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Introduction

Geometric properties of knots and links in a 3-sphere S* often have effect
on their polynomial invariants. Periodicity of knots and links is one of them.
Therefore to study periodic knots and links, it is significant to investigate their
polynomial invariants. In this paper, we consider the following situation:
Let L=K,U** UKy, u>1 be an oriented link and B be a trivial knot with
BNL=@. We consider the p-fold cyclic cover g,: §°—S* branched over B,
where p>2. We denote the preimage of L and K; by L and K;, respectively and
call them the covering links of L and K;, respectively. Let K;=K;;U-- UK,
be a v;-component link. We give K;; the orientation inherited from K;. 'Then
L=K U URw=KjjU UK}y, U-+UKu U+ UKy, has the unique orien-
tation. In 1971, Murasugi [7] showed a relationship between the Alexander
polynomials of L and L for the case uvu=1. Later, Hillman [4], Sakuma [10]
and Turaev [12] extended Murasugi’s result to the general case. Our goal in
this paper is to give a relation between the Conway polynomials of L and L
using their results (Theorem 2). To do this, we sharpen their formulas by ex-
pressing in terms of the Conway potential function [2] whose existence is shown
by Hartley [3] (Theorem 1). Although the Alexander polynomial is usually
defined with the difference by a unit of a polynomial ring, the Conway potential
function is uniquely defined as an element of a polynomial ring.

We denote the Conway potential functions of L, BU L and Lby Q,(t,, -+, tu),
Qpy.(s, ty, o+, tw) and Qz(ty, -+, by, +++, tug, *++, twy,), Tespectively, where 2;, s and
t;; correspond to K;, B and K, respectively. Then concerning the Conway
potential functions of L and L, the following formula holds:

Theorem 1. Let L=K;U -+ UKy, u=>1 be an oriented p-component link
and B be a trivial knot with BNL=0. Let L be the p-fold covering link of L,
where p>2. Then

\Q'Z(th cery By vty Ty ooy t#)

T4 (p— - = j )
= \/— 1(1’ DA-IxE,L) QL(tly ) tl*) 11 QBUL(E"? by ovey tl*) y
. i=1 :
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where Ik(B, L) is the sum of the linking numbers of B and K;,1<i<p, that is,
lk(B, L)=X.1 Ik(B, K;) and E=exp(\/—1 =/p).

Using the 2-variable Conway polynomial [5], we have the following relation
between V,(2) and Vz(2), the Conway polynomials of L and L.

Theorem 2. Let L=K,U - UKy, u=>1 be an oriented u-component link
and B be a trivial knot with BNL=(. Let L be the p-fold covering link of L,
where p>2. Then

Vi(2) = /1¢-D0-1KE.D) ¥ () ’i:f ¥,,2(2/ =1 sin(jz[p), 2) ,

where ¥y 1(21, 2,) is the 2-variable Conway polynomial such that 2, and 2, cor-
respond to B and L, respectively.

In §1, we state the definitions and properties of some polynomials which
we use in this paper. In §2, we prove Theorems 1 and 2. We apply them to
a judgement of some periodic links in §3.

Throughout this paper, all the links are oriented.

1. Preliminary

We use four polynomials to prove the theorems. We state their defini-
tions and properties briefly. Let L=K,U - U Ky, be a py-component link.

CONWAY POTENTIAL FUNCTION. Conway [2] introduced the potential func-
tion for links. Later its existence was shown by Hartley [3]. We call this the
Conway potential function. It is shown by Traldi [11] that Conway’s original
potential function for L and Hartley’s one always differ by a factor of (—1)*~%
In this paper we use Hartley’s version. We give some properties of the Conway
potential function.
(1.1) For three links L, L__ and Ly, which differ only in one place as shown
in Fig. 1 (a) or alternatively (b),

QL )+ QL) = (47 157 O (L)
QL. )+Q(L--) = (& 7'+ 1;) Q(Leo) -

(12) Qu(1, 2y, v, t) = (Boeeetdii—t7e otz ) Quoty, -+, 1),
where Q,/(2,, -+, tu) is the Conway potential function of the sublink L'=K,U
+=+ U Ky and ; is the linking number of K and K;, 2<i< .
(L.3) Qu(ty, ++, tu) = (—1)* Q71 +=-, th).

2-vARIABLE CONWAY POTENTIAL FUNCTION. In the Conway potential func-
tion Q (4, *++, ) of L, putting #;=t, or #,, 1<é <pu, we can obtain the 2-variable
polynomial of L. We call this the 2-variable Conway potential function of
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L[8] and denote it by ®,(¢,7,). From Hartley’s definition of the Conway
potential function, we can show the following formula.

Lemma 1. For three links L,, L_ and L, which differ only in one place as
shown in Fig. 2,

(14) B(Ly)—D(L) = (t—17) D(Ly)

Conway POLYNOMIAL. The Conway polynomial of L is the polynomial
V.(2)E Z[z] defined by the following recursive formulas:
(1.5) For three links L, L_ and L, which differ only in one place as shown
in Fig. 2,

V(L)Y (L) = 2V (Ly).
(1.6) For a trivial knot K,
Ve(z)=1.

2-vARIABLE CONWAY POLYNOMIAL. In the 2-variable Conway potential
function ®,(#, t,) of L, we put ,—#'=2; and #,—#;'=z,, then we can write
®,(t,2,) in a different form. We call this polynomial the 2-variable Conway
polynomial and denote by W,(2y, 2,):

PN —
\/ \ ——
Ly L. Lo
(a)
tj/ t \ e
L., L__ Loo
(b)
Fig. 1
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(1.7) \I,L(zl, zz) = \I’L(tl—tl_l, tz—“tz_l) == ¢L(t1" tz) .

RELATIONS BETWEEN THE POLYNOMIALs. Next we state relations between
the Conway potential function and other polynomials.
Let A;(2, -+, tu) be the Alexander polynomial of L. It is shown in [3] that

(1.8) (B—t) Qut) = A(B) if p=1;
(1.9) Qulty, e b)) = A8, -y £2) if w>1,

where==means equal up to unit 4-#}--¢s.
From [3], it is easy to see that

(1.10) Vi(z) = E—1tY) Qu(t, -+ 1),

where g=2—171.

Let Q,(#, +++, tu) b2 the Conway potential function of L and let ®@.(z,¢,)
be the 2-variable Conway potential function such that the first component is
labeled by #, and other components are labeled by #,. We have the next rela-
tion from the definition (1.7) of the 2-variable Conway polynomial.

(1.11) W (21, 25) = Dty £2) = Qu(ty, by *+7, 1),
where z;=t,—t7,1=1, 2.

2. Proofs of Theorems

Proposition 1. Let L=K,U - UKy, p>1, be a link and B be a irivial
knot such that BOL=@. Let L be the p-fold covering link of L branched over B,
where p>2. Then

(21) Qf(th '")th °%y tl‘-’ “tty tlb)
p-1 .
= £ tllel"'tl-lf"‘ QL(tl) ) tF') 1]; QBUL(‘E’: ty, **y tl*) )
j=

where E=exp(\/—1 z[p) and ky, -+, kuE Z, and
"
(2.2) gl k;=0.

Proof. By [10], the Alexander polynomial of a periodic link L satisfy the
formula:

p-1 .
(2.3) Az(ty vy tu) = ALy, *+, tu) EABUL(EZI» AT AR

where Az(#, «**, #u) is the reduced Alexander polynomial of which ¢, 1<i<p,
corresponds to meridians of all the components of ¢;%(K;), which is a ;-

component link K;=K, U -+ U K, By[9, Proposition 3], [1, Lemma 1.1] there



Conway PoLYNOMIALS OF PerIopic LINKs 151

is a relation between the Alexander polynomial Az(ty, -+, iy, ***, fuy, **, tw,) Of
L and Az(ty, +y tu):

(h—1) Az(ts, -+, 1) if u—1and pu>2;
Az(tly cery by voey By oty tu) if otherwise.

(2.4) M@wyMﬁ{
Using (1.9), (2.3) and (2.4), we have:

-QZ(tn T TSI FRRSTN t“)

= Az(tf, -, tf, e, ti’ eey ti)
-1 .
= AL(tf) *tty tl'i) IIIABUL(EZJ’ t?, MY t!z'-)
j=
. #-1 )
= E ‘Q'L(tl) °*ty tll') J];]; QBUL(E]) by, ooy tl‘-)

for some integer ¢. So we obtain the formula for the case x>2. We can prove
for the case =1 in the same way as the case u=2.

Now we have only to prove (2.2). Let f(&, £)=1I%21 Qpyi(8/,¢, -, £). By
(1.9), there exist two integers / and m such that

'Q'BUL(sa t, Ty t) = Ii:sl " AJ.‘?uL(szy tzs *tty tz) .
Thus we obtain:
Qpur(—E, 7Y ey t7) = £Qpy (8, 277, oy 7).

Hence we have:
p-1
(25) f(E_l) t—l) = ]];Il QBUL(E—i, t—‘l’ °t%y t_l)
p-1 .
= jl;.[l'Q‘BUL(_‘EI’ t_l’ R t_l)
-1 A
== :': j];.[lQBUL(EI) t—l: Tt t_l)
=+ f( 7).
On the otber hand by (1.3) we have:

(26) EH 1) =TT Qauur, 17, -, 1)
= I A1 Q@ 1, -, )

= (—1)#0 T Oy (8, 1+, )
i=1
= (—1)@-D®D £(£ 1),
From (2.5) and (2.6) we obtain:
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(27) f(‘E» tnl) = Z’:f(g’ t) .

From (2.1) we have:

(2.8) Qz(t, -+, 8) = E*t* Qu(t, -, O f(E, 1),
(2.9) Qe o ) = E 7 Q27 e, ) fE, ),

where k=311 k;. From (1.3), (2.7), (2.8) and (2.9) we have t*=4-¢"*. Thus
k=0, completing the proof.

Lemma 2. For any integers p(>0) and y, we define :
5 | 8ed(@:0)>0 i y=0;
? if y=0,

where ged(p, y) is the greatest common diviser of p and y. For the three numbers
p,y and n, the next identity about X holds :

ﬁ:(,;:iy X—E~ir X7 = ppo-Dsly X o X ~plny"
Proof. It is easy to see that the next identities hold:
(Xt X~bI)* — X~b T’Ii'(X_Ej,,)” ’
jf;[: (B X—E~7 XY) = gpo-Dsl2 X-» jH;: (XAHE-7) (X—E-37) .
To prove the lemma we have only to check
;I_]Z (X+E99) (X—E 1) ZZ:I:I: (X—Einy".

We consider the sets S and T of the solutions of the equations [T525(X-+E£-7)
(X—£77)=0 and II3%/(X—&™)"=0. Then S consists of the elements 4-£7,
0<j<p/n, with multiplicity #, and T consists of the elements £/*, 1<j<2p/n,
with multiplicity #». Since

{Em1<j <2p[n} = {+E7|0<j<p/n—1},
we have S=T. This completes the proof.

Lemma 3. Let BUL be a torus link with Ik(B, L)y=q as shown in Fig. 3,
and let L be the p-fold covering link of L branched over B, where p>2. Then
L is a (p, q)-torus knot and

Qo (8, 1) = SR P)
o sin (j/p)
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where 1< j <p—1.

Proof. We only prove for the case ¢>0. Let Q, be the Conway poten-
tial function of a (2, 2m)-torus link; Qpy (%, £)=Q,. From a recursive formula
(1.1), we have:

Qm+l+ﬂm—l =9 Qm ’ m>1 ’
\Qoz O)

where y=t, t,+t7'tz*. Then we obtain:

0 = (L) o= o+ v v .

2/ Vo —4
Thus
j —_ 1 q_l— \9__ -7\¢
_ giq_g—jq
Ei_f—i
_sin(gjz/p)
sin(jz/p)

This completes the proof.

B N
N\

Fig. 3
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Lemma 4. Let p and q be integers such that (i) p>0, (ii) ged(p, q9)=1.
Then

gro-va-ve — (/T76-veD = 1 sin(gjz/p)
1 sin(jrlp)
Proof. We have only to prove the second identity. It is to see that

i sintasip) | _ ;.
=t sin(jxlp)

We consider three cases:

(1) pisodd and gis odd;

(2) pisevenand gis odd;

(3) pisoddand gis even.
First note that [T421 sin(jz/p)>0 in any case.

Case (1). Since sin(gjz[p)—sin(g(p—7) =lp), 1<j<(p—1)/2, Iliz}sin
(qj=[p)=T1{=""? sin*(gj=[p)>0. Thus the right-hand side is equal to 1. On
the other hand, \/—1¢"P@ V=1,

Case (2). Since sin(gj/p)=sin(q(p—j) xIp), TI}=! sin(gjiz/p)=sin(gr]2)
TI44-Y sin*(gjz/p). Furthermore since sin(gz/2)=(—1)“""/ the right-hand

j=1

side is equal to (—1)@ V%  On the other hand, the left-hand side equals to
TeDE D (— 1)@,

Case (3). Since sin(g(p—j) m[p)——sin(gj=[p), TT}=} sin(gj[p)=
(—1)@-0/2 TI%51/% sin*(gjz[p). So the right-hand side is equal to (—1)®-b7%
We also find that the left-hand side equals to (—1)®-Y72 This completes the
proof.

Proof of Theorem 1. We will prove that a=p(p—1) (1—Ik(B, L))/2 and
k;=0, 1<i<y, in Proposition 1.

Step 1. The case where L is a (p, g)-torus knot, p>>0.

We may assume an image L of L is a trivial knot as shown in Fig. 3. By
Proposition 1 and (1.10), we have:

-1
Vi(t—t") = (1) Qu(t) = E(G—17) Qu(t) I Qpyu(E7, 1) -
Putting #,=1, by Lemmas 3 and 4 we have:

e o 1) — g i)
1=¢ HQ & 1) = ;1 sin(jz/[p)

= g Ep(p—l)(q-!)/Z — Euﬂ(ﬁ D(g-1/2 |

Though « is equal to p(p—1) (1—q)/2 modulo 2p, we may choose a=p(p—1)
(1—¢)/2. Since g is the linking number of B and L, we have the desired form.

Step 2. The case where L and L are knots.
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Let g=Ik(B,L). We can obtain a (p, g)-torus knot from L by changing
some crossings of L. We induct on the number 7 of them. Since L has period
b, we may consider that # is a multiple of p. Suppose a=p(p—1) (1—q)/2
for the case n=(c—1)p,c=>1. We consider the case that n=cp and the signs
of at least p crossings of them are positive. For three links L,,L_ and L,
which differ only in one place as shown in Fig. 2, from (1.5) and (1.10), we ob-
tain:

(2.10) Q. (8) = Qu_(t)+(t—t) Qu (¢, 1) .

And for three links BUL,, BUL_ and BU L, which differ only in one place,
in which a string of B is not contained, as shown in Fig. 2, by (1.4), we have

(2.11) Qs (8, 8) = Qpur (87, )+ (—27) Qpu1,(§, 4, 1) -
If L =L, then by (2.10) and (2.11), (2.1) with x=1 becomes

Q2(t) = E4Qu_()+(t—17) Qut, 1}
X T 4Qaus (€ D-H(—17) Qo (E 1,1}

Since Q;,(2, 2), Qpy (&%, t, t) and (t—17") Q,_(2) are elements of C[t*], we see
1) = £ 0,0 TI o2&, )2 (1)
for some g(t)=C[#*']. Thus
(=17 Qz(t) = E(t—17) Q) 1T Dy (&, O+ (—17) 21
Putting ¢=1, by (1.14) we have:
(2.12) 1= E"jlezﬂm_(f", 1).
Let L_ be the p-fold covering link of L_ branched over B, then by assumption,
Qp () = EPO-DU-IKBLIL Q) (f) :];I—:QBUL_(gja 7).
Thus
(t—17Y) Qz_(£) = EP@-DU-IKBLO 11 Q, (£) j[I;:QBU.L—(Ej’ 7).
Putting #=1, we have:
p-1
(2.13) 1 = EpO-DA-IKB.L /2 J:.[_.[:lQBUL_(Ej’ 1).

From (2.12) and (2.13) we obtain:
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E% — EPO-DO~IKBL
Since Ik(B, L-)=Ik(B, L), we may choose
a=p(p—1)(1—Ik(B, L))/2.

Similarly we can prove in case the signs of the crossings are negative.

Step 3. The case where L=K,UK, is a 2-component link such that
Ik(K;, K;) 0 and K, is a knot.

Suppose K, has », components. By Proposition 1,

s-1 )
Qz(tla "ty tl) iz) = E’ tllel téz ‘Q'L(th tz) JI_I=1 QBUL(‘E’: ty, tz) ’

and so putting #,=1, we have:

(2.14) Qz(l, - 1, 1) = E* the Qu(1, 1) ':n:nm(gf, 1,1,).
By (1.2), we have the following.

(2.15) Qx(1, -, 1,2) = (B — 2" Qz (1)
(2.16) Qu(1, 1) = (th—17") Qp,(ts) .

(2.17) Qpyr(E, 1, 1) = (B ti—E7 177) Qpy (8, 1)

where I=Ik(K;, K,) and y=Ik(B, K;). Since K, is a knot, by Step 2,
-1 .
(2.18) Ql?z(tz) — EP(I’—I)(I-:)/Z sz(tz) 11;11 quxz(f’, tz) ,

where x=Ik(B, K;). Using (2.15) and (2.18), we have:

QZ(I, °ty 1, tZ)

(2.19) p-1 .
= Ep(p—l)(l_x)lz(tguvl—tz_Nhl)vl sz(tz) H ‘Q'BUKz(E"7 tZ) o
ji=1

And substituting (2.16) and (2.17) to (2.14), we have:
Qz(1, -+, 1,2)
= g te(th—17") O (t) IT 4@ =87 157) Qe (8, 1)}
(2.20) = £* the{ Iff (B 2—E777 13")} Qg,(t,) h Qpyr (&, 1)
= §¢+P(l’—:)=y;? tha(ty 1tz o
X Qe (t2) :I;I: Qpyx,(§%, 1,). (by Lemma 2)

From (2.19) and (2.20) we obtain:
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E-otp0-D(b-2-12 — ¢, |

Since x+y=Ik(B, L), we may choose that a=p(p—1) (1—/k(B, L)) and k,=0.
Hence we obtain k,=0 by (2.2).
Step 4. The case where L is a knot and L has more than 1 component.

We take a knot K such that /k(L, K)=+0 and gcd(’k(B, K), p)=1. Let
M=LUK. By Proposition 1 and Step 3, we have:

Qi(ty, =+, ty, t;) = EPO-DA-IEMZ Q) (1, tz)lﬁ Qpuu(E,t, 1) .
i=1
putting #,=1, we have:
P
(2'21) ﬂﬂ(tly HAY tl) 1) = EP(P_D(I_M(B'M))/Z QM(tl) 1) I—IIQBUM(EI) ty, 1) .
j=1

By (1.2), we have the following.

(2.22) Qirlty, - 8, 1) = (' — 177" Qz(ty, =+, 1) 3
(2.23) Qu(ty, 1) = (H—17") Qu(ty) 5
(2.24) Qpyu(E b, 1) = (Eti—E7#177) Qpy (89, 1)

where /=Ik(L, K) and x=Ik(B, K). Since L is a knot, by Proposition 1 we
have:

(2.25) Qz(ty, =5 1) = E* Qu(ty) jI;I: Qp (8, 1)

Combining (2.21)-(2.25) and Lemma 2 as in Step 3, we obtain:

Ee — EPO-DA-IKBM+DL

Since lk(B, M)=Ik(B, L)+Ik(B, K), we may choose a=p(p—1) (1—Ik(B, L))/2.

Step 5. The case where L=K, UK, is a 2-component link with Ik(K;,K})
=+0.

Since we have the desired result for K, by Steps 2 and 4, we can prove
a=p(p—1) (1—Ik(B, L))/2 and k,=0 as in Step 3. Since k;+k,=0, we obtain
ky=0.

Step 6. The case where L=K; U +-+ U Ky, #>2 is a u-component link such
that there exists a component K; satisfying /k(K;, K;)=0 for any j=1.

We induct on the number x of the components of L. In case p=2, we
have the desired result by Step 5. We assume that the Theorem holds for the
w-component links. Suppose L=K;U ---UKp4, is a (u+1)-component link
such that K;, 7= u1, is a component with Jk(K;, K;)=+0 for any j i. Since
the Theorem holds for the link L'=K, U -+ U Ky by assumption, as in Step 3, we
have:
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E-atp-DA-IKEL) -2 — ghroephu

where y=Ik(B, Kyu.,). We may choose that a=p(p—1) (1—Ik(B, L')—y)/2=
p(p—1) (1—Ik(B,L))/2 and k;=0,1<i<pu. Since 3%} k;=0, we obtain
kn+1=0-

~ Step 7. The case where L=K,U -+ UKy, p>2, is a p-component link.
We take a knot K, such that k(K,, K;)=0 for any K;, 1<ié<u. For the link
L'=K,U L, by Step 6, we obtain;

QZ/(to, 'b"’ (799 SHEIENS LIRS /78 ’;') tM)
, -1 A ‘
= Ep(p—l)(l_lk(B’L ne \QL’(to, by oy tp-) ]1;]; \QBUL’(E’, Loy By *o0y tf") .

As in Step 4 we have:

E-atp@-DA-IKBINZ — thi.iphu |

This completes the proof of Theorem 1.
Proof of Theorem 2. From Theorem 1 we obtain the following relation:
(E—t1) Qz(, -, 8)
= /I [®DA-IKBL (4 p71) (2, -, £) ﬁQBuL(Ej’ £~ )
i=

By (1.10) and (1.11), we have the desired formula.

3. Application

Theorem 3. Let L=K ;U UKy, u>1, be an oriented p-component link
such that the Conway polynomial of L is not zero and let B be a trivial knot with
BNL=@. Let L be the p-fold covering link of L branched over B, where p>2.
Let a,(L) and a,(L) be the coefficients of degree n of the Conway polynomials of
L and L, respectively, and let m—min{n|a,(L)+0} and Mm=min{n|a, (L)=i=0}
If L has u components, then M=m and az(L)=p"" a,(L).

We need two lemmas to prove Theorem 3.

Lemma 5 ([6, p.24]). For any integer p>1,

1 sin(jmip) =2 -

Proof. By Lemma 2, we have:
L= P ; X?—X-?
iX —g-i X1 -1 )
HEX X = V=185 %
Putting X=1, we obtain:
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T E—g)=v=1v"p.
Since 2+/—1 sin( j;;/p):e:?;g-i, we have:
2= T sin(jwlp) = IL 2sin(jlp)}
=TI {v=TE—E )
— V=100 T -

— p .
This completes the proof.

Lemma 6. Let L=K,UK,U-- UKy, p>1, be a (u+1)-component link
such that K, is a trivial knot. Let Q(%, t,, -+, t.) be the Conway potential _funé-
tion of L. Then for any integer p>1, :
1) = H“’ {2/ =1 sin(r, j=/p)}

2/ —1sin(jzlp) '

Q& 1, -
and
:QIQL(Ei, 1, e, 1) = /Z{@-DG-D pe-t
where r,=Ik(K,, K,), 1<v<p, and r=31_,7,.
Proof. By (1.2) we have:

Qi(to, 1, =+, 1) = { IT (t5v—15")} Qg ()

it
f[ (o —t57)}H(t—15") -

Thus

1) = T8
I 2y Tsingrjnip)
2v—TsinGelp)

QL(EI) 1)

Hence
?-1 ; Hv=1 {2v/=1 Sln(’v]”/?)
oo =IO
Hv=.1{ 421 {2/ =T sin(r,j=[p)}}
212/ =1 sin(jz/p)}




160 Y. Miyazawa

= (2/Z1)@-DeE-D IIV-s {Ei:s} 121(1;(7:7; )71'/1’)} .
=
By Lemma 4, this equals to

(2y/=T)e-v-n Ias &/=1¢D 14 sin(jz/p)}
s sin(j[p)

= (24/Z1)@-V@®-D /706D e ry—u) {jl';[llsin(jnlp)}u—l .
By Lemma 5, this equals to
(24/ZT)P-DE-D /0D ( p )“ -

2r-1
=/ 1@-De-D pu-1
This completes the proof.

Proof of Theorem 3. By Theorem 2 we have:

(1) Vi) = V=109 Vy(s) T Way o2/ =T sin(jnlp), 3).

where r=Ik(B, L). Since L and L are p-component links, the Conway poly-
nomials of L and L are of the form:

(3.2) V1(2) = du_y(L) 2+ au (L) 24+ e
(3.3) Vz(2) = au-y(L) 2 Haupy(L) 24 o
If we put

fils) = V=100 T W, 20/ =T sin(jip), 2)

from (3.1), (3.2) and (3.3) we may assume that
f1(3) = botb; 2+,

where b,EZ. To prove the theorem, we have only to check b,=
(1.11) and Lemma 6, we have:

by = £1(0)
— V10900 T Wi, 29/ =T sin(j/p), 0)

-1

Using

= VIO T Qg8 1,1, 0, 1)
i=1

=/ 1@DA-D /T G-DE-D) pu-l

=P""'l

This completes the proof.
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Let L=K,U --- UKy, u>1, be a link with period #» and L*=Fk, U .- Uk,,
v>1, be a factor link of L. For a covering map f,: L—L*, we deonte the
number of the components of f;%(k;), 1<i<w, by ¢;. Then we say that L has
period n(v; ¢y, **+, ¢,).

Corollary 1. Let L be an oriented p-component link such that the Conway
polynomial V(=) of L is not zero. If L has period n(u; 1, -+, 1), then a,(L)=0
(mod n*~Y), where a,(L) is the coefficient of the lowest degree of the Conway poly-
nomial of L.

Proof. Since L has period n(u;1, -+, 1) and V,(2)=+0, a factor link L*
has u components and the Conway polynomial of L* is not zero by Theorem
2. By Theorem 3 we have a,,(L)=n""!a,(L*). This completes the proof.

ExampLE. We calculate the Conway polynomial of a p-component link
C,, p=>2, as shown in Fig. 4. If we consider the Whitehead link BUL as
shown in Fig. 5, we can regard C, as the p-fold covering link of L. Hence
we can obtain the Conway polynomial of C, using Theorem 2. Since
W, (21, 25) = —2) 2, We have:

Ve,®) = V=1 T (—2v/= T sin(jilp) x2)

= 2+ 5 ] sin(jn/p)

— op-1gp-1_P
2071
= pat~l,
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If p is more than two, it is easy to see that p==0 (mod n?~?) for any integer

n>1. By corollary 1, we find that C,, p>3, does not have period n(p; 1, -++, 1)
for n>2.
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