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1. Introduction

In this paper, we consider the enumeration problem of knotted
surfaces in Euclidean 4-space R4. In classical case, there are many works
on that of classical knots and links in Euclidean 3-space R3 since the
19th century (e.g. [12], [13], [14], [19]). Particularly, J.H. Conway
gave a notation of classical knots and links in JR3, the so called tangle,
which is suitable for machine computation, and he listed all classical
knots of at most 11 crossings and all classical links of at most 10 crossings
[4]. In 4-dimensional case, the author made a table of knotted surfaces
in R4 with ch-index 10 or less [22], which will appear as an appendix of
this paper. (The ch-index of a knotted surface will be defined in
Section 2.) The purpose of this paper is to show a method of enumerating
knotted surfaces in R4 which is used to make the table in [22].

We work in the piecewise-linear (or smooth) category. By a surface
in R4 (or *S4), we mean a closed and locally-flat (possibly disconnected
or non-orientable) surface embedded in R4 (or S4) unless otherwise
stated. In Section 2, we study a diagram of a surface F in R4 and define
the ch-index of F, which is a numerical invariant of the knot type of
surfaces in R4 and has a property that, for each w>0, the number of
the knot types of non-splittable surfaces in R4 with ch-index n is
finite. Thus it is suitable for enumeration of surfaces in R4. In Section
3, we introduce a graph of a surface in R4. In Section 4, we explain
how to list all surfaces with ch-index n in R4 for each n by using graphs.
In Section 5, we give some remarks on surfaces of [22]. Appendix
contains two tables. The first is the table of surfaces in R4 which was
given in [22]. The other is that of their groups and first elementary ideals.

2. Diagrams of surfaces

In order to list surfaces in 4-space, we first need a convenient way
of describing such surfaces. We use Fox's motion picture representation
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of a surface in jR4, i.e., a representation in terms of a parametrized family
of 3-dimensional cross-sections (cf. [5], [8], [9]). Moreover we know that
essentially only one single 3-dimensional cross-section, the so called
diagram, is needed (cf. [16]).

Two surfaces F and F' in R4 are said to be of the same knot type or
equivalent if there exists an orientation preserving homeomorphism Ψ of
jR4 onto itself such that Ψ(F) = F'. We denote by R? the hyperplane of
R4 whose fourth coordinate^, is t, i.e., R* ={(#ι, x2, #3, x4)eR4: x4 = t}.

Proposition 2.1 ( [5], [8], [9]). For any surface F in jR4, there exists
a surface F in R4 satisfying the following:

(0) F is equivalent to F and has only finitely many critical points, all
of which are elementary.

(1) All maximal points of F are in the hyperplane R*.

(2) All minimal points of F are in the hyperplane R^j^.

(3) All hyperbolic points of F are in the hyperplane RQ.

We call such a representation F a hyperbolic splitting of F. A
hyperbolic splitting of the spun 2-knot of the trefoil is shown in Fig. 2.1.

The entire surface can be completely reconstructed from the 0-level
cross-section F0=FnJRoc:^o an<l a set °f labels (one for each hyperbolic
point) indicating how the hyperbolic points open up above, i.e., for t
>0 (cf. [9]). We thus obtain the following convenient representation of
surfaces in R4.

DEFINITION 2.2. Suppose that a surface F in R4 is described by a
hyperbolic splitting. Then a diagram of F is the 0-level cross-section

JF0 = Fnί?Q<=jRo with hyperbolic points labeled as shown in Fig. 2.2.

By Proposition 2.1, any surface in R4 can be represented by some
diagram. Diagrams of the spun 2-knot of the trefoil, two projective
planes P+ and P_ in R4, called the standard projective planes, and the
standard torus T1 of genus one are shown in Fig. 2.3. We usually
describe a surface diagram by its regular projection on S2 with over and
under crossings indicated in the standard way and with hyperbolic points
labeled.

Let (S^Fi) be a pair of an oriented 4-sphere S4 and a surface F( in
S4 (z = l,2). Consider the connected sum (S4$S4,Fi$F2) of the pairs
with respect to the orientations of S4 and S4. The surface F1$F2 in
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the spun 2-knot of the trefoil

P-

Fig. 2.3

the oriented 4-sρhere S4 = S4$S4 is called the knot sum of FA and F2. The
knot sum of surfaces F^ and F2 in R4 is similarly defined. A connected
orientable surface in R4 is said to be unknotted or trivial if it bounds a
solid torus of the same genus in .R4. If a connected non-orientable
surface F in R4 is equivalent to the knot sum of some copies of the
standard projective planes P+ or P_ , we say that F is unknotted or
trivial. The knot type of an unknotted, orientable surface in R4 is
uniquely determined by only the genus, while that of an unknotted,
non-orientable surface in .R4 is uniquely determined by the (non-orientable)
genus and the Euler number [7]. If a disconnected surface F in R4 is
completely splittable and each (connected) component is unknotted, then
F is called unknotted or trivial.

Equivalent surfaces in R4 may be described by many different
diagrams, but some of them are connected by simple operations.

DEFINITION 2.3. Two surface diagrams are called stably equivalent
if they are connected by a finite sequence of the operations Ω£,/=l, ,8,
described in Fig. 2.4 or their mirror image operations. (For the sake
of simplicity, we omit the figures of the mirror image operations.)

The operations Ωf effect local changes in the diagram. It is known
that all these operations can be realized by an ambient isotopy of jR4



ENUMERATION OF SURFACES

T Y P E I

( 1 ) Ω ! :

501

n
( 2 ) Ω C

\.

( 5 ) Ω 5 : XX = XX
T Y P E I I

( 6 ) Ω β : H

I I

~i Γ

Fig. 2.4

(e g [9], [17]). Therefore, stably equivalent diagrams define equivalent
surfaces in R4. It remains open whether the converse is also true:

QUESTION 2.4. Are all diagrams of equivalent surfaces in R4 stably
equivalent?

Proposition 2.5. The following stable equivalences of surface diagrams
hold:
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( 1 )

( 2 )

( 3 )

Proof. We first see that the operation Ω^ in Fig. 2.5 can be derived
from the operations Ωhi= 1, ,8, as shown in Fig. 2.6. Therefore, by
(i), (ii) and (iii) of Fig. 2.7, we can verify that (1), (2) and (3) are stable
equivalences of surface diagrams.

Fig. 2.5

Fig. 2.6



ENUMERATION OF SURFACES 503

( i )

( i i i )

Fig. 2.7

Proposition 2.6. Tzuo surface diagrams in each of Fig. 2.8 (1) and
(2) represent equivalent surfaces in R4.

Proof. To prove (1), it suffices to show the equivalence in Fig.
2.9. Let F be the surface in R4 represented by the diagram (i) of Fig.
2.9 and p the hyperbolic point of F shown in Fig. 2.9 (i). First pushing
the hyperbolic point p into the level ε1 (see Fig. 2.10 (i)), where
0<e 1 <e 2 <l> we get a surface F' in R4, which is equivalent to F. Let
α be the loop shown in Fig. 2.10 (i). Since Fr is also locally flat, the
e2-level cross-section F'nR*2 is a trivial 1-link. Therefore there exists a
2-disk D2 spanning α in R^ such that D2r\(Fπ R*l) = θί (i.e., α bounds
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a cusp of F). Hence, by an ambient isotopy of R4 keeping R3

t, £<0,
fixed, we can slide p along D2 and remove it. In this deformation, we
may assume that no new hyperbolic points appear (see Fig2.10 (ii)). Thus
we obtain the diagram (ii) in Fig. 2.9, which defines the surface equivalent
to F. It is clear that (2) holds. This completes the proof.

DEFINITION 2.7. Denote by c(D) and h(D) the numbers of the
crossings and the hyperbolic points of a diagram D of a surface in R4,
respectively. The sum of c(D) and h(D) is called the ch-index of Z),
denoted by ch(D). On all diagrams representing a surface -F in R4, the
minimal number of ch-indices is called the ch-index of F, denoted by ch(F).

REMARK 2.8. (l)If a surface F in R4 is the split union of two
surfaces F1 and F2, then it holds that ch(F) = ch(Fi) + ch(F2).

(2) We consider the additivity of the ch-index with respect to the
knot sum of surfaces in R4. For the standard projective planes P+ and
P_ in R4, we have ch(P+) = ch(P_) = 2 and ch(P+$P_) = 3 (see Fig.
2.11). Hence we see that ch(P+$P_)<ch(P+) + ch(P_). As another
example, let K be a non-trivial 2-knot such that K$P+=P+ (e.g., the
3-twist spun 2-knot of the frefoil). Then, since ch(PC)>Qί it follows that

Thus, in general, the additivity does not hold for non-orientable surfaces
in R4.

(3) Let F be a connected trivial surface of genus g in R4. If F is
orientable, then we have ch(F) = 2g. If F is non-orientable, then we have
ch(F)=g+l or g + \e(F)/2\ according as e(F) = 0 or not, where e(F) is the
Euler number of F.

We have the following question:

p +# P-

Fig. 2.11
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QUESTION 2.9. For arbitrary orientable surfaces F^ and F2 in R4,
does it hold that

ch(F1 *F2) = ch(Fι ) + ch(F2) ?

Theorem 2.10. For any 2-knot K in R4, it holds that

where d is the minimal degree of polynomials f ( t ) (eZ^*1]) of the first
elementary ideal of K such that /(!)= + !, r is the minimal number of
generators of Wirtίnger presentations of π^R^ — K), and m is the minimal
number of elliptic points of 2-knots which are equivalent to K. In particular,
if r = 29 it holds that

ch(K)>2d+m.

Proof. Let D be a surface diagram of K such that ch(D) = ch(fC). By
Euler's formula, we have

(1) h(D)>m-2.

The 2-knot K can be deformed into a 2-knot K' in the normal form
(see[9]) such that

(2) c(k) = c(D)9

where c(k) is the number of crossings of the equatorial cross-sectional
1-knot k. Then, by Euler's formula, it holds that

(3) c(k)>2g(k) + b(k)-\,

where g(K) and b(K) are the genus and the braid index of k. Moreover,
for a 1-knot, it is well-known that

(4) 2g(k) > degΔk(t) and b(k) > rk,

where Δfc(£) is the Alexander polynomial of k and rk is the minimal
number of generators of Wirtinger presentations of the group of k. Since
the the group of K is a quotient of the group of k, we see that

(5) rk>r.

Let K+=K'nR*cιR*, where R$={(xl9 x2, x3, x4)eR4: x4>0}.
Then K+ is a 2-disk properly embedded in ί?+ such that dK+ =k. Hence
Δfc(ί) is equal to Δκ+(ί)'Δx + (ί~1) up to units of Zfί*1], where Δκ + (t) is
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the Alexander polynomial of K+aR4. Therefore, since the group of
K is a quotient of the group of K+aR + , we have

(6)

Thus, from (1) — (6), we see that

ch(K) = ch(D) = c(D) + h(D)

Next assume that r — 2. Therefore, we have b(k)>2. Since the 1-knot
k is slice, it follows that b(k)^2. Hence we get b(k)>3. Therefore we
see that

The proof is completed.

EXAMPLE 2.11. Let K be the spun 2-knot of the (2n+ l,2)-torus
1-knot (n>0). Then we have r = 2, m =4 and d=2n. By Theorem
2.10 and Fig. 2.12, it follows that

2(2n + l ) + 2>ch(K)>2'2n + 4.

Therefore we obtain ch(K) = 4(n + 1) . Thus the second inequality of
Theorem 2.10 is rough but best possible.

Zn-H half twists 2n+l half twists

Fig. 2.12

REMARK 2.12. Let F be a connected surface in R4 and g(F) the
genus of F. Then, in the same way as in the proof of Theorem 2.10,
we can prove that

and, if r = 2, then

ch(F)>2d + m + y,
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where γ = 2g(F) or g(F) according as F is orientable or not.

3. Graphs of surfaces

In the way analogous to the definition of the graphs of 1-knots and
l-links([l], [21]), we will also introduce a graph of a surface in ί?4.

Let D be a diagram of a surface F in .R4. Assume that D is described
by its connected regular projection on a 2-sphere S2. Then D divides
S2 into several regions. Since the degree of each vertex of D is 4, the
regions can be colored by two colors α and β like a chess-board such
that adjacent regions are never of the same color (see Fig. 3.1). Denote
by Vίh\<i<m, the α-regions. Define a graph Γ whose vertices vt

correspond to the αί? and whose edges efj correspond to the double points
and vertices Ak of Z), where e^ joins vt and Vj (see Fig. 3.1). We label
the edges as shown in Fig. 3.2. Then the graph Γ with labeled edges
is called the graph of the surface F (with respect to the diagram D). If a
surface diagram D is described by a disconnected regular projection, we
construct the graph Γt for each component Dt of D such that the Γ£ are
pairwise disjoint. We then call Γ=u ίΓ ί the graph of F (with respect to
D). If the jβ-regions are used instead of the α-regions, then another
graph Γ* is obtained from the diagram D. It is called the dual graph of Γ.

Fig. 3.1

- 1

Fig. 3.2
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Graphs of the spun 2-knot of the trefoil, the standard projective
plane P+ and the standard torus TA of genus one are illustrated in Fig. 3.3.

- i

the spun 2-knot of the trefoil

Fig. 3.3

The deformations Ω,h ι'=l, ,8, of surface diagrams can be translated
into the operations on graphs as shown in Fig. 3.4. (For the sake of
simplicity, we omit the figures of the mirror image operations.) Since
there are two graphs Γ and Γ* for a surface diagram Z), we have two
operations O, and O* on graphs for each deformation Ωt . Such operations
will be called the dual operations of each other. In case that i = 3, 4,
7, we note that Ot and O* coincide.

T Y P E

( 1 )

( 2 )

Fig. 3.4
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( 3 )

( 4 )

( 5 ) O, :

T Y P E I I

( 6 ) 0 * :

( 7 )

( 8 )

O. :

\
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By the similar agrument as in (3.6) of [21, p. 159], we can prove
the following:

Proposition 3.1. Let Γ be the graph of a surface in R4. Then the
dual graph Γ* can be obtained from Γ by a finite sequence of the operations
Ot and O*h ι = l f —,8, in Fig. 3.4.

From Propositions 2.5 and 2.6, we obtain the following two
propositions, respectively:

Proposition 3.2. The following operations on graphs of surfaces in
R4 are derived from the operations Ot and O*, ί =!,••-,8, in Fig. 3.4:

( i )

( 2 )

( 3 ) - •-
1 1 +

Proposition 3.3. Two graphs in each of (1) - (4) of Fig. 3.5 represent
equivalent surfaces in R4.
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( I )

( 2 )

( 4 )

Fig. 3.5

Applying (2) and (4) of Proposition 3.3 to a loop edge, we have the
following corollary:

Corollary 3.4. Two graphs in each of (1) and (2) of Fig. 3.6 represent
equivalent surfaces in R*.

( i

( 2 )

Fig. 3.6
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From these results, we obtain a simple graph representation of a
surface in jR4 as follows (A graph is said to be simple if it has neither
loops nor multiple edges.):

Theorem 3.5. For any surface F in R4, there exists a simple graph
on S2 whose edges are labeled as shown in Fig. 3.7 and which represents F.

( I m I edges w i t h label £ = s g n ( m ) )

(n-)
1±

Fig. 3.7

= 1

Proof. Let Γ be the graph of F. If Γ has a loop, then we remove
it by using Corollary 3.4, the operations O\ or O£ in Fig. 3.4. Suppose
that Γ has a multiple edge. Then, by the operations O^, O*5 and
Propositions 3.2, 3.3, we can replace it with a simple edge labeled as
shown in Fig. 3.7. The proof is completed.

REMARK 3.6. Note that each deformation of graphs in the proof of
Theorem 3.5 does not increase ch-index.

The following theorem holds [23]:

Theorem 3.7.
most three vertices.

Let F be a surface in R4 which has a graph with at
Then F is one of the following surfaces'.

(1) unknotted surfaces,
(2) surfaces represented by graphs
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1 ±

where m>2.

Corollary 3.8. Let F be a surface in R4. If ch(F)<5, then F is
unknotted.

This corollary follows from Theorem 3.7 and the following lemma:

Lemma 3.9. Let F be a non-splίttable surface in R4. Then F can
be represented by a graph with at most [(ch(F) + 2)/2] vertices, where [x]
denotes the greatest integer that does not exceed x.

Proof. Let D be a diagram of F such that ch(D) = ch(F), and let Γ
be the graph of F with respect to D. Then, as a regular projection, D
divides S2 into ch(F) + 2 regions. Therefore one of the graph Γ and the
dual graph Γ* has at most [(ch(F) + 2)/2] vertices.

4. Enumeration of surfaces

A diagram of a surface in R4 is considered as a 4-valent graph
(possibly containing S1 as a component) with labeled vertices in
R3. Therefore, we have

Proposition 4.1. A 4-valent graph D in R3 with labeled vertices

(i.e., ^̂  or /^ ) is a diagram of some surface in R4 if and only if

L + (D) and L_(D) are trivial \-links in R3, where L + (D) is the l-link in
R3 obtained from D by changing each vertex

by
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respectively, and similarly L_(D) is the l-link in R3 obtained from D
by changing each vertex

by

respectively.

Proof. The definition of a diagram of a surface in jR4 implies the
proposition.

Similarly, for a graph of a surface in
following:

4, we have the

Proposition 4.2. A plane graph Γ in S2 with edges labeled as shown
in Fig 3.6 is a graph of some surface in R4 if and only if G + (Γ) and G_(Γ)
represent trivial l-links in R3, where G + (Γ) is the graph in S2 obtained
from by changing each edge

by
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respectively, and similarly G_(Γ) is the graph in S2 obtained from Γ
by changing each edge

by

respectively.

For each ny since the number of connected planar graphs with n
edges is finite, we can enumerate all non-splittable surfaces with ch-index
n in J?4 as follows:

Step 1: Enumerate all (abstract) graphs satisfying the following:

(1) The numbers of the vertices and the edges are at most [(n + 2)/2]
and n, respectively.

(2) They are planar, simple and connected.
(3) They have no cut vertices.

Let Γ be such a graph.

Step 2: Label each edge of Γ by one of α, /? + , β— , + and 1 +
such that ch-index = «, where α^O) and β are integers.

Step 3: Embed Γ in S2 and decide whether or not Γ represents a
surface in R4.

REMARK 4.3. (1) When the number v of the vertices is less than
4, we can apply Theorem 3.7.

(2) The condition (3) in Step 1 is needed for a surface to
be prime.
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(3) For a diagram D of a surface F, it holds that, if h(D)<\ or
c(D)<3y then F is unknotted. (For the first case, see[2], [10], [11],
[18]. For the second, see [10].) Therefore, in Step 2, we may consider
only the case 4<c(D)<n-2.

(4) In Step 3, to decide whether Γ represents a surface in R4, we
apply Proposition 4.2. There exists an algorithm for deciding whether
a given projection of a 1-knot represents the trivial knot type [6], but
its application is complicated. Thus it is more practical to use invariants
of the graphs of 1-links (1-knots). The Q polynomial Q(l)eZ[x±i] is an
invariant of the knot type of an unoriented 1-link (1-knot) / in R3 which
is calculated from the diagram [3]. It is also obtained from the graph
G of / as follows:

(1) Q(G) = (2x~1-l)c~i for the graph G of the trivial 1-link with
c components.

(2) Q(G+) + Q(G_) = x(Q(G0) + Q(GJ),

where G+, G_, G0 and G^ are graphs of 1-links as shown in Fig. 4.1,
respectively.

- i

(v i* v 2 )

G - G.

Fig. 4.1

Let G be the graph of a l-link(l-knot) in R3 with the vertices
viy'"yvv. Let EIJ (i, y=l , ,v) denote the set of all edges of G whose
endpoints are the vertices vt and vjf The Goeritz matrix M of G is the
v x v matrix defined by the following:

m = Σ
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where η(e) denotes the label of the edge e. There is a unimodular matrix

Usuch that UMUT is diagonal. Let τ(G) = lΠ«ϋ*o β»l> where flί£(ί=l, ,v)
is the //-entry of the matrix UMUT. It is known that τ(G) and its nullity
are invariants of the knot type of the 1-link /. Then, it holds that if a
graph G represents the trivial 1-link with c components then τ(G) = l
and Q(G) = (2x~i — I)0"1. For 1-links of less than 9 crossings, the converse
is also true. (It is unknown whether there exists a non-trivial 1-link
whose Q polynomial is (2x~^ — I)0"1.)

5. Some remarks on surfaces in Table I

A surface in R4 is called irreducible if it is not the knot sum JF1#F2,
where Fi is any surface and F2 is the standard projective planes P+, P_
or the standard torus of genus one. All surfaces in Table I except for
2\ and 2~^ are irreducible. A surface F in R4 is said to be prime if F
is not the knot sum of any two surfaces in R4 that are not trivial
2-knots. The standard projective planes P+ and P_ are neither
irreducible nor prime. In general, it is not easy to determine whether
a given surface in R4 is prime. For example, it is unknown whether
the trivial 2-knot is prime. We now introduce a weaker primeness for
surfaces in R4.

DEFINITION 5.1. A surface F in R4 is said to be weakly prime if F
is not the knot sum of any two surfaces F± and F2 in R4 such that
ch(Fi)<ch(F)y ί=l,2.

Any prime surface in R4 is weakly prime. We have the following:

Proposition 5.2. Any surface F in R4 is either a weakly prime one
or the knot sum of finitely many weakly prime surfaces Fiy- ,Fm in R4

such that ch(Fi)<ch(F),i=l,'~,m (m>2).

Proof. We use induction on the ch-index of F. If ch(F) = Q, then
F is weakly prime. Assume that ch(F)>0. If F is not weakly prime,
then there exist surfaces Wi and W2 in R4 with ch(Wt)<ch(F), /=!, 2,

such that F=W1$W2. If Wi9 ι'=l, 2, are weakly prime, then the
proposition holds. Therefore, suppose that WΊ is not weakly prime.
Since ch(W^)<ch(F), it follows from the inductive hypotheses that Wi is
the knot sum of finitely many weakly prime surfaces Wiiy- yWίn. in R4

such that ch(Wij)<ch(Wi), j=l9 9ni. This completes the proof.

Thus it is reasonable to list all weakly prime surfaces in R4. All
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surfaces in Table I are weakly prime.
All surfaces in Table I are distinct esch other. (The surfaces 81}1

and lθV are the spun surface and the 1-twist spun surface of Hopf
1-link, respectively. Thus they have the same group but are not equivalent
(cf. [15], [20]).) Table I containes six 2-knots and two tori; the trivial
2-knot Oj, the spun 2-knot Sj of the trefoil, the ribbon 2-knot 9j associated
with 61 1-knot, the spun 2-knot l O j of the figure eight, the 2-twist spun
2-knot 102 of the trefoil and the 3-twist spun 2-knot 103 of the trefoil;
the standard torus 2\ of genus one and the spun torus 10{ of the trefoil.

It remains open whether or not there exists an irreducible projective
plane in R4. On the other hand, we have

Proposition 5.3. There exists an irreducible surface in R4 with two
components each of which is homeomorphic to a projective plane.

Proof. The surfaces Sj"1 '"1 and lOf 1'~1 are such examples because
the order of the meridian of each component of them is 4.

Appendix

Table I is the table of all weakly prime surfaces with up to 10
ch-index in R4, and Table II is that of their groups and first elementary
ideals. In the tables, by /f1'"''^, we mean the kύ\ surface with ch-index
/ and c components whose genera are gl9 •••, gc. (For a 2-knot, /£ is
written Ik.) Here, if gt< 0, then it means non-orientable genus. Table
I was given in [22], but we omit lOj'1 because of a duplication
6?4 = 105fl. In Table II, the columns headed π1(R4-F) and Ei give
the fundamental group of the complement R4 — F and the first elementary
ideal of a surface F. We denote the infinite cyclic group, the quaternion
group and the dicyclic group of order 16 by Z, Q and <2, 2, 4>,
respectively.

Note: Recently, T. Yasuda made a table of ribbon w-knots (n > 2).
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1 0 ,
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1 0 3

1 0 I

1 0
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1 0
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Table II

F

0,

25
2Γ'
6o,

7o.-2

«!

8J '

„-,.-,

9,

90.1

9J.-2

10ι

102

103

10J

lO' 1

10o,ι

10J-1

10o.o,ι

100.-2

100,-2

10-ι,-ι

10-2,-2

π^-F)

z

z

Z2

ZφZ

<x,y: yxyx~l >

^.Xl,X2°. X 1-^2^1 == ̂ 2^l^2 ̂

Z0Z

Q

<Λr1)^2: ^^J1^!^^-1^^

<jc,3;: Λ:"1^"1^^"1^^"1 >

<x,y: yxyx~l>

<xlίx2: x~ *x2xιx~ Ixιx2xϊ lx^ ίχιx

2 * >

<xίyx2: xίx2xlx~lx~1x~ί

ίx
2

1x2x~2x~ί>

<xltx2: X1x2xιx~ίx~ίx~ί,x3

lx2x~3x~l>

<x1,x2: xίx2xί=x2xlx2>

<x,y: jc"1^"1^"1^^^"^

<xyy: x2yx~2y~l>

Z@Z

<x,y,z: y~1x~lzxyz~ί>

<x,y: x~γy~*xyx~lyxy>

<^>>Ί^2: χyιχ~1y2

ί,y2

l=y2

2=(yιy2)2>

<2,2,4>

Q

EI

(1)

(1)

(1)

(*-ι,j>-i)

(χ+l,y-V

(x2-x+l)

(x-lty-\)

(x+ l,y+ 1,2)

(*-2)

(X- l,y-l)(y_l)

(Λ:+l,j;-l)

(jc2-3jc+l)

(x+1,3)

(jc2 + x+l,2)

(Λ:2-Λ:+1)

(^-1,3;-1)(^ + 1)

(^-l^-lK^c-fl)

(*-l,y-l)

(0)

(2Λ; +y-l, 4)

(2jc + y-l,4)

(*+l fy+ 1,4)

(jc+l,y+l,2)
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