and m=3: If 5,=0 (respectively ¢,=0) then from equation
(11) we find D=1 (respectively D= —1) which is not allowed in
this case. If s;=0 (respectively ¢;=0) it follows from equations
(10) and (11) that D satisfies the equation 2D3*+3D?*+4=0



556 J.M. Burns and M.J. CLANCY

(respectively 2D*—3D?—4=0) which has no solution when
De[—1,1]. Thus we may assume s,c,7#0, s3¢37#0 and also, since
D¢ {41}, that s;c; #0. Now, s3#s3 so the auxiliary equations (12)
and (13) are valid, and if we put cycscs=26c3 and sys556 =053 where
e2=06%=1, then it follows from these auxiliary equations that

¢, D= —2¢c,c3 and s,D= —23s,s3. (14)
From these equations we obtain
D?*=F?+2DF+1 (15)
ED?*=DF?+2F+D. (16)
In this context, equation (10) may be put in the form
2[esyc ch +0cy5,55] +5,¢,2D+E+4F)=0,
which together with equations (14),(15) and (16) leads to
F=—D/(4D*+1) and 16D°*—6D*—1=0.
The only allowable solution of this latter equation is when
D?*=(1 +\/§)/4 and the only solution in the fundamental simplex
is when cosf,=— 41 +\/§)/4, cos0,=E and cos0;=F for all
3<j<6. At this critical point we find
oy =03=0,=0g=0 and 20, +o5=27.

In particular, &=2n. There are three distinct eigenspaces cor-
responding to {4,}, {H,—2Hs}, which are the negative eigenspaces,
and {A4;,4,4,4¢, (2H,+ Hs)} which is the positive eigenspace.

(B) n=1 and m=2: Here we put cscscq=EC,c3 and s,555¢= 05,53
where e2=05%=1.

(i) s,=0: in which case, either ¢;=0 or 2ec;c;+D=0. When
¢3=0 there is no solution in the fundamental simplex and
when 2¢c;c3+ D=0 there is a solution in the fundamental
simplex provided D=F= —1/2. For this solution we have

01=02=03=64=27t/3 and 95=96=0’

which corresponds to the vertex H=H;/3. {A4,,4,,4,,4s)}
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corresponds to the eigenvalue (—1/16) while {H;,A4¢}
corresponds to the eigenvalue (1/8).

¢,=0: in which case, either s3=0 or 2ds;s;+D=0. When
53 =0 there is one solution in the fundamental simplex given by

01=27[/3, 02=93=7t and 94=95=06=0’

which corresponds to the vertex H=H,/2. This critical
submanifold is not an M™* on the simply-connected Eg, but
it projects to an M* on the bottom space, Ad(Es). {4,,
A,,A3,Hy,Ag} corresponds to the eigenvalue (1/24) and A
has eigenvalue (—1/8).

If 20s;5;+ D=0 we obtain no solution in the fundamental
simplex.

If s;=0 but s,c,#0 we obtain the solution D=l—\/§ and
E=—-(15 ——8\/5)/(3—\/3). After a permutation of {2,3,4,5,6}
we find only one solution in the fundamental simplex given
by cosf;=D, cosl,=cosf3=FE and 0,=05=0,=0, which
translates to

oa,=ay=0s=0g=0 and a, +20,=2m7.

There are three distinct eigenspaces corresponding to {45},
{2H, — H,}, which are the negative eigenspaces, and {4,,43,4,
(H,+2H,)} which is the positive eigenspace. The eigenvalues
coincide with those in case 3, (A).

When ¢; =0 and s,¢, #0 there is no solution in the fundamental
simplex.

If s;¢;#0 for all 1<i<3, then D=E=—F= i—l/ﬁ for which
there is no solution in the fundamental simplex.

Case 4, D¢{0,1+1} and s}=s3 for all 3<;<6:

(A) Ee{x1}: If E=1, then s;=0 for all 2<;<6 and we find that

D= —1/2 and there are two solutions in the fundamental simplex
given by:
(1) 0,=2n/3, 0,=27 and 0;=0,=05=05,=0. This solution cor-

(ii)

responds to a pole p at the exponential of the vertex H=Hj
and Tf,=(1/8)I.

0,=4n/3 and 0,=0,=0,=05=05,=0. This also corresponds
to a pole p (distinct from that in the previous case) at the
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exponential of the vertex H=H, and Tf,=(1/8)I.

In this context we note that the centre of (the simply-connected)
Eg is {1,exp H,,exp H} so that the two poles above are identified
with the identity in Ad(E).

If E=—1, then cos0;=—1 for all 2<j<6 and, in particular,
0¢ € (odd Z)n so there is no solution in the fundamental simplex.

(B) E¢{+1}: In this case we find E=0 and D=i—\/§/2. The only

solution in the fundamental simplex arises when D=——\/§/2 and
this solution is

01=57Z/6, and 02=03=04=05=06=n/2,

which corresponds to the vertex H=H,/2. 'This critical submanifold
is not an M* on the simply-connected Eg, but it projects to one
on Ad(Es). {H,,A3,44,A45,A¢} corresponds to the eigenvalue (1/24)
and A, has eigenvalue (—1/8).

The Symmetric Spaces; EII, EVI, EIX, EIII, EIV, EVII:

The first three spaces have root system of type F, and have a unique
local isomorphism class. Motivated by our Morse function for the group
F, we consider the following well defined function on the maximal torus
of any of these three spaces

f(exp H.0)= Z cos 20(H).

a =short

That this function is well defined follows from the observation (see
Proposition 2.2) that on the maximal torus it is the difference of the
X* and Z Y?. Since it

@ =short

lengths of the Killing vector fields Z

@ = short

is a finite Fourier series on the maximal torus, by Weyl group invariance
of the function we may extend it to a K;-invariant function on the whole
space. R-Hermann [8] has considered Morse functions given by the
lengths of Killing vector fields but these functions are not K, -invariant
and, in general, agree with ours on the maximal torus only. We note
that the determination of the critical points of our K,-invariant function
for these 3 spaces has already been carried out since the effect of the 2
in the definition above is cancelled by the fact that the fundamental
simplex for the symmetric spaces extends only to the hyperplane d=n
and not @=2n as is the case for the group. Similarly, we note that the
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other spaces in the above list have a classical root system of rank <3
and are easily handled in this way.

(1]

(2]
(3]

(4]
(5]
(6]
(71
(8]
(9]
[10]
(11]

[12]

References

A. Borel and J. De Siebenthal: Les sous-groupes fermés de rang maximum des groupes
de Lie clos, Commentarii Mathematici Helvetici 23 (1949), 200-221.

R. Bott: The stable homotopy of the classical groups, Ann. of Math. 70 (1959), 313-337.
N, Bourbaki: Elements de mathématique, Chapter I-Chapter VIII, Groupes et
algébres de Lie, Hermann, Paris, 1960-1975.

B-Y. Chen and T. Nagano: Totally geodesic submanifolds of symmetric spaces II,
Duke Math. J. 45 No 2 (1978), 405-425.

J.F. Cornwell: Group theory in physics, Vol II, Academic Press, 1984.

T. Frankel: Critical submanifolds of the classical groups and Steifel manifolds,
Conference: Differential and combinatorial topology (in honour of M. Morse.),
Princeton Univ. Press (1965), 37-53.

S. Helgason: Differential geometry Lie groups and symmetric spaces, Academic
Press, 1978.

R. Hermann: Totally geodesic orbits of groups of isometries, Nederl. Akad. Wetensch.
Proc. Ser. A 65 Indag. Math. 24 (1962), 291-298.

T. Nagano: The involutions of compact symmetric spaces, Tokyo J. Math. 11 (1988),
57-79.

S. Ramanujam: Morse theory of certain symmetric spaces, J. Diff. Geom. 3 (1969),
213-229.

M. Takeuchi: Cell decomposition and Morse equalities on certain symmetric spaces,
J. Fact. Sci. Univ. Tokyo Sect. I. 12 (1965), 81-192.

J.A. Wolf: Spaces of constant curvature, Fifth edition, Publish or Perish,
1984,

J. Burns

Department of Mathematics
University College

Galway

Ireland

M. Clancy

School of Mathematical Sciences
Dublin City University

Dublin 9

Ireland








