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Introduction

Geometric properties of knots and links in a 3-sρhere *S3 often have effect
on their polynomial invariants. Periodicity of knots and links is one of them.
Therefore to study periodic knots and links, it is significant to investigate their
polynomial invariants. In this paper, we consider the following situation:
Let L=Kι\J ••• UKμy μ>\ be an oriented link and B be a trivial knot with
Bf]L=0. We consider the />-fold cyclic cover qp: S

3->S3 branched over B,
wherep>2. We denote the preimage of L and K{ by L and Kiy respectively and
call them the covering links of L and Kh respectively. Let Ki=Kn U ••• U Kiv.
be a ̂ -component link. We give K(j the orientation inherited from K{. Then
L=Kλ U U J?μ=ϋΓiί U U Kλ Vl U U Kμi U U Kμ*μ has the unique orien-
tation. In 1971, Murasugi [7] showed a relationship between the Alexander
polynomials of L and L for the case μvμ=l. Later, Hillman [4], Sakuma [10]
and Turaev [12] extended Murasugi's result to the general case. Our goal in
this paper is to give a relation between the Conway polynomials of L and L
using their results (Theorem 2). To do this, we sharpen their formulas by ex-
pressing in terms of the Conway potential function [2] whose existence is shown
by Hartley [3] (Theorem 1). Although the Alexander polynomial is usually
defined with the difference by a unit of a polynomial ring, the Conway potential
function is uniquely defined as an element of a polynomial ring.

We denote the Conway potential functions of L, B U L and Lby ΩL(tι> •••, tμ),
ΩB[iL(s, tu—9 U) and Ωz(tn, •••, /1Vl, •••, tμi, —,'f<ιV), respectively, where tiy s and
tjj correspond to Ki} B and Kijy respectively. Then concerning the Conway
potential functions of L and L, the following formula holds:

Theorem 1. Let L=K1\J ••• UKμ, μ>ί be an oriented μ-component link
and B be a trivial knot with Bf]L=0. Let L be the p-fold covering link of L,
where ρ>2. Then

.Γ T(P-l)(l-lk(B,D) o (f . . . / \PTJ O (%l f . t \
— V — 1 ML\JI> y Ifi) 1 1 i 2BULVb > hy y tfL) >
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where lk(B,L) is the sum of the linking numbers of B and Kiy l<i<μ, that is,

lk(B, L ) = Σ ? . i lk(B, Kt) and ξ=exp(V^A nip).

Using the 2-variable Conway polynomial [5], we have the following relation
between Vz(#) and Vz(#), the Conway polynomials of L and L.

Theorem 2. Let L=Kι\l ••• ΌKμ, μ>l be an oriented μ-component link
and B be a trivial knot with Bf}L=0. Let L be the p-fold covering link of L,
where p> 2. Then

VZ(*) = v / 3 p - W - w ^ » vL(*) TlΦBυL(2y/=ϊ sin(jπlp), z),
3=1

where Ψ B U I ( # I , #2) ™ ^ e 2-variable Conway polynomial such that zλ and z2 cor-

respond to B and L, respectively.

In §1, we state the definitions and properties of some polynomials which
we use in this paper. In §2, we prove Theorems 1 and 2. We apply them to
a judgement of some periodic links in §3.

Throughout this paper, all the links are oriented.

1. Preliminary

We use four polynomials to prove the theorems. We state their defini-
tions and properties briefly. Let L=Kι\) ••• \jKμy be a /^-component link.

CONWAY POTENTIAL FUNCTION. Conway [2] introduced the potential func-
tion for links. Later its existence was shown by Hartley [3]. We call this the
Conway potential function. It is shown by Traldi [11] that Conway's original
potential function for L and Hartley's one always differ by a factor of (—l)μ - 1.
In this paper we use Hartley's version. We give some properties of the Conway
potential function.
(1.1) For three links L++y L and Lm which differ only in one place as shown
in Fig. 1 (a) or alternatively (b),

Ω(L+ +)+Ω(L._) = (*, tj+tj1 tj1

Ω(L++)+Ω(L__) = (/, tf+tj1

(1.2) aL(l912, ..., tμ) = (^2.. .^
where ΩL'(t2y ~ ,tμ) is the Conway potential function of the sublink L'=K2Ό
••• U Kμ. and λ, is the linking number of Kx and Kiy 2<i<μ.
(1.3) ίiL(tly.-, u) = (-irnL(tτ\ - , fί1).

2-VARiABLE CONWAY POTENTIAL FUNCTION. In the Conway potential func-
tion ΩL(tι, •••, tμ) of L, putting ff = ί i or t2y 1 <i<μy we can obtain the 2-variable
polynomial of L. We call this the 2-variable Conway potential function of
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L[8] and denote it by ΦL(tly t2). From Hartley's definition of the Conway
potential function, we can show the following formula.

Lemma 1. For three links L+, L_ and Lo which differ only in one place as
shown in Fig. 2,

(1.4) Φ(L + )-Φ(L_) = (ti-tT1) Φ(L0).

CONWAY POLYNOMIAL. The Conway polynomial of L is the polynomial
VL(z)^Z[z] defined by the following recursive formulas:
(1.5) For three links L+,L- and Lo which differ only in one place as shown
in Fig. 2,

(1.6) For a trivial knot K,

V,(*) =

2-VARiABLE CONWAY POLYNOMIAL. In the 2-variable Conway potential
function ΦL(tly t2) of L, we put t1—tT1=z1 and t2—tϊ1=z2j then we can write
ΦL(*I> h) m a different form. We call this polynomial the 2-variable Conway
polynomial and denote by ΨL(zi> zz)%-

:XX :XX
Lo

(b)

Fig. 1

L+

Fig. 2
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(1.7) ΨL(zu z2) = ΨL(tx-tτ\ h-t2l) = ΦL(tly t2).

RELATIONS BETWEEN THE POLYNOMIALS. Next we state relations between

the Conway potential function and other polynomials.

Let AL(ΐly •••, tμ) be the Alexander polynomial of L. It is shown in [3] that

(1.8) ( h - t T 1 ) C l f a ) = A L ( t l ) i f μ = l ;

(1.9) aL(ti,-,U) = AL(tl:~,tD if μ>l9

where—means equal up to unit

From [3], it is easy to see that

(1.10) VL(af) = ( ί - r 1 ) Ω L ( ί f - . , 0 ,

where z=t—t~ι.

Let ΩL(tι, •••, tμ) be the Conway potential function of L and let ΦL(ti, t2)

be the 2-variable Conway potential function such that the first component is

labeled by tx and other components are labeled by t2. We have the next rela-

tion from the definition (1.7) of the 2-variable Conway polynomial.

(1.11) ΦL(*i,*2) = Φi.{ti,t2) = ni(tut29-- ,t2),

where zi=ti—t71

y i=l, 2.

2. Proofs of Theorems

Proposition 1. Let L=^Kx\j ••• U ^ μ > l , be a link and B be a trivial

knot such that BΓ\L=0. Let L be the p-fold covering link of L branched over B,

where p> 2. Then

(2.1)

where £=exp(\/— 1 TΓ/ )̂ and ku •••, kμ^Zf and

(2.2) Σ * , = 0 .

Proof. By [10], the Alexander polynomial of a periodic link L satisfy the

formula:

(2.3) A r(t u • •, U) = AL(tu -,tμ) Π AB„t(f«, ί1( , tμ),

where &z(ti> •"> ̂ ) is ώ e reduced Alexander polynomial of which /,-, l < ί < μ ,

corresponds to meridians of all the components of q^ι{Ki)y which is a vr

component link Ki=KnU ••• UKiv.. By [9, Proposition 3], [1, Lemma 1.1] there
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i s a r e l a t i o n b e t w e e n t h e A l e x a n d e r p o l y n o m i a l A χ ( t n y •••, ί1Vl, •••, tμi, •••, ί μ V μ ) o f
Land 2Lz(ti, -~ytμ):

(2.4) ^ ( ^ - ' ^ ^ J Δ ^ ^ . . , ^ . . . , ^ i f o t h e m i s e .

Using (1.9), (2.3) and (2.4), we have:

p-i

3=1

P-i

y=i

for some integer c. So we obtain the formula for the case μ>2. We can prove
for the case μ=l in the same way as the case μ=2.

Now we have only to prove (2.2). Let f(ξ, t)= Π5-1 Ω*ui(fy> *>•••> 0 By
(1.9), there exist two integers / and m such that

ίl (s t ••• t) = + ί ' ίw Δ (s2 ί2 ••• ί2)

Thus we obtain:

^ / zj f-i ... ^-i\ __ _i_£2 /̂ y ^-i ... t~i\

Hence we have:

(2.5) f(ξ-\n=ΰj
P-I

j = l

P-I

On the other hand by (1.3) we have:

(2.6) f(ξ-\ r 1 ) = Π nB[JL(ξ->, r\ "•, r 1 )

From (2.5) and (2.6) we obtain:
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(2-7) f(ξ,r1) = ±Λξ,t).

From (2.1) we have:

(2.8) az(t, - , t) = ξ« t*aL(t, -, t)f(ξ, t),

(2.9) Ω r(r\ - , r 1 ) = ξ* rkίlL(r\ - , rι)f(ξ, r 1 ) ,

where Λ=Σ?-i Λ,. From (1.3), (2.7), (2.8) and (2.9) we have ί*=±r*. Thus
&=0, completing the proof.

Lemma 2. .For α«y integers p(>0) and y, we define :

cd(j>,y)>0 */ J'ΦO;

*/ y = o,

where gcd(p,y) is the greatest common diviser of p andy. For the three numbers
p, y and n, the next identity about X holds:

Proof. It is easy to see that the next identities hold:

2p/n

(χp/n_χ-P/nγ = χ-p jι (χ-ςj»γ ,

Π (ξjy X-ξ'iy X-1) = ξ^p-l)yn X~p Sf (^+?-y^) (-X-Γ")

To prove the lemma we have only to check

P-1 2p/n

Π (X+ξ-») {X-Vh) = Π {X-VT •
j=0 j=l

We consider the sets S and T of the solutions of the equations ΐlpzl(X+ξ~jy)
(X—ξ-*y)=0 and Πyί/?(X'—fyT=O. Then *? consists of the elements ± f "^,
0<j<pln, with multiplicity w, and Γ consists of the elements ξjn,
with multiplicity n. Since

we have *S= Z1. This completes the proof.

Lemma 3. Let B\JL be a torus link with lk{B, L)=q as shown in Fig. 2,
and let L be the p-fold covering link of L branched over B3 where p>2. Then
L is a (p, q)-torus knot and
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where l<j<p—l.

Proof. We only prove for the case q>0. Let Ωm be the Conway poten-
tial function of a (2, 2m)-torus link; CίB^L{tu t2)=Ωq. From a recursive formula
(1.1), we have:

where 7=^ t2+tTι tj1. Then we obtain:

"

Thus

_ sin(qjπ/p)
sin(jπ/p)

This completes the proof.

Fig. 3
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Lemma 4. Let p and q be integers such that (i) p>0, (ii) gcd(p,q)=l.
Then

ξP(P-D(q-D/2 __ yCΓJ^-^ίβ-D == JJ1 s i n ^ j ^
/-i sin(jπlp) '

Proof. We have only to prove the second identity. It is to see that

P-ι (

Π
1

sin(jπ/p)

We consider three cases:
(1) £ is odd and q is odd;
(2) p is even and q is odd
(3) p is odd and q is even.

First note that Π;=i sin(jπlp)>0 in any case.
Case(l). Since sin(qjπlp) = ύn(q(p-j)πlp), ί<j<(/>-l)/2, EK-ί sin

(?iWjfO=Π(;tΊ1)/2 sin\qjπlp)>0. Thus the right-hand side is equal to 1. On

the other hand, Λ / : - ϊ ( / ' ~ 1 ) ( ? " 1 ) = l .
Case (2). Since sin(qjπlp) = sm(q(p—j) πjp), Πy=l ύn(qjπlp)=ύn{qπβ)

JlΫH-^smXqjπ/p). Furthermore since sin(ί7r/2)=(-l)(<?-1)/2, the right-hand
side is equal to (—1)(?"1)/2. On the other hand, the left-hand side equals to
^/37j(ί-i)(ί-i) ==(_l\(ί-i)/2β

Case (3). Since sin(q(p-j)πlp)=-sin(qjπlp)y UpjZ\ sm(qjπ/p)=
(_l)(i>-i)/2 Π(/Γi1)/2sin2(?yτr/ί>). So the right-hand side is equal to (-iγp~1)/2.
We also find that the left-hand side equals to (—1)(/>~1)/2. This completes the
proof.

Proof of Theorem 1. We will prove that a=p(p— 1) (1—lk(B, L))/2 and
k—0, l<t<μ, in Proposition 1.

Step 1. The case where L is a (p, g)-torus knot, p>0.
We may assume an image L of L is a trivial knot as shown in Fig. 3. By

Proposition 1 and (1.10), we have:

ίΓ1) = (h-tϊ1) Ωz(ίi) = Γ^i-ίΓ 1 )

Putting ί i = l , by Lemmas 3 and 4 we have:

Π Ω e l) = e- π

_- ε

Though α is equal to p(p—l) (1—ί)/2 modulo 2p, we may choose a=p(p— 1)
(1—#)/2. Since # is the linking number of B and L, we have the desired form.

Step 2. The case where L and L are knots.
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Let q=lk(B, L). We can obtain a (py ^-torus knot from L by changing
some crossings of L. We induct on the number n of them. Since L has period
p, we may consider that n is a multiple of p. Suppose a=p(p—\){\—q)j2
for the case n={c—1)/>, c>l. We consider the case that n=cp and the signs
of at least p crossings of them are positive. For three links L+, L_ and Lo

which differ only in one place as shown in Fig. 2, from (1.5) and (1.10), we ob-
tain:

(2.10) ΩL+(ί) = aLjfy+(t-rι) Ωi0(ί, t).

And for three links B U L+, BUL- and B U Lo which differ only in one place,
in which a string of B is not contained, as shown in Fig. 2, by (1.4), we have

(2.11) nB[IL+(&, t) = aBυL_(ξ

UL+=L, then by (2.10) and (2.11), (2.1) with μ=l becomes

Π

Since Ω£o(ί, t), Ω,BυLo(ξJ, t, t) and (t—r1) ΩL_(ί) are elements of C[i± J], we see

Ωϊ(t) = Γ O i - W Π i ^

for some ^ ( ή e C ^ 1 ] . Thus

x Π {ΩΛUX_(^, ή+it-r1) nBULo{ξ>, t, t)}.

r1)(/-r1) Ωϊ(ί) = f ( ί - r ' ) ^ .( ί) Π

Putting ί=1, by (1.14) we have:

(2.12) l=ΓΠίW_(eM)
j = l

Let L- be the >̂-fold covering link of L_ branched over B, then by assumption,

JP, ί).
y=i

Thus

(f t-Λ O~ (f\ — ZP(P-VO -lk(B,L ))/2(f_f-ι\ o /fVTT1

y=i

Putting f = l , we have:

From (2.12) and (2.13) we obtain:
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ξ* _ ξP(P-lHl-lk(B,L_))/2 ^

Since lk(B, L-)=lk(B, L+), we may choose

Similarly we can prove in case the signs of the crossings are negative.
Step 3. The case where L=K1{JK2 is a 2-component link such that

Ik(Kl9 K2) ΦO and R2 is a knot.
Suppose Kι has vx components. By Proposition 1,

'', tu t2),

and so putting ^ = 1 , we have:

P - 1

(2.14) Ωz(l, •••, 1, t2) = ξ* t*2 ΩL(1, *2) Π

By (1.2), we have the following.

so 1 ς\ CW1 . . . 1 t\ (fpιf*i /r^/vi
(ΔΛD) \LL\L, •••, 1 , C2J — ^ 2 •" — 1 2 1

(2 γj\ £i (pi \ f \ —r ίξJy ιι p-jy f-ι\

where l=lk(Ku K2) and y=lk(B, KJ. Since ^ 2 is a knot, by Step 2,

/O 1 Q\ O~ ^/ ^ ££(£-l)(l-*)/2 O ^f^ TT O t̂i i \
yΔ.LO) Iύκ2\l2) — ζ ΛfδΓ2V 2/ A l A A 5 u i Γ 2 \ ^ ' 2/ >

where x=lk{B, K2). Using (2.15) and (2.18), we have:

(2.19) # t f . 1 ) ( 1 _, w ί / Λ

And substituting (2.16) and (2.17) to (2.14), we have:

Ωr(l, - , 1, h)

= ξ* &(ή-tϊ') nK2(t2) ff up* ή-riy a
p-l p-\

(2.20) = ξ* tk

2*i Π (ξjy ή—ξ~iy tϊ1)} £LK2(t2) Π Ω,B[)K2(ξj

y t2)
/=o y=i

χΩ ί 2 (ί 2 ) Π Ω5UΛ-2(^', ί2) (by Lemma 2)

From (2.19) and (2.20) we obtain:
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ξ-<*+P(P-l)(p-χ-y)/2 _ fk2 ^

Since x+y=lk(By L), we may choose that a=ρ(p— 1) (ί—lk(By L)) and k2=0.
Hence we obtain kλ=Q by (2.2).

Step 4. The case where L is a knot and Z, has more than 1 component.
We take a knot K such that lk(L,K)Φ0 and gcd(/β(B, K)yp)=\. Let

M=L\JK. By Proposition 1 and Step 3, we have:

'. h, t2) .

putting t

(2.21)

By (1.2),

(2.22)

(2.23)

(2.24)

2=1, we have:

we have the following.

ΩJKΊ, - , «i, 1) = (tϊ

nM(tui) = (tl

nBUM(ξi, tϊt i) = (ξi* t[

P-i

'-ίΓ'OΩzίί!,-

- ί Γ O Ω ^ ) ;

- Γ " < Γ ' ) Ω Λ u i

where l=lk(L, K) and x=lk(B, K). Since L is a knot, by Proposition 1 we
have:

(2.25) Ωzft, - , ίi) = Γ nL(i0 Π Ω 5 U L ( ^ , O

Combining (2.21)-(2.25) and Lemma 2 as in Step 3, we obtain:

ξ* = ξP(P-W-ik(B,M)+χ)/2 β

Since lk(B, M)=lk(B, L)+lk(By K), we may choose a=p(p-ί) (l-lk(By L))/2.
Step 5. The case where L=KX \JK2 is a 2-comρonent link with lk(KϊyK2)

Φ0.
Since we have the desired result for K2 by Steps 2 and 4, we can prove

α=p(p—l) (l—lk(B, L))β and &2=0 as in Step 3. Since Aj+J^O, we obtain

Step 6. The case where L=K1 U ••• U Kμ, μ>2 is a ^-component link such
that there exists a component ϋΓ, satisfying lk(Ki9 Kj)Φ0 for any^Φ/.

We induct on the number μ of the components of L. In case μ=29 we
have the desired result by Step 5. We assume that the Theorem holds for the
^-component links. Suppose L=K1\J ••• Uî μ+1 is a (μ,+ l)-component link
such that Kh z'Φμ+1, is a component with lk(Kiy K/)φ0 for any jΦi. Since
the Theorem holds for the link Lf=K1 U ••• U Kμ. by assumption, as in Step 3, we
have:
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where y=?lk(B, Kμ+1). We piay choose that a=ρ{p-V)(\-*lk(B,L')-y)β=
p(p-l)(l-lk(ByL))l2 and ^ =0,l<ί<^. Since .ΣΪiί*ί=0, we obtain

Step 7. The case where Z ^ J K Ί U ••• U Kμ, μ > 2 , is a ^-component link.
We take a knot Ko such that /&(iζ)> Kg)Φ0 for any j&Γ,, l < / < μ . For the link
L'=K0\JL, by Step 6, we obtain;

_ -_ J*9t09tl9
y=i

As in Step 4 we have:

This completes the proof of Theorem 1.

Proof of Theorem 2. From Theorem 1 we obtain the following relation:

By (1.10) and (1.11), we have the desired formula.

3. Application

Theorem 3. Let L—Kι\j ••• U ^ μ > l , be on oriented μ-componeήt link
such that the Conway polynomial of L is not zero and let B be a trivial knot with
Bf]L=0. Let L be the p-fold covering link of L branched over B, where p°>2.
Let an{L) and άn{L) be the coefficients of degree n of the Conway polynomials of
L and L, respectively, and let m=mm{n\an(L)Φ0} and tn=min{n\an(L)3=Q}.
If L has μ components, then ffϊ=m and am(L)=pμ'~1 am(L).

We need two lemmas to prove Theorem 3.

Lemma 5 ([6, p.24]). For any integer p>l,

Proof. By Lemma 2, we have:

Ώ.(ξ'X-ξ~ — , x
7 - 1 ^Λ. -Λ

Putting X = l , we obtain:
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Since 2χ/— 1 sin(jπlp)=ξ3 —ξ J\ we have:

P-i P-1

V-χ Π sin(jπ/p) = Π {2 sin(jπ/p)}

y=i

P-i

- = p

This completes the proof.

L e m m a 6. Let L=KQ\JKX{J---{jKμ, μ>ls be a {μ-\-\)-component link

such that Ko is a trivial knot. Let ΩL(tOί tu •••_, tμ) be the Conway potential func-

tion of L. Then for any integer p>l,

\ I,-,!)
2y/-\ώn(jπlp)

and

U L&,1, - , \)= y/=V>-*HT-*

where rv=lk(K0,Ky,),ϊ<v<μ, atid r=~Σv=irv

Proof. By (1.2) we have:

Ω£(ί0, 1, - , 1) = { Π (ίSv-ίiΓr»)} Λ
v=i
Π
v=i

Thus

Hence

P-I

= 1 1 Λ "
y=r-

=Ϊ sin(rjkfp)}-}-
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By Lemma 4, this equals to

ί2 w=τγp-w-» Πf-i -1) Πfci sin(jV/j»)}

By Lemma 5, this equals to

This completes the proof.

Proof of Theorem 3. By Theorem 2 we have:

p-i

(3.1) ^ ϊ sin(y^), z),

where r=lk(B, L). Since L and Z. are μ-component links, the Conway poly-
nomials of L and L are of the form:

(3.2)

(3.3)

If we put

Vz(«) = «,_!

ΐϊ
from (3.1), (3.2) and (3.3) we may assume that

= T sin(jπlp), z) ,

where b2i^Z. To prove the theorem, we have only to check bo=pμ~1. Using
(1.11) and Lemma 6, we have:

Π

Π

= Ϊ sm(jπ/p)y 0)

This completes the proof.
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Let L=K1\J « Uiζχ, μ > l , be a link with period n and L*=kx\J •
v>l> be a factor link of L. For a covering map/ Λ : L->L*, we deonte the
number of the components of fή\k^)y l</<z>, by έτ, . Then we say that L has
period w(ι>;£i, •• ,r v ).

Corollary 1. Lei L be an oriented μ-component link such that the Conway
polynomial Vz(#) of L is not zero. If L has period n(μ; 1, •••, 1), then am(L) = 0
(mod n11"1), where am(L) is the coefficient of the lowest degree of the Conway poly-
nomial of L.

Proof. Since L has period n(μ; 1, •••, 1) and VL(#)=t=O, a factor link L*
has μ components and the Conway polynomial of L* is not zero by Theorem
2. By Theorem 3 we have am(L)=nμ"1 am(L*). This completes the proof.

EXAMPLE. We calculate the Conway polynomial of a ^-component link
Cp> p>2> as shown in Fig. 4. If we consider the Whitehead link δLJL as
shown in Fig. 5, we can regard Cp as the ^>-fold covering link of L. Hence
we can obtain the Conway polynomial of Cp using Theorem 2. Since

!* #2) = —#1 *2> we have:

Vc,(*) = V^ϊ'- 1 Π(—2Λ/—1 sin(jπlp)xz)

*-l P

Fig. 4
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Fig. 5

If p is more than two, it is easy to see that p3βθ (mod np~ι) for any integer

n>\. By corollary 1, we find that Cpip>Zy does not have period n(p; 1, •••, 1)

for n>2.
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