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Introduction

We develop an equivariant critical point theory for differentiable
G-functions on a Banach G-manifold with the aid of ideal-valued
cohomological index theory, where G is a compact Lié¢ group. We obtain
a lower bound for the number of critical orbits with values in a given
interval (a,b]={te Rla<t<b} and for the number of critical values in
(a,b]. We also obtain cohomological information about the topology of
the critical set K of a G-function, which says a lot more about K than
that obtained by using the Lusternik-Schnirelmann category.

The Lusternik-Schnirelmann category is a numerical homotopical
invariant which gives a lower bound for the number of critical points (see
for example [16], [17]), and this category is successfully extended to the
equivariant setting [2], [3], [5], [6], [7], [15]. Ideal-valued cohomological
index theory also gives important information about the existence of
critical points [8], [9], [10]. The index theory in these papers is a priori
in the equivariant setting and contains the nonequivariant (absolute)
setting as trivial case.

In their paper [6] M. Clapp and D. Puppe developed an equivariant
critical point theory using an equivariant Lusternik-Schnirelmann category.
In the present paper we will develop one using an ideal-valued cohomolog-
ical index theory which contains the nonequivariant setting as nontrivial
case. We will obtain a type of results corresponding to their Theorem
1.1 of [6] and further results which are derived only from our theory.

Throughout this paper G always denotes a compact Lie group, and
spaces considered are all paracompact Hausdorff. Let M be a Banach
G-manifold of class at least C!, i.e., M is a C' Banach manifold and G
acts differentiably by diffeomorphisms. Let f: M—R be a C! G-function,
i.e., fis of class C! and satisfies f(gx)=f(x) for all xe M and ge G. Let
K ={xe M|df,=0} the critical set of f, M,=f"!(—o0,c] and K,=Knf~(c)
for any ceR.

If xe M is a critical point of f, then every point of Gx={gx|ge G}
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is also a critical point, and Gx is called a critical orbit of f. Note that
Gx is diffeomorphic to the homogeneous space G/G, where G, is the
isotropy subgroup at x.

Consider the following deformation conditions (D,)-(D,) for f: M—R
at ceR:

(Do) There is an €>0 such that M., is G-deformable to M., i.e.,
there is a G-homotopy ¢, M, ., —»M,,, (0<t<1) such that @y,=id and
¢1(Mc+e)-gMc'

(D,) K, is compact.

(D,) For every 6>0 and every G-invariant neighborhood U of K,
there is an ¢ with 0<e<0 such that M.,,— U is G-deformable to M,_,
relative to M, _.

A C! Banach G-manifold M admits a G-invariant Finsler structure
| It TM—R (see Palais [16], Krawcewicz-Marzantowicz [14]). The
Palais-Smale condition (or (PS) condition for abbreviation) for f is:

(PS) Any sequence {x,} in M such that {f(x,)} is bounded and {||df, ||}
converges to 0 contains a convergent subsequence.

As is well-known, (D) and (D,) at any c€ R is a consequence of (PS)
under suitable assumptions on differentiability and completeness. See
for the proof Palais [16; Theorem 5.11], [17; Theorem 4.6] for the
nonequivariant case, and Clapp-Puppe [6; Appendix A], Krawcewicz-
Marzantowicz [14; Lemma 1.9] for the equivariant case. If ¢ is a regular
value of f, (D) is also a consequence of (PS) (see [6; Appendix A]). Even
if ¢ is not a regular value we can see that (D,) follows from (PS) under
the assumption that c is an isolated critical value.

By a G-pair (X,A4) we mean a G-space X together with a G-invariant
subspace 4. A G-map f: (X,4A)—(Y,B) means a G-map f: X-Y, i.e.,
f(gx) =gf (x) for ge G and x€ X, such that f(4A)= B. Let 2 be the category
of such G-pairs and G-maps. Let A* be a generalized G-cohomology
theory on £, i.e., h* is a contravariant functor into graded moudles and
h* is equipped with long exact sequences, excision and homotopy
property. In this paper, moreover we require A* to be continuous and
multiplicative with unit. See section 1 for the definition of the terms.

For (X,4A)e? the ideal-valued index of A in X, denoted ind(4,X),
is defined to be the kernel of the homomorphism *: A*(X)—>h*(A) where
i: A— X is the inclusion and A*(X)=h*(X,0). Then ind(A4,X) is an ideal
of h*(X).
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We can now state our first theorem, which corresponds to Theorem
2.3 in section 2.

Theorem 0.0. Let M be a C' Banach G-manifold with h*(M)
Noetherian, and f: M—R a C*-function. For given — o0 <a<b< 00, assume
that f satisfies (Do) at a and (D,), (D,) at every ce(a,b] (c#). If
b= 00, assume in addition that f(K) is bounded above. Then there are a finite
number of critical values cq,--,c,€(a,b] of f such that

ind(Ma’M) : ind(chM) """ ind(ch)M) = ind(Mb)M))
where - represents the products of ideals [1].

A ring R is said to be nilpotent if R"=0 for some integer n>0. The
least such integer 7 is called the index of nilpotency and written nil(R). If
no such integer n exists we put nil(R)= 0.

REMARK. See Marzantowicz [15] for the relation between the index
of nilpotency of A*(X) of a G-space X, the cup-length of 2*(M) and the
G-category of X.

If —oo<a<b<oo, we see ind(M,,M)<ind(M,, M) in h*(M) since
M,<= M,. Define for any integer s>0,

s-nil(M,,M,): =nil(ind >5(M,,M)/ind>*(M,,M)),

where

ind=5(A4,M) =ind(4,M) A h=5(M), h=5(M)= @h"(M).

n>s

Note that if s<t then t-nil(M,,M,) <s-nil(M,,M,), and if b=o00 then
s-nil(M,,M,) =nil(ind>*(M,,M)) since M,=M and ind(M,,M)=0.

Using a suitable G-cohomology theory A*, we will derive the following
theorem from Theorem 0.0, which summarizes Theorems 3.4, 3.5, 3.6
and 3.9 in section 3.

Theorem 0.1. Let f: M—R be as in Theorem 0.0 except that f(K)
is bounded if b= 0.

(1) f has at least 1-nil(M,,M,)—1 critical orbits in M(a‘,,]=f_1(a,b].

(2) If h=*(M) < ind(K,,M) for all critical values ce(a,b], then f has
at least s-nil(M,,M,)—1 critical values in (a,b].

3) If s-nil(M,,M,)—1 is greater than the number of critical values
of f in (a,b], then there is a critical value c€ (a,b] of f such that h*°(K_)#0.
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“4) If 1-nil(M,M_ )=00 for some aeR, then there is an unbounded
sequence of critical values of f.

If in the above theorem f is bounded below and a<inff(M), then
we will obtain a bit better results (see Theorem 3.7).

We will also obtain the following theorem more precisely than in
Theorem 0.1 (3).

Theorem 0.2. Assume that f has k critical values c,,---,¢, in (a,b],
and that there are xy€ind(M, M) and x,,--,x,€h*(M) such that
XXy % ¢ ind(My,M). If each of x,, --,x, is homogeneous, then

(KD @h™K,,)#0,

where d;=deg x;.

This theorem corresponds to Theorem 3.11, and the following
corollary corresponds to Corollary 3.13 in section 3.

Corollary 0.3. Assume that f is bounded (above and below) and has
k critical values. Then h™(K)#0 for any integers m,l>0 with kl<cup,,
(h*(M)).

Here cup,,(h*(M)) is the cup,,-length of h*(M) defined to be the largest
integer t such that (h,(M))'#0 in h*(M). Corollary 0.3 roughly says that
the smaller the number of critical values is, the higher the dimension
of the nonzero cohomology of K is.

1. Ideal-valued cohomological index

Let 2* be a generalized G-cohomology theory on 2. h* is said to be
multiplicative if it has products

hP(X,A) x h(X,B)—h?*9(X,A U B)
for any (X,4), (X,B)e 2 with {4,B} excisive and any p,ge Z, which is
natural, bilinear, associative, commutative (up to the sign (—1)%). h* is
said to be continuous if for any (X,4)e? with A closed,

h*(A)=limh*(U)

where the direct limit is taken over all G-invariant neighborhoods U of
A in X, and the isomorphism is induced by the inclusions.
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ExampLE 1.1. Let H* be the Alexander-Spanier cohomology theory
with coefficients in a field F. The following (1) and (2) are both
generalized cohomology theories on £ which are continuous and
multiplicative with unit in A°(X).

(1) The Borel G-cohomology based on H¥*,
h*(X,A):=H*(EG x ¢X, EG x GA;F),

where EG is a universal G-space.
(2)
h*(X,A):=H*(X/G,A/G;F).
ReMmARrk 1.2. The equivariant stable cohomotopy theory and the

equivariant K-theory are also examples of a generalized G-cohomology
theory. The former is employed in Bartsch-Clapp-Puppe [4].

In what follows we assume h* is a generalized G-cohomology theory
on £ which is continuous and multiplicative with unit. For (X,4)eZ?
the ideal-valued index ind(A4,X) is defined as in the Introduction. We
summarize its properties in the following.

Proposition 1.3. Let (X,A4), (X,4,), (X,4,)eP.
(1) Monotonicity: If there is a G-map @:A,—A, such that i,¢ is
G-homotopic to i, wherei,: A — X andi,: A,— X are the inclusions, then

ind(4,,X)<ind(4,,X).
(2) Subadditivity: If {A,A,} is an excisive pair, then
ind(4,,X)-ind(4,,X) Sind(4, U 4,,X).

(3) Continuity: If A is closed in X and ind(A4,X) is a finitely generated
tdeal of h*(X), then there is a G-invariant neighborhood U of A in X such that

ind(4,X)=ind(U,X).

Proof. (1) Easy by the definition of the index.
(2) It suffices to show that if x,eind(4,,X),n=1,2, then x;x,€
ind(4, U A4,,X). Consider the following commutative diagram.
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h*(4,) h*(A4, ) 42,45)

/N

h*(X) —> h*(A4, ) 42) e——— h*(A,\ ) A5,4,|J 4,)=0

i3 k3 ‘
7t

h*(A,) h*(A4,\J) A5A4,)

where the homomorphisms are all induced from the inclusions. Note
that the two sequences {j},kf} and {j%,k%} are both exact. By the
commutativity of the diagram we see k}fi¥x,=0 in h*(A4,) for n=1,2, and
by the exactness we see that for n=1,2 there are y,e h*(4, U 4,,4,) such
that j¥y,=1%x,. Hence

13(xx,) =13x, 3%, =71y, 73y, =73(v1y,)=0.

This implies x,x,€ind(4; U 4,,X).

(3) Let x4, --,x; be generators of ind(4,X). Since x,|A=i*x,=0 in
h*(A)(n=1,2,---,k), by the continuity there is a G-invariant neighborhood
U, of A in X such that x,|JU=0 in A*(U,). Then U=U,Nn---Nn U, is
also a G-invariant neighborhood of A4, and x,|U=0, i.e., x,€ind(U,X).
Hence ind(4,X)<ind(U,X). On the other hand we see ind(4,X)2
ind(U,X) by the monotonicity of index. O

RemARk 1.4. In (3) of the above proposition ind(4,X) is finitely
generated if A*(X) is Noetherian. One can find in Fadell [8; §3] some
sufficient conditions for A*(X) to be Noetherian.

2. Indices of critical sets

Lemma 2.1. Let M be a C' Banach G-manifold and fM—R a C*
G-function. For given — 00 <a<b< 00, assume that f satisfies (D,) at a and
(D,) at every ce(a,bl(c# ). If f has no critical value in (a,b], then

ind(M,,M) =ind(M,,M).

Proof. By the conditions (Dy),(D,) we can see that M, is
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G-deformable to M,. By the monotonicity of index we see ind(M,,M) <
ind(M,,M). Conversely, by the monotonicity again we see ind(M,,M) 2
ind(M,,M) since M,=M,. Thus the lemma is proved. O

Lemma 2.2. Let M be a C!' Banach G-manifold with h*(M)
Noetherian. If a C' G-function f:M—R satisfies (D,) and (D,) at c, then
there is an £¢>0 such that

ind(M,_,,M)-ind(K_,M)<ind(M, ,,,M).
In particular, if M,_,=0 then
ind(K,,M) =ind(M, ,,,M),
and if K,=0 then
ind(M,_,,M)=ind(M_, ,,M).

Proof. By the assumptions, K, is compact and A*(M) is Noetherian.
So by the continuity of index there is a G-invariant neighborhood U of
K, such that ind(K,M)=ind(U,M). There . is also a G-invariant

(4

neighborhood V' of K, such that K,V V<U. By the monotonicity
we see ind(K,M)=ind(V,M). Take an £¢>0 satisfying (D,) for this
V. Then we have

ind(M, +,,M)=ind((M_,.,— V) v U,M)
2ind(M,,,— V,M)-ind(U,M) by subadditivity
=ind(M,,,— V,M) - ind(K_,M)
2ind(M,_,,M) - ind(K,,M) by (D,) and monotonicity.

Thus the first half of the lemma is proved. If A=0 then ind(4,M)=
h*(M). This fact and the monotonicity implies the second half. O

We will obtain the following theorem:

Theorem 2.3. Let M be a C' Banach G-manifold with h*(M)
Noetherian. For given — o0 <a<b< 0, assume that C* G-function f:M—R
satisfies (D) at a and (D,),(D,) at every ce(a,bl(c# ). If b=oo, assume
in addition that f(K) is bounded above. Then there are a finite number
of critical values c,,--,c, €(a,b] of f such that

ind(M,,M) - ind(K,,,M)------ind(K,,,M) S ind(M,,M).
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Proof. First assume b<oo. Let &(a) be such an £¢>0 as in (D) at
a. For any ce(a,b] let &(c) be such an £¢>0 as in Lemma 2.2, i.e.,

ind(Mc—a(c)’M) ’ ind(Kc»M) s ind(Mc+s(c)’M)'

Let IV, denote the open interval (c—é&(c),c+¢&(c)) for any ce[a,b]. Thén
{V.lc€[a,b]} is an open covering of [a,b]. Since [a,b] is compact, there
are a finite number of d,,---,d,, €[a,b] such that

[ab]lsV, w0V, .
By the monotonicity and Lemma 2.2 we have
ind(M, M) 2ind(M,, , .4, M)
2ind(K,,M) - ind(M,, _ ), M).
b—¢(b) is contained in V, for some de{d,, --,d,}. Since b—g(b) <d+&(d)

we have
ind(My, _ .4,),M) 2ind(M 4 a), M)
2ind(K;,M) - ind(M,;_4,M) by Lemma 2.2.

By the above we have

ind(M,, M) 2ind(K,,M) - ind(K;,M) - ind(M; _ s, M)

Repeating this we have
(2.4) ind(My,,M)2ind(K,,,M)------ ind(K,,,M) - ind(M,,M)

for some cy,--,c,€(a,b]. If ¢ is not a critical value then K =0 and
ind(K,,M)=h*(M)>1. So we may ssume that ¢, --,¢, in (2.4) are all
critical values. Thus the theorem is proved for the case b< 0.

Now assume b=o00. Take an >0 such that supf(K)<r<oo. By
the above we see that there are a finite number of critical values
¢y, e €(a,r] such that

ind(M,,M) - ind(K,,,M)------ind(K,,,M) < ind(M,,M).

Since there is no critical value in [r,00) we can see by (D,) that M,=M
is G-deformable to M,. Thus ind(M,,M)=ind(M,,M) (=0). Thus the
theorem is also proved for the case b=oc0. O

If f is bounded below and a<inff(M), then M,=0 and ind(M,,M)=
h*(M)>1. Thus we obtain the following corollary from Theorem 2.3.
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Corollary 2.4. If f is bounded below and a<inff(M) in Theorem
2.3, then there are a finite number of critical values cy,---,c, < b of f such that

ind(K,,,M)------ind(K,, ,M) < ind(M,,M).

In particular, if b= 00 then

ind(K,,,M)------ind(K,,,M) =0.

3. The number of critical orbits and values

In this section we will derive some results from Theorem 2.3. Before
doing that we need a lemma.

Lemma 3.1. Let U2B be two ideals of a ring R. If - R*<B for
some k>0, then nil(U/B)<k+1.

Proof. Assume to the contrary that k+1<nil(U/8B). Then there
were k+ 1 elements x(,x,, --,%, € U such that [xq] - [x,]---[x,] #0 in U/B, i.e.,
xoxy-%,¢B. This contradicts the assumption U - R cB. O

For a function f: M—R and a subset SR define M,;:=f"'(S) and
K:=Kn M, In the theorems below we will assume (3.2) and (3.3).

AssuMPTION 3.2. A generalized G-cohomology theory h* is continuous
and multiplicative with unit and satisfies h>'(G/H) =0 for all closed subgroups
H of G.

The G-cohomology theory of Example 1.1 (2) satisfies Assumption
3.2. Note that if K is a disjoint union of a finite number of orbits
G/H,,---,G/H,, in M then

ind(K,M) = ﬁ ind(G/H,, M) > h='(M)
i=1

under Assumption 3.2.

AssumPTION 3.3. M is a C' Banach G-manifold with h*(M)
Noetherian. For given — o0 <a<b< 0, a C' G-function f: M— R satisfies
(Dy) at a and (D,), (D,) at every ce(a,b] (c# ).

Theorem 3.4. f has at least 1-nil(M,M,)—1 critical orbits in
M- In particular, if 1-nil(M,,,M,)= 0 then f has infinitely many critical
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orbits in M, .

Proof. It suffices to consider only the case where the number of
critical values in (a,b] is finite. Let ¢, --,c,€(a,b] be such critical
values. It also suffices to consider the case where K, is a finite union
of orbits for all 1<i<k. In this case we see h='(M)<ind(K,,M). Thus
by Theorem 2.3 we have

ind(M,,M) - (h*>*(M))* < ind(My,M).

By Lemma 3.1 we see 1-nil(M,,M;)<k+1. This implies that the number
of critical orbits in M, ,; is at least 1-nil(M,,M,)—1.

A similar proof to above also shows the following.

Theorem 3.5. If h=(M)<ind(K,,M) for all critical values ce(a,b]
and for some integer s >0, then f has at least s-nil(M,,M,)—1 critical values
in (a,b].

The contrapsotion of this theorem is:

Theorem 3.6. If s-nil(M,,M,)-1 is greater than the number of critical
values of f in (a,b], then there is a critical value ce(a,b] of f such that

h=3(M) ¢ ind(K ,M)
and hence h**(K,) #0.

If f is bounded below and a <inff(M), then we may use Corollary
2.4 instead of Theorem 2.3 in the proofs of Theorems 3.4, 3.5, 3.6, and
obtain

Theorem 3.7. Assume that f is bounded below and a <inf f(M). Then

(1) f has at least 1-nil(Q,M,) critical orbits in M,,

(2) if h23(M)<ind(K,,M) for all critical values c<b of f, then f has
at least s-nil(Q,M,) critical values in (— o0,b],

(3) if s-nil(Q,M,) is greater than the number of critical values of f in
(—o00,b], then there is a critical value c<b of f such that h*°(K,))#0.

Note that s-nil(Q,M,) = nil(h>*(M)/ind =*(M,,M)).

Lemma 3.8. If A is a G-invariant compact subspace of a G-space
X with h*(X) Noetherian, then
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(> (X)) cind(4,X)

for some integer k>0.

Proof. Since A4 is compact, there are a finite number of orbits in
A, say G/H; (1<i<k), and G-invariant open neighborhoods U; of G/H,;
such that 4 is covered by Uy(1 <i<k) and ind(G/H;,X)=ind(U;,X). This
fact shows

ind(G/H,,X)-++--ind(G/H,,X) Cind(4,X)

by the monotonicity and subadditivity of index. Then Assumption 3.2
implies the lemma.[]

Theorem 3.9. If 1-nil(M, M,)=0 and b= o0, then f(K) is not
bounded, i.e., there is an unbounded sequence of critical values of f.

Proof. If f(K) were bounded, then by Theorem 2.3 there were a
finite number of critical values ¢,,:-+,¢,>a such that

(3.10) ind(M,, M) - ind(K,,,M)------ind(K,,,M) =0.

Since nil(ind=*(M,,M)) =1-nil(M,,M)= oo, for every n>0 there are
%y, %, € indZ1(M,,M) with x,---x#0. Since K, (1<i<k) is compact,
Lemma 3.8 shows that for a sufficiently large n there is an m <7 such that

Xy xp€ind(K, ,M)------ ind(K,, ,M).

Then (3.10) implies x,---x,,--x,=0. This is a conradiction. So f(K) is
not bounded.[]

Theorem 3.11. Assume that f has k critical values c,, ¢, in (a,b],
and that there are x,€ind(M, M) and x,,--,x,€h*(M) such that
XXy X, ¢ ind(M,,M). If each of xy,--,x, is homogeneous, then

(3.12) Y (K.)® - Dh™(K,,)#0,
where d;=deg x;.

Proof. If the left hand side of (3.12) were zero, then x;€ind(K,,,M)
for all 1<i<k. This implies

xo%y -+ € ind(M,, M) - ind(K,,,M)----+- ind(K,,,M),
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and by Theorem 2.3 we see xyx,---x, € ind(M,,M). This conradicts the
assumption of the theorem. O

Corollary 3.13. Assume that f is bounded (above and below) and has

k critical values. Then h™(K)#0 for any integers m,l>0 with kl<cup,,
(R*(M)).

Proof. If cup,,(h*(M)) <k, then the corollary is trivial since /=0 can
only be taken. So assume k< cup,(h*(M))=t. Then there are y; e h™(M)
for i=1,---;t such that y;---y,#0. If we take @ and b such that
— oo <a<inff(M)<supf(M)<b<oo, then ind(M, M)=h*(M) and ind
(My,M)=0. Thus we can take xq,x, --,%;, in Theorem 3.11 so as

x0=1, %;=Yi-1yp+1 " Yi-1p+2va (1<i<Ek).

Since deg x; =ml for all i with 1 <{<k, Theorem 3.11 shows A™(K) #0.[]

Finally, we give an application of Corollary 3.13. Let K be the
reals R, the complexes C, or the quaternions H, and according to that
G be the group Z,, S' or S? of ge K with |g|=1. Then G acts on K"
by coordinate-wise multiplication, and the unit sphere S(K") of K" is a
G-invariant submanifold with the orbit space S(K")/G=KP" !, the
projective space. Let h*(X)=H*(X/G;F) where H* is the Alexander-
Spanier cohomology and F=2Z,, Q or Q according to K=R, C or H.
Then

h*(S(K™) =~ F[x]/(x"), d=degx=1,2 or 4,

and we see cup,(h*(S(k)))=n—1. Thus Corollary 3.13 shows that if a C*
G-function f: S(K")— R has k critical values, then A%(K)#0 for any integer
I with O0<ki<n—1. This says a lot more about the cohomology of K
than in Clapp-Puppe [5; §2].

For many spaces other than S(K") we already know the cup,-length
or a lower bound of that. See for example Fadell-Husseini[10; Theorem
3.16], Hiller [11], Jaworowski [12; §5] and Komiya [13; Remark 5.10]. So
we can apply Corollary 3.13 to functions on such spaces.
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