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0. Introduction

Serge Ochanine [8] determined the ideal </ of ΩSO(X)Q, generated
by all the oriented bordism classes [CP(ξ2n)] of the total spaces of
odd-dimensional complex projective space bundles over closed oriented
smooth manifolds. He showed, in particular, that a multiplicative genus

φ : Ω5 0(x)Q -> Q

annihilates the ideal J if and only if its logarithm g(u) is formally given
by an elliptic integral

. . du
g(u) = o Vl-20([CP 2 ]) M

2 + 0([i?3,2])M

4

In this note we examine an unoriented bordism analogue of the
above results. Namely, let <fR be the ideal of the unoriented bordism
ring 9t+, consisting of all the bordism classes [RP(ζ2m)] of the total spaces
of odd-dimensional real projective space bundles over closed manifolds.
We will prove that a multiplicative genus

φ : %-> Z2 = Z/(2)

annihilates JR if and only if its logarithm g(u) is given by

du

0 VI - 2φ([RP2])u2

du

g(u) =

)0l+φ([RP2])u2 '

which means φ([RP2il) = Φ([RP2]y {°r * '^ 2
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Let 0*8% (2) be the subalgebra of 91* generated by the bordism classes
of real projective spaces of dimension a power of 2; {[RP2], [RPΛ]J t^^βL
[jRP16], •••}. It is easy to see that the natural composite homomorphism

99t (2) -> 91, -* 9lm/SR

is sυrjective. It will be proved below by computations of the unoriented
elliptic genus that the polynomials in SP0t (2) consisting of odd number
of monomials are not annihilated by the homomorphism above. The
investigations on polynomials with even number of terms will be carried
out elsewhere by computations of other types of genera (Shibata [11]).

REMARK. I was informed by R. Stong that a result of Cappobianco
[3] implies that

s Z2[[ΛP2]](8)£2({[JRP2 ] - [ iy> 2 ] 2 - 1 ; *£2}),

where E2Q denotes the exterior algebra over Z2.

1. Ideal A .

Let Hf} (ί<Lj) be the Milnor hypersurface of RPt xPRj={([a0;•••;«/],
[bo'y" ;bj])} defined by the equation

aobo-\raibί H

The natural projection

π: Hfj - t

is a (y-l)-dimensional projective space bundle and hence the bordism
class [Hf2λ belongs to the ideal JR when ii£2j.

' / \
For ί j > l , the Stiefel-Whitney number S^+j^^ of H*j is ί j

\ t J(2)

the mod 2 reduction of the binomial coefficient.
When n is an odd integer with n + \ not a power of 2, n is expressed

as 2d{2e+\)-\ (d,e integer ^1) and

Thus the class [H2d2d+ιe] can be chosen as an w-dimensίonal multiplicative
generator of 91*. When n is even which is not a power of 2, n is expressed
as 2f(2g+ 1) (/,£ integers Ξ> 1) and
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= 1,
(2)

and the class [Hf/ + i,2/+1g] c a n be taken as an w-dimensional multiplicative
generator.

Here we have used the well-known fact about the mod p reduction
of binomial coefficients;

Theorem 1.1. (Lucas [6]). Let p^.2 be a prime integer, and
i = akp

k-\-ak-1p
k~1 -\ \-βoP°y and n = bkp

k + bk_1p
k~i -\ \-bop° be the

p-adic expansions of integers i and n. Then it holds that

:)•(::)(::::)•••(::) - > •

Now, for each integer /e^l, let </2

fc + i be the ideal of 9ί+ generated
by even-dimensional classes [#f/+i,2/g] (^=/=l> £=2) and all the
odd-dimenional indecomposable classes [i/fdf2

d+ίe\ (^>^=Ό
Then

and we define / 0 0 = (J

Notice that a system of irredundant multiplicative generators of 91*
is given by {[RP2i\; ί^l , [Hf- t2-+,J; </,e^l, [Hf / + l f 2 / + 1 # ] ; Λ ί ^ l } .

This implies the following fact.

Proposition 1.2. L*ί ^ ^ (2) = {[i?P2], [JRPJ, [i?P8]>
the subalgebra of 9t+ stated in the introduction. Then the natural composite
homomorphism

(2) ^ 91, ^ <$

is surjective.

2. Dyadic derivatives

Let Λ be a division algebra over Z 2 = Z/(2), and Λ[[#]] be the formal
00

power series ring over Λ. For an element f(x)= ]£ a{x
ι of Λ[[#]], we

i = 0

define the «-th dyadic derivative D{n)f(x) of f(x) by
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(2)

where I I denotes the mod 2 reduction of the binomial coefficient.
W(2)

For example,

2ix 2~ι'-oa2i + lx > a n c *
(2)

(2)

Thus the first derivative Z)(1)/(#) does not contain enough information
to construct the second derivative Z)(2)/(#). However, the following
lemma follows directly from the definition of the dyatic derivatives and
Lucas' theorem 1.1 for binomial coefficients.

Lemma 2.1. For any series f(x)eA[[x]] and any integer j^.1 with
dyadic expansion j = ak2

k + ak _ x 2
k ~ * H h ao2° and any permutation σ of

{0,1,2,•••,&}, it holds that

Here we mean D{0) as the identity map.
Note that (Dn(f)) (0) = an, and so we have the Taylor expansion formula

/(x) = ̂ Jo(Z)(0/)(0)jci. The tt-th dyadic derivative D(n)f(x) cor-

responds to I — I (x) in the case of characteristic zero.

\n\J dxn

One of the important properties of the Din) is the Leibniz formula.

Proposition 2.2. (Leibniz formula) For any series f(x), g(x) 6
and for any integer n ̂  1, we have

Proof. Comparing the coefficients of the binomial expansions of the
equation (x+y)k = (x+yy(x+y)k~j, we obtain that
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for every / (O^j^k). Using this equality, it is easily verified that the
both sides of the equation of the Proposition coinside.

Another important property of the Z)(π) we need is the derivation
rule for composite functions.

Proposition 2.3. Let f(x) and g(x) be elements of Λ[[Λ:]] such that
g{0) = 0. Then the composition f(g{x)) is well-defined in Λ[[Λ:]], and we have

(2.3.1) Dw{f{g(x))) = {Dwf){g{x))D^g(x), and

(2.3.2) D™(J(g(x))) = (D™f)(g(x))(Dwg(x))2

Notice that (2.3.2) can not be obtained from (2.3.1) and the Leibniz
formula since Z>(2) Φ D(1)OD(1)ΞE0.

Proof of Proposition 2.3. Whenf(x) = xι

y we have f(g(x))=g(x)\ and
both (2.3.1) and (2.3.2) are obvious consequences of the Leibniz

formula. Thus, for each finite sum X^^i^ 1, the Proposition holds by

the linearity of the Z)(w). For general f(x)=YJiz=Qdix\ since g(0) is assumed

to vanish, the both sides of the equation of the Proposition for the finite
sums converge to those for the infinite series f(x) as N -> oo. Q.E.D.

For an element f(u,v)eA[[u, v]]y we define the «-th dyadic partial
derivative Dv

{n)f{u, v)eA[[u, v]] with respect to the variable v by applying
D(n) to f(uy v) viewed as an element of Λ[[w]] [[v]]. The n-th partial
derivative Djn)f(uy v) is defined similarly.

REMARK 2.4. We can define the £-adic derivatives for any prime
integer p^2. They all satisfy the similar properties as those of dyadic
derivatives stated above. But what we concern in this note is oly the
case p — 2.

REMARK 2.5. The definition of the dyadic derivatives jD(n) can be
extended to the finite Laurant series ring Λ((#)), and Propositions 2.2
and 2.3 still holds in Λ((x)) (Shibata [10]).
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3. The formal group law and its logarithm in 9Vtheory

Let FN(uf v) = u + υ + Σj=1Aiju
ivje%[[u, vfi^WiRP^xRPJ be the

formal group law of 9t+-theory and

G^")=Σ,Γ0*ι«'+ ' e «.[[«]] = « W . )

be its logarithm. The even degree coefficients X2i are represented by
the projective spaces RP2i (Shibata [9]). If we set

the Atiyah-Poincare duality between ^(RP^RPj) and 9Γ(i?Pf x RPj)
applied to the class of the natural inclusion map [c: Hfj a RPi x RPj] gives
rise to the following proposition.

Proposition 3.1. (Buchstaber [2], Theorem 4.8.) It holds that

HN(u, υ) = GN(uYGN(vYFN(U) v),

where GN(uY= Σ™Q[RP2i]u2i denotes the first derivative Da)GN(u).

Applying (2.3.1) to the equality

we obtain

(3.2) (Da)GN)(FN(u, v))Dv

{1)F*(u9 v) =

and thus

(3.3) Dv

(i)FN(u, v) = D(1)GN(v)B(FN(u, v))y

where B(v)e9{Ji[v]] denotes the multiplicative inverse of D(i)GN(v).
Setting v = 0 in (3.2) above, we obtain Honda's equality [5]

(3.4) GN(uYDv

(1)FN(uf 0) = l .

Now, exactly in the same way as in Ochanine [8], we input the
Taylor expansion
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FN(u, v) = u + Dv

(1)FN(u, 0)v + Dv<
2)FN(u, 0)v2 + Dv

(3)FN(u, 0)v3

mod v*

into Buchstaber's formula above, and then using Honda's equality (3.4),
we deduce that

HN(u, v) = GN(vY{GN(uYu + v + GN(u)'Dv

i2)FN(u, 0)v2

+ GN(u)'Dv

(3)FN(u, 0)v3} mod v*.

If we set R(u) = Σi™i[H$ai]u2i, we see that

R(u) = GN(u)'D™FN(u, 0),

since GN(v)y consists only of terms with even exponents of v.
By Lemma 2.1 and (3.3), we have

u, v)

= Dυ

(2)(D{l)GN(v)B(FN(u, v)))

= D™GN(v)B(FN(u, v^ + D^C^D^BiF^u, v)))

by virtue of the Leibniz formula and the fact that Z}(1)ofl(1)=0.
Now Proposition 2.3, (2.3.2) implies that

Dv<
2\B(FN(u, υ))) = (D™B)(FN(u, v))(Dv^FN(ut v))2

+ (D(1)B)(FN(u, v))Dv

(2)FN(u, v)

= (D(2)B)(FN(u, v))(D(i)GN(v)B(FN(u, v))2,

in view of (3.3). Notice that D(1)B(v) = 0 since B(v) consists only of
terms of even exponents of v.

Summarizing, we have obtained

R(u) = GN(u)'{[RP2]B(u

since Di3)GN(0) = [RP2]. Therefore, if we set

B(u) = Σ.™0B2iu
2i, it holds that

(3.5) Σ iΓ1[^,2, ]"2ί=Σ iΓ1{
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The comparison of the coefficients of the both sides of the equality
above yields the following results.

Proposition 3.6. Concerning the unoriented boridism classes of the
Milnor hyper surfaces, it holds that

(3.6.1) [ f f f > 8 ί + 6 J = 0.

(3.6.2) [HlSi+2] = (B«i+2)
2; a square.

4. Multiplicative genera for 9ίt

Let Λ be a division algebra over Z 2 = Z/(2) as in section 2. A
multiplicative A-genus is a ring homomorphism

φ : % -> Λ.

A Λ-genus φ induces algebra homomorphisms

Φ. : %[[u9v\\ - Λ[[u, t;]], and

The images of FN(uy v)> GN(u), R(u), B(u) by the homomorphism
φ+ are henceforth denoted as f(u, υ), g(u)> r(u)y b(u)y respectively.

From formula (3.5) and Proposition 3.6, we obtain the following.

L e m m a 4.1. If a multiplicative genus φ : 9Ϊ+ -> Λ annihilates
the ideal </3, then

(i) φ(BAi + 2) = 0 for all ί ^ l ,
(ii) either

(ii-a) φ(B2) = 0y or
(ii-b) φ(β 4 ί ) = 0 /or α/Z i ^ 1.

In case of (ii-b) above, we have b(u) = 1 +φ([RP2])u2

y and thus
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and consequently,

g(u) = u + φ([RP2])u3 + φ([RP2])2u5 + φ([RP2])3u7

In the remaining part of this section,we examine the case (ii-a) of the
Lemma above.

Lemma 4.2. Let n ̂  2 be an integer. If φ(/2» + I) = ° and Φ(B2k) = °
for all2kφQmod 2M, then it holds that φ(B2k) = Ofor all 2kΦQ mod 2n + 1.

Proof. First, the coefficients {B0 = ίy B2 = [RP2], •••, B2ky •••} of

B(u) = (G'(u)y1 and those {X0 = l , X 2 = [ i?P 2 ] , •••, X2p •••} of G(u) are

mutually expressed as polynomials of the others, and the hypothesis

φ(B2k) = 0 for all 2&^0 mod 2W implies φ(X2k) = 0 for all 2 & ^ 0 m o d

2n. In that case, we have

and the inverse function g~ι(u) of g{u) is also of the form

Then

f(u, v) =

Consequently, φ{Ai}) = 0 unless either (i) / = 0 mod 2n andy=l mod
2W, or (ii) ι = l mod 2Π andy=0 mod 2n. In view of Buchstaber's formula

the above fact implies that Λ/j = 0 unless either (i) / = 0 mod 2n and j= 1 mod
2", or (ii) ί = l mod 2" and / = 0 mod 2n. In particular, h2n + lt2i = 0 if
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2iφO mod 2".
Now, exactly in the same way as in the proof of (3.5) for R(u) = R3(u)y

we define

and we input the Taylor expansion of/(w, v) into Buchstaber's formula;

h(u, v)=g'{v){g'{u)u + v + Σ2n

k*
l

2 g'(u)Dv

(k)f(uy 0)vk} mod v2n + \

and deduce that

<2n + 1)f)(u, 0 ) ,

since g'{v) is of the form £ . * Q φ([RP2ni\)v2ni.

By Lemma 2.1, formula (3.3), and the Leibniz formula, it holds that

( A Γ + 1)/)(u, v) = (Dj2n)oDv^f)(u, v)

=Dυ

(2")(g'(v)b(f(u, v)))

=g\v)D<2"\b{f{u, v))) + D^(g'(v))b(f(u, v))

since D(Y(t;) = 0 for l ^ t
In order to compute the 2"-th derivative Dj2"\b(J(u, v))), we need

the following lemma.

Lemma 4.3. Let e(u) and h(u) be elements of Λ[[w]] such that e(h{u))
is well-defined, £>(1'e(u) = 0, and that D<1)Λ(M) = 0 unless ί'=0 or 1 mod
2". Then it holds that

D(2n\e(h(ύ))) = (&2n)e)(h(u))Da)(h(u))2".

Proof. If e(u) = u2m, then by the Leibniz formula,

D(2"\e(h(u))) = &2"\h(u)2m) = (2τΛ(Dwh(u))2"h(u)2m " 2"

= (D(2n)e)(h(u))D(1)(h(u))2"
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as desired. The general case follows from the same convergence
arguments as in the proof of Proposition 2.3. Q.E.D.

Proof of Lemma 4.2 (Continued). By Lemma 4.3 above, we have

(A/2" + 1)/K". v)=g'(v)(D^b)(f(u, v))(Dv^f(u, v))2"

+ (D(2n)Dwg(v))b(f(u, v))

=g'(v)(Di2n)b)(f(u, v))g'(v)2"b(f(u, υ))2"

+ (D<2" + »g(v))b(f(u, v)),

and thus

Dj2" + l)f(u, 0) =g'(u)

= (D(2")b(u))b(u)2"-1+x2".

Therefore, ^ φ(\H*n+U2nJ)u 2ni

=*2-+(Σ(:i (

Up to now, we have only used the second hypothesis of the lemma;

φ(B2k) = 0 for all 2Λ^0 mod 2n.

The computational result just obtained above implies that the first
hypothesis φ{#2n +1) = 0 of the lemma is equivalent to

" - 1(4.4) h2n+U2nU
2 =^2« + ( Σ ί = O

δ2"(2i4-l)W2 l)(Σk = 0b2»kU2

Comparing the coefficients of w°, w2", w 2 " 1 and ι/2"3 in the equality (4.4)
above, we deduce that b2n = x2n=z0y h2n + 12n=:(b2n)2 = 0 and b2n3 = 0.
Therefore the equality (4.4) reduces to

Yji = 2^2n(2i + ί)U l = Σjtk = 2b2n(2j+i)(b2nk) U +J ,

from which it is immediately verified by induction that b2n{2i + i) = 0 for all
i^.2. This completes the proof of Lemma 4.2. QED.

Now in case (ii-a) of Lemma 4.1, if φ(<f5) = 0 then the hypotheses
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of Lemma 4.2 for n = 2 are satisfied, and we conclude that φ(B2k) = 0 for
all 2kφO mod 8. In this way, the inductive applications of Lemma
4.2 show that the hypothesis φ(B^k + 2) = 0 for all k^O and φ(/ o o ) = 0
imply that φ(B2k) = 0 for all k^l. This in turn implies that φ(X2k) = 0
for all &^1, i.e. g(u) = u. Summarizing, we have proved the following.

Proposition 4.5. // a multiplicative genus φ annihilates J1^, then
the induced logarithm g(u) = φχGN{ύ)) is of the form

g(u) = u + φ([RP2-\)u3 +φ([RP2])2u5 + φ([RP2])3u7 +

DEFINITION 4.6. A multiplicative genus φ which gives rise to a
logarithm of the form given in Proposition 4.5 is called an unoriented
elliptic genus.

Proposition 4.7. The bordism formal group law and the related power
series induced by an unoriented elliptic genus φ are described as follows;

(4.7.D r i («)=Σ 7 0

(4.7.2) f(x,y) =g-1(g(u)+g(v))

= u + v + Σ™1φ([RP2]
i) (MV + 1 +M ί + V), and

(4.7.3) h(u,v) =g'(u)g'(v)f(u,v)

Proof. If we out

and replacing v by g(u), we obtain



UNORIENTED ANALOGUE OF ELLIPTIC GENERA 443

Thus {g(g(u)) — u}g(u) = 0, and so g(u)=g~1(u), which proves (4.7.1).
Next, by (4.7.1) just proved above, we have

This proves (4.7.2)
Finally, inputting the result just obtained above into Buchstaber's

formula, we have

Y + i + k)(u

as desired. This completes the proof of the lemma. QED.
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Corollary 4.8. A multiplicative genus φ annihilates the ideal β' ^ if
and only if it is an unoriented elliptic genus.

Proof. By (4.7.3), if φ is an elliptic genus, then h2j+ 1>2ί = 0 for all
2/ + 1 and 2i such that 2/+l<2i. And </>(5Rodd) = 0 by definition. Thus
φ(c/oo) = 0 and the converse of Proposition 4.5 holds. QED.

5. Multiplicative sequences and a residue theorem

A multiplicative genus

φ : 9ί, -> Λ

can be described in terms of a multiplicative sequence in the
Stiefel-Whitney classes wi exactly in the same way as in Hirzebruch [4],
§1. Namely, a multiplicative sequence {Kj\ 7 = 0,1,2,3,-••} is a sequence
of polynomials Kj in the variables wt such that Ko = \, satisfying the
condition that

if 2

Such a sequence is uniquely determined by its characteristic power
series

The main purpose of this section is to prove the following proposition,
which is a mod 2 analogue of a theorem of Novikov ([7], IV).

Proposition 5.2. Let {Kj} be a multiplicative sequence which gives
rise to a multiplicative genus φ: 9Ϊ*->Λ such that φ(9?Odd) = 0, and Q(x) be
its characteristic power series. Let g(x) be the logarithm of the formal group
law f(x,y) induced from that of ^-theory via φ. Then it holds that

g
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For the proof of the above proposition, we define the residue of a
finite Laurant series as follows.

DEFINITION 5.3. Let Λ((Λ;)) denote the finite Laurant series ring

over Λ. The residue Rx(h(x)) of a finite Laurant series h^x)^^ _ a^s

A((x)) is defined to be a_i.

Lemma 5.4. (Invariance of residue with respect to a change of
variables)

Let h(w) be a finite Laurant series and w =f(x) be a change of variables
of the following type;

(5.5) Λ*) = * + Σ ί S i « 2 < * 2 l + 1 e Λ [ M ] , i.e.

a2i+1=0.

Then it holds that

= Rx(h(J(x))f'(x)).

REMARK 5.6. The above lemma corresponds to the invariance of
integral with respect to a change of variables;

ί )dw = ̂  j g(f(x))f(x))dx.
2πt

jg(w
2πt

Proof of Lemma 5.4. Since Rx: A((x))—>A is a Λ-module
homomorphism by definition, it suffices to prove the lemma for the
following three cases.

case (1). h(w) = Σi = oaiw
ιeh[[w]\. In this case, we have obviously

Rw(h(w)) = O = Rx(h(f(x))f(x)).

case (2). h(w) = a.ϊw~1. In this case, we have Rw(h(w)) = a^ly and

Rx(h(J(x))f(x)) = Rjϊzλf(χ)) = RX(^A = a _!,
\J(x) ) \ x )

since f(x) = xf'(x) by hypothesis (5.5).

case (c). h(w) = w~ι for some ί'^2. In this case, we have obviously
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Rw(h(w))=O, and on the other hand, we have

When i is even, both f(x) and f(x)1 consist of only the terms of even
exponents of x. Hence their ratio f(x)/f(x)1 does not contain a monomial
of exponent —1. When i is odd^3, we express i as i=2a{2b+1) + 1
with α ^ l , 6^0. Then

Since f{x)~ι consists only of monomials of even exponents of x, the
numerator in the above formula consists only of monomials with exponents
divisible by 2Λ + 1 . Thus it does not contain the term with exponent

ί -1 . This implies R(I^Λ = O. QED.

V(*)y

Proof of Proposition 5.2. In view of the fact that g(x) — 2^i = 0

φ([RP2i\)x2ί + ί (Shibata [9]), φ([RP2ι]) can be interpreted as the residue
Rx(g'(x)/x2i + 1), where g'(x) = D(i)g(x)=g(x)/x. If we put w=g(x)y then
x=g~i(w) and we have

by Lemma 5.4. Hence we obtain

(5.7)
g~

On the other hand, let τ be the tagent bundle of RP2i. Then
τ φ l Λ = (2*'+l)fί, where η is the Hopf line bundle over RP2iy and
consequently «;+(τ) = (l4-«;1)

2l + 1 , with wi=w1(η). Therefore we obtain

(5.8) <K[RP2l])= " ""^ ~ ' λ

w

Now that (5.7) and (5.8) hold for every i^O, we conclude that
i(w). QED.
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6. Cohomology of projective space bundles

Let ζm-*M be a real ra-dimensional vector bundle over a closed
smooth manifold M, and RP(ζ)^>M be its associated projective space
bundle. If we denote the Hopf line bundle over RP(ζ) by η and its first
Stiefel-Whitney class wx{η) by teHi{RP{ζ)\ Λ), the structure of the
cohomology ring H*(RP(ζ); Λ) is described as follows (Borrel-Hirzebruch
[1], §15).

(6.1) The natural projection π: RP(ζ)-*M induces an injection

π*: FΓ(M;A)^IΓ(RP(ζyy Λ),

and H*(RP(ζ); Λ) is a free ί/*(M;Λ)-module via π* with basis
{l,£,£2, * >£m l} The multiplicative structure is determined by the
following equality;

(6.2) t ί

Hence, each element y of H*(RP(ζ); Λ) can be expressed as

and it holds that

= <bm.1, [M]>eΛ.

Now that T(i?P(O)φlΛ^π*T(M)φ(f/(g)π*O, the multiplicative
sequence K(T(RP(ζ))) factors as π*K(T(M))K(η(g)π%).

Following exactly in the same way as in Ochanine [8], we examine
the conditions for the vanishing of the coefficient of tm~1 in

If we formally split wjjfζ) as \\ (l+wfc), then K(η(g)π*ζ) =

0 Q(* + Wfc)> a n d equality (6.2) becomes

(6.2)'

According to Proposition 5.2, we consequently have

(6.3) K(η(g)πX)=
\m g *

Notice that the right side of (6.3) above is a non-homogeneous formal
power series in t,uly--,um, but we regard each homogeneous part as a
polynomial in t with coefficients in A[ui,u2y' ium]i and divide it by the
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left-hand side of (6.2)', which is a polynomial in t of degree m but is
also regarded as a homogeneous polynomial in t,u1,--'yum so that the
formal series computations below should be considered degree-wise as
polynomial computations.
Thus we obtain

(6.3)' K(η®ifζ) = F(ul9»>9um,t) + { Π (t + uk)}A(uu >,um,t),

with F(uii'"yumyt) a polynomial in t of degree less than m with coefficients
in A[[uiiu2r"yUm\].

Since Q(w) = 1+φ([RP2])w2 + •••, it holds that

(6.4) F ( W l , . . ,«m,W ί)==Π Qfri + Uk)
kΦi

for every /=1,2, ,m. (We are working in characteristic 2.)
Let us put

Π («;

Then G is a polynomial in t of degree m—\ with coefficients in
Λ[[w1,w2, ,wm]]. By vertue of (6.4), t + u{ divide G for every / = l , ,m.

This implies that the product Y\ (ί + wf) divides G since Λ[w1,w2>"*»wm]W

is a unique factorization domain. Hence we conclude that G(M1, ,Mm,ί) =
0 by degree arguments. Therefore we have shown the following.

L e m m a 6.5. Let F(u1,--yumyt) be as defined in (6.3)'. Then the

coefficient of tm~1 in { f\ (Uj + uk)} F(uu -,umyt) is given by

Π (Uj + uk

The rest of this section is devoted to the proof that the coefficient
of tm~x given in the Lemma above vanishes for elliptic genera in case m
is even.
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First we have the following lemma.

L e m m a 6.6. Let Q(u) be the characteristic power series associated to
an unoriented elliptic genus φ: 9t<,—>A. Then it holds that

Proof. If we put

then, by virtue of (4.7.1), we have

q(u) = ί+φ([RP2))ug-ί(u).

Consequently, it holds that

= u.

Therefore q(u) = u/g~1(u) = Q(u). QED.

Corollary 6.7. Let Q(u) be the characteristic power series associated
to an unoriented elliptic genus φ: 9ί+->Λ. Then it satisfies the following
formulas;

(6.7.1) Q(u + υ) = l + Q(u) + Q(υ)9 and

(6.7.2) Q{u)2 = φ([RP2])u2 + Q(u).

Proof. Since we are working in characteristic 2, it holds that
(u + v)2 —uvΛ-v2\ So the corollary follows directly from Lemma 6.6.

Notations and Definitions 6.8.

(6.8.1) Let Sj(m) denote thej-th elementary symmetric function of Q(u{)y
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Q(u2)>'">Q(um)}> a n d S^^im) denote the 7-th elementary symmetric

function {Q(Ul)9 Qfa),-"-,Q(um)}.

(6.8.2) Let Tk(u)y Uk(u) (& = 0,l,2, ) be the polynomials in u defined
inductively by

7\> = 0, C70 = l, and

Uk, Uk + 1 = φ([RP2])u2Tk+Uk for kϊ:0.

L e m m a 6.9. Let Q(u) be as in Corollary 6.7. Then it holds that

(6.9.1) {Q(u) + \}k=Tk(u)Q(u)+Uk(u), and

(6.9.2) Π Q( Σ
l£hm

ΊiΦΪ

Proof. Equality (6.9.1) is easily proved by induction on k, using
(6.7.2). And (6.7.1) implies

Π 0(«ι + «*)= Π
hΦi

= SZi>(m)Um_ι(ui)

+ S<ί>

ί(m)Q(ui)T0(ui)

Σ l ' S r / W ) T ' « - / M i ) ' a S d e s i r e d

L e m m a 6.10. Let n be an integer greater than or equal to 2. We
have a congruence

modulo 2, where Pn denotes the permutation group of {1,2,•••,«}.
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Proof. The lemma is trivial when n — 2. Assume it is also true up
to n— 1. Then the left-hand side of the above formula is

k 2 j k

where *$„_!_i(u2,u3y -,un) denotes the (n — 1— i)-th elementary symmetric
function in {u2yu3y -,un} and P^-i denotes the permutation group of
{2,3,"-n}. Since this is a symmetric function, it is sufficient to consider
the terms u^u^ -u1^ with / 1 ^ i 2 = *#' = ίπ> namely the cases i — n—\ and
n—2. When i = n — 1, the term in question is ut[~1un

2~
2 -u® and this term

gives the desired one in the right-hand side of the formula of the
lemma. When i = n — 2, the terms in question among

are

= 0 modulo 2.

Corollary 6.11. For any even integer raΞ^2 and any nonnegative
integer n^m — 2, we have a congruence

Σ { Π («, + «k)K = 0 mod 2.
l < t < m l < i

Proof. First, let us consider the terms corresponding to i = m in the
above summation. By Lemma 6.10, they are congruent to

Each of these terms have a unique counterpart among the terms
corresponding to i = σ(m— 1— ή). Hence, summation being taken for all
the /, all of these terms are cancelled out modulo 2. The situation is



452 K. SHIBATA

the same for all the other cases of i in the summation, too. This proves
the Corollary.

Corollary 6.12. The coefficient

{ Π (uj

of tm~ι given in Lemma 6.5 vanishes when Q(ύ) is the characteristic power
series of an unoriented elliptic genus with m even.

Proof. In view of Lemma 6.9, 6.10 and Corollary 6.11, it is sufficient
to show that, when m is even, Tm_j(u) is a polynomial in u of degree
less than or equal to m - 2 for every j (O^j^m— 1). But it is easily
proved by induction arguments that T2n(u) is of degree^2n — 2, and that

( w ) = U2n{u) is of degree^2w. This proves the corollary.

Corollary 6.13. Let φ: SR*—>Λ be a multiplicative genus. Then the
following three conditions are equivalent]

(ii) φ(JR) = 0, and
(iii) φ is an unoriented elliptic genus, i.e.

Proof. The equivalence of (i) and (iii) are already proved in Corollary
4.8. Now by Lemma 6.5 and Corollary 6.12, (iii) implies (ii). And
since /<*> <=,/*, (ii) implies (i). QED.

Corollary 6.14. Let

be the natural composite homomorphism defined in the introduction. No
polynomial in SP0t (2) consisting of odd number of monomials is annihilated
by the homomorphism above.

Proof. Let φ0: 9i>-»Z/2Z be the unoriented elliptic genus defined
by Φo([jRί>2i])=l f o r e v e r Y *^0. And Let X be any polynomial in 0>0l
(2) consisting of odd number of monomials. Then φo(X) = 1 by definition,
and so X does not belong to JfR. QED.
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REMARK. 6.15. In the complex bordism ring £/*, the classes [CP2]

and [H3 2] are algebraically independent, and Ochaine [8] shows that the

image of £/„ by an elliptic genus is generated by those of [CP2] and

[H32] In contrast, in the unoriented bordism ring 9ί+, it holds that

[ H ? > 2 ] = t ^ ^ ] 2 a n < i w e have shown in this note that the image of 9t* by

an unoriented elliptic genus is generated by that of [RP2]. This difference

is the main reason why the unoriented elliptic genera are not rich enough

to determine whether <fao=JfR or not, while the elliptic genera in ί7+-theory

are so.

Added in proof. After writing up the present note, the author recognized that the left-hand
side of the formula in Corollary 6.11 is a Vandermonde determinant, and it consequently vanishes
not only modulo 2 but integrally if we replace the plus signs by the minus ones.
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